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Abstract

In the last few years, the so-called Chen et al. approach of the nucleon spin decomposition has
been widely discussed and elaborated on. In this letter we propose a genuine differential geometric
understanding of this approach. We mainly highligth its relation to the “dressing field method” we
advocated in [1]. We are led to the conclusion that the claimed gauge-invariance of the Chen et al.
decomposition is actually unreal.
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Introduction

Since more than 25 years, state of the art experi-
ments have shown that the quarks spin contribute
to about a third of the nucleon spin, while the
gluons spin have been deemed to contribute little.
Actually recent results [2] tend to put into ques-
tion this claim, the gluons may significantly con-
tribute after all. The remaining fraction should
then be attributed to the orbital angular mo-
mentum (OAM) of the quarks and gluons. See
[3; 4] and references therein. Anyway these ex-
perimental breakthrough have revived theoretical
inquiries on the nucleon spin decomposition in
QCD.

There are several decompositions each with
advantages and drawbacks (see [5] for details), the
most salient concerning a trade between partonic
interpretation and gauge-invariance. The Beli-
fante decomposition splits the angular momen-
tum of the nucleon Jn as two contributions from
the angular momentum of the quarks and gluons:
Jn = Jq

Bel + Jg
Bel. Both terms are gauge-invariant

thus observable/measurable, but give no further
understanding of the contributions of the quarks
and gluons spins and OAM. The Ji decomposi-
tion provides a further split (up to an exact term)
of the quarks contribution into spin and OAM:
Jn = Sq

Ji +Lq
Ji +Jg

Ji. Each term is gauge-invariant

but gluons spin and OAM are still not disentan-
gled. The Jaffe-Monohar decomposition improves
on the latter by splitting the gluons contribution:
Jn = Sq

JM + Lq
JM + Sg

JM + Lg
JM. Nevertheless here

only Sq
JM is gauge-invariant. Up to this point it

seemed there was a conflict between a clear par-
tonic interpretation of the contributions and their
gauge-invariance.

A few years ago Chen & al. [6; 7] proposed a
new decomposition based on the ansatz that the
gauge potential can be split into pure gauge and
physical parts: Jn = Sq

Chen+Lq
Chen+Sg

Chen+Lg
Chen.

Each piece appears now to be gauge-invariant so
that the decomposition seems to finally give satis-
faction. However the non-manifest Lorentz covari-
ance of the approach raised questions. Several au-
thors addressed this issue. Wakamatsu [8] devel-
oped a manifestly Lorentz covariant version of the
Chen & al. approach. Then Lorcé [3] attempted
a geometrical interpretation and further critically
discussed the issue of Lorentz covariance. More-
over he identified, following Stoilov [9], a problem
of non-uniqueness (in the splitting of the gauge
potential) referred to as a “Stueckelberg symme-
try”. See also [5; 10–12].

Here we propose a genuine differential geomet-
ric basis to the Chen & al. ansatz and highlight
its relation to the “dressing field method” to con-
struct gauge-invariants presented in [1]. In do-
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ing so we deem that we circumvent the discussion
about Lorentz covariance, clarify the status of the
so-called Stueckelberg symmetry and prevent pos-
sible misconceptions. The paper is organized as
follows. In section 1 we recall the basics of the
bundle geometry underlying gauge theories. In
section 2 we give the simplest version of the dress-
ing field method and stress important interpretive
points. In section 3 we propose a differential geo-
metric formulation of the Chen & al. ansatz and
apply the dressing field method. Both the global
and local constructions are given so as to keep in
touch with the pre-existing literature. The crucial
question of the arbitrariness on the choice of the
dressing field is addressed. In section 4 we gather
our comments and then conclude.

1 The geometry of gauge

theories

The geometry of fibered spaces is the natural
framework of gauge theories (see e.g [13–16] for
pedagogical introductions). One starts with a
principal bundle P(M,H) over space-time M
with structure group H. A choice of connection
1-form ω ∈ Λ1(P, h) is needed to define horizon-
tality on P. It satisfies,

• ωp : VpP → h is an isomorphism, VpP being
the vertical subspace of the tangent space
TpP at p ∈ P.

• R∗
hω = Adh−1 ω, where Rh is the right-

action of the group. The connection is said
pseudo-tensorial of type (Ad, h).

The horizontal subspace complementary to VpP
in TpP is defined by HpP = kerωp. The associ-
ated curvature 2-form Ω ∈ Λ2(P, h) is given by
the Cartan structure equation:

Ω = dω + 1
2
[ω, ω] = dω + ω2,

where ω2 = ω∧ω is the exterior product of forms,
and the last equality holds when ω is matrix-
valued. The curvature satisfies R∗

hΩ = Adh−1 Ω,
and since it is horizontal (i.e it vanishes on V P)

it is said tensorial of type (Ad, h). Given a rep-
resentation (ρ, V ) of H, an equivariant map Ψ :
P → V satisfies R∗

hΨ = ρ(h−1)Ψ. Since a map
Ψ ∈ C∞(P) ≃ Λ0(P) is trivially horizontal, it is
a tensorial 0-form of type (ρ, V ). The covariant
derivative of a tensorial r-form β of type (ρ, V )
w.r.t ω is given by, Dωβ := dβ + ρ∗(ω) ∧ β. It
is a r + 1-tensorial form of type (ρ, V ). And
(Dω)2β = ρ∗(Ω) ∧ β.

Given an open set U ⊂ M and a local sec-
tion σ : U → P, one can pull-back the above
defined forms on M. The local connection 1-form
A = σ∗ω ∈ Λ1(U , h) describes the gauge potential.
The local curvature 2-form F = σ∗Ω ∈ Λ2(U , h)
describes the field strength of the potential. Lo-
cally the structure equation reads,

F = dA+ 1
2
[A,A] = dA+A2.

Matter fields are of the form ψ = σ∗Ψ, and their
covariant derivatives are DAψ = dψ + ρ∗(A)ψ =
σ∗DωΨ.

The gauge group of the principal bundle P is,

H =
{
γ̄ : P → H | R∗

hγ̄(p) = h−1γ̄(p)h
}
.

It is isomorphic to the group of vertical automor-
phisms of the principal bundle defined by,

AutV (P) =
{
Φ : P → P | R∗

hΦ(p) = Φ(p)h,

π ◦ Φ(p) = π(p) = x ∈ M
}
,

and whose composition law is (Φ1Φ2)(p) :=
Φ∗

2Φ1(p) = Φ1 ◦ Φ2(p). The isomorphism is given
by Φ(p) = pγ̄(p). The gauge group H acts geo-
metrically on itself by conjugacy action,

R∗
γ̄2
γ̄1 =: γ̄

γ̄
2

1 = γ̄−1
2 γ̄1γ̄2, γ̄1, γ̄2 ∈ H, (1)

and its action on global objects is

ωγ̄ = γ̄−1ωγ̄ + γ̄−1dγ̄, Ωγ̄ = γ̄−1Ωγ̄,
(2)

Ψγ̄ = ρ(γ̄−1)Ψ, (DωΨ)γ̄ = ρ(γ̄−1)DωΨ.

These are active gauge transformations.∗ The lo-
cal version of the active gauge transformations
reads,

Aγ = γ−1Aγ + γ−1dγ, F γ = γ−1Fγ,
(3)

ψγ = ρ(γ−1)ψ, (DAψ)γ = ρ(γ−1)DAψ,

∗The passive gauge transformations simply reflect another choice of local section. Given another open set U
′

⊂ M

with local trivializing section σ′ : U
′

→ P, such that on U
′
∩ U on has σ′ = σh, with h : U

′
∩ U → H . One finds that the

pull-backs on each open set are related by A′ = h−1Ah+ h−1dh, F ′ = h−1Fh, ψ′ = ρ(h−1)ψ and DA
′

ψ′ = ρ(h−1)DAψ.
This covers the case U

′ = U . Active and passive gauge transformations are formally similar. But notice that passive
gauge transformations relate two local descriptions of the same global objects, while active gauge transformations relate
different global objects.
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where γ = σ∗γ̄ : U → H belongs to the local
gauge group Hloc(U) over U .

We denote by Aloc(U) the affine space of local
connections on U , on which the local gauge group
Hloc(U) acts.

A gauge theory is specified by a Lagrangian
form L(A,ψ) which is required to be gauge-
invariant: Lγ = L. Actually since the action is
S =

∫
M L, the quasi-invariance of the Lagrangian

form, Lγ = L+ da, (i.e invariance up to a d-exact
term), is enough to preserve the equations of mo-
tion given suitable boundary conditions, or if one
works on a manifold M without boundary.

Let us stress the fact that in gauge field theo-
ries, any field is defined in a space on which acts
the gauge group H of the theory (this action can
be trivial). In other words, a field is more than a
“map between spaces”, since the action of H has
to be defined also. In this paper, all the actions
of H will be induced by the geometrical action
defined by pull-back of objects.

2 The dressing field method

The dressing field method [1] is a systematic way
to reduce gauge symmetries. In its simplest ver-
sion, it relies on the identification, within the the-
ory, of a field defined as follows.

Definition 1. A dressing field is a map ū : P →
H with equivariance property R∗

hū = h−1ū and
on which the action of the gauge group H is thus

ūγ̄ = γ̄−1ū. (4)

Given such a field ū, one can define the follow-
ing projectable composite fields (i.e horizontal and
gauge-invariant),

ω̂ := ū−1ωū+ ū−1dū, Ω̂ := ū−1Ωū,
(5)

Ψ̂ := ρ(ū−1)Ψ, D̂Ψ̂ := ρ(ū−1)DωΨ.

The proof of the gauge invariance is straightfor-
ward. It is also easy to show that

Ω̂ = dω̂ + 1
2
[ω̂, ω̂] = dω̂ + ω̂2.

This is the “Main Lemma” at the heart of the
method presented in [1].

Given a trivializing section σ : U → P, we
have the local dressing field, u = σ∗ū : U → H.
The local gauge group Hloc(U) acts as,

uγ = γ−1u. (6)

The pull-backs of (5) give the gauge-invariant
composite fields,

Â := u−1Au+ u−1du, F̂ := u−1Fu,
(7)

ψ̂ := ρ(u−1)ψ, D̂ψ̂ := ρ(u−1)DAψ.

These are known in the literature as generalized
Dirac variables [5; 17–19]. Indeed Dirac [20; 21]
pioneered the idea of working with invariant vari-
ables in QED proposing an explicit (non-local)
realization of (7) in the abelian case H = U(1).
Thus the dressing field method, in its simplest ver-
sion, is the geometrical foundation of the notion
of Dirac variables.

Notice that (7) are invariant under both active
and passive gauge transformations. This means
e.g that if one has Â′ on U ′ and another has Â
on U , the two local descriptions agree on U ′ ∩ U ,
Â′ = Â. In other words Â is globally defined on
M. This is what it means for ω̂ on P to be pro-
jectable: its projection Â on M is globally defined:
π∗Â = ω̂. The same reasoning holds for F̂ , ψ̂ and
D̂ψ̂ or any dressed field.

Let us stress that despite formal similarity (5)
are not active gauge transformations (2). This is
clear from the fact that owing to its transforma-
tion law (4), different from (1), the dressing field
does not belong to the gauge group, ū /∈ H. It is
even more clear from the fact that e.g ω̂ is not in
the gauge orbit of ω. Indeed ω̂ is projectable, i.e
is horizontal and gauge-invariant, so that it is not
even a connection on P.

In the same way (7) are not local description
of the active gauge transformations (3) because
u /∈ Hloc(U). In particular Â /∈ Aloc(U) (see for
instance Prop. 3) and the other gauge-invariant
composite fields in (7) are not in the gauge or-
bits of F , ψ and Dψ respectively. This highlights
the fact that the dressing field method is distinct
from a gauge-fixing procedure. Indeed the latter
consists in selecting a single representative in the
gauge orbit of the gauge fields. Nonetheless the
dressing field method could be a perfect substi-
tute to the gauge-fixing.

If one can perform a change of field variables
as (7) in the theory, since the dressing if H-
valued and due to the Hloc(U)-invariance of the
Lagrangian, one has L(A,ψ) = L(Â, ψ̂). Thus,
one ends up with a Lagrangian form written in
terms of gauge-invariant variables so that any
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equation or quantity derived from it will be au-
tomatically gauge-invariant as well. One can an-
ticipate the benefit of this fact for the question of
the nucleon spin decomposition.

Notice that even if one could find a gauge
transformation γ ∈ Hloc(U) such that γ = u, so
that Aγ = Â and ψγ = ψ̂, these are obviously not
gauge-invariant equalities. Nevertheless it is true
that L(Aγ , ψγ) = L(A,ψ) = L(Â, ψ̂). This means
that it may happen that a Lagrangian obtained
through the dressing field method is mistaken for
a gauge-fixed Lagrangian. We argued in [1; 22]
that it is for example the case of the Lagrangian
of the electroweak sector of the Standard Model
in the so-called unitary gauge. The confusion is in
this case especially prejudicial since the dressing
field method provides sensible interpretive shifts
w.r.t the standard viewpoint.

3 Geometric grounds of the

Chen & al. ansatz

The geometric ansatz

The Chen & al. approach assumes the ansatz
that the gauge potential splits as a “pure-gauge”
and “physical” part: A = Apure + Aphys. A
splitting implicitly defined by the requirement
that Fpure = 0 and by the gauge transforma-
tions Aγ

pure = γ−1Apureγ + γ−1dγ and Aγ
phys =

γ−1Aphysγ. For the construction to make sense
globally, we have also to assume that this pure
gauge connection is globally defined on the base
manifold M. Writing Apure = UpuredU

−1
pure, then

Upure has been interpreted in [3] as a “privileged
basis in the internal space”, i.e a privileged point
in the gauge orbit of any field. We will discuss
this interpretation in the next section.

At the level of the principal fiber bundle P,
the Chen & al. ansatz states the existence of
a (global) connection ω̊ with vanishing curvature
Ω̊ = 0. Let us recall the following standard result
of fiber bundle geometry:

Theorem 2. [23, Corollary 9.2]
Let P(M,H) be a principal fiber bundle over a

paracompact and simply connected manifold M.
Let ω̊ be a connection on P with vanishing cur-
vature Ω̊ = 0. Then, there is a isomorphism of
H-principal fiber bundles φ : P → M × H such
that ω̊ = φ∗π∗

HωH , where πH : M × H → H is

the projection on the second factor, and ωH is the
Maurer-Cartan form on H.

From now on, we will assume that M is para-
compact and simply connected. The isomorphism
φ : P → M ×H of the theorem can be written as

φ(p) =
(
π(p), ū−1(p)

)
, (8)

where the map ū : P → H displays the equiv-
ariance property R∗

hū = h−1ū in order to get
φ(ph) = φ(p)h. Then a direct computation shows
that ω̊ = ūdū−1. The existence of ū is related to
the existence of ω̊ (equivalently, of Apure). Let us
now look at the action of the gauge group.

A gauge transformation ω̊ 7→ ω̊γ̄ is induced
by an automorphism Φ ∈ AutV (P) and, with the
notation

φγ̄ = Φ∗φ = φ ◦ Φ, (9)

one can check that ω̊γ̄ = φγ̄∗
π∗

HωH . In other
words, the relation ω̊ = φ∗π∗

HωH is H-covariant
for the respective natural geometrical actions of H
on ω̊ and on φ. This leads naturally to define the
(geometrical) right action of H on ū by φγ̄(p) =(
π(p), (ūγ̄)−1(p)

)
, and one gets ūγ̄ = γ̄−1ū.

To sum-up, the Chen & al. ansatz is equiva-
lent to the following geometrical assumption, see
Definition 1:

There is a dressing field ū : P → H.

We have already shown that the Chen & al.
ansatz implies the existence of the dressing field
ū. Let us deduce the Chen & al. ansatz from
the dressing field. Following [1, Proposition 2],
the existence of ū implies that the principal fiber
bundle P is trivial, and (8) defines an explicit iso-
morphism. Let ω̊ = ūdū−1. Then for any global
section σ : M → P (take σ(x) = φ−1(x, e) for
instance), Apure = σ∗ω̊ satisfies the requirements
of the Chen & al. ansatz.

Any connection ω on P can then be decom-
posed as ω = ω̊ + α where α is a (Ad, h)-tensorial
1-form. For any γ̄ ∈ H, one then has ωγ̄ = ω̊γ̄ +αγ̄

with ω̊γ̄ = ūγ̄d(ūγ̄)−1 = γ̄−1ω̊γ̄ + γ̄−1dγ̄ and
αγ̄ = γ̄−1αγ̄. Then the curvature of ω is

Ω = dω + ω2 = dω̊ + dα+ ω̊2 + ω̊α+ αω̊ + α2,

= dα+ [̊ω,α] + α2,

= Dω̊α+ α2,

4



and the covariant derivative Dω is

DωΨ = dΨ + ρ∗(ω̊ + α)Ψ,

= dΨ + ρ∗(ω̊)Ψ + ρ∗(α)Ψ,

= Dω̊Ψ + ρ∗(α)Ψ.

Defining on M the fields A := σ∗ω, Apure := σ∗ω̊,
Aphys := σ∗α, F := σ∗Ω and DAψ := σ∗(DωΨ),
the above expressions pull-back as,

A = Apure +Aphys = udu−1 +Aphys, (10)

F = DpureAphys +A2
phys

= dAphys + [udu−1, Aphys] + A2
phys,

DAψ = Dpureψ + ρ∗(Aphys)ψ,

= dψ + ρ∗(udu−1)ψ + ρ∗(Aphys)ψ,

where Dpure is the (local) covariant derivative as-
sociated to Apure = udu−1. We here use notations
standard in the literature. With γ := σ∗γ̄, the
gauge transformation of the gauge potential is

Aγ = Aγ
pure +Aγ

phys,

= (γ−1Apureγ + γ−1dγ) + γ−1Aphysγ (11)

Equations (10) and (11) reproduce the Chen &
al. ansatz. The Chen & al. decomposition, and
other decompositions it has inspired, for instance
the Wakamatsu decomposition, make wide use of
the objects Apure, Aphys and the operator Dpure

(called “pure-gauge covariant derivative”).

It is often stressed that in a gauge such that
Apure = 0, the Chen & al. decomposition reduces
to the Jaffe-Monohar decomposition, so that the
former is seen as a “gauge-invariant extension” of
the latter. Since the Chen & al. ansatz is equiva-
lent to the existence of a dressing field ū, instead
of merely fixing a gauge, one can suitably apply
the dressing field method and define the (H-gauge
invariant) composite fields:

ω̂ := ū−1ωū+ ū−1dū

= ū−1(ūdū−1 + α)ū+ ū−1dū

= ū−1αū =: α̂,

Ω̂ := ū−1Ωū,

Ψ̂ := ρ(ū−1)Ψ,

D̂Ψ̂ := ρ(ū−1)DωΨ = dΨ̂ + ρ∗(α̂)Ψ̂.

As fields on M, let us define

Â := σ∗ω̂ = σ∗α̂ = u−1Aphysu =: Âphys,

F̂ := σ∗Ω̂ = dÂphys + Â2
phys = u−1Fu,

ψ̂ := σ∗Ψ̂ = ρ(u−1)ψ,

D̂ψ̂ = dψ̂ + ρ∗(Âphys)ψ̂.

Notice that the composite field associated to ω̊
vanishes, so that Âpure = 0, as well as Âγ

pure = 0
for any γ = σ∗γ̄.

Now we can perform the change of variables in
the Lagrangian form:

L(A,ψ) = 1
2

Tr(F ∧ ∗F ) + 〈ψ,Dψ〉,

= 1
2

Tr(F̂ ∧ ∗F̂ ) + 〈ψ̂, D̂ψ̂〉

=: L(Âphys, ψ̂).

Here ∗ is the Hodge star operator and 〈 , 〉 is the
inner product in the representation space V .

In the case of QCD, V = C
3 and 〈ψ,ψ〉 = ψ†ψ.

Starting with the Lagrangian LQCD(Âphys, ψ̂) it is
now possible to write canonically a decomposition
of the nucleon spin in every respect similar to the
Jaffe-Monohar one. This decomposition thus dis-
plays a clear partonic interpretation and is gauge-
invariant.

Arbitrariness in the choice

of the dressing field

Let IsoV (P,M ×H) be the space of vertical prin-
cipal fiber bundles isomorphisms P → M × H.
The group AutV (P) acts naturally on this space
by (9). This action is transitive: for any φ1, φ2 ∈
IsoV (P,M ×H), Φ = φ−1

2 ◦φ1 ∈ AutV (P) relates
φ1 and φ2 by (9).

Denote AutV (M × H) the group of vertical
automorphisms of the trivial fiber bundle M×H.
It acts on the right on IsoV (P,M × H) by φ 7→
Ξ−1 ◦ φ for any Ξ ∈ AutV (M ×H) considered as
a map Ξ : M ×H → M ×H. This action is also
transitive.

The gauge group of M ×H is thus,

H0 =
{
χ̄ :M×H→H|R∗

hχ̄(x, h′)=h−1χ̄(x, h′)h
}

and its isomorphism with AutV (M ×H) is given
as usual by, Ξ(x, h) = (x, hχ̄(x, h)).

Another description of Ξ is given by a map
c̄ : M×H → H defined by Ξ(x, h) = (x, c̄(x, h)h).
This map satisfies c̄(x, hh′) = c̄(x, h) for any
x ∈ M and h, h′ ∈ H so that it depends only
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on x. We define c : M → H by c(x) := c̄(x, e).
The induced action of Ξ on ū, written in terms of
c, is given by ūc(p) = ū(p) c ◦ π(p) for any p ∈ P.

The choice of Apure in the original Chen & al.
ansatz is related to the choice of ū in our geomet-
rical assumption by Apure = σ∗ω̊ = σ∗ūdū−1 =
udu−1 for u = σ∗ū. The dressing field ū is
completely characterized by its associated ele-
ment φ ∈ IsoV (P,M × H) given by (8), so that
the choice of Apure is related to the choice of
a (global) trivialization φ of P. This choice is
not unique, and, given a fixed reference element
φ0 ∈ IsoV (P,M × H), any other element can be
obtained by the action of H or the action of H0

on φ0.
By construction, the composite field ω̂ is H-

invariant, but it is not H0-invariant. For any
c ∈ H0, one has

ω̂c = ū−1
c ωūc + ū−1

c dūc (12)

= c−1ū−1ωūc+ c−1(ū−1dū)c+ c−1dc

= c−1ω̂c+ c−1dc,

Ω̂c = c−1Ω̂c,

Ψ̂c = ρ(c−1)Ψ̂, and D̂cΨ̂c = ρ(c−1)D̂Ψ̂.

On the other hand, one has

ω̊c = ūcdū
−1
c = ω̊ + ū(cdc−1)ū−1, (13)

and since ω is a connection on P, it is invariant
under H0, ωc = ω, so that

αc = α− ū(cdc−1)ū−1. (14)

Let φ ∈ IsoV (P,M × H) and ū : P → H
its associated map, which is a dressing field. Let
σe : M → M ×H be the section σe(x) := (x, e).

Proposition 3. As a 1-form on P, one has

ω̂ = (σe ◦ π)∗φ−1∗
ω.

In other words, ω̂ is related by (σe ◦π)∗ to the con-
nection 1-form ω0 := φ−1∗

ω on the trivial bundle
M ×H.

Let A0 := σ∗
eω0. Then Â = A0 on M.

Proof. Let fū : P → P be defined by fū(p) :=
pū(p). Then one has

φ(fū(p)) = φ(pū(p)) = (π(p), ū(pū(p))−1)

= (π(p), ū(p)−1ū(p)) = (π(p), e)

= σe ◦ π(p),

which implies fū = φ−1 ◦ σe ◦ π. It is shown in [1,
p. 8] that ω̂ = f∗

ūω, so that ω̂ = (φ−1 ◦σe ◦π)∗ω =
(σe ◦ π)∗φ−1∗

ω.

We have Â = σ∗ω̂ = σ∗π∗σ∗
eω0 = (π ◦σ)∗A0 =

A0 since π ◦ σ = idM.

Since ω̂ = α̂, Â depends only on the tensorial
part of ω. This is supported by the fact that it
can be shown that (φ−1 ◦ σe)∗ω̊ = 0 so that the
pure part of the connection disappears completely
because d(ū−1 ◦ φ−1 ◦ σe) = d(x 7→ e) = 0.

In this proof, we have shown that the following
diagram is commutative:

(P, ω̂)
fū

//

σe◦π
&&◆

◆◆
◆◆

◆◆
◆◆

◆
(P, ω)

φ
xx♣♣
♣♣
♣♣
♣♣
♣♣

(M ×H,ω0)

The action (12) of H0 on ω̂ is nothing else that
the (natural) action of H0 on ω0 (as a connection
1-form on M × H). Notice also that the equal-
ity Â = A0 shows that Â /∈ Aloc(M), and that Â
belongs to the affine space of local connections on
M ×H. This shows a twofold feature of the field
Â: It is Hloc(U)-invariant but a H0-connection.
The triviality of P gives in some extent a “swing
effect” and morally Â remains a gauge field.

From this result, we conclude that the arbi-
trariness in the choice of the dressing field ū (or
in the choice of Apure in the original Chen & al.
ansatz) is related to the transitive action of the
gauge group H0 of M×H, which is isomorphic to
H.† This arbitrariness has been interpreted as a
“Stueckelberg symmetry” in [3; 9], see discussion
below.

Another point of view is to look at the ac-
tion of c on Â = A0 as the transformation in-
duced by a change of local trivialization of M×H,
from the (global) section σe to the new section
x 7→ (x, c(x)).

4 Discussion

In this section we stress how the present work
contributes to the clarification of some questions
within the literature seeded by the Chen & al. ap-
proach to the nucleon spin decomposition.

†Given a fixed element φ0 ∈ IsoV (P ,M×H), the map φ̃0 : H → H0 defined by φ̃0(Φ) := φ−1

0
◦Φ◦φ0 is an isomorphism.
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The Lorentz covariance of the initial Chen &
al. ansatz has been early questioned. Subse-
quently much energy has been deployed in order to
settle the question, and now the consensus seems
to agree on the Lorentz covariance of the approach
(see [3; 5; 8]). Here we have provided a sound dif-
ferential geometric basis to Chen & al. ansatz, the
object involved are thus differential forms which
are intrinsically defined. This secures general rel-
ativistic covariance. Indeed the base manifold M
on which we localized our construction is an ar-
bitrary manifold, not necessarily reduced to the
Minkowski space. In our view this is an improve-
ment that easily circumvent much of the concerns
and discussions around the question of the Lorentz
covariance.

We have shown that at a global level, the
Chen & al. anzats amounts to assume tacitly
the triviality of the underlying principle bundle
P. This in turn is equivalent to the existence of a
dressing field as defined in [1]. The dressing field
method reproduces transparently the construction
first proposed in the geometric section of [3]. How-
ever in the literature the status of the dressing
field u (often denoted Upure) is not always clear.
On the one hand we find in [5; 11] caveats as to
not mistake expressions like (7) for gauge trans-
formations. On the other hand it is often said
[3; 5; 10; 11] that u specifies a “privileged basis”
in the internal space (admittedly, in our frame-
work u defines at most a “privileged trivialization”
of P). As a matter of fact in [3; 10] expressions
like (7) are referred to as fields in the “natural
gauge/basis”. This could be understood as sug-
gesting that u is a gauge transformation sending
the gauge fields into privileged points of their re-
spective gauge orbits.

Here we clarify this point: u being a dress-
ing field it does not belong to the gauge group
Hloc(U), so (7) are not gauge transformations and
none of these composite fields belong to the gauge
orbits of the initial gauge fields. Recall e.g that Â
is not even a connection, Â /∈ Aloc(U).

The most delicate point to discuss is the arbi-
trariness in the choice of the dressing field which
yields transformations of the initial gauge vari-
ables (13)-(14) and of the dressed variables (12).
The local version of these equations are usually
referred to as a “Stueckelberg symmetry” (see Ap-
pendix). Actually we’ve shown that this arbitrari-
ness is controlled by the gauge group H0 of the

trivial bundle M ×H, which is isomorphic to the
initial gauge group H. So the situation after the
dressing operation mirrors the situation before it.
Indeed, before dressing, Hloc(U) acts on the set of
original variables by (3), but H0,loc(U) acts triv-
ially. And after dressing, Hloc(U) acts trivially on
the set of dressed variables, but H0,loc(U) acts by
(the local version of) (12) which mimics (3). See
table 1.

Hloc(U) H0,loc(U)

Aγ = γ−1Aγ + γ−1dγ Ac = A
F γ = γ−1Fγ Fc = F
ψγ = ρ(γ−1)ψ ψc = ψ

(Dψ)γ = ρ(γ−1)Dψ Dψc = Dψ

Âγ = Â Âc = c−1Âc+ c−1dc

F̂ γ = F̂ F̂c = c−1Fc

ψ̂γ = ψ̂ ψ̂c = ρ(c−1)ψ̂

(D̂ψ̂)γ = D̂ψ̂ D̂ψ̂c = ρ(c−1)D̂ψ̂

Table 1: Action of the gauge groups Hloc(U) and
H0,loc(U) on the local fields before and after dress-
ing.

Of course the Lagrangian after dressing,
L(Â, ψ̂), is invariant under H0,loc(U), but the
gauge-invariant Jaffe-Monohar decomposition of
the nucleon spin obtained from it, is not. So one
faces the same problem one had with the original
gauge symmetry Hloc(U).

To be clear, what is usually referred to as a
“Stueckelberg symmetry” is actually the original
gauge symmetry in disguise. Then, nothing is re-
ally gained by performing the Chen & al. split,
and/or by applying the dressing field method here.
The seemingly erased gauge symmetry, eventually
reappears.

The reason is actually simple: one cannot hope
to produce something from nothing. With just the
connection ω, i.e the gauge potential A, one lacks
the other degrees of freedom necessary to gen-
uinely neutralize the gauge symmetry. In order to
make the dressing field method really effective, we
have observed that the dressing field u should be
“extracted” from an auxiliary field already given
in the whole theory at hand. This was indeed the
case for the examples treated in [1]: in the case
of the electroweak sector of the standard model
u is extracted from the scalar field ϕ; in the case
of General Relativity, u is the vielbein extracted
from the soldering form θ which is a component
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of a Cartan connection. This is also what does
the field B, introduced beside the gauge potential
A, in the Stueckelberg trick (see Appendix). In
these examples the arbitrariness in the choice of
the dressing field is not isomorphic to the gauge
group: either it is an interesting symmetry (the
coordinate changes in the case of gravitation) or it
can be drastically reduced by an additional phys-
ical consideration (in the case of the electroweak
sector of the standard model, see [22]). For the
Stueckelberg trick it is even reduced to nothing.

Concerning the problem of the nucleon spin
decomposition, all this discussion suggests to find
out a natural candidate for an auxiliary field from
which a relevant dressing field ought to be ex-
tracted. This issue is out of the scope of the
present paper.

Conclusion

In this letter we give a reconstruction of the Chen
& al. ansatz using a differential geometric frame-
work which is economic, transparent and secures
general relativistic covariance. In our view this
settles the debate about the Lorentz covariance of
the original Chen & al. approach.

We propose a global geometrical framework for
the Chen & al. ansatz. We show that this ansatz
implies the existence of a dressing field as defined
in [1]. Then, through the dressing field method,
it becomes possible to rewrite the Lagrangian of
the theory with a priori gauge-invariant variables
(see bottom part of Table 1). Accordingly, a Jaffe-
Monohar-type decomposition of the nucleon spin
which is thus seemingly gauge-invariant, is readily
obtained from the new Lagrangian.

However, we clarify the fact that what is usu-
ally referred to as a “Stueckelberg symmetry” is
actually an avatar of the initial gauge symmetry.
Hence nothing is really gained in the original Chen
& al. approach, unless one is able to extract the
dressing field from an auxiliary field providing the
degrees of freedom necessary to genuinely neutral-
ize the gauge symmetry.

Appendix

The terminology “Stueckelberg symmetry” has
been used in [3; 9] to qualify the arbitrariness in
the splitting of the gauge potential A in the Chen
& al. approach. It stems from a formal analogy

with the Stueckelberg trick which aims at imple-
menting a gauge symmetry where there is none by
introducing a field B with adequate transforma-
tion law. Take the prototype U(1) abelian Stueck-
elberg Lagrangian,

L(A,B) = 1
2
F ∧∗F +m2(A− 1

m
dB)∧∗(A− 1

m
dB).

The gauge transformations of the potential A and
of the Stueckelberg field B are defined by,

Aγ = A− dθ, and Bγ = B −mθ,

so that the variable A′ = A − 1
m
dB is gauge in-

variant. By the way, the abelian case of the above
construction gives Apure = udu−1 = −dχpure,
cdc−1 = −dξ and

Aphys,c = Aphys + dξ, and χpure,c = χpure + ξ,

so that A = Aphys − dχpure is preserved. One is
tempted to formally identify Aphys with A. But
according to the main text, this is misleading since
the former is tensorial and the latter is a gauge
potential. However χpure plays the role of the
Stueckelberg field B.

Actually the transformation for the Stueckel-
berg field B is precisely an abelian version of (6),
so that B is indeed a local dressing field. This
means that A′ and F ′ = F are abelian instances
of (7). Applying the dressing field method on the
Stueckelberg Lagrangian one has

L(A,B) = L(A′) = 1
2
F ′ ∧ ∗F ′ +m2A′ ∧A′.

This Lagrangian written in terms of gauge in-
variant variables describes a theory where the
U(1) gauge symmetry has been completely fac-
torized out. To the extent that a parallel between
the Stueckelberg trick and the Chen & al. ap-
proach can be drawn, it stems from the observa-
tion that both are tightly related to the dressing
field method.

A more detailed discussion between the
Stueckelberg trick and the dressing field method
has been given in [1].
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