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Abstract. In this paper we study the shortfall risk convergence for American options (more

generally for vanilla options). The financial market is provided with a non-traded asset, hence

it is incomplete. The geometric Brownian motions are approximated by binomial trees.

1. Introduction

Though continuous trading is a part of the standard paradigm of modern finance, in practice,

usually, portfolio revisions are done along a discrete–time greed. The links between discrete and

continuous–time models have to be studied and some paradoxes appear. For example, the basic

discrete approximation of a continuous asset price process may not lead to the convergence of

the option price. In [7], the complete multi-assets model driven by geometric Brownian motions

is approximated by binomial trees. In this context, the convergence of the shortfall risk for an

American option is stated.

We consider a three assets model (S0, S1, S2). The bank account S0 is riskless. The risky assets

(S1, S2) are driven by uncorrelated geometric Brownian motions. We assume that the asset S2

is untradable. Then, the market is incomplete. Hedging an American option in this market will

often lead to infinite initial endowment. It is then interesting to look at non perfect hedging and

to compute the expected shortfall risk associated with the initial position.

We approximate the diffusions by piecewise constant processes. That is the markets are not

active on intervals with length tending to zero. These models are in one-to-one correspondence with

discrete-time models driven by binomial trees. Using this approximation, the expected shortfall

risk for the vanilla options converges. This is the main result of the paper, see Theorem 3.1 below.

As in [7], we study the convergence of underlying processes (price processes, equivalent martin-

gale densities, etc.) in a weak sense, mainly the convergence of laws in the Skorohod topology. The

main technical novelty is the convergence of almost optimal strategies for the piecewise constant

models to an admissible strategy for the continuous model, see Lemma 4.12 below. The exten-

sion of the results in [7] in the framework of incomplete markets is a direct consequence of the

convergence of almost optimal strategies.
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The result is stated for markets with only two risky assets to alleviate notations. The general-

ization to models with more traded assets is barely difficult. The paper is organized as follows. In

the next section, notations are detailed. In Section 3, we introduce the framework and Theorem

3.1 gives the main result of this paper. The technical Section 4 states several convergence results,

and in particular the convergence of almost optimal strategies. Finally, in Sections 5 and 6, we use

the results of Section 4 to prove the main result.

2. Notations

We use the following notations:

• D(Rd) is the Skorohod space of the càdlàg functions x : [0, T ] → R
d while C(Rd) denotes

the space of continuous functions taking values in R
d with the uniform norm

||x||T = sup
t≤T

|xt|.

For a survey of the Skorohod topology, weak convergence in the Skorohod space and

corresponding notations we refer to [8].

• For a process H, we write in short

H ·Wt :=

∫ t

0

HudWu.

• For a semi-martingale L, the Doléans-Dade exponential Y (or stochastic exponential) is

the solution of the stochastic equation

Y = 1 + Y− · L.

The process Y is denoted by E(L). For more information about Doléans-Dade exponential,

see Jacod and Shiryaev [8], Section I.4.f.

• For a sequence of non-negative real valued random variables (ξn)n∈N dominated by a non-

negative sequence {bn}n∈N with bn ≤ Kn−a, we write

ξn ≤ O(n−a).

This notation allows to change the sequence {bn} and the constant K from line to

line without further mention. Similarly, C may designate different constants which are

independent of any variable. We use the notation Cm when the constant Cm depends on

a parameter m. The constant Cm may also change from line to line.
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3. Model and main result

Continuous-time model

We consider a three assets financial market. One asset is the numéraire (bank account) while

the two others are risky. Their price processes are (independent) geometric Brownian motions

S = (S1, S2) defined on a filtered probability space (Ω,F ,F = (Ft), P ):

dS1
t /S

1
t = µ1dt+ σ1dW

1
t , (1)

dS2
t /S

2
t = σ2dW

2
t , (2)

where W = (W 1,W 2) is a standard 2-dimensional Brownian motion and the σ-algebra Ft =

σ{Ws, s ≤ t}. We assume S2 is untradable and, therefore, the market is incomplete. Our aim is

to price an American option with the pay-off function of the form

Yt = F (t, S),

where F : [0, T ] × D(R2) → R+ is continuous (in the product of usual topology on [0, T ] and

the Skorohod topology on D(R2) ), non-anticipating (F (t, x) = F (t, y) if xs = ys for s ≤ t), and

satisfies the linear growth condition:

• there exists a constant C ≥ 0,

sup
t≤T

F (t, x) ≤ C||x||T , ∀x ∈ D(R2). (3)

Note that this pay-off function characterizes a more general class of options, namely vanilla options.

A self-financing strategy is an adapted càdlàg process π such that the portfolio value is given

by

V π,x := x+ π− · S1,

where x is the initial capital; the strategy π is admissible if V π,x ≥ 0; the set of such strategies is

denoted by Ax.

Let T the set of all stopping times τ ≤ T . We define shortfall risk for an admissible strategy π

by

R(π, x) := sup
τ∈T

E(Yτ − V π,x
τ )+,

and the shortfall risk for an initial capital x:

R(x) := inf
π∈Ax

R(π, x).

Approximating models

In this paragraph, we consider continuous-time models which approximate the financial market

by means of piecewise constant price processes.
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For any n, let a double indexed sequence of i.i.d. random variables (ξik)
i=1,2
k≤n where ξik takes

values in {−1, 1} and P (ξik = 1) = 1/2. Set

tnk = kT/n.

To alleviate notations, we write tk = tnk when there is no ambiguity. We set the filtration Fn = (Fn
t )

with Fn
t = σ{(ξ1k, ξ2k), tnk ≤ t} and a piecewise constant Fn-adapted process Sn = (S1n, S2n),

S1n
t =

k
∏

m=1

(

1 + µ1
T

n
+

√

T

n
σ1ξ

1
m

)

, tk ≤ t < tk+1, (4)

S2n
t =

k
∏

m=1

(

1 +

√

T

n
σ2ξ

2
m

)

, tk ≤ t < tk+1. (5)

In this model, the portfolio is revised only at times tk, hence the pay-off process is

Y n
t = F (tk, S

n), tk ≤ t < tk+1,

and the self-financing portfolios with initial capital x

V πn,x := x+ πn
− · S1n,

where

πn
t =

n−1
∑

i=0

πn
i I[ti,ti+1[(t), πn

i is Fti -measurable.

Let

An
x =

{

πn : V πn,x ≥ 0
}

.

We define the n-step shortfall risks by analogy with the previous section,

Rn(πn, x) = sup
τ∈T n

E(Y n
τ − V πn,x

τ )+,

Rn(x) = inf
πn∈An

x

Rn(πn, x),

where T n is the set of all stopping times with respect to Fn.

The main result of the note is the following:

Theorem 3.1. For any x > 0,

Rn(x) → R(x), n→ ∞.

The claim follows from the inequalities lim inf Rn(x) ≥ R(x) and lim supRn(x) ≤ R(x). To

establish the first one, we extract a convergent subsequence of almost optimal strategies for Rn(x)

and show that the limit is an admissible strategy for the initial model. We obtain the last inequality

by approximating an almost optimal strategy for the initial model by n-step admissible strategies.
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We shall develop several convergence results, on one hand, intrinsic to the traded asset price

process (convergence of martingale measure), and on the other hand, related to the filtration

(convergence of strategies).

4. Preliminary results

The approximating models give the convergence of laws L (Sn) → L (S) on (D(R2), ‖ · ‖T ), see
Lemma 4.5 below. However, this result does not lead neither to option prices convergence nor to

optimal strategy convergence. This section aims at studying more involved types of convergence.

We investigate the law convergence of càdlàg processes on the Skorohod space. We first recall

the following results from [8]. Suppose that the limit law of a convergent sequence is the law

of a continuous process. Then, the usual Skorohod distance coincides with the uniform distance

on the Skorohod space. Moreover, if the sequence is vector–valued, the convergence on the space

(D(Rd), ‖·‖T ) (d is the dimension of the vector) is equivalent to the convergence of each coordinate

separately on the space (D(R), ‖·‖T ). To this end, we shall use this result without further mention.

Equivalent martingale measure

We now focus on the sequence of unique equivalent martingale measures given by the complete

two assets model where the risky asset is driven by Sn1. We denote by Zn the density process of

these equivalent martingale measures. One can verify that

Zn
T =

n
∏

k=1

(1 + ∆qntk) = E(qn)

where

∆qntk = −µ
1

σ1

√

T

n
ξ1k.

For the continuous-time model, we consider the following equivalent martingale measure. Set

dq = −µ
1

σ1
dW 1.

The martingale Z = E(q) is the density of the unique equivalent martingale measure of the so-called

Black-Scholes model with one risky asset driven by S1. Note that these martingales correspond

to the densities of the minimal martingale measures in the incomplete markets. It can be checked

with the explicit formulae given by Ansel and Stricker in [3]. The following lemma states the

convergence in law of Zn.

Lemma 4.1. We have the convergence

L (Zn) → L (Z)

on (D(R), ‖ · ‖T ).
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Proof. The Donsker theorem, see the discussion on the uniform topology in D(R) in [4], implies

that

L

(

·
∑

tk=0

√

T

n
ξk

)

→ L (W 1).

By virtue of Cor 6.VI.29 in [8], we have convergence of the quadratic variation processes, namely

L

(

·
∑

tk=0

√

T

n
ξk,

[

·
∑

tk=0

√

T

n
ξk

])

→ L (W 1, [W 1]).

Set Φ(x) = ln(1 + x)− x+ x2

2 . Note that

Φ(x) = O(x3), x→ 0.

Since ‖∆qn‖T = O(n−1/2), we get the asymptotic
∑

Φ(∆qn) = O(n−1/2).

Then we deduce the convergence of the laws

L (qn, [qn],
∑

Φ(∆qn)) → L (q, [q], 0).

We refer to the following Lemma 4.2 to ensure the convergence of stochastic exponential. The

proof is achieved. �

Lemma 4.2. Let Xn, X be scalar adapted processes where X is continuous and such that

L

(

Xn, [Xn],
∑

Φ(∆Xn)
)

→ L (X, [X], 0) ,

with Φ(x) = ln(1 + x) − x + x2

2 . Then we have the following convergence in law of stochastic

exponentials:

L (E(Xn)) → L (E(X)).

Proof. The claim follows from

E(X) = G
(

X, [X],
∑

Φ(∆X)
)

,

with

G(x, y, z) = exp
(

x− y

2
+ z
)

.

Since G is continuous on (D(R3), ‖.‖T ), we get the result. �

The next lemma provides explicit formulae for the consistent price processes ZnSn1 and ZS1.

Lemma 4.3. The martingale ZS1 is an Itô process. There exists a positive sequence σ̃n1 ∈ R+

such that ZnSn1 = E(Xn1) where

∆Xn1
tk

= σ̃n1

√

T

n
ξ1k.
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Analogically, there exists σ̃1 > 0 such that ZS1 = E(X1) where

dX1 = σ̃1dW 1.

Moreover σ̃n1 → σ̃1.

Proof. Note that

ln(ZnSn1)tk =

k
∑

l=0

ln

((

1 + µ1T

n
+ σ1

√

T

n
ξ1l

)(

1− µ1

σ1

√

T

n
ξ1l

))

.

After a direct computation, we get

ln(ZnSn1)tk =

k
∑

l=0

ln

(

1 + σ1

√

T

n
ξ1l 1−

µ1

σ1

√

T

n
ξ1l − (µ1)2

σ1

T

n

√

T

n
ξ1l

)

.

We obtain ZnSn1 by taking the exponential. We identify

σ̃n1 = σ1 − µ1

σ1
− (µ1)2

σ1

T

n
.

Let us compute ZS. We have

ZtS
1
t = exp

(

σ1W 1
t +

(

µ1 − 1

2
(σ1)2

)

t− µ1

σ1
W 1

t +
1

2

(

µ1

σ1

)2

t

)

= exp

(

(

σ1 − µ1

σ1

)

W 1
t − 1

2

(

σ1 − µ1

σ1

)2

t

)

.

With σ̃1 = σ1 − µ1/σ1, we get the result. �

Remark 4.4. The processes Xn and X are the so-called stochastic logarithm of ZnSn1 and ZS1.

Moreover, the piecewise constant processes Xn1 jumps only at dates tk, k ≥ 1. Namely, we have:

∆Xn1
tk

= (ZnSn1)−1
tk−1

∆(ZnSn1)tk = (ZnSn1)−1
tk−1

((ZnSn1)tk − (ZnSn1)tk−1
).

We get also

X1 := ((ZS1)−)
−1 · ZS1.

Finally, we state the joint convergence of the asset price processes together with the consistent

price systems.

Lemma 4.5. The following convergence holds

L (Sn, Zn, ZnSn1) → L (S,Z, ZS1).

Proof. We use the same type of arguments than for the proof of Lemma 4.1. The stochastic

logarithms are given by formulae (1), (2), (4) and (5). The proof is then straightforward by means

of Lemma 4.3. �
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UT condition

The uniform tightness condition, UT condition in short, mainly stands to ensure convergence of

stochastic integrals. Usually, this condition is defined for processes with an infinite time horizon.

We can verify that our definition is consistent with the original one.

Let Hn be the set of all simple Fn-predictable processes bounded by 1, i.e. of the form

Hn
s = hn0 +

k
∑

i=0

hni I]si,si+1](s)

where hni is Fn
si -measurable random variable with |hni | ≤ 1 and {s0, · · · , sk} is a partition of

[0, T ]. We say that Sn satisfies UT condition if the set {Hn · Sn
T , H

n ∈ Hn, n ∈ N} is bounded in

probability.

Lemma 4.6. The sequences of processes (Sn1), (Sn2) and (ZnSn1) verify UT condition.

Proof. We shall prove the result for the sequence (Sn1). With analogous argument, we can extend

the result to (Sn2) and (ZnSn2), writing σ2 or σ̃1 instead of σ1 and µ1 = 0. Consider the following

canonical decompositions

S1n =M1n +B1n,

where the processes Bn1 and Mn1 are piecewise constant with the jumps

∆M1n
tk

=

√

T

n
σ1ξ

1
kS

1n
tk−1

, ∆〈M1n〉tk =
T

n
σ2
1(S

1n
tk−1

)2,

∆B1n
tk

=
T

n
µ1S

1n
tk−1

.

Let Hn ∈ Hn. Then

||Hn ·B1n||T ≤
n
∑

k=0

| △B1n
tk
| ≤ µ1T ||S1n||T .

The sequence (S1n) is tight since the sequence of law is convergent. Hence (||Hn · B1n||T ) is

bounded in probability. Let us show that (Hn ·M1n
t ) is bounded in probability for any t ∈ [0, T ].

By the Chebyshev inequality and Ito isometry, we have for any K > 0

P (|Hn ·M1n
t | > K) ≤ 1

K2
E|Hn ·M1n|2t ≤ 1

K2
E〈M1n〉t ≤

n
∑

k=0

1

K2

σ2
1T

n
E(S1n

tk
)2.

It remains to observe that

E(S1n
tk

)2 =

k
∏

m=1

E

(

1 + µ1
T

n
+

√

T

n
σ1ξ

1
m

)2

=
k
∏

m=1

(

1 +
T

n

(

µ2
1

T

n
+ σ2

1 + 2µ1

))

≤ C.

The result follows. �
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Remark 4.7. Note that this last observation is similar for (S2n). Uniform integrability for the

family (Sn
t )0≤t≤T,n∈N follows. It is also possible to deduce uniform integrability for the sequence of

random variables (||Sn||T )n∈N. Since (Sn) is tight, for any ε > 0, there exists a positive constant

κ such that supn P (||Sn||T > κ) ≤ ε, we have

E||Sn||T I{||Sn||T>κ} =
∑

t≤T

E|Sn
t |I{|Sn

t |=||Sn||T }I{||Sn||T>κ} ≤ εE|Sn
T |2.

Convergence of filtrations and extended convergence

To ensure convergence of strategies or stopping times, we need convergence of conditional ex-

pectations, which will hold with convergence of filtrations and extended convergence. We remind

some basic results about these types of convergence following the survey of Coquet, Mémin and

Slominski [5]. By virtue of Skorohod Representation Theorem, we define a probability space on

which some subsequences of Sn converge to S almost surely under the Skorohod topology.

Definition 4.8. A sequence of filtrations Fn converges weakly to the filtration F if and only if

for any B ∈ FT , the sequence of càdlàg martingales (EIB |Fn
· ) converges in probability to the

martingale (EIB |F·) on (D(R), ‖ · ‖T ).

Lemma 4.9. Along the subsequences of (Sn) which converge almost surely to S, the filtrations Fn

converge weakly to the filtration F.

Proof. First, we remark that if Sn P−→ S on (D(R2), ‖·‖T ), we have also lnSn P−→ lnS on (D(R2), ‖·
‖T ), where lnX = (lnX1, lnX2). For any n ∈ N, the process lnSn has independent increments.

As the filtrations Fn (resp. F) are also the natural filtrations of lnSn (resp. lnS), according to

Proposition 2 in [5], Fn converges weakly to F. �

The following was introduced as a characterization of extended convergence by Aldous in [1].

We shall use it as a definition.

Definition 4.10. Let us consider càdlàg processes Xn, X taking values in R
d and their natural

filtrations Fn,F. Then Xn ⇛ X holds if and only if for any integer k and for any real valued

bounded functions ψ1, · · · , ψk, continuous on D(Rd) endowed with the Skorohod distance dS , we

have

L (Xn, E[ψ1(X
n)|Fn

· ], · · · , E[ψk(X
n)|Fn

· ]) → L (X,E[ψ1(X)|F·], · · · , E[ψk(X)|F·])

on (D(Rd+k), dS).

Lemma 4.11. Along the subsequences of (Sn) which converge almost surely to S,

Sn
⇛ S

in probability.
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Proof. The sequence of filtrations Fn converges weakly to F. As S is continuous, the result is

immediate with remark 1 in [5]. �

Convergence of “almost optimal” portfolios

We end this section with a preliminary result concerning convergence of portfolios. The following

Lemma is the key step to prove the inequality R(x) ≤ lim inf Rn(x). We point out the convergence

of a sequence of almost optimal strategies to an admissible strategy in the model driven by S.

Lemma 4.12. For any x > 0, for any ε > 0, there exists a sequence (πn)n∈N, π
n ∈ An

x,

Rn(πn) < Rn(x) + 1/n+ ε

such that L (Sn, Zn, ZnV πn,x) → L (S,Z,M) on the space (D(R4), ‖ ·‖). Moreover, for the càdlàg

process M , there exists an admissible strategy π ∈ Ax such that M = ZV π,x.

Proof. Let x > 0, for any n, there exists γn ∈ An
x such that

Rn(γn) < Rn(x) +
1

n
.

Choose ε > 0. Since (||Sn||T ) is uniformly integrable, there exists a constant κ > 0 such that

sup
n∈N

E||Sn||T I{||Sn||T≥κ/C} ≤ ε/C,

C is the constant defined by (3). Define the stopping times

τn = min{t : V γn,x
t ≥ κ},

and set πn the admissible strategy

πn = γnI[0,τn[.

It follows that, for any n, any τ ∈ T n,

E(Y n
τ − V πn,x

τ )+ ≤ E(Y n
τ − V γn,x

τ )+ + E(Y n
τ − V πn,x

τ )+I{Y n
τ >κ}I{V γn,x>κ}

≤ E(Y n
τ − V γn,x

τ )+ + CE||Sn||T I{||Sn||T≥κ/C}I{V γn,x>κ}

≤ E(Y n
τ − V γn,x

τ )+ + ε.

Hence, for any n, πn satisfies

Rn(πn) < Rn(x) + 1/n+ ε.

Note that we have constructed a sequence of portfolios such that supn ‖V πn,x‖T is bounded. Indeed,

we have

V πn,x
tk+1

= V πn,x
tk

+ πn
tk

△ S1n
tk+1

,

for any k, any n. Since V πn,x
tk

≤ κ, the admissibility condition implies

0 ≤ κ+ πn
tk

△ S1n
tk+1

.
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It follows that

0 ≤ κ+ πn
tk
S1n
tk

(

µ1T

n
+ σ1

√

T

n
ξ1k+1

)

.

Recall that πn
tk

is Fn
tk
-measurable. When ξ1k+1 = −1, we get

πn
tk

≤
√

n

T

κ

S1n
tk

(

σ1 − µ1
√

T/n
) .

When ξ1k+1 = 1, we have

πn
tk

≥ −
√

n

T

κ

S1n
tk

(

σ1 + µ1
√

T/n
) .

This leads to the inequality

|πn
tk
| ≤

√
n

C

S1n
tk

,

for n large enough. Hence

|πn
tk

△ S1n
tk+1

| ≤ C1

√
n

(

µ1
T

n
+ σ1

√

T

n

)

≤ C2.

This inequality remains true for stopping times, proving that supn ‖V πn‖T is bounded. We remark

that we can deduce the following bounds for the strategy πn:

|πn
tk
Sn1
tk

| ≤ C1S
n1
tk

| △ Sn1
tk+1

| ≤ C. (6)

Let us investigate the convergence of the càdlàg Fn-martingales Mn = ZnV πn

. We shall apply

Th. VI.4.13 and Prop. VI.3.26 of [8] to prove that the sequence Mn is C-tight (that is Mn is tight

and each cluster point is the law of a continuous process). The sequence of initial values Mn
0 = x

is bounded. We need to prove that the sequence of processes 〈Mn〉 is C-tight. First, the sequence

of processes 〈Mn〉 is uniformly bounded in probability. Indeed, by the Itô Isometry and Remark

4.3, we have

E|〈Mn〉T |2 = E

∫ T

0

(πn
u)

2d[ZnSn]u = E

n−1
∑

k=0

(πn
tk
Zn
tk
Sn1
tk

)2(σ̃1)2T/n.

The inequality (6) implies that

E|〈Mn〉T |2 ≤ C.

This ensures the boundedness in probability.

For a function α ∈ D(R) we define the modulus of continuity w(α, δ), δ > 0, by the formula

w(α, δ) := sup{|αt+h − αt| : t ∈ [0, T − δ], h ∈ [0, δ]}.
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The next step to study the tightness of 〈Mn〉 is to show that its modulus of continuity is arbitrarily

small when δ → 0. Note that

〈Mn〉tk+l
− 〈Mn〉tk =

l−1
∑

i=0

(πn
tk+i

)2∆〈ZnSn1〉tk+i+1
. (7)

We deduce from Burkholder–Davis–Gundy inequality, Remark 4.3 and (6) that

E sup
k≤n−l

∣

∣〈Mn〉tk+l
− 〈Mn〉tk

∣

∣

2 ≤ E

l−1
∑

i=0

(πn
tk+i

Zn
tk+i

Sn1
tk+i

)4(σ̃1)4(T/n)2 ≤ κ(l/n)2.

We deduce that there is a constant C > 0 such that for any δ > 0 we have, for all sufficiently large

n, the inequality

E
∣

∣w(〈Mni〉, δ)
∣

∣

2 ≤ C(δ + T/n)2.

By virtue of Th. 15.5 in [4] the sequence 〈Mn〉 is C-tight. Th. VI.4.13 and Prop. VI.3.26 of [8]

give the C-tightness of Mn.

Consider a cluster point L (M) of the sequence L (Mn). We show that it follows the same law

as ZV π,x, where π ∈ Ax. Set Xn2 = (Sn2
− )−1 ·Sn2. Note that, thanks to characterization (7), there

exists a sequence (mn)n∈N of non-negative uniformly bounded predictable processes such that

∆〈(Mn, Xn2/σ̃2)〉tk =

(

mn
tk

0

0 1

)

T

n
.

The martingale (Mn, Xn2/σ̃2) converges in law to the process (M,W 2) (maybe along a subse-

quence). Since we have the convergence of the sequence of quadratic characteristics, we deduce

that

d〈(M,W 2)〉t =
(

m 0

0 t

)

dt,

with m a non-negative uniformly bounded predictable process. According to [9], Th. 3.4.2, there

is a filtered probability space (Ω,F ,F, R) with a standard Brownian motion B = (B1, B2) and the

matrix-valued process g such that R-a.s. we have

M = g11 ·B1 + g12 ·B2,

W 2 = g21 ·B1 + g22 ·B2.

with

〈M,W 2〉t =
∫ t

0

gg′sds.

Note that the process ((g11 ·B1+g12 ·B2)/
√
m,W 2) is a standard Brownian motion. Finally, there

exists a process m such that M and x +
√
m ·W 1 have the same law. According to Remark 4.4,
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we get

x+
√
m ·W 1 =

√
m

σ̃1
·X1

=

√
m

σ̃1
(ZS1)− · ZS1

= Z

(√
m

σ̃1
(ZS1)− · S1

)

.

Set the predictable process

π =

√
m

σ̃1
(ZS1)−.

It remains to check that π is an admissible strategy to get the result. Fix t ∈ [0, T ]. Since Zn, Z

are strictly positive martingales, we have

P (ZnV πn,x
t ≥ 0) = 1.

According to Portmanteau Theorem, see [4], since L (ZnV πn,x
t ) → L (ZV π,x

t ), we have

lim supP (ZnV πn,x
t ≥ 0) ≤ P (ZV π,x ≥ 0).

It follows that V π ≥ 0 almost everywhere. The proof is achieved. �

5. Proof of the inequality R(x) ≤ lim inf Rn(x)

Choose x > 0, ε > 0. We implicitly consider a subsequence such that Rn(x) → lim inf Rn(x).

According to Lemma 4.12, for any n, there exists a sequence (πn)n∈N, π
n ∈ An

x ,

Rn(πn) < Rn(x) + 1/n+ ε/3

and a probability space such that (Y n, Zn, ZnV πn,x)
a.s.→ (Y, Z, ZV π,x) on the space (D(R3), ‖ ·‖T ),

for some admissible strategy π. There exists τε ∈ T such that

R(π) <
ε

3
+ E(Yτε − V π,x

τε )+.

For any k, there exists a finite set Ik ⊂ [0, T ], T ∈ Ik, such that [0, T ] is a subset of
⋃

t∈Ik
]t −

1/k, t+ 1/k[. Set

τk = min{t ∈ Ik, t ≥ τε}.

Note that τk ∈ T and |τk−τ | < 2/k. Hence τk ց τ a.s. when k → ∞. The process ζt = (Yt−V π,x
t )+

is uniformly integrable because of assumption (3) on F . It follows that, choosing k large enough,

there exists a stopping time τ := τk in T admitting only a finite number of values {t1, · · · , tm} ⊂ Ik

such that

R(π) <
2ε

3
+ E(Yτ − V π,x

τ )+.
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Set τn(ω) = min{ti ∈ Ik : E[I{τ=ti}|Fn
ti ] > 1/2}. Observe that

{τn 6= τ} ⊂
m
⋃

i=1

{

|E[I{τ=ti}|Fn
ti ]− I{τ=ti}| ≥ 1/2

}

.

Because of convergence of filtrations and Lemma 4.9, we have P{τn 6= τ} → 0. Hence, the

sequence converges to τ almost surely. Furthermore τn ∈ T n takes values in {t1, · · · , tm}, as well
as τ . Recalling that

R(x) ≤ R(π) <
2ε

3
+ E(Yτ − V π,x

τ )+

≤ 2ε

3
+ E

(

Yτ − (ZV π,x)τ
Zτ

)+

,

we deduce that

R(x) ≤ 2ε

3
+ E lim

a.s.

(

Y n
τn − Zn

τnV
πn,x
τn

Zn
τn

)+

.

From Fatou’s Lemma, we get

R(x) ≤ 2ε

3
+ lim inf

n→∞
E
(

Y n
τn − V πn,x

τn

)+

≤ 2ε

3
+ lim inf

n→∞
Rn(πn) ≤ ε+ lim inf

n→∞
Rn(x).

As ε is arbitrary, it follows that R(x) ≤ lim inf Rn(x).

6. Proof of the inequality R(x) ≥ lim supRn(x)

Choose x > 0. The sequence is implicitly reindexed such that the whole sequence tends to

lim supRn(x). By virtue of Skorohod Representation Theorem, one can suppose that Sn, S are

defined on a same probability space such that

Sn P−→ S, on (D(R), ‖ · ‖T ).

Choose ε > 0. There exists π, an admissible strategy such that

R(x) + ε > sup
τ∈T

E(Yτ − V π,x
τ )+.

The process V π,x is continuous. We can build some n-step portfolios converging to V π,x. More

precisely, we approximate the strategy π. Fix ε > 0. There exist i0 and Borelian functions gi on

D(R) such that:

E

∫ T

0

∣

∣

∣

∣

∣

πs −
i0
∑

0

gi(S
si)I[si,si+1[(s)

∣

∣

∣

∣

∣

2

ds ≤ ε,

see Th. 4.41 in [2]. The notation Ssi stands for the stopped process, i.e. Ssi = SI[0,si] +SsiI]si,T ].

According to Th. 4.33 in [2], each gi is (everywhere) the pointwise limit of bounded continuous
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functions on D(R) (endowed with Skorohod distance). It follows that there exists some bounded

continuous functions ψi such that,

E

∫ T

0

∣

∣

∣
πs −

∑

ψi(S
si)I[si,si+1[(s)

∣

∣

∣

2

ds ≤ 2ε.

Set the strategy

π̃t =
∑

ψi(S
si)I[si,si+1[(t).

According to Burkholder–Davis–Gundy inequality, observe that

E
∥

∥π · S1 − π̃ · S1
∥

∥

T
≤ Cε.

Then, we have

E‖V π,x − V π̃,x‖T ≤ Cε. (8)

Define

tn(s) = max{tnk : tnk ≤ s}, i(s) = max{i : si ≤ s}.
Set for large n

πn
t = E

[

ψi(t)

(

(Sn)t
n(si(t))

)
∣

∣

∣
Fn

t

]

.

By virtue of extended convergence (Lemma 4.11),

(Sn, πn)
P−→ (S, π̃)

on (D(R3), ‖ · ‖T ). According to convergence of stochastic integrals, Th. VI.6.22 in [8], involving

UT Condition for Sn1, we get

(Sn, V πn,x)
P−→ (S, V π̃,x)

on (D(R3), ‖ · ‖T ). For any n, there exists a stopping time τn satisfying

Rn(πn)− 1/n ≤ E(Y n
τn − V πn,x

τn )+.

The sequence (Sn, V πn

, τn) is tight on the space (D(R3), ‖ · ‖T ) × [0, T ]. Thus, there exists a

subsequence, a random variable ν ≤ T and a probability space given by Skorohod Representation

Theorem, such that

(Y n, V πn,x, τn)
P→ (Y, V π̃,x, ν)

on the space (D(R2), ‖ · ‖T )× [0, T ]. There exists some sequences δn, εn ց 0,

An = {‖Y n − Y ‖T + ||V πn − V π̃,x||T ≤ δn}, E||Sn||T IAc
n
≤ εn.

The following inequalities hold for all n ∈ N. In one hand

(Y n − V πn,x)+IAn
= (Y − V π̃,x + V π̃,x − V πn,x + Y n − Y )+IAn

≤ (Y − V π̃,x + |V π̃,x − V πn,x|+ |Y n − Y |)+IAn

≤ (Y − V π̃,x)+IAn
+ |V π̃,x − V πn,x|IAn

+ |Y n − Y |IAn

≤ (Y − V π̃,x)+IAn
+ δn;
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on the other hand, by virtue of (3),

(Y n − V πn,x)+IAc
n
≤ c||Sn||T IAc

n
.

Then we have

(Y n − V πn,x)+ ≤ (Y − V π̃,x)+ + δn + εn. (9)

We claim that for the uniformly integrable càdlàg process defined by Φt = (Yt − V π̃,x
t )+,

EΦν ≤ sup
τ∈T

EΦτ . (10)

The proof could be found in [1], chapter 5, or more concisely in Lemma 3.3 in [6]. It is now possible

to obtain the following inequalities

lim sup
n→∞

Rn(x) ≤ lim sup
n→∞

Rn(πn)

≤ lim sup
n→∞

E(Y n
τn − V πn,x

τn )+.

With help of reverse Fatou’s Lemma, we have

lim sup
n→∞

Rn(x) ≤ E lim sup
n→∞

(Y n
τn − V πn,x

τn )+.

According to inequality (9), we get

lim sup
n→∞

Rn(x) ≤ E lim sup
n→∞

(Yτn − V π̃,x
τn )+ + lim sup

n→∞
(δn + Cεn).

Finally, with (10) and (8), we obtain

lim sup
n→∞

Rn(x) ≤ sup
τ∈T

E(Yτ − V π,x
τ )+ + Cε ≤ R(x) + (C + 1)ε.

Which achieve the proof since ε is arbitrary.
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