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We revisit the stabilization of ionization of atoms subjected to a superintense laser pulse using
nonlinear dynamics. We provide an explanation for the lack of complete ionization at high intensity
and for the decrease of the ionization probability as intensity is increased. We investigate the role
of each part of the laser pulse (ramp-up, plateau, ramp-down) in this process. We emphasize the
role of the choice for the ionization criterion, energy versus distance criterion.

I. INTRODUCTION

“Stabilization” is the term used for the counterintu-
itive behavior of atoms in which increasing the laser in-
tensity does not lead to increased ionization – on the
contrary, it may lead to decreased ionization in some
regimes. Stabilization has been the subject of so many
publications that even a cursory review is beyond the
scope of our manuscript (for some early references, see
Refs. [1–8], or Ref. [9] for a review).

The purpose of our manuscript is to provide new in-
sights into the stabilization phenomenon, gained by view-
ing it through the unconventional point of view of non-
linear dynamics. This is not to say that the use of clas-
sical mechanics to examine stabilization is a novelty: A
number of stimulating studies were performed during the
time frame mentioned above (e.g., Ref. [6]). However,
the intervening two decades have seen the realization of
lasers with intensities far beyond what was expected at
the time, and quite a few phenomena such as recolli-
sions [10–12] have been discovered, requiring the incep-
tion of various theoretical models and techniques for un-
derstanding ionization (or the lack of it) in intense laser
fields.

In the intervening decades laser pulses have become ul-
trashort (down to about 100 attoseconds). The general
idea is to go down to the timescale of the electron to cap-
ture its dynamics. Such ultrashort timescales were not
part of stabilization research at the time, which typically
considered fairly long pulses of several tens of laser cycles.
Can any insights about such a long-pulse phenomenon be
relevant for understanding the motion of the electron on
its timescale? As we will show below, no matter how long
the pulse is, the fate of the electron, and hence stabiliza-
tion, is sealed quite early in the pulse, and specifically
during a few first few laser cycles. In that sense, stabi-
lization turns out to be a short-timescale phenomenon.

In what follows we will be answering two questions:
First, what accounts for the lack of ionization in ultra-
intense laser fields, and secondly, what causes ionization
to decrease with increasing intensity? It turns out that
the answers to these questions, and the hidden short-time
nature of the phenomenon, are governed by the same un-

derlying mechanism, namely the periodic orbits of the
atomic electron in the laser field and the phase-space
structures associated with these periodic orbits. We will
show that electron trajectories which can reach the vicin-
ity of the periodic orbit behave completely differently
from those trajectories that fail to do so, thereby account-
ing for the observations connected with stabilization.
In the process of answering these questions we will

also address some highly practical aspects of stabiliza-
tion, namely :
1) How does one decide whether an atomic electron has

ionized in an intense laser field? More specifically, are
the so-called distance and energy criteria for ionization
interchangeable?
2) What role do the ramp-up, plateau and ramp-down

of the laser field play in stabilization?
In Sec. II we start by performing the numerical experi-

ment of Ref. [6] and assess the importance of the choice of
the ionization criterion. In Sec. III we provide an expla-
nation for the lack of complete ionization at high inten-
sity and for the decrease of the ionization probability as
the laser intensity is increased. This explanation is based
on a periodic orbit analysis of the electronic dynamics.
We investigate the role of each part of the laser pulse,
namely the ramp-up, the plateau and the ramp-down, in
the stabilization process.

II. IONIZATION STABILIZATION

We consider the following classical model for a one-
dimensional single active electron atom interacting with
an intense linearly polarized laser field in the dipole ap-
proximation :

H(x, p, t) =
p2

2
− 1√

x2 + 1
− E0f(t)x sinωt, (1)

where p is the momentum of the electron canonically con-
jugate to the position x along the polarization axis, E0

is the amplitude of the electric field, f(t) is the pulse
envelope (schematically represented on Fig. 1) and ω is
the frequency. We have chosen a soft Coulomb poten-
tial [13, 14] as the interaction potential between the elec-
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FIG. 1. Schematic representation of the pulse envelope f(t)
(left axis, bold line) and electric field E(t) = −E0f(t) sinωt
(right axis, thin line) used in Hamiltonian (1). Since the
plateau is much longer that the ramp-up and the ramp-down,
it has not been fully depicted.

tron and its parent ion. In Ref. [15], the impact of the
choice of potential on stabilization has been analyzed. In
all the computations presented in this article, the laser
frequency is ω = 0.8 a.u. which corresponds to a wave-
length of 57 nm.

We begin with revisiting a numerical experiment per-
formed in Ref. [6]. For the envelope (see Fig. 1), we select
a smooth turn-on consisting of a linear ramp-up of dura-
tion Tu = 6T , a plateau of Tp = 44T , where T = 2π/ω is
the period of the laser, and an abrupt ramp-down, i.e.,
of duration Td = 0. We consider a large ensemble of tra-
jectories which are initially bounded, i.e., whose energy,
defined as the sum of the kinetic energy plus the soft
Coulomb potential, is negative. Typically for a given E0

the number of initial conditions we consider is on the
order of several millions in order to have good statis-
tics. As a function of the amplitude E0, we measure
the ionization probability where ionization is determined
using the energy criterion as in Ref. [6]. In Fig. 2, the
ionization probability is represented as a function of the
amplitude of the electric field E0 (bold gray curve, red
online). Contrary to Ref. [6] we observe a roughly mono-
tonic increase of the ionization probability with E0 as
it could be naively guessed (the more intense the laser
field is, the more ionization there is). Now, instead of us-
ing the energy criterion as ionization criterion, we use a
distance criterion. This distance criterion appears to be
more subjective since it depends on an arbitrarily chosen
threshold. Here the chosen threshold is 50 a.u.; we have
checked that the results are not changed qualitatively
by changing this threshold significantly. The resulting
ionization curve is depicted in Fig. 2 (thin gray curve,
red online). Using this distance criterion we are able to

FIG. 2. Ionization probabilities as functions of E0 obtained
for Hamiltonian (1) with a ramp-up of duration Tu = 6T ,
a plateau of duration Tp = 44T . The bold curve (red on-
line) is without a ramp-down (Td = 0) and using the energy
criterion for ionization. The thin gray curve (red online) is
without a ramp-down (Td = 0), using a distance criterion with
a threshold of 50 a.u.. The black curve is with a ramp-down
of duration Td = 6T and using the energy criterion.

reproduce, at least qualitatively, the surprising results
obtained in Ref. [6], namely the lack of complete ioniza-
tion at very high intensity and the global decrease of the
ionization probability as the intensity of the laser field
is increased (see Fig. 2). Here we first notice the impor-
tance of the ionization criterion to observe the ionization
stabilization phenomenon. We performed a third numer-
ical experiment by including a ramp-down with Td = 6T
and by using the energy criterion. Contrary to the case
with an abrupt ramp-down (Td = 0), the energy criterion
leads to stabilization (see Fig. 2, black curve). From these
numerical simulations, it appears that the energy crite-
rion can only be used in the presence of a ramp-down,
whereas the distance criterion always displays the stabi-
lization phenomenon. In what follows, we only use the
distance criterion unless specified otherwise. Below we
provide an explanation for the differences resulting from
the two choices of ionization criterion. This is a direct
result of the mechanism by which an electron remains
trapped near the parent ion at a very high intensity, a
mechanism we unravel using nonlinear dynamics.

III. ANALYSIS OF STABILIZATION FROM

THE NONLINEAR DYNAMICS PERSPECTIVE

A. Role of the plateau

We first elucidate the role of the plateau by providing
the scenario for the lack of complete ionization at high
intensity. Since the amplitude of the electric field is large,
we consider first the Strong Field Approximation (SFA)
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which consists of neglecting the soft Coulomb interac-
tion between the electron and the parent ion. In SFA,
Hamiltonian (1) during the plateau becomes

HSFA(x, p, t) =
p2

2
− E0x sin(ωt+ φ), (2)

where we have included a laser phase to take into account
the ramp-up, i.e., we consider that the plateau starts at
t = 0. This Hamiltonian is integrable and the trajectories
can be explicitly provided :

p(t) = p0 −
E0

ω
(cos(ωt+ φ)− cosφ) ,

x(t) = x0 +

(

p0 +
E0

ω
cosφ

)

t− E0

ω2
(sin(ωt+ φ)− sinφ) ,

where x0 and p0 are the initial position and initial
momentum (at t = 0, i.e., at the beginning of the
plateau). We notice a linear drift with velocity vd =
p0 + (E0/ω) cosφ. If this drift velocity is non-zero, the
electron will eventually move far away from the parent
ion, provided that the plateau is sufficiently long. We no-
tice a very special set of initial conditions for which the
drift velocity vanishes. This set in phase space is com-
posed of an infinite family of (parabolic) periodic orbits
with the same period as the laser field, related to each
other by translation along the x-axis due to the contin-
uous symmetry of Hamiltonian (2). More specifically,
these periodic orbits have the equations

p(t) = −E0

ω
cos(ωt+ φ), (3a)

x(t) = x1 −
E0

ω2
sin(ωt+ φ), (3b)

where x1 is an arbitrary position, the position of the cen-
ter of the periodic orbit. If the electron is on one of these
orbits at the beginning of the plateau, it will stay on
it for an infinite amount of time. These invariant struc-
tures are the keystone to understand the lack of complete
ionization at high intensity.
Even though this set of periodic orbits is of measure

zero and therefore it could be argued that it does not
contribute significantly to the ionization probability, the
nonlinearity introduced by the soft Coulomb interaction
provides the reasons for the importance of this set of
periodic orbits in the stabilization process, as we show
next.
The question is what happens to the rather simple SFA

picture of the dynamics when the Coulomb field is taken
into account? As the effect of the soft Coulomb potential
increases, e.g., by increasing an effective charge up to 1,
most of the periodic orbits (3) are broken, except a finite
number of them. Three periodic orbits are of particular
interest and organize the dynamics. All three periodic
orbits have the same period, the period of the laser field.
One of them is symmetric with respect to the x = 0 axis,
centered at (x, p) = (0, 0) and weakly hyperbolic. This
periodic orbit is denoted by O. The other two periodic

orbits of interest are elliptic and symmetric with each
other, centered approximately at (x, p) = (±E0/ω

2, 0).
These orbits are denoted O±. The property of a peri-
odic orbit to be hyperbolic, parabolic or elliptic features
refers to the linear stability analysis (see Ref. [16] for
more detail). In general, an elliptic periodic orbit is sta-
ble and the motion around it is similar to the motion
around a stable equilibrium point of a simple pendulum,
whereas an hyperbolic orbit is (linearly) unstable, in the
sense that almost all small perturbation around it will
drive the motion away from it (along its unstable man-
ifold). The chaotic behavior of the system originates in
the neighborhood of hyperbolic periodic orbits.

Figure 3 displays the three periodic orbits of Hamil-
tonian (1) with f(t) = 1 and for E0 = 5. At the high
values of the intensity we consider in this paper, O is very
close to the periodic orbit given by Eqs. (3) for x1 = 0
(see Fig. 3 where it is difficult to distinguish the orbit (3)
from the orbit O). In Fig. 4 we represent the maximum
eigenvalue of the monodromy matrix associated with O
as a function of E0 (see Ref. [16] for more details). We
notice that for E0 small, O is elliptic and, as E0 is in-
creased, undergoes a bifurcation around E0 = 1.34. The
orbit O turns hyperbolic and two asymmetric and elliptic
periodic orbits are created, these being O±. The basic
structure of phase space is a horizontal 8-shape with two
symmetric elliptic islands with the orbits O± in their cen-
ters and the orbit O at the crossing. A Poincaré section
of selected trajectories consisting of a stroboscopic plot of
period T is represented on Fig. 5 for E0 = 1.5, i.e., close
to the bifurcation. This picture persists at higher value
of E0, although complicated by the creation of a dense
chaotic tangle around these orbits. A Poincaré section of
the region close to the weakly periodic orbit is depicted
in Fig. 6 for E0 = 5. The dense chaotic region is clearly
observed, extending to high values of the position of the
electron. Trajectories starting in the white region ion-
ize very quickly, contrary to the trajectories started in
the blue region which can be potentially trapped for an
arbitrary long time. The two symmetric elliptic islands
are present at this very high value of the intensity (see
Fig. 7), demonstrating the stabilization effect caused by
the absence of drift velocity in the SFA approximation.
In this chaotic region, there are many other periodic or-
bits and some of them might even be elliptic (depending
on E0) forming islands of stability (trapping trajectories
at all times). It should be noted that the two periodic
orbits O± remains elliptic for all values of E0, becom-
ing closer and closer to parabolic as E0 is increased. In
Fig. 8, we represent Greene’s residue [17, 18] of O± as
a function of E0. We recall that that if the residue is
between 0 and 1, the periodic orbit is elliptic. This prop-
erty is very interesting since the excited states around
O± (which extends up to the quiver radius, see Fig. 3)
are stable states.

In a nutshell, the effect of the soft Coulomb interac-
tion is to create a chaotic layer which strongly affects the
transport properties of the system, trapping trajectories
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FIG. 3. Projection of the three periodic orbits O and O± of
Hamiltonian (1) with f(t) = 1 and E0 = 5. The light gray
orbit is O+, the darker gray orbit is O− and O is represented
in black. The gray parts (red online) of the orbits are where
the energy (defined as the sum of the kinetic energy and soft
Coulomb potential) is negative. The thin line corresponds to
the periodic orbit in the SFA approximation given by Eq. (3),
almost indistinguishable from O.

FIG. 4. Largest eigenvalue of the periodic orbit O (repre-
sented in Fig. 3) of Hamiltonian (1) as a function of E0.

for a sufficiently long time compared to the duration of
the plateau. These trajectories will not ionize, in the
sense that they will not significantly depart from a re-
gion close to the core, contrary to the trajectories expe-
riencing a drift velocity. This chaotic region explains the
lack of complete ionization, even at very high values of
the laser intensity. Now, concerning the results obtained
using the energy criterion, we notice that by looking at

FIG. 5. Poincaré section (stroboscopic plot with period T ) of
trajectories of Hamiltonian (1) for E0 = 1.5. The positions
of the periodic orbits are indicated by a cross for O and by
circles for the elliptic periodic orbits O±.

FIG. 6. Poincaré section of trajectories of Hamiltonian (1)
for E0 = 5 in the region close to p0 = −E0/ω (indicated by a
continuous horizontal line). The position of the periodic orbit
O is indicated by a cross. The box represents the inset where
the Poincaré section is depicted in Fig. 7.

the energy of the non-ionizing trajectories (where non-
ionizing feature has been determined using a distance
criterion), given the values of the momentum which ex-
tend up to E0/ω, most of these trajectories have positive
energy. For instance, we have displayed in red on Fig. 3
the points of the orbits O and O± which have negative
energy (and would be considered as non-ionizing using
an energy criterion). Therefore, according to an energy
criterion, most of the trapped trajectories are considered
as ionizing even though they are of a very different nature
than the ones experiencing a drift velocity.
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FIG. 7. Inset of Fig. 6.

FIG. 8. Greene’s residue R of O+ (or equivalently O−) as a
function of E0.

Globally the effect of the plateau is to discriminate be-
tween the trajectories with a drift velocity with the ones
trapped in the chaotic tangle. The longer the pulse is,
the more trapped trajectories leave the chaotic tangle,
and eventually these will be considered as ionized (even
using a distance criterion). In Fig. 9, we represent the
ionization probabilities as functions of E0 for different
values of the plateau duration. It confirms that the ion-
ization probability increases with the plateau duration.
However it should be noticed that due to the presence
of elliptic islands, the ionization will never be complete
for most values of the laser intensity, since the trajecto-
ries in these regions are trapped for all times, preventing
the ionization probability to reach 1 regardless of the
length of the plateau. It should be noticed that the finer
structure of the ionization curve, like the oscillations, are
qualitatively similar (located at approximately the same

FIG. 9. Ionization probabilities as functions of E0 for different
durations of the plateau. From black to lighter gray (red
online), the total duration of the pulse is 50, 100 and 200
laser cycles, with a 6 laser cycle ramp-up and no ramp-down.

values of E0), regardless of the duration of the plateau.

Next we look at the size of the chaotic/trapping region
as a function of E0. In order to do this, we launch a high
number of trajectories in a window around the periodic
orbit in the Poincaré section. The window we consider is
(x, p) ∈ [−20, 20]×[−E0/ω−3/2,−E0/ω+3/2], where we
recall that the periodic orbit O is locate approximately at
(0,−E0/ω). We look at trajectories which have left this
window after 20 and 50 laser cycles. In Fig. 10, we repre-
sent the probability of a trajectory to leave the window
of interest. We compare this probability with the ion-
ization probability of Fig. 2 with a ramp-up of duration
Tu = 6T and no ramp-down. The probability to leave
the window exhibits the main features of the ionization
probability. First it is decreasing (meaning that the size
of the chaotic region increases with E0), therefore dis-
playing the stabilization process. In addition, we notice
that this curve displays the same finer structures (the os-
cillations as function of E0). Therefore the structure of
the ionization curves of Fig. 2 is a nonlinear effect caused
by the presence of both the soft Coulomb potential and
the laser field. As expected the ionization probability is
smaller due to the fact that the average intensity felt by
the electron is smaller when there is a ramp-up. The
ramp-up has also another impact on the ionization prob-
ability and this will be analyzed below. The global de-
crease of the ionization curves is due to the fact that, as
E0 is increased the system becomes closer to integrable as
shown in Figs. 4 and 8 where the periodic orbits becomes
closer to parabolic.

It should be noted that the same periodic orbits O and
O± which control the stabilization process, also control
the recollision process by allowing an electron far away
from the parent ion to come back to it and recollide.
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FIG. 10. Probability of a trajectory of Hamiltonian (1) with
no ramp-up and no ramp-down to leave the window (x, p) ∈
[−20, 20]×[−E0/ω−3/2,−E0/ω+3/2] after 20 (light gray, red
online) and 50 (dark gray) laser cycles. For comparison, we
depict the ionization curve of Fig. 2 obtained with a ramp-up
of duration Tu = 6T and no ramp-down (black curve).

These periodic orbits were coined recolliding periodic or-
bits (RPO) in Refs. [19, 20].

B. Role of the ramp-up

The role of the ramp-up is important in setting up
the right conditions for some of the trajectories to be
put inside the chaotic/trapping region at the beginning
of the plateau. In order to illustrate this argument, we
first consider the SFA approximation, by considering the
following Hamiltonian :

Hu(x, p, t) =
p2

2
− E0x

t

Tu

sin(ωt+ φ),

where here the phase φ is used to take into account the
transient time when the SFA approximation is not valid.
The momentum and the position at the end of the ramp-
up are

pu = p0 −
E0

ω

(

cos(ωTu + φ)− sin(ωTu + φ)− sinφ

ωTu

)

,

xu = x0 −
E0

ω2
(sin(ωTu + φ) + sinφ

+2
cos(ωTu + φ)− cosφ

ωTu

)

.

If the duration of the ramp-down is an integer multiple
of the laser period then it reduces to

pu = p0 −
E0

ω
cosφ,

xu = x0 − 2
E0

ω2
sinφ,

FIG. 11. Ionization probabilities as functions of E0 for differ-
ent durations of the ramp-up. From black to lighter gray (red
online), the duration of the ramp-up is T/10, T/2, T and 6T
with a 44 laser cycle plateau and no ramp-down.

which is a point on a periodic orbit given by Eqs. (3)
with x1 = x0 − (E0/ω

2) sinφ, provided that p0 = 0. If
the initial distribution at the beginning of the ramp-up
is close to zero then the role of the ramp-up (at least
in the SFA approximation) is to promote these initial
conditions to a region where periodic orbits organize the
dynamics and prevent ionization. Taking into account
the soft Coulomb potential, the role of the ramp-up is to
promote some of the trajectories to the chaotic/trapping
region organized by the three periodic orbits O and O±.
In order to demonstrate this effect of the ramp-up, we
depict the position of an ensemble of electrons in phase
space at different stages in the ramp-up. Initially these
trajectories are bounded, in the sense that their energy
(sum of kinetic energy and soft Coulomb potential is neg-
ative). In Fig. 12, four stages are represented : at t = 0,
t = 2T , t = 4T and t = 6T . We notice that initially none
of the trajectories are on the periodic orbit. However,
as early as half of the ramp-up, some of the trajecto-
ries are already on the periodic orbit or nearby. If the
ramp-up is not sufficient to promote the trajectories to
the chaotic/trapping region, for instance, if it is too short
(shorter than half a laser cycle for instance), then all the
trajectories will experience a significant drift velocity and
will be all ionized. Therefore the ramp-up does not play
a role in the stabilization mechanism but allows part of
the initial conditions to undergo this stabilization.

C. Role of the ramp-down

Using the energy criterion, the presence of the ramp-
down seems essential for the stabilization. However we
have shown above that the mechanism for stabilization
has nothing to do with the ramp-down. In this section we



7

FIG. 12. Positions of an ensemble of trajectories of Hamilto-
nian (1) for E0 = 5 at different stages of the ramp-up, t = 0
(upper left panel), t = 2T (upper right panel), t = 4T (lower
left panel), and at the end of the ramp-up t = 6T (lower right
panel). The periodic orbit O is depicted in gray (red online).

analyze the effect of the ramp-down, showing that it only
plays a minor role in the dynamics. However it is essential
if one wants to use the energy criterion for ionization.
In order to illustrate this, we consider the effect of the
ramp-down on the prototypical trapped trajectory in the
SFA approximation, namely the periodic orbit given by
Eqs. (3). We shift the origin of time, so that the ramp-
down starts at t = 0 (and we assume that the ramp-up
and plateau are integer multiples of the laser period).
The duration of the ramp-down is Td. We consider the
following Hamiltonian in the SFA approximation during
the linear ramp-down:

Hd(x, p, t) =
p2

2
− E0x

Td − t

Td

sin(ωt+ φ).

At t = 0 (i.e., at the end of the plateau), we assume that
the trajectory is on the periodic orbit, i.e., the initial
condition is x0 = −(E0/ω

2) sinφ and p0 = −(E0/ω) cosφ
at the beginning of the ramp-down. At the end of the
ramp-down, the final momentum is

pf =
E0

ω

sinφ− sin(ωTd + φ)

ωTd

.

If the duration of the ramp-up is an integer multiple of
T , then the final momentum vanishes. Regardless of the
distance of the electron to the parent ion, its energy is
then negative. Therefore the electron located on the SFA
periodic orbit at the end of the plateau is considered ion-
ized at the end of the ramp-down according to the energy
criterion. However if the duration of the ramp-down is
not an integer multiple of T , the final momentum can be
large (up to E0/ω) and consequently can be considered
as ionizing according to the energy criterion. It should

FIG. 13. Ionization probabilities as functions of E0 obtained
from Hamiltonian (1) for different durations of the ramp-
down. From black to lighter gray (red online), the duration of
the ramp-down is Td = T/5 (black curve), Td = T (dark gray,
maroon online) and Td = 3T (light gray, red online), with a 6
laser cycle ramp-up and a 44 laser cycle plateau. The energy
criterion is used to determine ionization.

be noted that using the distance criterion, the effect of
the ramp-down can be neglected; all the ionization prob-
ability curves are nearly identical.
In Fig. 13 we represent the ionization probabilities ob-

tained with an energy criterion for different durations of
the ramp-down, one of them being not an integer multi-
ple of the laser period. Provided that the duration of the
ramp-up is an integer multiple of the laser period, the
two curves at Td = T and Td = 3T demonstrate little
effect of the ramp-down, even using the energy criterion
as ionizing criterion.

IV. CONCLUSION

We have shown that the main mechanism for stabi-
lization of atoms in a strong laser field is driven by a
set of periodic orbits. The counter-intuitive nature of
this phenomenon can be explained by the fact that the
orbits mostly lay outside the bounded region. We have
elucidated the role of each phase in the laser pulse in
the stabilization process. During the turn-on of the laser
field, when the Coulomb and laser fields are of compa-
rable strength, an electron is pushed towards a dense
chaotic tangle in the neighborhood of these periodic or-
bits, trapping some trajectories for an arbitrarily long
time (even for infinite time depending on the initial con-
ditions). The role of the plateau is to seal the fate of the
electron by discriminating the ones that are non-ionizing
from the ionizing trajectories. We have showed that the
role of the ramp-down is rather minor, allowing the use
of the energy criterion, whereas, in the absence a ramp-
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down a distance criterion has to be used to detect the
stabilization phenomenon.
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