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Abstract

We examine the Talmudic three wives problem, which is a generaliza-
tion of the Talmudic contested garment problem solved by Aumann and
Maschler (1985) using coalitional procedure. This problem has many prac-
tical applications. In an attempt to unify all Talmudic methods, Guiasu
(2010, 2011) asserts that it can be explained in terms of �run-to-the-bank�,
that is, of Shapley value in a �cumulative game�. It can be challenged be-
cause the coalitional procedure yields the same result as the nucleolus,
which corresponds to a �dual game�. As Guiasu's solution is paradoxical
(it has all the appearances of truth), my contribution consists in explain-
ing the concepts, particularly truncation, that play a central role in the
demonstration, and then analyzing in what way Guiasu's argument is mis-
leading. After recalling what the Talmudic division problem is, how it is
solved by Aumann and Maschler's coalitional procedure (i.e., the nucleo-
lus or the Shapley value of the dual game), and how Guiasu solves it by
the Shapley value of a cumulative game, I show that (i) Guiasu omitted
to truncate the data (claims exceeding the value of the estate must be
reduced to the available level of estate), while truncation is required in
the context. (ii) He attributes the surplus (obtained after sharing out the
estate) to all applicants equally: this contradicts the contested garment
solution. (iii) This implies that the estate cannot exceed the greatest
claim, which is obviously false. (iv) Guiasu's approach violates the ax-
iom of continuity of payo�s. I conclude that Guiasu's attempt to explain
the three wives problem in terms of �run-to-the-bank� is unsuccessful and
actually contradicts the contested garment problem.
Résumé

Nous examinons un des problèmes talmudiques historiques, les trois
épouses, une généralisation du problème talmudique du vêtement con-
testé, résolu par Aumann et Maschler (1985) en utilisant la procédure
coalitionnelle. Ce problème a de nombreuses applications pratiques. Dans
sa tentative pour uni�er toutes les méthodes talmudiques, Guiasu (2010,
2011) dit qu'il peut être expliqué en termes de �ruée vers la banque�, c.a.d.
de valeur de Shapley dans un �jeu cumulatif�. Cette approche doit être
reconsidérée parce que la procédure coalitionnelle donne le même résultat
que le nucléolus qui correspond à un �jeu dual�. Comme la solution de
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Guiasu est paradoxale (elle a toutes les apparences de la vérité), ma contri-
bution est d'expliquer les concepts, principalement la troncation qui joue
un rôle central dans la démonstration, puis d'analyser en quoi l'argument
de Guiasu est inadapté. Après avoir rappelé ce qu'est le problème du
partage selon le Talmud, comment il est résolu par la procédure coalition-
nelle d'Aumann et Maschler (c.à.d. le nucléolus ou la valeur de Shapley du
jeu dual) et comment Guiasu la résout par la valeur de Shapley d'un jeu
cumulatif, on montre que: 1) Guiasu a omis de tronquer de données (les
demandes qui dépassent la richesse doivent être réduites au niveau de la
richesse disponible) alors que c'est nécessaire ici. 2) Il attribue l'excédent
(obtenu après le partage de la richesse) à tous les candidats de manière
égale: cela contredit la solution du vêtement contesté. 3) Ceci implique
que la richesse ne peut pas dépasser la plus grande demande, ce qui est
évidemment faux. 4) L'approche de Guiasu viole l'axiome de continuité
des paiements. On conclut que la tentative de Guiasu de réuni�er les
méthodes de partage selon le Talmud par la valeur de Shapley est n'est
pas couronnée de succès et est en fait contradictoire avec le vêtement
contesté.
Keywords. Shapley value; contested garment; three wives; Talmudic divi-
sion

Mots clés. Valeur de Shapley ; Vêtement Contesté ; Trois Epouses; partage
selon le Talmud
JEL classi�cation. D31, D63, D71, B1, B4

1 Introduction

Historically, there are two main methods of dividing a quantity of some com-
modity between two people: Aristotle's and the Talmud's. Applications of these
methods of division are widespread, ranging from bankruptcy (how to allocate
assets among creditors) to divorce (how to allocate the estate between two con-
sorts) where there are contending claimants, via airport landing rights (Lit-
tlechild and Owen 1973) and the sovereign debt default problem (Fon 2012).1

Moulin (2003, p. 139) also cites joint-ventures and more generally the commons,
the division of copyrights and other artistic rights, cost sharing, evaluation of
the impact of each operator in environmental economics (e.g. �shing), network
access pricing, and so on.

In this paper, we discuss Guiasu's attempt to unify the Talmudic division
problems into a single method. Guiasu (2011, pp. 65-66 and p. 78) states:

Three ancient problems, whose intriguing solutions were given without any
justi�cation back then, generated many studies with very di�erent interpreta-
tions, debates, and controversy. Heuristic procedures and new concepts have
been introduced, just to justify the numerical solutions given very long ago, but
a uniform method for solving these three ancient problems was still missing.

... the main purpose of this paper, and of so many other papers about this
topic, to �nd a rationale for the ancient solutions.

1Fon argues that the �Pari Passu� clause can be interpreted in terms of Talmudic division.
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The principle of division methods is the following. Consider two claimants
denoted 1 and 2. Denote E the total estate to be distributed and x1 and x2
the two payo�s. They are such that the sum of the payo�s does not exceed the
value of the estate: x1 + x2 ≤ E; d1 and d2, with d1 ≤ d2, are the amounts
claimed by the individuals with ; xi ≤ di for any claimant i and d1 + d2 > E
(the commodity to be shared is scarce: this is a �bankruptcy� problem; Moulin
(2003, p. 261) calls it �de�cit-sharing� or �rationing�).2 The important idea is
that claims are exogenous. For example, Moulin (2003, p. 139) cites the case of
a duo of musicians who have to determine their respective contributions but who
are not equally famous. The claims may be symmetric, or unequal, but they
are quanti�ed and well de�ned. This type of problem is known as a rationing
or bankruptcy problem.

Aristotle argues in Book 5 (Rackham 1934)3 that distributive justice must
be proportional: each claimant must receive award in proportion to his claim:
x1/d1 = x2/d2. This is the same with three or more claimants. Proportional
division is the familiar division rule we generally use.

While proportional division is quite simple, not so Talmudic division, a his-
torical Jewish method of division that has recently come to prominence although
it is more than two thousand years old (O'Neill 1982; Aumann4 and Maschler
1985; Young 1987; Deverney 1992; Benoit 1997; Dagan et al 1997; Kaminski
2000; Herrero and Villar 2001; Moulin 2002, 2003; Thomson 2003; Balinski 2003,
2005; Hokari and Thomson 2003; Moreno-Ternero and Villar 2004; Dominguez
and Thomson 2006; Bosmans and Lauwers 2011).5 The Babylonian Talmud
(in the Nézikin sedarim, in the Metsi'a, and in the Kethuboth) considers the
contested garment problem. Two people lay claim to a garment;6 one for the
whole garment, the other for half of the garment. The Talmud also explores the
case where there are more than two claimants in the form of the three wives
problem with its three claimants, the solution to which looked mysterious for
two thousand years but was solved by Aumann and Maschler's (1985) coalitional
procedure.

The Shapley value (Shapley 1953), which is a tool developed by the branch
of economics (and applied mathematics) known as game theory, can be used
to de�ne a certain type of solution to the problem of dividing an estate. The
Shapley value is is the revenue the agents who belong to a coalition are able to
generate by cooperating. This concept from game theory might seem di�cult to
understand. However, (i) it is common knowledge that the contested garment
problem can be solved by using the Shapley value (see for example Moulin (2003,
pp. 57-58); (ii) Aumann and Maschler (1985) and Guiasu (2011)7 proved that

2If d1 + d2 ≤ E, there is no division problem at all: each claimant obviously receives what
he claims, with what remains being shared equally.

3See comments in Kraut (2005) or Gauthier and Jolif (1958-9).
4Nobel prize (actually: The Sveriges Riksbank Prize in Economic Sciences in Memory of

Alfred Nobel) in economics, for the year 2005.
5Following Dagan et al. (1997, p. 58), the method was also studied by Pineles (1861),

unfortunately for me in a text in Hebrew, not translated.
6A large fabric, like a toga, which can be divided up.
7See also Guiasu (2010).
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the solution to the coalitional procedure can be derived from the Shapley value.
For Guiasu, it is the Shapley value�more exactly, the usual Shapley value,
i.e., of a cumulative game�,8 which is a misguided theoretical development
because Aumann and Maschler (1985) showed that the coalitional procedure
corresponds to the nucleolus (Schmeidler 1969), another completely di�erent
concept of game theory.9 It is important to discuss Guiasu's approach because
he purports to unify all Talmudic division methods by the Shapley value, as
shown by this excerpt (Guiasu 2011, p. 78):

The objective of this paper is to show that the game theory logic
based on the Shapley value may be consistently applied for solving,
in a uniform way, all three ancient problems, namely the three wives
problem, the contested garment problem, and the rights arbitration
problem.10

Obviously, then, game theory cannot be left aside even if it is unprepossessing
for many: the discussion will be rather technical but, as underlined by Moulin
(2003, p. 139) �Indeed, no systematic discussion of the ... problem was possible
until the tools of ... game theory became available �fty years or so ago�. I will
set out the main concepts as simply as possible here.

In a nutshell, this paper is an attempt to determine whether it is possible
to unify sharing methods according to the Talmud by the Shapley value as
Guiasu (2010, 2011) did. And in particular, can the three wives problem be
inferred from an easy to understand process such as the �run-to-the-bank�, which
corresponds to the most usual Shapley value (that of a cumulative game). I
will show that the answer is no. The three wives problem stems from a more
complicated and less intuitive process, the nucleolus (i.e., the Shapley value of
a dual game), even if I show it follows a series of highly intuitive orthogonal
projections.

2 Talmudic division: the historical problems

2.1 Truncation

First, it is worth noting that, for any system of division, truncation is indispens-
able. Without it, a claimant making an in�nite claim could obtain the entire
estate.

8In a cumulative game, the maximum value attributed to a coalition is, more or less, the
sum of the value attributed to its members. These concepts will be de�ned precisely later.

9On the idea of nucleolus, see also Maschler, Peleg, and Shapley (1979) and Arin and
Inarra (1998). The nucleolus can be used to �nd the solution that minimizes, step by step,
the largest inequality.

10 Ibn Ezra's Rights Arbitration Problem is not studied in this paper. It is completely
di�erent from the three wives problem, even if it is a generalization of the contested garment
procedure. See ibn Ezra (1146); Rabinovitch (1973); O'Neill (1982); Aumann (2010); de
Mesnard (2015).
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Example 1. Assume that a �rst claimant demands 300 and a second one 600,
the estate being 600. Proportional division allocates 600 × 300/900 = 200 and
600× 600/900 = 400 to each claimant, respectively. However, if agent 2 claims
more than the worth of the estate, say 6000, he obtains 600×6000/6300 = 571.4
and agent 1 just 28.6; if agent 2 claims 60,000, he obtains 600× 60000/60300 =
597 while agent 1 receives just 3. And so on. In the limit, agent 2 receives 600
and agent 1 zero.

De�nition 1 Truncation Moulin (2003, pp. 37� 38, 262). If any claimant
claims more than the entire estate, that is, if there is an i such that di > E, his
claim is replaced by E, i.e.,

d̃i = min (di, E) for any i (1)

Throughout the paper, we order the claims such that d1 ≤ d2 ≤ ... ≤ dn;
thus, truncated claims are ordered such that d̃1 ≤ d̃2 ≤ ... ≤ d̃n with d̃n ≤ E.
We also assume that xi ≤ di for any i such that nobody can receive more than
his claim. Notice that the problem is one of �rationing�, that is,11

E <

n∑
i=1

d̃i

2.2 The contested garment

Two people lay claim to a garment; one for the whole garment, the other for
half of it. This is an excerpt from the Talmud (Baba Mezi'a 2a, Chapter I,
Babylonian Talmud, Daiches and Slotki, 1935):

Two [persons appearing before a court] hold a garment. One of
them says, �I found it�, and the other says, �I found it�; one of them
says, �it is all mine�, and the other says, �it is all mine�, then the
one shall swear that his share in it is not less than half, and the other
shall swear that his share in it is not less than half, and [the value
of the garment] shall then be divided between them. If one says, �it
is all mine�, and the other says, �half of it is mine�, he who says,
�it is all mine� shall swear that his share in it is not less than three
quarters, and he who says, �half of it is mine� shall swear that his
share in it is not less than a quarter. The former then receives three
quarters [of the value of the garment] and the latter receives one
quarter. If two ride on an animal, or one rides and the other leads
it, and one of them says, �it is all mine�, and the other says, �it is
all mine�, then the one shall swear that his share in it is not less
than half, and the other shall swear that his share in it is not less
than half, and [the value of the animal] shall then be divided between

11The case
∑

n
i=1d̃i ≤ E is trivial. Each claimant receives his claim and what remains is

shared equally.
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them. If both admit [each other's claims] or if they have witnesses
[to establish their claims] they receive their shares without an oath.12

The �rst claimant receives what is not claimed by the other, that is, half of
the estate; then the remaining half is shared equally, that is, the �rst claimant
receives in all 3/4 and the second 1/4.

Example 2. In Figure 1, derived from Balinski's �gures 1 and 2 (2003, 2005)
depicting the famous case of the contested garment, point I

′
of coordinates E/2

and 5E/4 exceeds the estate because 5E/4 > E. Therefore, the corresponding
demand is truncated, which gives point I of coordinates E/2 and E. Then, each
claimant receives what is not claimed by the other, that is, E − d̃2 and E − d̃1
respectively; whatever remains (that is, d̃1+d̃2 − E) is shared equally between
both individuals, which gives xCG

1 = 1
2

(
E + d̃1 − d̃2

)
xCG
2 = 1

2

(
E − d̃1 + d̃2

) (2)

As xCG
1 + xCG

2 = E the entire estate is distributed and xCG
i ≥ 0 for any i.

See also Balinski (2003, 2005) for a synthetic and easy-to-read presentation. In
Figure 1, the line BC represents all the feasible allocations of the estate E be-
tween the two individuals (B (0, E) and C (E, 0)). Point I (E/2, E) shows what
both agents claim. Point T (E/4, 3E/4) is the allocation according to Talmudic
division. By truncation, point I ′, for which individual 1's claim exceeds the
estate is also projected on T ; at point I ′′, claimant 2 takes all: this proves how
truncating is important and necessary. A (E/3, 2E/3) is the �Aristotle point�.

12Here, an �oath� is a pledge upon God.
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Figure 1: Contested garment (derived from Balinski (2003, 2005)).

Remark. Talmudic division may seem complicated and unclear; hence the
many discussions of the Jewish masters about it and the many scholarly pa-
pers. However, and this has never been brought to the fore, in the non-trivial
case where d1 + d2 ≥ E, the method corresponds to the orthogonal projection,
that is, to the minimization of Least Squares 13 (or of the quadratic mean) be-

tween vectors d̃ and x under the constraint
∑2

i=1 xi = E: min
xi

∑2
i=1

(
xi − d̃i

)2
,

s.t. x1 + x2 = E. The solution is xi = b + d̃i for any i = 1, 2 where b =(
E − d̃1 − d̃2

)
/2, which is strictly equivalent to (2).14 This criterion amounts

to �nding Gauss' orthogonal projection: the point of coordinates (x1, x2) is the

orthogonal projection of the point
(
d̃1, d̃2

)
on the plane x1 + x2 = E.15

It is possible to examine what happens when the estate varies: the claims d1
13Least Squares are very popular in econometrics, but no stochastic hypotheses are made

here.
14Young (1987, p. 410) indicates a completely di�erent function, based on logarithms and

exponentials.
15A distance and its square have the same minimum.
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and d2 are given but E is variable. With proportional division, x1 and x2 are
always such that x1/d1 = x2/d2. Discussing the contested garment, Aumann
and Maschler (1985, p. 198) explain that:

When E is small, it is divided equally. This continues until each
claimant has received d1/2. Each additional dollar goes to the greater
claimant, until each claimant has received all but d1/2 of her claim.
Beyond that, each additional dollar is again divided equally. Note
that the principle is monotonic, in the sense that for �xed claims d1
and d2, each of the two awards is a monotonic function of the estate
E.

In other words, the unequal division begins when E = d1 and ends when E = d2.
This is depicted in Figure 2, derived from Balinski's �gures 1 and 2 (2003, 2005),
where the coordinates of the points A, B, C, and G are indicated in Table 1.
When the estate is between 0 and d1, Talmudic division shares equally between
each claimant; they receive the same quantity up to d1/2: Talmudic division
is more egalitarian than proportional division. When the estate is between d1
and (d1 + d2) /2, only claimant 2 increases his payo� with Talmudic division
and catches up with 1, up to E = (d1 + d2) /2 where proportional division
and Talmudic division give the same result. Between (d1 + d2) /2 and d2, it is
again claimant 2 who receives all the additional payo� with Talmudic division,
which increases the inequality beyond the proportional division. Between d2
and d1 + d2, with Talmudic division, 1 is again served, the same quantity being
added equally to each payo�: this reduces inequality and for E = d1 + d2,
proportional division and Talmudic division yield the same result. In Figure 2,
we see the constrained equal division. It is a method that apportions shares
equally between both claimants, except that the claimants cannot receive more
than they claim.

Distributions
and estate

A B C G

x1 d1/2 d1/2 d1/2 d1
x2 d1/2 d2/2 d2 − d1/2 d2
E d1 (d1 + d2) /2 d2 d1 + d2

Table 1: Contested garment: coordinates of the four points in Figure 2.
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Figure 2: Contested garment when the estate varies (derived from Balinski
(2003, 2005)). Notations. T-D: Talmudic division; P-D: proportional division;
CE-D: constrained equal division. Dots: estate E.

2.3 The three wives and Aumann & Maschler' s coali-

tional procedure

The Talmud explores the three wives problem which was examined and ex-
tensively discussed by Aumann and Maschler (1985). The marriage contracts
stipulate that upon the husband's death each wife is to receive 100, 200 and 300.
The result is determined by the amount to be shared out. This is an excerpt
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from the Babylonian Talmud (Kethuboth, Folio 93a (Daiches and Slotki, 1935)):

If a man who was married to three wives died, and the kethubah
of one was a maneh [a hundred zuz], of the other two hundred zuz,
and of the third three hundred zuz and the estate [was worth] only
one maneh [the sum] is divided equally. If the estate [was worth]
two hundred zuz [the claimant] of the maneh receives �fty zuz [and
the claimants respectively] of the two hundred and the three hun-
dred zuz [receive each] three gold denarii. If the estate [was worth]
three hundred zuz, [the claimant] of the maneh receives �fty zuz and
[the claimant] of the two hundred zuz [receives] a maneh while [the
claimant] of the three hundred zuz [receives] six gold denarii [one
hundred and �fty zuz]. Similarly, if three persons contributed to a
joint fund and they had made a loss or a pro�t they share in the
same manner.

The outcome is depicted in Table 2.

Estate Claimants
1 2 3

0 0 0 0
100 33 1

3 33 1
3 33 1

3

200 50 75 75
300 50 100 150
400 50 125 225
500 66 2

3 166 2
3 266 2

3

600 100 200 300

Table 2: The historical Talmudic three wives problem: the classic solution (with
the supplementary lines for an estate of 400, 500 and 600).

Aumann and Maschler (1985) perform explicit Talmudic division for more
than two claimants. They consider a series of contested garment procedures, but
beginning with the claimant with the smallest claim. The claims are ordered
in increasing order. The �rst claimant stands alone while the others form a
coalition. The division is made between the two groups following the contested
garment procedure; we see it is an orthogonal projection. Then the second
claimant forms a coalition alone while the third up to the nth claimants form a
second coalition, the division being made between the two groups as before; and
so on. Hence the name coalitional procedure. In the classic problem of Table
2, wives 2 and 3 form a coalition and wife 1 remains alone, then wives 2 and 3
share the remainder equally between themselves.

However, as the coalitional procedure consists of a succession of orthogonal
projections, claimant i + 1 may receive less than claimant i. In this case, the
procedure is stopped and the remaining estate is shared equally between all
remaining claimants. In the classic problem of Table 2, this is the case if, for
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example, the estate is equal to 100 (the process is stopped at the �rst step
because the orderly step-by-step process would give 50 to claimant 1 and only
50 to the other two, that is, (50, 25, 25), which is not order preserving for the
awards). This is also the case when the estate is equal to 500: the process is
also stopped at the �rst step (the orderly step-by-step process would lead to
a loss of 50 for the �rst claimant and of 50 for the other two together, that
is, an allocation of (50, 175, 275)). It should be noted that the awards between
E = 0 and E = 300 are symmetric to the losses between E = 600 and E = 300.
Thomson (2003, p. 256) showed that the coalitional procedure can be presented
in a di�erent way.16

It worth noting that the outcome of the coalitional procedure depends on
the order chosen for forming the coalitions: the results are completely di�erent
if some other order is chosen (de Mesnard 2008).

Example 3. Table 2 gives the classic solution of the three wives problem in the
three columns on the left. The central three columns indicate the result when
the coalitions are formed in reverse order. The three columns on the right show
the solution when the coalitions violate the order of claims.

Coalitions {1}, vs.
{2, 3}

Coalitions {1, 2} vs.
{3}

Coalitions {1, 3} vs.
{2}

Claimants Claimants Claimants
Estate 1 2 3 1 2 3 1 2 3

0 0 0 0 0 0 0 0 0 0
100 33 1

3 33 1
3 33 1

3 25 25 50 33 1
3 33 1

3 33 1
3

150 50 50 50 37.5 37.5 75 50 50 50
200 50 75 75 50 50 100 50 66 2

3 83 1
3

300 50 100 150 50 100 150 50 100 150
400 50 125 225 50 150 200 50 133 1

3 216 2
3

500 66 2
3 166 2

3 266 2
3 75 175 250 66 2

3 166 2
3 266 2

3

600 100 200 300 100 200 300 100 200 300

Claims 100 200 300 100 200 300 100 200 300

Table 3: The three wives problem with the three possible coalitions. The case
of coalitions {1} vs. {2, 3} corresponds to the coalitional procedure.

However, we focus here on the order corresponding to the historic three wives
problem and the coalitional procedure.

16See also Bosmans and Lauwers (2011).
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3 Coalitional procedure and Shapley value of a

cumulative game

The contested garment and the three wives problem can be solved by the Shap-
ley value (Aumann 2010; Guiasu 2011) which is now presented (Shapley 1953;
Dubey 1975).

3.1 De�nitions

The Shapley value can be interpreted in simple terms of the �run-to-the-bank�
(Young 1995, pp.69-71; Moulin 2003, pp. 57-58). The claimants arrive randomly
in the race to the bank; the �rst to arrive takes his full claim (which may
be equal to the entire estate if what is available is equal to or less than his
claim). Whoever arrives second does the same (he may receive zero if nothing
is left), and so on. Assuming the order of arrival is random, all orders are
equally probable: each claimant �nally receives the expectation17 of all cases,
which corresponds to the Shapley value. The run-to-the-bank is particularly
well adapted to a problem of division, and computing the Shapley value by the
run-to-the-bank is faster here. Remember also that truncation is applied to the
data before any division. Table 3 gives an example computed by the �run-to-
the-bank� for the case E = 200 (remember that �run-to-the-bank� and Shapley
value are equivalent), which is one of the cases where the results of the Shapley
value di�er from the Talmudic result.

Order
Claimant1
(claim : 100)

Claimant2
(claim : 200)

Claimant3
(claim : 200)

123 100 100 0
132 100 0 100
213 0 200 0
231 0 200 0
312 0 0 200
321 0 0 200
Expectancy 33 1

3 83 1
3 83 1

3

Table 4: The Talmudic three wives problem: E = 200 computed by the �run-
to-the-bank�

However, this way of �nding the solution is a particular case of Shapley
value, even if it is the more usual, as we will see. This is why it is better to
present the Shapley value in more general terms. N is the set of all agents with
|N | = n. S is a subset or coalition of N . Each subset is called a coalition.
There are 2n di�erent possible coalitions of N including the empty coalition
(i.e. , 2N−1 non empty coalitions) or the coalitions that have only one element.
The characteristic function is a simple mean to characterize a given coalition.

17In practice, we compute the mean.
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De�nition 2. Characteristic value. The quantity v (S) is the characteristic
value that gives the maximum value of a coalition; it is a function

2N → R;S 7→ v (S)

with v
(
/O
)
= 0 by de�nition (dummy axiom).

We are only interested in the maximum value this coalition may earn.

Example 4. If a coalition of two �gamers� earns 500 at the maximum, then we
say that the characteristic value of the coalition is 500: v ({1, 2}) = 500.

Any game is described by indicating the values of the characteristic function
for any possible coalitions. The characteristic function can take several forms,
depending on the type of game considered: cumulative, dual, etc. The property
of superadditivity states that if a coalition ST is formed by the union of two
coalitions S1 and S2, then the characteristic value of ST cannot be lower than
the sum of the characteristic values of S1 and S2: v (ST ) ≥ v (S1) + v (S2).
De�nition 3. Shapley value. The Shapley value ϕi/∈S (v) of an agent i
(who does not belong to S (i.e., i /∈ S)) is the sum of the marginal gains each
individual brings upon joining all coalitions S that can be formed among the
set N of all agents, that is,

ϕi/∈S (v) :=
∑
S⊂N

[
v
(
S
⋃
{i}
)
− v (S)

]
pn (S) (3)

where the quantities18

pn (S) ≡
|S|! (n− |S| − 1)!

n!
(4)

are the weights, that is, a count of the number of possibilities.19 The Shapley
value is e�cient, symmetric and additive. Moreover, those who claim nothing
receive nothing.

We also de�ne the nucleolus.
De�nition 4. Nucleolus. Consider the members i of a coalition S: i ∈ S; the
payo�s of each member: xi; the set of these payo�s is denoted x. The surplus
of a coalition is the di�erence between the characteristic value and the sum of
the individual payo�s this coalition receives, that is,

e (x, S) = v (S)−
∑
i∈S

xi

It is assumed that the coalition S served �rst is the one with the largest
surplus e (x, S) because �the one who yells loudest gets served �rst� (Ferguson

18S
⋃
{i} denotes the union of coalition S and agent i.

19|S| denotes the number of members of coalition S, and x! the factorial of x, that is,
the product x × (x− 1) × (x− 2) × ... × 1. n! is the total number of possible coalitions.
|S|! ((n− |S| − 1)!) counts the number of coalitions that i may join and pn(S) is the ratio
between both quantities, that is, a relative count.
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2005, p. IV-22). Then, the set of payo�s x is adjusted so that the surplus
becomes smaller but this increases the payo�s of the agents who are not in the
coalition, and so on. The process stops when it becomes impossible to modify
the payo�s: the set of payo�s that ensues is the nucleolus. The nucleolus is
always unique (Driessen 1988, section II.7).

Remark. Saying that the nucleolus consists in minimizing, step by step, the
largest inequality is equivalent to saying that the coalitional procedure consists
of a series of orthogonal projections.

If there is a single de�nition of the Shapley value, the result depends on
which game is considered. This a�ects the de�nition of the characteristic value.
We examine this point now.

3.2 Which game?

For Aumann (2010) and later Guiasu (2011), the contested garment and the
three wives problem can be solved by the Shapley value. This is perfectly true
but everything depends on which de�nition of the characteristic function we
consider, that is, which type of game we consider.

Aumann (2010) considers the dual characteristic value for the coalitional
procedure.
De�nition 5. Dual game. The following characteristic function is used:

v (S) := max

0, E −
∑

i∈N\S

v ({i})

 (5)

Remember that v ({i}) is the characteristic value of each claimant, given for
any i ∈ S.20 The coalitional procedure is e�cient and leads to a solution which
is the nucleolus (Aumann and Maschler 1985). Moreover, and this is important
here, Aumann (2010) has shown that the nucleolus can be generated by the
Shapley value by considering the dual game, that is, (3) and (5). Aumann takes
v ({i}) = min (di, E) ≡ d̃i for any i ∈ S.

Guiasu has taken the usual Shapley value, that is, the Shapley value of a
cumulative game for the coalitional procedure, as proved by this excerpt (Guiasu
2001, p. 78):

Before using this tool, however, it is essential to identify what
kind of games are involved in each of these problems. The decision
making is based on the same tool, namely the game theory logic based
on the Shapley value, but the speci�c games involved are slightly dif-
ferent. The kind of claims of the players and the relationship between
the given claims and the given resources available, on one hand, and
the speci�c way of evaluating the value of each possible coalition, on

20The game corresponding to (5) is superadditive. Aumann (2010, pp. 8-9): �v2 is super-
additive, because there it is indeed a matter of what each coalition can get in the worst case:
v2(S) is what is left for S after all other claims are satis�ed�.
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the other hand, determine the particular type of game which has to
be solved in each of the three ancient problems mentioned.

Therefore, we are led to de�ne a cumulative game.
De�nition 6. Cumulative game. In a cumulative game, v (S) is given by

v (S) := min

(∑
i∈S

v ({i}) , E

)
(6)

This characteristic value di�ers from (5): Aumann (2010) says they are dual.

3.3 Guiasu's approach

Guiasu (2011) proceeds as follows. Sorting the claimants such that d1 ≤ · · · ≤
dm−1 < E ≤ dm ≤ · · · ≤ dn, in computing the characteristic value of each
claimant, he posits an axiom that attributes the surplus of estate E − dm−1
equally to the higher claimants i = m, · · · , n, that is,

v ({i}) = dm−1 +
E − dm−1
n−m+ 1

for i = m, · · · , n (7)

with v ({i}) = di for i = 1, ...,m− 1.
Remark. (7) implies that the characteristic value of the highest claimant is
equal to the estate: v ({n}) = E.

Then, for a three-claimant problem, similar to the three wives problem,
Guiasu applies equations (6) and (7) by making the distinction between three
games:21

1. E ≤ d1 ≤ d2 ≤ d3 (corresponding to the case E = 100 of the three wives
problem) with m = 1 (and d0 ≡ 0). By applying (6) and (7), Guiasu �nds
the solution

(
E
3 ,

E
3 ,

E
3

)
.

2. d1 < E ≤ d2 ≤ d3 (corresponding to the case E = 200 and yielding
v ({2}) = v ({3}) = 150 in the three wives problem) with m = 2. Accord-
ing to (6) and (7) Guiasu �nds the solution

(
E+d1

6 , 5E−d1

12 , 5E−d1

12

)
.

3. d1 ≤ d2 < E ≤ d3 (corresponding to the case E = 300 in the three
wives problem) with m = 3. He makes the distinction between two cases:
(i) d1 + d2 < E where he �nds the solution

(
d1

2 ,
d2

2 , E −
d1

2 −
d2

2

)
ac-

cording to (6) and (7); (ii) d1 + d2 ≥ E where he �nds the solution(
1
6 (E + 2d1 − d2) , 16 (E − d1 + 2d2) ,

1
6 (4E − d1 − d2)

)
.22

21The reader may refer to Guiasu (2011, pp. 72-73) for the detail of derivation of Guiasu's
results.

22All these results are in accordance with the historic three wives problem of Table 2.
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3.4 Questioning Guiasu's approach

I will now prove that Guiasu's (20011) idea, ), followed by Alparslan and Sari-
arslan (2012), asserts, can be challenged for the coalitional procedure.23 Obvi-
ously, for two claimants, the Shapley value of a cumulative game leads to the
same solution as with the coalitional procedure. It is common knowledge that
for a two-person game, all symmetric and e�cient solutions necessarily coincide.
Therefore, the contested garment problem can be solved by the Shapley value
of a cumulative game.24 However, things are di�erent with more claimants. In
particular, the Shapley value of a cumulative game cannot yield the same result
as the coalitional procedure.

Proposition 1. After truncation, the Shapley value of a cumulative game and
the coalitional procedure do not give the same result when n > 2.

Aumann and Maschler (1985) showed that the coalitional procedure corresponds
to the nucleolus of the game. Even if the nucleolus is known to di�er from that
of the Shapley value of a cumulative game as de�ned by (3)-(6), we provide a
direct proof by a counter-example for a three-player game,25 which corresponds
to the historical three wives problem.

Proof. Table 5 shows the outcome for the historical three wives problem solved
by the Shapley value of a cumulative game. The case E = 200 di�ers from
what is found in the historical three wives problem as depicted by Table 2.
Appendix 5.2 also gives the computation of the case E = 200 by the Shapley
value formulas. It is noticeably that Guiasu's choice of a cumulative game
corresponds to the run-to-the-bank. Appendix 5.3 gives the formal proof of this
counter-example.

Estate Claimant
1

Claimant
2

Claimant
3

100 33 1
3 33 1

3 33 1
3

200 33 1
3 83 1

3 83 1
3

300 50 100 150

Table 5: Three wives problem: solution by the Shapley value of a cumulative
game

How might Guiasu �nd the Talmudic result anyway? There are four arguments.

23Alparslan and Sariarslan (2012), followers of Guiasu (2011), work on the Average Lexico-
graphic value (or Alexia value). Nevertheless, the Average Lexicographic value is equivalent to
the Shapley value for convex games (Tijs 2005) and bankruptcy problems are convex (Curiel
et al. 1987).

24For the interested reader, a direct proof is given in Appendix 5.1.
25The counter-example is the most powerful way to falsify a theory, in the Popperian (1959,

1963) sense.
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3.4.1 Truncation

Guiasu (2011, p. 71-72) does not truncate the data for deriving the solution
to the three wives problem by the Shapley value. However, truncation must be
done as is clearly stated by Moulin (2003, pp. 37-38, 262) or Balinski (2005, p.
504). In Aumann and Maschler this is implicit (1985, pp. 202-203). As said
above, a claimant could beat the others and obtain the entire estate by placing
an in�nite claim.

3.4.2 Di�culty for two claimants

Guiasu's axiom (7) violates what is done in the historical problems. In the
simplest case of two claimants, Guiasu states that the solution obtained with
the Shapley value is of the form(

d1
2
, E − d1

2

)
(8)

However, (8) is not (2) even if both solutions are the same for some particular
cases such as d1 = 1/2 and d2 = 1.

3.4.3 Di�culty for the largest claim

If we consider solution (8), equation (7) implies that v ({1}) = d1 and v ({2}) =
E, whatever the real value of d2. In other words, Guiasu considers that d2 ≥ E,
even if the case d2 < E might be perfectly possible in a two-claimant bankruptcy
problem, so long as d1 + d2 ≥ E. There is no reason the upper bound of the
estate should be dn and conversely, there is no reason claimant n should be
obliged to claim the whole estate.

Example 5. Consider the following two-claimant problem:26 the set of
demands is d =

(
1
2 ,

7
8

)
with E = 1. One cannot see why the �rst claimant may

claim half of the garment and the second claimant may not claim less than the
whole garment. The solution deduced from (2) is

(
1
4 + 1

16 ,
3
4 + 1

16

)
=
(

5
16 ,

11
16

)
.

By Guiasu's approach, it is again
(
1
4 ,

3
4

)
, and remains unchanged for any d2

larger than 1/2 (i.e., any d2 ∈
]
1
2 ,∞

[
).

3.4.4 Discontinuity

What is more, there is a discontinuity when Guiasu's result (8) is used. Such a
discontinuity is not observed in the contested garment solution (2) and violates
the following common sense axiom of continuity of payo�s:
Axiom. Continuity of payo�s. If two claims are close, the corresponding
payo�s must also be close. In more formal terms, if we consider the function

26This example is inspired from the contested garment problem where d =
(
1
2
, 1
)
with E = 1

and the solution of which is
(
1
4
, 3
4

)
.
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[0, E]
x→ [0, E] of real values, the function x must be continuous in any d̃i ∈

[0, E]:

∃η > 0,∃ε > 0,∀d̃j ,
∣∣∣d̃i − d̃j∣∣∣ < η ⇒

∣∣∣xi (d̃i)− xj (d̃j)∣∣∣ < ε

Example 6. In the contested garment problem, where E = 1, Guiasu's solution
is
(
1
2 ,

1
2

)
for d =

(
1
2 ,

1
2

)
. However, it is completely di�erent, that is,

(
1
4 ,

3
4

)
, as

soon as d2 is more than 1/2, i.e., for d =
(
1
2 , >

1
2

)
.

This is why Guiasu is able to �nd the classical solution to the three wives
problem by the Shapley value: Guiasu's axiom (7) is largely ad hoc in the
context of a bankruptcy problem solved by the coalitional procedure.

4 Conclusion

We have examined a historical Talmudic problem, the three wives, which gen-
eralizes the contested garment problem. It seems extraordinary to many that
the ancient Rabbis could have developed a method for which the solution is so
sophisticated but Aumann and Maschler (1985) solved the three wives problem
using the coalitional procedure, a step-by-step application of the historic con-
tested garment procedure. In his attempt to unify all Talmudic division methods
by the Shapley value, Guiasu (2011) explains the coalitional procedure in terms
of the �run-to-the-bank�, that is, by considering the most usual Shapley value
(that of a cumulative game). This is a misguided theoretical development as the
solution to the coalitional procedure is the nucleolus. Therefore, Guiasu's paper
is paradoxical. This is why my contribution consists in analyzing how Guiasu
has been able to �nd his result.

Although it is unfamiliar to many, it has been necessary to return to game
theory because, since Aumann and Maschler's contribution, the problem is
de�nitively game theoretic by nature, even if it was developed by Rabbis cen-
turies ago. So, after recalling what the Talmudic sharing problem is, how Au-
mann and Maschler's coalitional procedure explains its solution (i.e., the nucle-
olus or the Shapley value of a dual game; from the moment that the order of
coalitions is de�ned, the solution is unique), and how Guiasu solves it by the
usual Shapley value (i.e., of a cumulative game), it is shown here that:

1. Guiasu has overlooked data truncation (claims that exceed the estate must
be reduced to the available amount of the estate); yet, truncating is re-
quired in the context (without truncation, any applicant may obtain all
the available estate by simply making an in�nite claim).

2. Guiasu poses an axiom which attributes the surplus (obtained after sharing
out the estate) to all applicants equally. We show that this is inconsistent
with the contested garment problem.

3. By Guiasu's axiom, the estate cannot exceed the claim of the agent who
demands the most, which is obviously false.
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4. Guiasu's approach creates a discontinuity in the distribution of the estate,
which is not observed in the contested garment problem.

We conclude that Guiasu's attempt to explain the three wives problem in terms
of a �run-to-the-bank�, that is, by the usual Shapley value (i.e. of a cumulative
game) is unsuccessful. The correct explanation is given in terms of Shapley
value of the dual game, that is, of the nucleolus. This should not be considered
as a technical discussion among game theory specialists: Guiasu distorts the
three wives problem so as to explain it in terms of the Shapley value of a
cumulative game (or in terms of �run-to-the-bank�) at all costs, transforming it
into a complicated method, while it is simply and naturally explained in terms
of the Shapley value of a dual game. This needed to be established for there to
be a successful and convincing approach to Talmudic division.

5 Appendix

5.1 The contested garment

The characteristic value for an individual claimant i, i.e., v ({i}), should be

de�ned as i' s claim but truncation (1) is applied: v ({i}) = min
(
d̃i, E

)
= d̃i

for any i. Here, d̃1 = 1
2 , d̃2 = 1: truncation changes nothing. Thus, the

characteristic function takes the following values: v
(
/O
)
= 0, v ({1}) = 1/2,

v ({2}) = 1, v ({1, 2}) = min (v ({1}) + v ({2}) , E) = 1. By applying (4), the
weights are p2

(
/O
)
= p2 ({1}) = p2 ({2}) = 1/2, knowing that |0| = 0 and

0! = 1. Thus, applying (3) gives x1 = 1/4 and x2 = 3/4 which is the Talmudic
result.

5.2 The three wives problem

For the case E = 200, �rst, truncation (1) is applied: d̃1 = 100, d̃2 = 200 and
d̃3 = 200. Applying (6) gives:

v
(
/O
)
= 0, v ({1}) = min (100, 200) = 100,

v ({2}) = v ({3}) = min (200, 200) = 200

v ({1, 2}) = v ({1, 3}) = min (100 + 200, 200) = 200

v ({2, 3}) = min (200 + 200, 200) = 200

v ({1, 2, 3}) = min (100 + 200 + 200, 200) = 200

From (4), the weights are: p3
(
/O
)
= 1/3, p3 ({1}) = p3 ({2}) = p3 ({3}) =

1/6 and p3 ({1, 2}) = p3 ({1, 3}) = p3 ({2, 3}) = 1/3.
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5.3 Proof of the counter-example

From (6) we have v
(
/O
)
= 0, v ({i}) = min

(
d̃i, E

)
= d̃i for any i, v ({i, j}) =

min
(
d̃i + d̃j , E

)
for any i, j 6= i, and v ({1, 2, 3}) = min

(∑3
i=1 d̃i, E

)
= E.

The weights are: p3
(
/O
)
= 1/3, p3 ({i}) = 1/6 for any i and p3 ({i, j}) = 1/3 for

any i, j 6= i. From (3), this gives the following payo�s:

xi =
1

3

(
E + d̃i −

1

2

(
d̃j + d̃k

)
+

1

2
min

(
d̃i + d̃j , E

)
+

1

2
min

(
d̃i + d̃k, E

)
−min

(
d̃j + d̃k, E

))
for any i, with j 6= k 6= i. When d̃1 + d̃2 < E, this is

x1 = 1
3

(
E + 3

2 d̃1 −
1
2 d̃3 +

1
2 min

(
d̃1 + d̃3, E

)
−min

(
d̃2 + d̃3, E

))
x2 = 1

3

(
E + 3

2 d̃2 −
1
2 d̃3 +

1
2 min

(
d̃2 + d̃3, E

)
−min

(
d̃1 + d̃3, E

))
x3 = 1

3

(
E + d̃3 − 3

2

(
d̃1 + d̃2

)
+ 1

2 min
(
d̃1 + d̃3, E

)
+ 1

2 min
(
d̃2 + d̃3, E

))
When d̃1 + d̃2 ≥ E, this is xi =

(
E + d̃i − 1

2

(
d̃j + d̃k

))
/3 for any i with

j 6= k 6= i. This di�ers from the coalitional procedure.
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