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Passive appendages generate drift through
symmetry breaking
U. La%cis1, N. Brosse1, F. Ingremeau2, A. Mazzino3,4, F. Lundell1, H. Kellay5 & S. Bagheri1

Plants and animals use plumes, barbs, tails, feathers, hairs and fins to aid locomotion. Many

of these appendages are not actively controlled, instead they have to interact passively with

the surrounding fluid to generate motion. Here, we use theory, experiments and numerical

simulations to show that an object with a protrusion in a separated flow drifts sideways by

exploiting a symmetry-breaking instability similar to the instability of an inverted pendulum.

Our model explains why the straight position of an appendage in a fluid flow is unstable and

how it stabilizes either to the left or right of the incoming flow direction. It is plausible that

organisms with appendages in a separated flow use this newly discovered mechanism

for locomotion; examples include the drift of plumed seeds without wind and the passive

reorientation of motile animals.
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A
erial and aquatic animals have developed distinct and
complex mechanisms to move through air and water
with little resistance1,2. To efficiently manipulate the

surrounding flow, they combine both active and passive
methods3. By actively flapping, undulating or oscillating
appendages, the animal generates forces that displace the
surrounding fluid, which in turn pushes the animal in the
desired direction. The contribution to locomotion through
passive mechanisms, on the other hand, is much harder to
identify. This is because the function of a non-smooth compliant
skin4,5, hair, feathers and other passive protrusions are not only
related to the movement of the animal, but also to other features,
such as sensation, protection and insulation. The advantage of
passive locomotion techniques is that no energy needs to be
expended by the animal; instead the energy is extracted through
a complex interaction with the environment. Forces are
generated through instabilities that are often nucleated at the
boundary of the fluid and elastic structures6,7. Passive
mechanisms are also the only way for non-motile organisms to
disperse.

When a body travels through a fluid at sufficiently high speed,
there is a difference in pressure between the front and rear
surfaces of the object. As explained by Prandtl’s boundary layer
theory in 19058, this pressure drag—which is often undesired for
locomotion—is a consequence of flow separation (that is, a region
where the flow becomes detached from the surface of the body
and has the form of vortices and eddies). In this manuscript, we
show that a separated region behind a body may in fact be
exploited to aid locomotion. This becomes possible when an
appendage of simple shape is added to the body. As we will
show, the resting position of a short protuberance in a separated
flow is unstable in the same way as an inverted pendulum is
unstable under gravity. The protuberance stabilizes at an
angle (up to 40 degrees) either to the left or right of its resting
position and, as a consequence, a net drift/lift force (transverse to
drag force) is generated. Although, not explicitly demonstrated in
this paper, it is likely that this symmetry breaking has
implications for locomotion9; the trailing part of a cephalopod
shell10, the tail of a gliding tadpole11, the hind-wing tails
of the swallowtail butterfly12 and the pop-up feathers of many
birds13 are a few examples of appendages that are susceptible to
this instability. We use experiments and numerical simulations to
show the existence of an inverted-pendulum-like (IPL) instability
under a wide range of conditions (steady/unsteady flows,
rigid/elastic protrusions and fixed/falling objects) and that it
generates rotation and drift of the body. We then unravel the
mechanism with a simple model—which will justify the term
IPL—that provides quantitative prediction of the induced
rotation and drift.

Results
Experiments of a rigid plate attached to a cylinder. To show
evidence of the IPL instability, we carried out experiments in
which a soap film14–16 flows vertically (due to gravity) at a
constant velocity u¼ 1.9 m s� 1 between two wires (Fig. 1a).
Inside the soap film, we placed a circular cylinder of diameter
D¼ 6.3 mm with a clamped rigid splitter plate of length L. The
body is free to rotate around the centre of the cylinder. When
the plate is longer than the critical length of Lc¼ (4.0±0.2)D, the
body will—in the presence of any perturbation—always restore to
a steady symmetric straight position (Fig. 1c). However, for a
shorter plate (L¼ 1.0D) the body stabilizes at an angle of 16
degrees to the right of the incoming stream (Fig. 1b). It is of
equal probability that the plate settles to the right or left
of the incoming stream of flow. In Fig. 1d, we show how the

time-averaged turn angle y depends on the splitter-plate length. A
clear transition is observed from a symmetric state to an
asymmetric one at a critical threshold.

To show the existence of a drift force Fd on the body as a
result of the symmetry breaking, we fixed the same object on a
‘loose’ pendulum made of a thin nylon wire (Fig. 2a). This wire
crosses the film perpendicularly through a small hole drilled in
the centre of the cylinder. If the object—which is free to rotate
under the imposed conditions—turns, we expect a non-zero
drift force on the object that will induce a displacement of the
equilibrium position of the pendulum. Figure 2b,c shows
snapshots of the cylinder with a splitter plate of length
L¼ 2.1D for low and high film velocities, respectively. We
observe that when the flow velocity is high, the average turn angle
y is non-zero (asymmetric state) and the whole object has drifted
sideways, resulting in a new equilibrium position of the
pendulum (Supplementary Movies 1 and 2). Moreover, we
observe from Fig. 2c that the disk drifts in the same direction as
the splitter plate is tilted.
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Figure 1 | Soap-film experiments of a rigid plate attached to a cylinder.

(a) Schematic of the soap-film apparatus. Wires WL and WR are thin nylon

wires (diameter¼ 1 mm). The film hangs from the wires. The bottom

reservoir contains a soapy solution made with water and 2% of dishwashing

detergent. A gear pump pumps the solution to the injection nozzle; after

which it forms a flowing thin film between the wires before it returns

to the reservoir (for details see Methods: Soap-film experiments of a fixed

body). In b and c red colour depicts the body, which is free to rotate around

the centre of cylinder. Grey contours are visualizations of the vortical

structures in the flow provided by interference fringes in yellow light

(wavelengthE589 nm). Whereas the vertical position is stable for the long

plate (c), it is unstable for the short plate (b), which stabilizes at an

skewed angle of 16 degrees. (d) Keeping the film velocity fixed at

u¼ 1.87±0.05 m s� 1, the average turn angle (in degrees) of a cylinder

with a splitter plate of different lengths indicates a bifurcation at

Lc¼ (4.0±0.2)D. The s.d. of the splitter-plate position is close to one

degree for all lengths. The prediction of the analytical model (Bmax¼ 2.6D,

k¼ 1.0) is shown with a blue solid line.
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We calculate the corresponding drift angle2 a, which can be
obtained from the ratio of the drift force to the drag force, that is,

a ’ arctan
Fd

Fdrag

� �
: ð1Þ

We estimated Fdrag by fixing the cylinder to the end of a
calibrated cantilever perpendicular to the soap-film plane and
measuring its deflection (the procedure is depicted in
Supplementary Fig. 1). We estimated the drift force Fd from a
force-balance equation (see Methods: soap film experiments of
hanging body). The average drift angle as a function of the
splitter-plate length is shown in Fig. 2d. We observe that short
plates that have a non-zero turn-angle (y) also have a non-zero
drift angle a, confirming the instability-induced forcing.
Moreover, as we approach short and long appendage limits
(L-0 and L-N, respectively), the drift angle tends to zero. It is
also observed that there exists an optimal value of splitter-plate
length for maximum drift force. The existence of an optimal
configuration may be an important factor in evolution of tails and
appendages of motile animals, because it is often desirable to
move in a specific direction as fast as possible.

Simulations of a free-falling cylinder with a rigid plate. We
complement our experiments with two-dimensional numerical
simulations of a free-falling cylinder with a splitter plate clamped
to its rear end. This allows us to investigate two orders of
magnitude lower Reynolds numbers Re¼UD/n (U being the
descent speed of the body, and n the kinematic viscosity of

the fluid) as well as to demonstrate how the instability generates a
lateral motion. We found that when the body with a splitter plate
shorter than a critical length is released, the body rotates an angle
y towards a new equilibrium, and drifts at a constant angle a with
respect to the straight vertical path. Whereas y is due to the
symmetry-breaking-induced torque, the drift angle a is a mani-
festation of the induced transverse force. Figure 3a shows an
instantaneous snapshot of the unsteady vorticity field forming
behind a falling body (Re¼ 156) during steady drift. A constant
drift angle in an unsteady wake could not have been anticipated
from fixed-body experiments, as it is well-known that freely
falling bodies may have highly non-trivial descent paths due to
wake-induced oscillations17.

Next, we show how the turn and drift angles depend on the
splitter-plate length for a steady wake (Re¼ 45). In Fig. 3b, a
distinct bifurcation from a straight position of the plate (y¼ 0) to
a skewed position (ya0) is observed. Figure 3c shows that plates
with a non-zero turn angle have an oblique path (aa0). The drift
angle in Fig. 3c displays the same features as the drift angle from
our soap-film experiments in Fig. 2d, namely, that as L-0 the
drift angle tends to zero and that there exists an optimal length
for maximum drift. Despite that the Reynolds number of the
computations is several orders of magnitude smaller than the
experiments (Re¼ 12,000), we have a good qualitative agreement
between the two for both turn and drift angles.

A theoretical model. Having established that symmetry breaking
is prevalent in the presence of rigid plates for fixed/falling bluff
bodies with steady/unsteady wakes (Re¼ 45–12,000), we now
develop a model that uncovers the underlying instability

�

Fd

10
8
6
4
2
0

Splitter plate length (L /D)
0 1 2 3 4 5 6 7

Soap film
Model

F
or

ce
 a

ng
le

 (
�)

Figure 2 | Soap-film experiments of a freely hanging body. (a) Schematic

of the soap-film apparatus and the hanging mechanism for the cylinder with

a splitter plate. The object is attached to a nylon wire at the cylinder centre.

The nylon wire is then connected on both sides to a fixed rod. If the cylinder

with a splitter plate experiences a drift force Fd, the object drifts away

from the centre position until it reaches equilibrium with gravitational force

(see Methods: Soap-film experiments of a hanging body). (b) For a low flow

velocity we observe a straight, symmetric position of the plate (depicted

with red line). (c) For a high flow velocity, the object turns and drifts

to the right. (d) Experimental observation of the force angle versus the

length of the splitter for a velocity u¼ 2.0 m s� 1 (red dots). Model

predictions in blue with parameters Bmax¼ 2.6D and k¼ 1.0.
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Figure 3 | Numerical simulations of a free-falling cylinder with a splitter

plate. The problem is defined by three dimensionless parameters; Reynolds

number Re, solid and fluid density ratio r¼ rs/rf and splitter-plate

length ratio L̂ ¼ L=D. (a) Vorticity contour levels (solid lines) show the von

Kárman vortex street developing in the wake of the falling body (Re¼ 156,

r¼ 1.01, L̂ ¼ 1:0). As a result of the IPL instability, the body turns by y¼ 19

degrees and drifts by a¼8 degrees with respect to gravity (Supplementary

Movie 3). The turn and drift angles as functions of the splitter-plate

length are shown, respectively, in b and c for Re¼45 and r¼ 1.001.

Predictions of the analytical model (Bmax¼ 1.26D, k¼0.90) are shown with

solid blue lines in b and c.
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mechanism. Consider an inverted pendulum system as shown in
Fig. 4a that is confined between two walls and free to rotate. Due
to the offset between centre-of-mass and fixation point (centre of
cylinder), the symmetric straight configuration is unstable and it
relaxes to either side of the supporting walls in the presence of
any small perturbation. We claim that the physical mechanism
for the instability of the symmetric straight configuration of a
bluff body with a compact appendage placed in a free stream is
similar to the inverted pendulum. The pressure (instead of
gravity) in the recirculation zone behind the bluff body acts as the
destabilizing force (Fig. 4b).

Consider a steady and uniform free stream U and a body
consisting of a rigid splitter plate clamped at one point to a
circular cylinder (Fig. 4c). The body is free to rotate around the
centre of the cylinder, but it may not translate. We assume that
the flow is equal to U everywhere, except inside a confined back-
flow region behind the cylinder. Inside this region the flow,
denoted by UR, is uniform, steady and in opposite direction to U.
We also assume that the shape of the back-flow region is in the
form of an ellipse (Methods: Back-flow region).

Normal forces on the plate. An inclined plate in a free stream
experiences a normal pressure force that depends on the incli-
nation angle y. To find a steady state in our model, part of the
splitter plate must be outside the back-flow region and exposed to
the free stream U, whereas the remaining part is inside the back-
flow region and experiences a uniform reversed flow UR. The
length of splitter plate inside the back-flow region is given by a
function B(y), which depends on the turn angle y. We will show
that it is the competition between the forces acting on these two
parts of the plate that determines the stability of the system. Since
the instability exists under steady conditions (as shown using
numerical simulations in Fig. 3b,c), we assume steady forces.
Further neglecting viscous forces18, the total force on each part of
splitter plate due to the fluid can be modelled as

F þn ¼ 2k sinðyÞArf U2 B yð Þ½ � ð2Þ
inside the back-flow region and

F �n ¼ � 2 sinðyÞArf U2 L�B yð Þ½ � ð3Þ
outside the region (Fig. 4c). Here, A is a force law calibration
coefficient and rf is the fluid density. The constant coefficient

k40 describes the (averaged) magnitude of the force density on
the inner part of the splitter plate relative to the outer part. It is
shown in the Methods section (Normal force on an inclined
plate) that our model of the forces is a special case of a commonly
used model for describing the forces on a freely falling plate19,20.

The onset of instability. We further assume that the splitter plate
is sufficiently thin, such that its weight can be neglected. As a
result, the centre-of-mass coincides with the pivot point and the
total torque around this point is

T yð Þ ¼F þn
D
2
þ B yð Þ

2

� �
þ F �n

D
2
þ B yð Þ

2
þ L

2

� �
¼ sin yð Þ 1þ kð Þ B̂2 yð Þþ B̂ yð Þ

� �
� L̂2� L̂

� 	
Arf U2D2;

ð4Þ
where B̂ ¼ B=D and L̂ ¼ L=D. In our model the condition for the
equilibrium state is zero torque. We thus seek turning angles y,
for which the total torque on the body vanishes. This condition is
satisfied for the trivial straight position T(0)¼ 0 and for two non-
trivial skewed positions T(±ys)¼ 0.

The linear stability of the trivial solution is determined by the
sign of the first-order term of the Taylor expansion of T(y)
around y¼ 0, that is,

qT
qy






y¼0

¼ 1þ kð Þ B̂2 0ð Þþ B̂ 0ð Þ
� �

� L̂2� L̂
� �

Arf U2D2;

which results in the following condition for instability

1þ kð Þ B̂2ð0Þþ B̂ð0Þ
� �

� L̂2� L̂40: ð5Þ
When equation (5) holds, any small deviation from the zero angle
y¼±e, induces a torque in the direction away from the zero
angle. Setting the left-hand side of expression (5) to zero and
solving a quadratic equation gives the critical length L̂c of the
splitter plate for the onset of instability,

L̂c ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðkþ 1Þ B̂2

maxþ B̂max
� 

þ 1
q

� 1

� �
: ð6Þ

This condition is independent of the coefficient A. The two
empirical parameters k and B̂max ¼ B̂ð0Þ can be chosen based on
wake measurements (see Methods: Model parameters).

At L̂ ¼ L̂c, the straight position y¼ 0 loses its stability, and two
attracting states y¼±ys appear via a pitchfork bifurcation. These
non-trivial equilibria can be found by setting the expression in
curly brackets of equation (4) to zero, which results in a quadratic
equation for ys,

B̂ ysð Þ ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

kþ 1
L̂2þ L̂
� 

þ 1

r
� 1

" #
: ð7Þ

This condition corresponds to a geometrical problem and can
be solved analytically for ys (Supplementary Note 1 and
Supplementary Fig. 9). In Fig. 3b, we compare the predictions
of the analytical model with the turn angle of a free-falling body
(Re¼ 45), where we assert that our model captures the
bifurcation with respect to L̂ very well. In Fig. 1d, we compare
the turn angle based on the steady force law (equations (2) and
(3)) with the time-averaged turn angle of the soap-film
experiments at Re¼ 12,000. We observe a good agreement,
which indicates that a steady model is sufficient to capture the
instability threshold. In the limit of zero splitter-plate length
L̂! 0, our model predicts that the stable position is at the angle
±y0, for which the flow separates from the body surface (y0E55
degrees for a cylinder). This is in agreement with our
experimental (Fig. 1d) and numerical (Fig. 3b) results, where
the angle y does not approach zero as L̂! 0. Our study thus
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Figure 4 | Model of IPL instability. (a) Schematic of an inverted pendulum

consisting of a plate on top of a cylinder, which is free to rotate. Due to

gravity, the symmetric configuration is unstable and the plate will settle on

one of the walls. (b) Schematic of a free-to-rotate cylinder with a splitter

plate placed in a free stream. The grey region marks the back-flow region.

Inside this region the flow (UR¼ |UR|) is constant and in reverse direction to

the free stream (U¼ |U|). It is postulated that the back flow exerts a similar

destabilizing force as the gravity does for the inverted pendulum in a.

(c) The proposed model requires a region of back flow. For a cylinder, we

define this region as a half ellipse (see Methods: Back-flow region) with

parameters y0, and Bmax¼ B(0). Also shown is the normal force on the

plate inside Fþ ¼ F þn n̂ and outside F� ¼ F �n n̂ the back-flow region.
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indicates that an arbitrary small protrusion—but larger than the
scales of surface irregularities of the cylinder surface—will make
the cylinder turn and stabilize at an angle for which the boundary
layer on the body detaches from the surface.

Drift induced by the instability. Our model also predicts the
drift angle for a falling body. Due to the asymmetric pressure field
at skewed equilibrium turn angles, a non-zero net force, Fd, in the
transverse direction to the free stream acts on the object. We may
decompose this drift force into a part acting on the cylinder body
Fcylinder,d and a part acting on the splitter plate Fplate,d. The latter
contribution can be obtained by projecting forces (equations 2
and 3) on the direction orthogonal to the free stream. The former
contribution can be taken into account by assuming
Fcylinder,d¼AcFplate,d, because for any angle y, the cylinder and the
plate experience the same pressure field (validation of this
assumption based on numerical computations is reported in
Supplementary Fig. 2a). Thus, the total drift force on the object
can be written as

Fd ysð Þ ¼ � cos ysð Þ F þn þ F �n
� 

�Ac cos ysð Þ F þn þ F �n
� 

¼ � 2 sin ysð Þcos ysð Þ kþ 1ð ÞB ysð Þ� L½ �rf U2D~A;
ð8Þ

where Ã¼A(1þAc). This parameter is determined by calibration
with numerical simulations (see Methods: Model parameters).

For a freely falling object, the force acting on the body from the
fluid must be balanced by the gravitational force (Fig. 5a). The
turn angle ys with respect to the direction of movement in the
freely falling case is the same as the turn angle ys with respect to
the direction of the free stream in the static case (Fig. 5b). The
drift angle a in the former case thus corresponds to the force
angle in the latter case, given by

a ¼ arctan
Fd

CDrf U2D=2

� �
: ð9Þ

After inserting equation (8) into this expression for Fd with
Ã¼CD/4, we obtain

aðysÞ ¼ arctan � sin ysð Þcos ysð Þ kþ 1ð ÞB̂ ysð Þ� L̂
� �� 

: ð10Þ

From this expression one finds the drift angle is in the same
direction as the splitter plate is tilted (Supplementary Note 2).
The direction of drift force can be explained by the fact that the
pressure force outside the back-flow region has a larger lever arm
than the force inside the region, and thus generates a larger
torque Tout. To balance Tout with the torque on the plate inside
the back-flow region, a larger force inside the back-flow region is

required to compensate for the smaller lever arm. As such, the
force inside the back-flow region is larger than outside and thus
determines the drift direction. This is in agreement with our
numerical findings; in Fig. 3c we compare the drift angle a
obtained from (10) with the drift angle from numerical
simulations of a freely falling body, where we again observe a
good agreement. The drift observed in the soap-film experiments
of the hanging body is compared to (10) in Fig. 2d.

So far, we have presented evidence of the IPL instability and its
consequence for locomotion in two dimensions and for rigid
appendages. Our final results show that the IPL instability is also
present and meaningful in three dimensions and for flexible
appendages.

IPL instability for flexible appendages. Flexible appendages,
often observed on plants and animals, are also susceptible to an
IPL instability. We performed soap-film experiments of circular
cylinder of diameter D¼ 6.88 mm fixed (no rotation or transla-
tion allowed) at its centre with a flexible filament (silk) attached
to its rear end (see Methods: Soap-film experiments of a fixed
body). When the filament is sufficiently long, the inertial and
elastic forces of the filament interact with the fluid pressure,
causing the filament to flap (Fig. 6b). This archetype of fluid–
structure interaction problem is often used as a model of flag
fluttering6,21,22. The time-average mean position of the long

mg
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Figure 5 | Relation between drift angle and force angle. (a) Schematics of

a freely falling cylinder with a splitter plate. There is a balance between the

force from fluid F and the gravitational force mg. The drift and turn angles

are denoted by a and ys, respectively. (b) Schematics of a fixed cylinder

with a splitter plate subject to a free stream; the force and turn angles are

denoted by a and ys, respectively.

20

10

F
la

pp
in

g 
an

gl
e

(�
)

Filament length (L/D)

0
1 2 3 4 5 6 7

Soap film
Model

Figure 6 | Soap-film experiments of an elastic filament behind a cylinder.

Short filament (a) oscillates around an asymmetric mean position. In

contrast, the long filament (b) has a symmetric mean position

(Supplementary Movies 4 and 5). Keeping the film velocity fixed at

u¼ 2±0.04 m s� 1 and measuring the average flapping angle for different

filament lengths (L), a transition from a symmetric flapping to an

asymmetric one is observed at Lc¼ 3.3D. Blue solid line depicts the

predictions of the analytical model (model parameters are the same as in

Figs 1d and 2d).
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filament is a vertical straight position, and therefore the flapping
is symmetric. However, due to the IPL instability, filaments
shorter than a critical length (Lc¼ 3.3D) have an asymmetric
mean position (Fig. 6a) that is sustained for all times. This is
manifested by a non-zero average angle y formed by the vertical
centre axis with the straight line connecting the filament anchor
point to its tail position. The elastic appendage undergoes the
same type of bifurcation (Fig. 6c) as observed for the splitter-plate
configuration, and is surprisingly well captured by our rigid-plate
model.

IPL instability for three-dimensional bodies. Using direct
numerical simulations, we show that a three-dimensional object
undergoes an IPL instability with an ensuing side force on the
body. The object under consideration has a density ratio rs/rf

¼ 5 and is composed of a sphere of diameter D and a thin
elliptic-shaped sheet (Fig. 7a–c). The sheet is attached to the
sphere and protrudes a maximum length of L¼ 0.8D from the
rear stagnation point of the sphere (Supplementary Fig. 3). The
object is subject to a constant free stream U in the streamwise
direction x. We allow the body to rotate around the transverse
axis y and to translate in the yz-plane. The three degrees of
freedom of the body can be described by the angles y, a and g.
The two former angles correspond to the turn angle and to the
drift angle in the zx-plane (Fig. 7b), that is, y is the deviation of
the sheet from the direction of movement in the zx-plane and a is
the angle formed between the velocity of the object in the z-
direction and the free-stream velocity U in the x-direction.
Similarly, the angle formed between the velocity in the y-direction
and U is denoted by g.

At Re¼UD/n¼ 200 a steady axisymmetric wake23 forms
behind the sphere alone (no sheet attached). Due to symmetry,
the sphere neither rotates nor drifts (Fig. 7d,e). According to the
IPL model and our two-dimensional investigations, we expect
that by adding an appropriate protrusion to the sphere, the object
will rotate and experience a non-zero transverse force. Indeed, in
the presence of the elliptic sheet, we observe that after a transient
time, the sphere stabilizes at a turn angle of y¼ � 8.5 degrees
(Fig. 7d) and drifts with a constant velocity in the zx-plane with
an angle of a¼ 4.5 degrees (Fig. 7e). We observe a zero drift in
the xy-plane, that is, g¼ 0.0 degrees (Fig. 7e). The drift is a
consequence of the IPL instability: any small perturbation causes
the sheet to move away from the straight unstable position (y¼ 0)
and to settle on a skewed stable angle ys. The new equilibrium
breaks the symmetry of the wake (Fig. 7b) in the zx-plane, which
in turn induces a side force on the body in the z-direction,
making it drift. Note that the trait of the IPL-induced
movement—the direction of drift and the direction that the
appendage is titled in are the same—is present. Although the
chosen three-dimensional appendage triggers the IPL instability,
its size and shape have not been optimized to yield maximum
drift.

Discussion
There exist many motile animals with splitter-plate-shaped
appendages2,10–13. While the presence of a splitter plate has for
a long time been associated to a ‘trick’ to reduce drag on bodies2,
it has not until the present work been associated to the generation
of rotation and drift. We can postulate two requirements that
need to be fulfilled for an organism to make use of the IPL
instability for locomotion. First, when the organism moves in the
fluid, a separated region has to be formed around its body. This
requirement excludes very small organisms, where fluid inertia is
negligible, that is, the Stokes flow regime. Second, the passive
appendage needs to be sufficiently short, such that a significant
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Figure 7 | Numerical simulations of a sphere with a sheet. We model a

freely falling object (shown in grey colour in frames a–c) by imposing a free

stream in the x-direction and allowing translation in y and z directions, as

well as rotation around y axis. In a the u¼ �0.1U streamwise-velocity

isosurface (red) shows the existence of a back-flow region, whereas

u¼ 1.1U isosurface (blue) illustrates the asymmetric flow field around the

sphere. The asymmetric wake is also observed in b, where the vorticity

component in the y-direction is shown (blue and red correspond to oy¼ 3.0

and oy¼ � 3.0, respectively). The direction of movement of the body is

depicted with a black arrow. In contrast, in the xy-plane shown in c there is

no drift and the wake is symmetric (blue and red corresponding to oz¼ 3.0

and oz¼ � 3.0, respectively). The time evolution of the turn angle (y) and

the drift angles (a,g) for the sphere alone and the sphere with a sheet are

reported in d and e. When a sheet is appended to the body it rotates an

angle of y¼ �8.5 degrees and drifts in zx-plane by a¼4.5 degrees. See

also Supplementary Movies 6 and 7.
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portion of its area is exposed to a reversed flow. We have shown
that the instability is a two-dimensional mechanism, but that the
induced drift is equally significant in three dimensions as in two.
We expect that the consequences for locomotion can be even
more significant if the three-dimensional shape of an appendage
is optimized to yield maximum drift. In particular, it would be
interesting to investigate whether these optimized shapes
resemble appendages that have evolved naturally.

In conclusion, we identify a new mechanism for locomotion;
within a biologically well-inhabited domain of parameters
(Re¼ 45–12,000, covering steady and unsteady wakes) moving
two- or three-dimensional bodies with short rigid or flexible
protrusions are likely to undergo an IPL instability. We believe
that these results form a foundation, from which scientists can
discover the existence of the IPL instability in various forms in
nature. The beauty of this passive locomotion technique is that no
energy needs to be expended by the animal; instead the existing
energy in the flow is used.

Methods
Soap-film experiments of a fixed body. The experiment is performed with a
gravity-driven soap film located at KTH in Stockholm (Fig. 1a). The typical size of
the test section is 1.2 m long and 8 cm wide. The fluid velocity is varied between 1
and 3 m s� 1, and the corresponding film thickness varies from 1 to 4 mm. The fluid
velocity—measured with Laser Doppler velocimetry—is close to uniform at the
centre of the channel (the variation of the fluid velocity was below ±2.5% over
70% of the channel span). The diameter of the cylinder is around 6.5 mm and the
length of the filament/splitter plate varies from 6 to 50 mm. For the cylinder–
flexible filament system, a fixed cylinder made of plexiglass puncture the film; the
filament—a silk fibre with a diameter of 0.25 mm—pass through a hole at the back
of the cylinder. The bending stiffness of the silk filament is determined by mea-
suring its Young’s modulus with a tensile test. Using the area moment of inertia of
the filament, the bending stiffness is found to be 0.04 erg cm� 1. The cylinder–
splitter plate are made with a plastic sheet (0.1 mm thick); the cylinder is free to
rotate around a solid axis passing through its centre. For the visualization of the
flow a low-pressure sodium lamp is used, and the resulting interference fringes are
filmed with a high-speed camera at 500 Hz, the resolution of the camera is
2,048� 2,048 pixels, 1,500 images are taken for each test corresponding to a
recorded time of 1.5 s. To determine the position of the end of the filament/splitter
plate the recorded grey-scale images are binarized in black and white images using
a threshold in which the filament/splitter plate is black and the background is
white. The position of the end of the filament/splitter plate are then averaged in
time to determine the mean position and turn angle of the filament/splitter plate.

Soap-film experiments of a hanging body. The experiment is performed with a
gravity-driven soap film in Bordeaux. The setup in terms of the typical size of the
test section, the fluid velocity and film are the same as in the soap-film experiments
of the fixed body, except that for the visualization of the flow a white lamp is used.
We use cylinder with diameter D¼ 7 mm, to which splitter length with length
L¼ 2.1D is attached. We fixed it on a ‘loose’ pendulum (see Fig. 2a) made of a thin
nylon wire. This wire crosses the film perpendicularly through a small hole drilled
in the centre of the disk. The system, consisting of a disk and splitter plate, is free to
rotate under such conditions. We estimate the drift force Fd from a force-balance
equation. When the pendulum has reached equilibrium, the following forces act on
the cylinder and splitter-plate system (see Supplementary Fig. 4b): the drift force
Fd, the drag on the system Fdrag (we approximate it with the drag of cylinder alone,
see Supplementary Fig. 1), the weight of the disk P and the tension of the wire T. At
equilibrium, the torque around the fixation point of the pendulum is zero.
Neglecting the wire weight (which means underestimating the drift force), this
condition leads to,

Fd cosbLp �ðPþ FdragÞ sinbLp ¼ 0; ð11Þ

where Lp is the length of the pendulum and b is the deviation angle of the pen-
dulum. We may calculate Fd as

Fd ¼ ðPþ FdragÞ tanb ’ ðPþ FdragÞ
d

Lp
; ð12Þ

where d is the displacement (see Supplementary Fig. 4b) between the position given
by the symmetric state (Fig. 2b) and the position of the disk in the asymmetric state
(Fig. 2c). Thus, to determine Fd, we measured d and P and estimated Fdrag. Using
those measurements, we obtain the force angle, shown in Fig. 2d.

Numerical simulations of a two-dimensional body. We discretize the two-
dimensional incompressible Navier–Stokes equations with a staggered-grid, finite-
volume formulation using a second-order semi-implicit time integration scheme.

The no-slip boundary condition is enforced at Lagrangian points by appropriate
regularized surface forces24. A uniform grid size of h¼ 1/25 dimensionless length
units is sufficient to reproduce previous work25 on freely falling circular cylinder in
terms of trajectory. The dimensionless length is the diameter of the cylinder, D. The
equations for the motion of the rigid body are coupled to fluid solver implicitly.
This ensures numerical stability at density ratios between solid and fluid as low as
rs/rf¼ 1.0001. The resulting linear equation system is solved using approximation
of block-LU decomposition24 and direct solver26. The freely falling cylinder with
the splitter plate is placed in a large computational box with no-slip boundary
conditions imposed at the walls. The box dimensions depend on the duration of
transient behaviour; typical size used is 40D in width and 110D in height. A
uniform cartesian grid covers a large region, typical size is 20D wide and 90D high.
In the region between the uniform mesh and domain boundary, the mesh is
expanded smoothly. The no-slip boundary condition at the box wall is always at
least 10D away from the body. The time-dependent simulation is continued until it
reaches a terminal motion. The angle of drift is obtained using linear regression of
the trajectory in the terminal regime. The obtained angle is compared with
corresponding simulation of the cylinder alone, using the same mesh and the same
initial conditions. The cylinder alone has a small drift (around 0.3 degrees) due to
boundary effects. To increase the accuracy, we subtract the unphysical drift from
the results of cylinder with splitter plate for all lengths. The angle of splitter-plate
orientation is determined as a mean over terminal regime.

Back-flow region. In the proposed model, the back-flow region defines the
boundary between two sections of the plate; the two sections experience a total
normal force in opposite directions. Thus, the underlying assumption of our model
is that the normal force on the plate from the fluid changes sign at some distance
from the cylinder surface. Indeed, our two-dimensional numerical computations
verify that when a plate of a given length stabilizes at a particular angle, there exists
a point on the plate for which the normal force changes sign. In Supplementary
Fig. 5a, we show with black stars these points for different plate lengths. Ideally,
these points would define the function B(y), however, one does not always have
a detailed information about force distribution over an appendage available.
Therefore, in what follows we suggest a way to approximate the function B(y) with
measurements of the wake in the absence of a plate.

In Supplementary Fig. 5b streamlines (black lines) of the flow past a two-
dimensional circular cylinder at Re¼ 45 are shown. The unperturbed wake consists
of two steady symmetrical vortices and the length of the recirculation bubble Lw is
around 2.5D (measured from the rear stagnation point). In the same figure, we
show contours (green lines) of zero azimuthal velocity uy, defined as

uy ¼ u � êy ¼ � ux cosy� uy siny; ð13Þ

where êy¼ (� cosy, siny) is the azimuthal unit vector (as defined in Supplementary
Fig. 5d), and u¼ (ux,uy) is the velocity field. Excluding the vertical centre line, we
observe that uy ¼ 0 encloses a region with a length about 1.2D. This region is
compared with the one obtained from the numerical force distribution (black stars)
in Supplementary Fig. 5c, where we observe that the two regions are similar in
shape. We have approximated this shape with a half ellipse.

Normal force on an inclined plate. Our starting point for modelling the forces on
the splitter plate attached to the cylinder surface is the same as the force model for
freely falling rigid plates19,20. To simplify the problem of a moving plate in a
still fluid, we consider the plate in a translating coordinate system as shown in
Supplementary Fig. 6a. This transformation results in a fixed plate subject to an
incoming free stream. The direction of the free stream is from bottom to top (in ŷ
direction) to better resemble a free-falling motion. Then, following the work of
Andersen et al.27, we write the drag force FD and lift force FL on the plate as

FD ¼ rf a A� E cos2yð ÞU2 ŷ; ð14Þ

FL ¼ rf a CT sin2yU2 þ 2CRa _yU
� �

x̂; ð15Þ

where rf is the density of the fluid, a is the length of the plate, A, E, CT and CR are
constants, _y is the angular velocity and U¼ |U| is the flow speed. The drag
force is an empirical formulation proportional to velocity square and the
turn angle, as suggested by Wang et al.28 The lift force is based on the empirical
model for circulation

G ¼ CTa sin2yU þ 2CRa2 _y;

developed by Pesavento and Wang29. The above model of forces may be used to
describe the motion of the plate (with additional models of added mass and the
plate inertia). The coefficients A, E, CT and CR are usually calibrated to fit
experimental or numerical data of the trajectory of the falling body.

The normal force component can be obtained by projection of lift and drag
forces

Fn � n̂ ¼ rf a A� E cos2yð ÞU2 sinyþ rf a CT sin2yU2 þ 2CRa _yU
� �

cosy; ð16Þ

where the normal unit vector n̂ is defined in Supplementary Fig. 6. We simplify this
expression by assuming steady conditions and zero contribution from viscous
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forces (see Supplementary Fig. 7 and associated discussion below). In a steady
configuration, _y ¼ 0, which renders the second term on the right-hand side in the
lift force (15) zero. In the absence of viscous forces, the tangential force component
Ft is zero. When y¼ 0,

Ft � t̂ ¼ �FD � ŷ ¼ � rf a A� Eð ÞU2 ¼ 0 ð17Þ

which results in the condition E¼A. When ya0, we have

Ft � t̂ ¼ � 2rf aAsin2yU2 cosyþ 2rf aCT cosyU2sin2y ¼ 0; ð18Þ

where the trigonometric identities sin2y¼ 2siny cosy and 1� cos2y¼ 2sin2y have
been used. This expression is zero for CT¼A.

Inserting the conditions _y1 ¼ 0, CT¼A and E¼A in (16), the normal force
component (which now is also the total force on the plate) can be written as

Fn ¼ Fn � n̂ ¼ 2rf aU2 sinyA: ð19Þ
To model the forces on a plate attached to the rear end of a cylinder, we assume

that a section of the plate (near the cylinder surface) with length a1¼B(y)
experiences a reversed flow U2 ¼ �

ffiffiffi
k
p

Uŷ; the outer section of the plate of length
a2¼ L�B(y) is exposed to the incoming free stream U1¼Uŷ. As shown in
Supplementary Fig. 6b, the inclined plate experiences uniform steady flows from
two directions. Then, by considering the two sections separately, we arrive with the
model of normal forces in equations (2) and (3). In this model, k defines a constant
scaling between the force on the outer side and the inner side of the splitter plate.

Let us assess our force model (equations (2) and (3)) by comparing the torque
T(y) around the body from our model (equation (4)) with the torque extracted
from numerical simulations of a body fixed at various turn angles (Re¼ 45).
Supplementary Figure 7 shows that by calibrating A appropriately (in this case
A¼CD/16¼ 0.094), our force law provides a reasonable model of the numerically
computed torque. Moreover, in Supplementary Fig. 7, we report on the magnitude
of the viscous torque in the generated total torque. We observe that the
contribution of the viscous component is smaller than the pressure component;
using pressure force alone to compute torque introduces less than one degree error
in the equilibrium turn angle. This observation underlies our assumption of zero
contribution of viscous forces to the total force. Note, however, that viscosity is
necessary to induce boundary layer separation. Thus, while we neglect the viscous
component in the total force acting on the plate, our model takes viscosity into
account implicitly by modelling a back-flow region.

Model parameters. Here, we propose to determine parameters Bmax, k and y0

from measurements of the wake behind the body without an appendage and to
calibrate the coefficient Ã with measurement of the drift force on the body. Let us
start with Bmax by considering the azimuthal velocity of the unperturbed wake,
which is zero along the centre line. For a two-dimensional flow the derivative of the
azimuthal velocity on centre line is given by

quy

qy






y¼0

¼ � qux

qy
� uy

� �
y¼0

¼ � r
quy

qy
þ uy

� �
x¼0

; ð20Þ

where the continuity equation (qux/qx¼ � quy/qy) and coordinate relation
(q/qy¼ � rq/qx at y¼ 0) have been used. In Supplementary Fig. 8a,b we see that
the derivative of the azimuthal velocity changes sign along the centre line. One can
conclude that the point on the centre line, where the derivative of the azimuthal
velocity changes sign, corresponds to the point where the centre line intersects with
the (off-centre) zero isoline of azimuthal velocity. This is the point that we suggest
to use for determining the value of B̂max. In Supplementary Fig. 8a, we show qyuy
for the flow past a cylinder at Re¼ 45, where one observes that B̂max ¼ 1:36. In
Fig. 3b, using the slightly smaller value of B̂max ¼ 1:26 provided the same critical
value Lc as the full numerical simulations. Thus by combining measurements of the
cylinder wake without a protrusion and our model, one may predict the critical
value for bifurcation with a 90% accuracy. Regarding the soap-film experiments, we
measure the vertical velocity component along the centre line, and use its time-
averaged value to obtain qyuy from equation (20). The derivative of the azimuthal
velocity obtained from experiments is shown in Supplementary Fig. 8b, where a
change of sign is observed at B̂max ¼ 2:05; for model predictions in Fig. 2d, Fig. 1d
and Fig. 6c, the length was B̂max ¼ 2:6. Thus, the accuracy of wake measurements is
around 70%.

We propose to obtain the value k by estimating the forcing inside and outside of
the back-flow region. Using the definitions of F þn and F �n and choosing L¼ Lw as a
representative splitter-plate length, we may estimate k from

k � F þn
F �n










 Lw �Bmax

Bmax
: ð21Þ

We aim to estimate k from a wake without an appendage. It is not possible to
measure these forces directly, since they do not exist before the introduction of the
splitter plate; therefore we suggest to use measurements of the azimuthal velocity
close to the straight position (y¼ 0) to estimate the force ratio. Since uy approaches
zero as y-0, we assume direct proportionality

F þn =F �n


 

 � uðiÞy =uðoÞy




 


; ð22Þ

where

uðiÞy ¼
1

Bmax

ZBmax

0

uydy and uðoÞy ¼
1

Lw �Bmax

ZLw

Bmax

uydy ð23Þ

are the average azimuthal velocities inside and outside of the BFR. The limit can be
found as

F þn
F �n










 ¼ lim

y!0

uðiÞy
uðoÞy

¼ lim
y!0

quðiÞy =qy

quðoÞy =qy
¼ Lw �Bmax

Bmax

R Bmax

0 quy=qydyR Lw

Bmax
quy=qydy

: ð24Þ

Evaluating the above integrals for the numerical profile (Supplementary
Fig. 8a), we obtain k¼ 0.83. We used a slightly larger value of k¼ 0.9 in our model.
The discrepancy is small when taking into account the number of assumptions
employed to derive the model. The integral of the experimental profile
(Supplementary Fig. 8b) results in k¼ 0.18, whereas the value k¼ 1.0 was used in
the model predictions in Fig. 2d, Fig. 1d and Fig. 6c. We are thus able to determine
the order of magnitude of the forcing coefficient k from local measurements of one
velocity component.

Moreover, from measurements we observe that the angle for which the
boundary layer separates from the cylinder is close to y0E55 degrees for the range
of Reynolds numbers under investigation.

Finally, to determine the coefficient Ã, we calibrate our model with the drift force
Fd extracted from numerical simulations at Re¼ 45 of the whole body (cylinder and
splitter plate) fixed at various turn angles. The numerical force is compared with the
drift force (equation (8)) predicted from our model in Supplementary Fig. 2b for
Ã¼CD/4, where CD¼ 1.5 is the drag coefficient of the whole body.

Numerical simulations of a three-dimensional body. We use the open-source
software OpenFOAM30 to solve the three-dimensional incompressible Navier–
Stokes equations. A sphere is placed in a computational box, which is Lx¼ 40D
long, Ly¼ 30D wide and Lz¼ 40D high. Here D denotes the sphere diameter, which
also serves as a reference unit length. The coordinates for the sphere centre are
(15,15,20)D. A uniform velocity is imposed at the inflow and a Neumann condition
at the outflow, whereas on the lateral sides of the box a slip boundary condition is
enforced. No-slip boundary condition are imposed on the object. A hexahedral-
dominant mesh is generated using the utilities blockMesh and snappyHexMesh.
The former generates a uniform cartesian mesh, while the latter inserts the
geometry of the body and refines the mesh locally. The final mesh consists of
around 750,000 cells. The chosen solver is pimpleFoam and its extension for
dynamic meshes pimpleDyMFoam. This solver makes use of a blend of PIMPLE
and PISO algorithms to handle the pressure–velocity coupling, together with an
adaptive choice of the timestep under a maximum Courant number condition. To
compute the rigid motion of the body, we use the sixDoFRigidBodyMotion solver,
which also handles the dynamic mesh (by rotating and stretching the cells
according to the body motion31). The coupling between the fluid and the body is
solved with an explicit scheme, that is, using the so-called weak-coupling approach.
To validate the solver, we performed a simulation of the fixed sphere at Re¼ 200
and obtained a good agreement in terms of the wake length and drag coefficients
with previous studies23. We complement the sphere with an elliptic sheet (length
behind sphere is 0.8D, thickness of sheet is 0.1D). The design of the appendage is
shown in the Supplementary Fig. 3. We use the same mesh settings and the same
computational box, which was verified using the simulation of the sphere alone.
The length of the simulation is limited due to large displacement of mesh towards
the end of simulation, when the body approaches the boundaries of the box. To
partially overcome this limitation, we fix the body for the first 50 time units and
then allow it to move. In this way, most of the transient dynamics of the flow can
be simulated when the object is at the initial position and no mesh deformation is
required.
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