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Optimal strategies in zero-sum repeated games with incomplete
information: the dependent case

FABIEN GENSBITTEL? MIQUEL OLIU-BARTON'

June 8, 2021

Abstract. Using the duality techniques introduced by De Meyer (1996a, 1996b), Rosenberg
(1998) and De Meyer and Marino (2005) provided an explicit construction for optimal strategies
in repeated games with incomplete information on both sides, in the independent case. In this
note, we extend both the duality techniques and the construction of optimal strategies to the
dependent case.

1 Introduction

We consider here a zero-sum repeated game with incomplete information on both sides, in the
spirit of Aumann and Maschler [1]. Let K (resp. L) be the finite set of types of Player 1 (resp.
2), and let 7 be a probability distribution over K x L. To any pair (k,£) corresponds a matrix
game G* : I x J — R, where I (resp. .J) is the finite set of actions of Player 1 (resp. 2). The
game is played as follows. First, a pair (k,¢) € K x L is drawn with the probability distribution
7. Player 1 (resp. 2) is informed only of k (resp. £). Then, the game G*¢ is played repeatedly.
At each stage m > 1, the players choose actions (i, jm) € I X J, which produces a stage-payoff
G* (iyy, jm). Actions are publicly observed after each stage. For any initial distribution 7 and
any sequence of non-negative weights 8 = (6, ), we consider the game Gy () in which the overall
payoff is the expected §-weighted sum of the stage-payoffs > -, 0, G* (i1, jrm) and where
stands for the probability distribution of (k,#). This game has a value, denoted by vg(7). The
particular case where, for some n € N*, one has 6,, = %]l{mgn} for all m > 1 corresponds to the
classical n-stage repeated games. Similarly, the case where 6, = A\(1 —X\)™~! for all m > 1 and
some A € (0,1] corresponds to A-discounted repeated games. We use then the notation G, ()
and v, (7), and Gy (7) and vy (7), respectively.

This model was analyzed by Mertens and Zamir in [7]. Their main result was the existence
of vy, (7) and vy (7) and their convergence (respectively, as n goes to 400 and as A vanishes) to
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the unique solution of a system of functional equations. The proof of this result was based on
the introduction of the specific notion of I-concavity for the value function 7 — vy, (), which
can be described as follows. Any probability 7 over the product set K x L can be decomposed
as a pair (p,Q) where p is the marginal probability on K and @ is a matrix of conditional
probabilities on L given k € K. This decomposition can be expressed as m = p ® ) where
® denotes the direct product. One may then consider v, as a function of (p, @), and show
that p — v,(p,Q) := v,(p ® Q) is a concave function for any fixed . A dual notion of II-
convexity was also introduced and the notions of I-concave and [-convex envelopes were the
building blocks of the system of functional equations characterizing the limit value. Based on
this characterization, a construction of asymptotically optimal strategies (i.e. strategies being
almost optimal in G, (), with an error term vanishing as the number of stages tends to +00)
was obtained by Heuer [6]. The convergence of the values vg(m) for a general evaluation, as
max,,~1 0 tends to 0, and the construction of asymptotically optimal strategies in this case
were obtained by Oliu-Barton [9, 11].

In addition to their main result, Mertens and Zamir [7] also established a recursive formula
for v, (m) and vy(7) in terms of the conditional probabilities on K x L induced by the players’
strategies at the first stage, and the extension to a general evaluation 6 is straightforward.
Though very useful for studying the values, the formula cannot be used by the players for the
simple reason that none of them can actually compute these conditional probabilities. There is,
however, one important exception: games with incomplete information on one side. Indeed, when
Player 2 has no private information, Player 1 controls and observes the conditional probabilities
while Player 2 does not. As a consequence, the former, and not the latter, can use the recursive
formula satisfied by the values to construct an optimal strategy. This game is denoted by Gy(p)
where p is the probability distribution of k. The dual game was introduced by De Meyer in [3, 4]
in order to construct an optimal strategy for Player 2. The idea of the dual game is to consider
a game with vector payoffs: for each realised pair of actions (i, ), the uninformed player knows
the vector (G*(i,j))rex . Like in approachability theory, an optimal strategy for Player 2 is one
that ensures that the f-weighted sum of payoffs lies in an appropriate subset of R¥. This set
depends on a well-chosen dual variable z € R¥X which replaces the unknown type of Player 1 in
the following sense: Player 2 can choose his opponent’s type to be k at a cost z*. De Meyer [3]
proves that the values of the dual game wy(z) satisfy a recursive formula in terms of the dual
variable, and that Player 2 can use this formula to construct an optimal strategy in the dual
game. More importantly, this strategy is an optimal strategy in Gy(p) provided that z belongs
to the sub-differential of the concave function p’ — vy(p') at p.

The duality techniques were extended by Rosenberg [12], Sorin [14] and De Meyer and Marino
[5] for repeated games with incomplete information on both sides, in the special case of inde-
pendent initial probabilities, i.e. m = p ® ¢, for some probabilities p over K and ¢ over L. As
both players are uninformed about their opponent’s type, one needs to consider two dual games,
one for each player. The first dual game is related to the Fenchel conjugate of the function
P — ve(p',q) == ve(p ® q), where q is a fixed probability over L. Rosenberg [12] proved that its
value wy(x,q) satisfies a recursive formula in terms of the dual variable z and the conditional
probabilities over L induced by the strategy of Player 2. As these two variables are accessi-
ble to Player 2, the latter can use this formula to construct an optimal strategy in the dual
game, and this strategy is an optimal strategy in the game Gy(7) provided that x belongs to
the sub-differential of the concave function p’ — wvy(p’ ® ¢) at p, where p and ¢ are such that
T = p® q. An alternative formula with similar properties was obtained more recently by De



Meyer and Marino [5], who also considered the case of infinite action spaces. The second dual
game is constructed in a symmetric manner, and provides an optimal strategy of Player 1. It
is worth mentioning that, unlike the asymptotic results from Heuer [6] and Oliu-Barton [9], the
constructions of Rosenberg [12] and De Meyer and Marino [5] provide optimal strategies for

repeated games with a fixed evaluation (namely, n-stage and A-discounted games).

In the present paper, we extend the results from Rosenberg [12] to the so-called dependent
case. That is, we provide a recursive formula for the values of the dual games, from which
we deduce the computation of explicit optimal strategies for the players in the repeated game
with incomplete information Gy(7), for any evaluation 6 and any probability 7 on K x L. Our
construction can be extended, word for word, to stochastic games with incomplete information,
as long as the incomplete information concerns the payoff function, but not the transition func-
tion. Extending the duality techniques to the dependent case was never done before; albeit not
technically difficult, the extension requires some new ideas, such as considering an intermediate
step: first, the type of one player is drawn according to the corresponding marginal law, and
then the other type is drawn according to the conditional law. These considerations are cru-
cial in the proof of our main result in order to prove the convexity of some auxiliary functions
(see Remark 4.2). Besides, contrary to [12], who considered n-stage games and A-discounted
games separately, and games with incomplete information on one and two sides separately too,
we present here a unified approach. Let us also point out that the approach proposed by De
Meyer and Marino [5], which was designed to handle games with infinite action spaces, does not
seem well-suited to analyze the dependent case. Indeed, when applied to this case, their method
requires the introduction of an additional dual variable, and thus results in a substantially more
complicated dual recursive formula (see [8, Chapter 4]).

1.1 Main results

As both players have symmetric roles, we will only state our results on one side. Namely, we
will focus on the optimal strategies of Player 2.

In order to state our main results, we need the following notation:

e For a non-empty finite set X, A(X) denotes the set of probabilities over X, and is identified
with the canonical simplex in R¥.

e N* denotes the set of positive integers, and A(N*) is the set of nonnegative sequences
(@m )men+ satisfying Zmzl am = 1.

e For any 0§ € A(N*) satisfying 61 < 1 we denote by 6+ € A(N*) the sequence (197’5 Jm>1-

e For any p € A(K) and Q € A(L)X we denote by p® Q the probability on K x L induced
by p and Q, i.e. (p® Q)(k,£) = p*Q(£|k) for all (k,£). For any 7 € A(J)*, we denote by
PPC the probability over K x L x J induced by (p,Q, 7). For every j € J, IP’p Q( /) denotes

the marginal probability of j and @; the matrix of conditional probabilities over L given
k € K, conditionally on j.

e For any (k,i,Q,7) € K x I X A(L)K x A(J)E, we define

ZZGkZ 14 €|]{7)
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For any evaluation 6, any dual variable x and any matrix of conditional probabilities @), we
denote by wy(z, Q) the value of the dual game corresponding to the game Gy(p, Q) from the
perspective of Player 2. We can now state our main result.

Theorem 1.1 (Dual recursive formula). For all (z,Q) € R x A(L)X and 6 € A(N*) one has:

wp(xz,Q) =  min min max
TEA(J)L (wij)ij G(RK)IX‘] (k),’l)EKXI

{91G§9+(1—91)Z ]P’f_Q(j) <w9+(xij,Qj)+a:fj> —xk}.
Corollary 1.2. Player 2 can construct an optimal strategy in Gg(m) by using the dual recursive

formula, starting from an appropriate pair (x,Q), namely Q is the matriz of conditionals corre-
sponding to ™ and x belongs to the sub-differential of p' — vg(p’ ® Q) at p such that 7 = p R Q.

jed

1.2 OQOutline of the paper

Section 2 is devoted to introduce the duality techniques in all its generality. In particular, we
show how to deal with the dependent case. In Section 3 we introduce repeated games with
incomplete information on both sides. Section 4 is devoted to prove our main results. In Section
5 we provide some comments on the extensions of our results to two classes of dyamics games,
stochastic games and differential games.

2 Duality techniques

For any pair of sets S and 7" and any function g : S xT — R, we denote by (S, T, g) the zero-sum
game where S is the set of strategies of Player 1, T is the set of strategies of Player 2 and g is
the payoff. The maxmin and minmax of (5,7, g) are given by:

v :=supinf g(s,t) and o := infsupg(s,t),
seS teT teT seS
and the game is said to have a value if v~ = v*. An e-optimal strategy for Player 1 is an element
se € S satisfying inf,cp g(se,t) > v~ —e. Similarly, t. € T is an e-optimal strategy for Player 2
if supgeg g(s,t-) < vt +e. Note that e-optimal strategies exist for all € > 0 but not necessarily
for e = 0.

The aim of this section is to recall some properties of the dual game, introduced by De
Meyer in [3, 4] to study repeated games with incomplete information on one side. We follow the
presentation given in [14, Chapter 2|. Throughout this section, S and T denote two convex sets,
K and L are two finite sets and G** : S x T — R is a payoff function for each (k,f) € K x L
that is bi-linear and bounded, i.e. sup,, |G*(s,t)| < +oc.

2.1 Incomplete information on one side

Let us start by considering the case L = {¢}, and set G* := G** for all k € K to simplify the
notation. To the collection of zero-sum games (henceforth, games) {(S,T,G*), k € K}, we



associate two families of games, the so-called primal and dual games, parameterised in terms of
a probability p € A(K) and a vector x € RX| respectively.

The primal game G(p). To every probability distribution p € A(K) corresponds a game
with incomplete information on one side, defined as follows:

e Before the play, k € K is chosen according to p and told to Player 1.
e Then, the game (5,7, Gk) is played, i.e. Player 1 chooses s € S, Player 2 chooses t € T

(both choices being independent and simultaneous), and the payoff is G¥(s, t).

The set of strategies of Player 1 is SX, the set of strategies of Player 2 is T, and the payoff

function is given by:
~v(p, §,t) Zkak .§k t).
keK

The game (S&,T,~(p, -)) is denoted by G(p) and will be referred as the primal game. The
maxmin and minmax of G(p) are given, respectively, by:

v™(p) = sup inf~y(p,3,t),
seSK teT

vt(p) = inf sup y(p,3,1).
teT seSK

Concavity and continuity: The maps p — v (p) are concave and continuous on A(K).

The dual game D[G](z). To every vector x € R corresponds the dual game D[G](z), a
modified version of the primal game G(p) where Player 1 can choose the parameter k € K at a
cost zF. Formally, the set of strategies of Player 1 in the dual game is A(K) x S, the set of
strategies of Player 2 is T', and the payoff function is given by:

hlz](p, $,t) : Zkak (8%,t) — (p, z).
keK

Let w™(z) and w' () denote, respectively, the maxmin and the minmax of D[G](z), i.e.

w(z) = sup inf hlz](p, §,t),
(,3)EA(K)xSK teT

wh(z) = inf sup hlz](p, 8,t).
teT (p,5)eA(K)xSK

Convezity and continuity: The maps x + w®(z) are convex and continuous on R¥.

The values of the primal game and the values of the dual game are essentially Fenchel conju-
gates from each other. To be more precise about the link between the functions v+ and w®, one
needs to introduce two closely related convex transforms: the lower and the upper conjugates.

Definition 2.1. Let f : RF — R := RU {—o00,+00}. Define its upper and lower conjugates
L RE SR by:
fia) = sup fy) —(y@),

yERK

inf f(z)+ (x,y).

TeRK

~
<
—~
<
~—
I
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Recall that the Fenchel conjugate of f is given by f*(z) = sup,crx (y, ) — f(y) so that:

o) = (=) (-x), and f(y)=—f"(-y), Va,yeRX.
Recall also the usual definition of the superdifferential of f at x:
0" f(2) = {y € RE | f(2) + (g’ — 2) > f(&'), Vo' € RK}.
Theorem 2.2. For all (x,p) € RE x A(K) one has:
) = (05(@)  and  oE(p) = (wEP ()
where the functions vt are extended to RX by —oco in RE\A(K).

Corollary 2.3. Let (z,p) € RE x A(K) be such that x € 0Tvt(p). Then, any e-optimal strategy
te € T of Player 2 in D[G](z) is also an e-optimal strategy of Player 2 in G(p).

2.2 Incomplete information on both sides

Consider now the general case where K and L may contain more than one element. To the
collection of games {(S,T,G*), (k,f) € K x L} one can associate a family of games with
incomplete information on both sides, as before.

The primal game G(7). For any 7 € A(K x L), consider the following primal game, denoted
by G(r):

e Before the play, a couple (k,¢) € K x L is chosen according to 7, Player 1 is informed of
k and Player 2 is informed of /.

e Then, the game (S, T, G*") is played, i.e. Player 1 chooses s € S, Player 2 chooses t € T
(both choices being independent and simultaneous), and the payoff is G¥¢(s, t).

In normal-form, G(7) is given by a triplet (S, T ~(r, -)) where:

Y s, 8) = Y aHGH (M),

(k) EKXL
Let v* () denote the maxmin and minmax of G(r).

In order to apply the duality techniques described above, one needs to reformulate the primal
game G() in a slightly different way. Let p € A(K) and Q € A(L)¥X denote, respectively, the
marginal of 7 on K and its matrix of conditional probabilities, so that:

T=p®Q, (i.e. 7k = R QL[ k), V(k,é)erL)

From the perspective of Player 2, the game with incomplete information on both sides G(r),
can be seen as a game with incomplete information on one side, where Player 1 is the informed
player.



The first primal game Gg(p). Let Q € A(L)X be fixed. For any p € A(K), consider the
following game:

e Before the play, k£ € K is chosen according to p and told to Player 1.

e Then, the game (S, T%, G’gg) is played, i.e. Player 1 chooses s € S, Player 2 chooses t € T
(both choices being independent and simultaneous), and the payoff is:

GH(s,t) =D QUUIk)G*(s,1").

el

The sets of strategies are thus S® and T and the payoff function is given by:
Yp, 8,8) = pGH(3
keK

The maxmin and minmax are denoted respectively by v, (p) and 1)5 (p), and the maps U$ (p) are
concave and continuous.

The sets S and T are convex and Gg is bi-linear and bounded for all k£ € K, so that a dual
game can be defined, like in Section 2.1.

The first dual game D[Gg](z). As before, to every x € R corresponds a dual game. The
sets of strategies are A(K) x SX and T* and the payoff function is given by:

hol](p, §,1) Z kak g8 ) — (p,x).
keK
The maxmin and minmax functions x w$ (z) are convex and continuous.
Theorem 2.2 and Corollary 2.3 can thus be restated accordingly.

Theorem 2.4. For each (p,x) € A(K) x RE and Q € A(L)X one has:
wi() = (vg)H@) and  vi(p) = (W) (p)-

Corollary 2.5. Let (p,Q) € A(K) x A(L)X and m:=p®Q. Letx 8+1)5(p), and let t. € T*
be an e-optimal strategy of Player 2 in D[Ggl(z). Then, t. is e-optimal for Player 2 in G(r).

The second primal game Gp(q) and the second dual game D[Gp|(y). In games with
incomplete information on both sides, the two players have similar roles. Thus, by expressing
the primal game G(7) from the perspective of Player 1, one similarly defines a primal game
Gp(q) for Player 1 and the corresponding dual game D[G p](y), for all (g, P) € A(L) x A(K)F
and y € RY. Analogue versions of Theorem 2.4 and Corollary 2.5 can thus be obtained.



3 Repeated games with incomplete information

3.1 Preliminaries

Let K,L,1I,J be finite sets. For any (k,f) € K x L, let GF* = (sz(i7j))(i7j)e_[xj be an I x J
matrix. A repeated game with incomplete information is described by the finite collection of
matrix games {G*, (k,¢) € K x L} and a probability 7 € A(K x L). It is played as follows:

e A pair of parameters (k,f) € K x L is drawn according to 7 € A(K x L). Player 1 is
informed of k, Player 2 is informed of £.

e Then, the game G* is played repeatedly: at each stage m > 1, knowing the past actions,
the players choose (in,,jm) € I x J and a stage-payoff G*(i,,, jm) is produced (though
not observed).

The payoff of Player 1 is the expectation of »_ 0 G* (iny jm ), for some given 0 € A(N¥)
that is known to both players. The payoff of Player 2 is the opposite amount.

We denote this game by Gg(r).

Strategies. For each m > 1, let H,, := (I x J)™ 1. The information available to the players
at stage m > 1 is given by (k, hy,) and (¢, hy,,) for some (k, ¢, hy,) € K X L X H,,. Thus, a
strategy of Player 1 is a function § : K x H — A(I), where H := Um21 Hp, and a strategy of

Player 2 is a function ¢ : L x H — A(J). The set of strategies are denoted, respectively, by S&
and TL.

Payoff and values. A pair of strategies (5,£) € S® x T' and an initial probability 7 €
A(K x L) induce a unique probability over K x L x (I x J)N" on the o-algebra generated
by the cylinders, denoted by PT.. One can then write the game Go(m) in normal-form, i.e.

Go() = (S, T, (., -)) where:
A D\ . Kl /- .
79(71-7 S,t) = Eéi |:§ m>1 emG (vajm) )

and where E;T ; is the expectation with respect to ]P’;r .

The following result is well-known !, and we omit its proof.

Lemma 3.1. For any m € A(K x L), the game Gyg(m) has a value, i.e.

vo(m) := sup inf ~y(m,35,%) = inf sup 7p(m,5,1).
seSK {eTL teTL seSK

Moreover, both players have 0-optimal strategies.

!One may apply Sion’s minmax theorem to the game in mixed strategies when pure strategies are endowed
with the product topology, and then apply Kuhn’s theorem to deduce the result. See e.g. chapter 3 and appendix
A in [14] where the same method is applied in the discounted case.



The aim of this paper is to provide an explicit construction for a couple of 0-optimal strategies.
Recall that, as the two players have similar roles, we will focus on the construction for Player
2 only. For this reason, from now on the function vy : A(K x L) — R will be expressed in the
following equivalent manner:

v(p, Q) =vp(p®Q), V(p,Q) € A(K) x A(L)K,

which is more convenient for studying the game from the perspective of Player 2. Let us start
by recalling an important result, the so-called primal recursive formula, which expresses the
values of the repeated game with incomplete information vg(p, @) in terms of the values of the
continuation game, that is, the sub-game that the players are facing after the first stage.

3.2 Primal recursive formula

Like in Section 2.2, for each (p, Q) € A(K) x A(L)X, let Go(p, Q) denote the repeated game of
incomplete information on both sides Gy(7), expressed from the point of view of Player 2.

The aim of this section is to provide a recursive formula satisfied by the values vg(p, Q). The
following specific notation will be used to express this result.

o (0,7) € A()X x A(J)" denotes a pair of strategies for the first stage of the game.

e For any (p,Q) € A(K) x A(L)X, (o,7) € A(DE x A(J)! and (i,5) € I x J define
pij € A(K) and Q; € A(L)K by setting, for all (k,£):

ph =Pk |4, j) and  Q;(C|k) :=PEO(C|k, j),
where PE2 is the probability over K x L x I x J induced by (o, 7,p, Q).
The following easy result is important, as in particular it shows that Player 2 can compute

(and, in fact, controls) the matrix of conditional probabilities Q; € A(L)X for all j € J.

Lemma 3.2. For all (k,¢,i,7) one has:

(5
Qu(t1K) = A E s and B2k 015.) = ph (e ).

Proof. For any (k,j) such that ng(k‘, j) > 0, a direct computation gives:

PRURTG) QUTG)
P, QU ()~ Sy, QUTR)TT ()

so that the first relation holds. Similarly, for any (k,4,j) such that ]P’{i?(k, i,7) > 0 one obtains:

P2 (0| K, j) =

PL2(0| ki 5) = PEZ(C] k. 5)-
For any (i,7) such that ng(’i, j) > 0, disintegration gives then the second relation:
PL2(k, |1, 5) = Ph2(k |4, 5)PE2 (0| k.4, ) = pi;Q (L] k).



We are now ready to state the so-called primal recursive formula, due to Mertens and Zamir
[7, Section 3]. For convenience, we provide a direct and shorter proof here.

Proposition 3.3 (Primal recursive formula). For any (p, Q) € A(K) x A(L)X and 6 € A(N*):

v(p,Q) = max min {OHGELH(1—061) > PP, 5)vgs (i Q)) ¢ »
O'EA(I)K TEA(J)L (,j)GIXJ

= min  max 01GEY + (1 —61) Z PP (i, §)vg+ (pij, Qj)
TEA(])L O'EA(I)K (,j)GIXJ

Proof. Consider the maxmin. Let § be a strategy of Player 1. At the first stage, the information
available to Player 1 is k, so that o := (§(k))r € A(I)¥ represents the strategy of Player 1 at
the first stage. Similarly, the information available to Player 1 at the second stage is (k, 1, j) for
some couple of actions (i, j) played at the first stage, so that §* = (8(k, 1, j ))k,i,; represents the
strategy of Player 1 at the second stage. One can then write § = (o, §7). Similarly, a strategy £
of Player 2 can be written as ¢ = (7,#") where 7 € A(J)F and t7 = (£(£,4, )).i ;-

For each (i,j), let fj; be a best reply of Player 2 to the strategy §;; = (8(k,4,7))k in the
so-called continuation game, i.e. G+ (pij, Q;). Then, for all (o,7) € A(I)X x A(J)L one has:

5 F PQ _ PQ .
Yo (p ® Qa S, t) < HlGo—q— + (1 91) Z(i,j)EIXJ PO’T (Z j)UGJF (plj7 Qj)
Player 1 can still maximize over his own first-stage strategy, and Player 2 can again play a best
reply. Hence:

vg(p,Q) = max min (p® Q,3,1),
(0,5T) (7—7i+)

< max min 0G4+ (16 - PEC (4, j)vg+ (pij, Q }
JEA(I)KTEA(J)L{ ( )Z(w)el J ( )0 ( 7 ])

Reversing the roles of the players one obtains, symmetrically:

Q) > mi 0,GP2 +(1—6 PrY i) } 3.1
ve(p, Q) > i Ueni?;;K{ 167 + ( 1)2(2.,].)6”] o7 (65 3)ve+ (Pij, Q) (3.1)

The result follows then from the inequality “maxmin < minmax”. O

Comments. Proposition 3.3 provides a recursive formula satisfied by the values, from the
perspective of Player 2. Similarly, one can obtain a recursive formula satisfied by the values
from the perspective of Player 1, expressing vy(q, P) := vp(¢® P) in terms of vy+(gi;, P;) for any
(q, P) € A(L) x A(K)F and suitably defined conditional probabilities (g;;, P;) € A(L) x A(K)E
for all (7,7). However, neither of these recursive formulae can be used by the players as both
probability distributions p;; and g;; depend on the first-stage strategies of the two players. The
situation contrasts with the case of repeated games with incomplete information on one side
(that is, when L is a singleton), where Player 1 observes and controls the conditional probability
p; € A(K), so that the primal recursive formula provides an explicit and recursive manner to
obtain an optimal strategy for Player 1 (see [14, Section 3]).
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Remark 3.4. The sequence of weights 07 is not defined when 61 = 1, so that neither is the
value function vg+. This, however, does not matter as the primal formula contains the term
(1 —01)vg+, which is 0.

4 Dual recursive formula

The aim of this section is to prove the dual recursive formula, stated in Theorem 1.1, and to
deduce an explicit construction of an optimal strategy for Player 2 in Gy(7).

4.1 The dual game

Consider the game Gy(m) described in Section 3 from the point of view of Player 2. For any
fixed matrix of conditionals Q € A(L)X and any k € K, consider the collection of games
{Go(0r, ® Q), k € K}, where ¢ € A(K) is the Dirac mass, i.e. dx(k) =1 and 6 (k") = 0 for all
k' # k. Let S and T denote, respectively, the common sets of strategies of Player 1 and 2 in
each of these games. These sets are convex and the payoff functions (s,) — 79(6 ® Q, s, 1) are

bi-linear and bounded. Hence, like in Section 2, one can define the corresponding dual game
D[Go](x, Q) for Player 2, for any = € RE.

The dual game D[Gy](z, Q). By construction, the sets of strategies of this game are A(K) x
SE and T*, and the payoff function is given by:

h@[ny](p7§7£) =7 (p® Q7<§7£) - <p,$>

By Lemma 3.1 and Theorem 2.4, this game has a value wy(z, Q), i.e.

we(z,Q) = max  min hy[z, Q](p, 3,1),
(p,3)EA(K)xSK feTL

= min max holz, Q)(p, 5,1).
teTL (p,5)EA(K)xSK

and the mappings x — wy(z, Q) are convex and continuous.

The following notation will be used in the proof of the dual recursive formula:

]P’,?T is the unique probability on K x L x I x J induced by u € A(K x I), Q € A(L)¥X
and 7 € A()E, pe. PRk, L0, 5) = p(k, D)Q | k)7 (5).

) GET denotes the expectation of G*¢(i,7) with respect to the probability IP’%. Note that
GfTQ stands for GST for the particular case where p = d(, ;) for some (k,7) € K x I.

PEC(5) i= Yy, QUIK)TE(G) for any k € K, Q € A(L)K and T € A(J)L.

|G| = maxy, g5 5 1G* (i, 7).

B denotes the following set {z € R¥ | ||z|lo < |G|}
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4.2 Proof of Theorem 1.1

Let us recall the statement of the theorem:

For all (z,Q) € RE x A(L)X and 6 € A(N*) one has:

= i 0G94+ (1—0 PkQ(; S0 +ak) — L
wp(z, Q) Teﬁt?y (k,gleal};x[{ 1Gi7 + ( 1)2].6, 7(J) (we+(x ],Qg)+%) x }
(wiz)iy€RF)XT

Furthermore, we will prove that the minimum in (;;);; is reached in the set BY*7.
Remark 4.1. Again, there is no need in defining the value function wy+ when 61 =1, since in

this case the term (1 — 61)wy+ is equal to 0 by convention.

Proof. On the one hand, by Proposition 3.3 one has the primal recursive formula:

vp(p, Q) = max min COGEZ+(1—01) Y PEIG, j)ugr (9, Q)) ¢ s
O’GA(I)K TGA(J)L (’i7j)EIXJ

where p;; € A(K) and Q; € A(L)X are defined in (3.2) and where, by Lemma 3.2, Q; does
not depend on (p,o). On the other hand, by the duality results presented in Section 2, namely
Theorem 2.4, one has:

ZUQ(JE,Q) = Inax U@(p7 Q) - <p,3§‘>
PEA(K)

Replacing vy (p, Q) by its expression in the primal recursive formula one obtains:

u)e(ﬂj, Q) = max max min Hngg + (1 - 01) Z ng(ivj)vt%L (pljv QJ) - <p7 3§‘> )
;DGA(K) O'EA(I)K TEA(J)L (i,j)EIXJ

= max min HngT + (1 —61) Z P;%(@i)”% (i Q) — (", )
HEA(K XI) TeA(J)E (i,5)elxJ

where pf€ is the marginal of © on K and pi; is the conditional on K given (i,7), i.e.
phy = P2 (ki g), Y(k.i,j).

Consider the one-shot game with action sets A(K x I) and A(J)” and payoff function:

F[97$7Q](M77—) = HIG;?T + (1 - 91) Z P;?T(Z"j)’UGJr (:uijan) - <:uK7:E>
(i,§)ElxJ

Clearly, F[0,x, Q] is continuous on the compact set A(K x I) x A(J)¥, its first and last terms
are linear in p and 7 and, as we have already shown, one has:

wy(z,Q) = max min  F[0,z,Q](u, 7).
HEA(K XT) TeA(J)L
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Therefore, one can apply Sion’s minmax theorem [13] as soon as we prove that the following
function is concave-convex:

f(ILL7T) = Z PST(i,j)Ug+ (Niijj)-

(4,5)eIxJ

First, let us recall that from Theorem 2.4, the following relation holds for all (i, ):

v+ (pij» Q5) = inf  wer (wij, Q5) + (s, i) (4.1)
xijERK

Recall that any concave function ¢ on A(K) which is ||G||-Lipschitz with respect to the norm
|]l1 can be extended to a concave Lipschitz function ¢ on the whole space R having the same
Lipschitz constant, by defining ¢(z) = sup,err {(y) — [|G||[ly—2[[1}. By construction, ¢ admits
super-gradients at every point, which belong to the compact convex set B := {x € R | ||z <
IG||}. Since ¢ = ¢ on A(K), for all p € A(K), the super-gradients of ¢ at p are super-gradients
of ¢ at p, and therefore ¢ admits super-gradients in B at every point of A(K).

According to Fenchel’s lemma, the set of minimisers of the right-hand side of (4.1) is exactly
the set of super-gradients of the concave mapping p’ — vg+(p',Q;) at p’ = p;;. Since this
mapping is ||G||-Lipschitz with respect to the norm ||.||; on its domain A(K), it admits a super-
gradient in the compact convex set B at p;;, which is therefore a minimiser of the right-hand
side of (4.1). We deduce that

v+ (pij, Q5) = min wyr (w45, Q;) + (ij, Tij) (4.2)

Tij eB

Hence, replacing this expression, one can write:

f(p,7) = inf > PL(i,5) (wor (w1, Q) + (pijs i)

(@i)is €817 (; yerss

= inf Z ]P),m— i ] W+ (x2j7Qj) + Z ]PQ (Z ])Nzg ij |
(@ij)ii €87\ (i jyerxJ (ij k) EIX T K

= inf Z ]PQ (Z ])w9+ ($Zj7 Q]) Z ]PJ/.?’T(Z.?j7 k‘)ﬂffj
(@ij)i€BT\ ( jerxs (i,j,k)EIXTX K

Since p — IP’% is affine, we deduce from the above expression that © — f(u,7) is concave as an
infimum of affine functions.

To prove the convexity of 7 +— f(u,7) we will consider the primal game Gy(7) from the point
of view of Player 1. For any ¢ € A(L) and P € A(K)", denote this game by Gy(q, P) and let
vg(q, P) := vp(q ® P) denote its value. Using this notation, for each (7, j) one can write:

vo+ (1ij, Qj) = v+ (qij, B5),

where ¢;; € A(L) and P; € A(K)E. In particular, P; is independent from j and 7 (just like Q;
does not depend neither on i nor o). Explicitly, for all (k, ¢, 4, j) one has:

el p(k DQUE 1)
qm Py (04, 7) d  P(k|l)= (k:M i) = S pex (ki DQUIKY
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Use the duality techniques of Section 2 to define, for each y € R”, the dual game D[Gy](y, P),
and denote its value by wy(y, P) := supgea(r) vo(q, P) — (¢, y). For each (i, j) one then has:

v+ (qi; ® Pi) = sup wy+ (Yij, Bs) — (aij, vij)-

yijERL
so that
fu, ) = sup Z P (i, 5) (wo (yig, Pr) — (aigs i) »

(wi)is € R (e

= sup Z Pgﬂ'(i7j)w9+ (y2]7 PZ) - Z PQ (Z J)ngym ;
(Wig)is € R\ ( HeTw s (i,5,0)EIx I XL

= sup > Pl wer (wig, P)— Y. P64, 0y
(Wig)is € R\ ( HeTwr (i,5,0)EIx JX L

The mappings 7 — ]P’ET(Z', j) and 7 — ]P’ET(Z', Jj,¢) being affine, the previous expression shows
that 7 — f(u,7) is convex, as a supremum of affine functions.

Therefore, one can indeed apply Sion’s minmax theorem. Exchanging the maximum and the
minimum one obtains:

wo(z,Q) = min  max  F[9,z,Q)(n.7).
TeA(J)L peA(KXI)

Replacing now vg+ (i, @) with min,, ¢ g wo+ (x5, Q;) + (pij, v4j) gives then:

wy(z,Q)) = min max min
TEA(J)L peA(K XT) (x45):;€BT*

{068+ 00X, PR (s (05,Q) + i) — ) .

Again, in order to apply Sion’s minmax theorem to exchange the order of the maximum and
the infimum one needs to check that the mapping (u,x) — ¢(u,x) is concave-convex, where
x = (247);; € B/ and:

g x) i = > PL(i,5) (wor (wig, Q5) + {paj, i)
(i.d)elx]
(i.d)elx] (i.g k) ETx X K

This property follows from the fact that the mappings pu — IP’ST(Z', j) and pu — IP’ST(Z', Jj, k) are
affine, and that the map = — wy+(x, Q) is convex. We thus obtain:

wy(z,Q) = min min max
TEA(])L (Z‘ij)ijEBIX‘] LLEA(KXI)

01GY + (1= 01) > P (4, )we+ (i, Q;) + (1 — 61) Z ik Z]P’ (Gli, k)al. — (u
i,

7
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Since the expression above is affine with respect to p, we can consider without loss of generality
the maxima at extreme points:

wp(z,Q) = min min max
TeA(J)L (Iij)ijEBIX‘] (ki)eK XTI

{167+ (100 Y PI2G) (wpr (@, Q) +aly) —a*}.

To conclude, note that the minimum over B/*7 can be replaced by a minimum over (R¥)7*/

since the above proof is still valid if we replace vg+ (i, Q;) by the expression given by (4.1)
instead of the one given by (4.2). O

Remark 4.2. The proof of Theorem 1.1 follows the main lines of [12], but there is a crucial
point where an obstacle arises, namely in proving that the function

f(/iﬂ') = Z Pgr(ivj)?}9+ (Mij7Qj)

(4,5)eIxJ

is concave-conver. Unlike the independent case, where the proof relies deeply on the fact that
(p,q) — vg+(p,q) is a concave-convexr functions of independent probabilities p € A(K) and
q € A(L), the arguments of vg+(pij, Q;) are not independent from each other, and one thus
needs to use the duality techniques for the dependent case, which are more sophisticated. In this
point, our proof diverges from the one in [12].

4.3 Construction of an optimal Markovian strategy

In this section, we deduce from Theorem 1.1 and Corollary 2.5 the construction of an optimal
strategy for Player 2 in the game Gy(m). The strategy is Markovian, in the sense that it depends
on the past history only through the (updated) variable (z, @, 0).

Let (p,Q) € A(K) x A(L)X be such that 7 = p® Q. Let x € 9T vy(p, Q) be a super-gradient
at p of the mapping vg(-,Q) : A(K) — R.

For all (¢/,2,Q") € A(N*) x RE x A(L)X, let us denote by Sg/(2/,Q’) the set of minimizers
in the dual recursive formula, i.e.

SG’(xla Q/) = argmin(T,x)EA(J)L X REXIxJ h(elv :Ela Ql)[Tv X]a

where x = (z;;);; and where, using the notation of the previous sections:

AN _ 1 ~kQ' ol kQ' [ , 0 kN _ (. N\k
W @i = max (G + (1) 3 PrOG) (wis (@ @)) +aty) = (@)

An optimal strategy for Player 2 in Gy(m) can be constructed, recursively, as follows.

Case 1. If §; = 1, play 7 € A(J)* which is optimal in the formula:

wi(z,Q) = min  max {91GZQ - :Ek}
TeA(J)L (ki)eKxI

Case 2. If §; < 1, plays as follows:
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Compute (7,x) € Sp(z, Q) optimal in the dual recursive formula at (z,Q,0).

Choose j € J with probability 7¢, where £ € L is Player 2’s private type.

Observe i € I and update the triplet (z,Q,0) to (z;;,Q;,07).

Play optimally in D[Gg+|(z4j, Q;)-

This strategy is optimal in the dual game D[Gy](z, @), thanks to Theorem 1.1. By Corollary
2.5 and the choice of (z,Q), the strategy is also optimal in the game Gy(mw). Furthermore, it
is Markovian. Indeed, at every stage m > 1, the mixed action of Player 2 at this stage 7, €
A(J)" depends only on a triplet of variables (z(™~1, Q=1 g(m=1)) ¢ RE x A(L)X x A(N*)
constructed recursively as follows. For m = 0 set:

20 = o
QW =Q
60 .= 9.

For all m > 1, if 9§m_1) < 1, compute (T, x™) € Sy (™1, Q1) and set:

imJm
(m) — QUMY (Uk) TS, (jm)
Q( ) (£|k) 0 Serer QU (R)TE (jm)’ V(k,£) € K x L,
m P mt
9t S O Vi > 1,

where (i, jm) is the pair of actions played at stage m.

5 Comments and Extensions

5.1 Stochastic games with incomplete information

Consider a game with incomplete information over a finite set of states S, where each state
represents a different state of the world. Formally, let G : S x I x J — R denote a payoff
function for each pair of types (k,¢) € K x L, depending not only on the players’ actions, but
also on the state, and let p: S x I x J — A(S) denote a transition kernel. For any § € A(N¥),
any m € A(K x L) and any initial state s; € S, the stochastic game with incomplete information
on both sides, denoted by Gy(m; s1), is played as follows:

e First, a pair of parameters (k,¢) € K x L is drawn according to m € A(K x L). Player 1
is informed of k, Player 2 is informed of £.

e At each stage m > 1, knowing the current state s,, € S and knowing the past actions,
the players choose actions (in,,jm) € I x J. A stage-payoff G*(s,,, im, jm) is produced
(though not observed) and a new state s,,+1 € S is drawn with the probability distribution

p(3m7 va]m)

The payoff of Player 1 is the expectation of 3, -, 0, G* (51, im, jm ), while the payoff of Player
2 is the opposite amount.
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Remark 5.1. The case where the set of states S = {s} is a singleton corresponds to repeated
games with incomplete information on both sides. In this sense, stochastic games with incomplete
information extend our previous model.

Let p € A(K) and Q € A(L)X be such that 7 = p x @ and let s € S be an initial state.
The existence of the value for stochastic games with incomplete information is well-known, and
we omit its proof. Let vg(m, s) and wy(z, @, s) denote, respectively, the values of Gy(7; s) and of
the corresponding first dual game. The dual recursive formula obtained in Theorem 1.1 can be
extended, word for word, to stochastic games with incomplete information on both sides in the
dependent case.

Notation. In the following result we use the notations introduced earlier. Moreover, for each
(Q,7) € A(L)X x A(J)F and (s,k,4) € S x K x I, we set:

Gil(s)= Y. QUG (s,1.5).
(£.5)eLxJ
Theorem 5.2 (Dual recursive formula). For all (x,Q,s) € RE x A(L)X x S and 6 € A(N¥)
one has:

wy(z,Q,s) = min min max
TEA(N) L (Tijs)is ERENVIXIXS (ki) K xT

01GE2(s) + (1 — 61) Z PEC(5)p(s'|s, i, 5) (w9+($ij57 Qj,5") + l‘fjs> — aF
(s',§)ESXT

Corollary 5.3. Player 2 can construct an optimal strategy in Go(m;s1) by using the dual recur-
sive formula, starting from an appropriate pair (x,Q), namely Q is the matriz of conditionals
corresponding to m and xz belongs to the sub-differential of p' — ve(p' ® Q,s) at p such that

T=pR Q.

5.2 Differential games with incomplete information

Differential games with incomplete information were introduced by Cardaliaguet [2]. As in
repeated games with incomplete information, before the game starts, a pair of parameters (k, £)
is drawn according to some commonly known probability distribution 7 on K x L. Player 1
is informed of k and Player 2 of £. Then, a differential game is played in which the dynamic
and the payoff function depend on both types: each player is thus partially informed about
the differential game that is played. The existence and characterisation of the value function
was established by Cardaliaguet [2] in the independent case, and extended to the general case
by Oliu-Barton [10]. The proof relies on the geometry of the value function (/-concavity and
I-convexity) and on a sub-dynamic programming principle satisfied by its Fenchel conjugates
(i.e. the values of the first and the second dual games).

Though useful for establishing the existence of the value for differential games with incomplete
information, the sub-dynamic programming principles satisfied by the values of the dual games
do not yield a construction of optimal strategies for these games, which remains an open problem.
Establishing a continuous-time analogue of the dual recursive formula (i.e. Theorem 1.1) would
be a natural way to solve it.
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