
HAL Id: hal-01091411
https://hal.science/hal-01091411v1

Submitted on 5 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical investigation of acoustic solitons
Bruno Lombard, Jean-François Mercier, Olivier Richoux

To cite this version:
Bruno Lombard, Jean-François Mercier, Olivier Richoux. Numerical investigation of acoustic solitons.
Proceedings of the Estonian Academy of Sciences , 2015, 64 (3), pp.304-310. �hal-01091411�

https://hal.science/hal-01091411v1
https://hal.archives-ouvertes.fr


Numerical investigation of acoustic solitons

Bruno Lombarda, Jean-François Mercierb, Olivier Richouxc

a LMA, CNRS, UPR 7051, Aix-Marseille Université, Centrale Marseille, 13402 Marseille, France
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Abstract. Acoustic solitons can be obtained by considering the propagation of large amplitude sound waves across a set of

Helmholtz resonators. The model proposed by Sugimoto and his coauthors has been validated experimentally in previous works.

Here we examine some of its theoretical properties: low-frequency regime, balance of energy, stability. We propose also numerical

experiments illustrating typical features of solitary waves.
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1. Introduction

Solitons are nonlinear waves with large amplitude and constant profile, resulting from the competition

between nonlinearity and dispersion. They occur in many physical area, such as fluid mechanics (Korteweg-

de Vries equations), electromagnetism and optics (Klein-Gordon equations) [1]. In acoustics, the intrinsic

dispersion is too low compared to the nonlinearity to produce solitons. Thus additional geometric dispersion

must be considered to observe acoustic solitons. It was the basis of a series of works of Sugimoto and

coauthors [6, 7], where the propagation of shock waves was investigated in a tube connected to an array

of Helmholtz resonators. A mathematical model was proposed, as well as a theoretical analysis and a

comparison with experimental data.

Sugimoto’s work was extended in two means. In [3], a time-domain numerical model was proposed to

incorporate efficiently the fractional derivatives modeling linear viscothermic losses. In [5], comparisons

with experimental results were proposed. It was shown that nonlinear attenuation in the resonators had also

to be incorporated for describing accurately the experiments.

The goal of the present contribution is to analyse further the full Sugimoto’s model with fractional

derivatives and nonlinear attenuation, recalled in section 2.1. In the low-frequency regime, corresponding to

the experimental conditions, the evolution equations tend to a Korteweg-de Vries equation with an additional

nonlinear term. Therefore one expects solitons nonlinearly attenuated. Both for mathematical and numerical

purposes, the fractional model is transformed by means of a diffusive representation (section 3.1.). Doing

so allows to analyse the energy balance and the stability of the model (sections 3.2. and 3.3.). Lastly, two

sets of numerical experiments are proposed in section 4., showing that the waves have the typical features

of solitary waves.

2. Fractional model

2.1. Sugimoto’s equations

The configuration is depicted in figure 2 of [3]. The wavelengths are much larger than the distance

between two resonators, so that the latter are described by a continuous distribution. One-dimensional

propagation is assumed. The variables are the velocity of gas u and the excess pressure in the resonators p.

Considering the right-going wave, one writes [6]
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The PDE (1a) describes the nonlinear wave propagation (coefficients a and b) in the tube. The losses in the

tube are introduced by c (viscothermic losses at the wall) and by d (volume attenuation). The ODE (1b)

describes the oscillations in the resonators. In the latter, the losses are introduced by f (viscothermic losses),

by m and by n (nonlinear attenuation due to turbulence). Coupling between (1a) and (1b) is ensured by e and

h. See [5] for the expression of all these coefficients. A fractional integral of order 1/2 (c) and a fractional

derivative of order 3/2 ( f ) are introduced. These non-local operators are tackled with in section 3.1.

2.2. Low-frequency approximation

Under the hypothesis of weak nonlinearity, ∂u/∂x in (1a) is replaced by −(1/a)∂u/∂ t in the terms

with coefficients b, c and d. The resulting system is written in the (T, X) coordinates, where T is a non-

dimensional retarded time, X is a non-dimensional slow space variable:

T = ω
(

t − x

a

)

, X = ε ω
x

a
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γ +1

2
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a
, (2)

where umax is the magnitude of the gas velocity at the initial time, ω is a characteristic wave frequency, and

γ is the ratio of specific heats at constant pressure and volume. Introducing the reduced variables U and P
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where p0 is the pressure at equilibrium, one obtains the system
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This system generalizes the equations (2-5) and (2-6) of [7] to the case of nonlinear losses (terms with M

and N). As shown in [6], β is negligible compared to δr and δR. We consider waves with characteristic

frequencies much smaller than the natural frequency of the resonators ωe, so that Ω = (ωe/ω)≫ 1. In this

case, the dispersion analysis performed in [3] indicates that the viscothermal losses are small. Moreover, the

volume of the resonators is large compared to that of the necks, so that M ≪ N is neglected. Consequently,

the low-frequency regime Ω ≫ 1 yields the simplified system
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From (5b), one obtains
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Injecting (6) in (5a) gives:
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Neglecting the second-order terms in 1/Ω and introducing the new unknown V =U −K leads to the PDE
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When nonlinear attenuation in the resonators is neglected (N = 0), equation (7) recovers the Korteweg-de

Vries equation (2-35) of [6], which allows the propagation of solitons. Solitons are also expected to exist

for small N values, but with a decrease of amplitude.



3

3. Diffusive model

3.1. Evolution equations

A diffusive approximation of the non-local in time fractional operators in (1) is followed here [4]. The

half-order integral of a function w(t) can be written

∂−1/2

∂ t−1/2
w(t) =

∫ +∞

0
φ(t,θ)dθ ≃

N

∑
ℓ=1

µℓ φℓ(t), (8)

where the diffusive variable φ satisfies the local-in-time ordinary differential equation

∂φ

∂ t
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2

π
w. (9)

In (8), φ(t,θℓ) = φℓ(t); µℓ and θℓ are the weights and nodes of the quadrature formula. Their computation

is detailed in [5]. A similar derivation is applied to the 3/2 derivative in (1), involving the diffusive variable

ξ . Injecting these diffusive approximations in (1) yields the following system of evolution equations
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The (3+2N) unknowns are gathered in the vector

U = (u, p, q,φ1, · · · , φN , ξ1, · · · , ξN)
T . (11)

Then the nonlinear system (10) can be written in the form
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3.2. Energy balance

Based on the system (10), we define
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Assuming smooth solutions (no shock) and c = 0, then one obtains
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It follows two remarks. First, if the weights of the diffusive approximation are positive µℓ > 0, then E is a

quadratic definite positive form, which thus defines an energy. In practice, we determine these weights by an

optimization procedure with constraint of positivity [5]. Second, if the coefficient of nonlinear attenuation

satisfies m = 0, then dE /dt < 0: the energy decreases, and the model is well-posed. In practice, this

hypothesis is reasonable, since m ≪ n.

Let us finally examine the assumed hypotheses. With shocks, the wave motion is irreversible and ad-

ditional terms of dissipation must be accounted for in (14). On the other hand, the hypothesis c = 0 is not

physical but required for technical purpose: up to now, we have not found an energy if c 6= 0.

3.3. Stability analysis

The system (12) is solved by a splitting technique [5]: one successively solves the PDE

∂

∂ t
U+

∂

∂x
F(U) = G

∂ 2

∂x2
U (15)

and the ODE
∂

∂ t
U = S(U) (16)

with adequate time steps. Here we examine the stability of both stages. First, ∂F
∂U

has real eigenvalues

{a + bu, 02N+2} and is diagonalizable. Consequently, (15) is hyperbolic when G = 0. In practice, G

introduces a parabolic regularization, and the problem remains well-posed.

We have no general result about the stability of (16). But some partial results have been obtained,

depending on the dissipation mechanisms considered:

(i) nonlinear attenuation (m 6= 0 or n 6= 0), no fractional losses (c = f = 0). Then the eigenvalues of

T = ∂S
∂U

are {0, λ+, λ−}. If m ≤ n/2, then ℜe(λ±)≤ 0 and (16) is stable. This constraint is satisfied

when the volume of the resonators is large compared to that of the necks, which is the case in practice

(a similar argument has been used in section 2.2.);

(ii) linear attenuation (m = n = 0), viscothermic losses in the waveguide (c 6= 0) but not in the resonators

( f = 0). The eigenvalues of T are
{

0,±i
√

g+ eh,−θ2
ℓ

}

hence (16) is stable;

(iii) linear attenuation (m = n = 0), viscothermic losses (c 6= 0 and f 6= 0). Then 0 and −θ2
ℓ are simple

eigenvalues of T (ℓ = 1 · · ·N). Moreover, assuming positive weights µℓ > 0 and nodes θℓ > 0, and

ordering the nodes as 0< θ1 < θ2 < · · ·< θN , then N other eigenvalues λℓ are real negative and satisfy:

λN <−θ2
N < · · ·<−θ2

ℓ+1 < λℓ <−θ2
ℓ < · · ·< λ1 <−θ2

1 < 0. (17)

In the limit-case f = 0, the two remaining eigenvalues λ2N+2 and λ2N+3 are equal to the imaginary

eigenvalues of case (ii): ±i
√

g+ eh. If f 6= 0, numerical tests indicate that these two eigenvalues are

complex conjugate with a negative real part.

From cases (ii) and (iii), it follows that the spectral radius of the Jacobian satisfies ρ(T) = |λN | > θ2
N ≫ 1.

As a consequence, (16) must be solved by an implicit scheme [5]. We conjecture that this stiffness of T still

holds for nonlinear attenuation (m 6= 0 or n 6= 0) and for the general case (10). This justifies the splitting

strategy.

4. Numerical results

In this part, we examine whether the solution of the Sugiomoto’s model (1) has the typical features of

solitons. In test 1, one investigates the dependence of the velocity upon the amplitude of the forcing. In test

2, we simulate the interaction between two waves.
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4.1. Study of the velocity in terms of the amplitude
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Fig. 1. Test 1. (a): example of seismogram. The vertical dotted lines represent the location of the maximum at each receiver. The

inclined red line denotes the trajectory of these maxima; its slope yields the velocity of the wave. (b): velocity of the waves in terms

of the forcing amplitude.

The physical and geometrical parameters are given in [5]. Two values of the resonators height are

considered: H = 2 cm and H = 7 cm. This parameter influences the resonance angular frequency of the

Helmholtz resonators (ωe in section 2.2.) and the parameters K and N in (7). The waves are generated by

imposing the value of the velocity in (10) at x = 0. A Gaussian with amplitude A is chosen for this purpose:

u(0, t) =







Ae−(
t−t0

τ )
2

if 0 ≤ t ≤ 2t0,

0 otherwise.
(18)

The central frequency is f0 = 1/t0 = 650 Hz. The standard deviation τ is chosen so that u(0,0) = u(0,2t0) =
A/1000. A set of 10 receivers is distributed uniformly on the computational domain. Seismograms are built

from the time signals stored. The positions of the maximal value of u at each receiver is detected and allows

to estimate the celerity V of the wave. An example for H = 7 cm and A = 100 m/s is given in figure

1-(a). After a transient regime (offsets 0 and 1), a smooth structure emerges despite the nonsmoothness

of the evolution equations (10). The amplitude of the wave decreases along propagation, due to the loss

mechanisms. Lastly, small amplitude waves are observed before the main wave front.

The same procedure is followed by varying A from 10 m/s to 100 m/s. The evolution of V in terms of

A is illustrated in figure 1-(b). The linear increase of V with A is clearly observed. Greater values of V are

obtained for smaller value of H . These two observations confirm the theoretical analysis performed in [7].

4.2. Interaction of two solitons

A Gaussian pulse with small amplitude followed by a taller pulse are generated. Due to its higher

amplitude, the latter travels faster, allowing an interaction between the two soliton waves. Figure 2 presents

the results of this experiment. In the inviscid case (a), we observe that the two waves interact in a manner
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Fig. 2. Test 2, with H = 7 cm. Snapshots of u after the interaction of two waves. (a): without dissipation. (b): with attenuation.

analogous to classical solitons [2]: after the waves separate, each one has again the form of a solitary wave,

though shifted in location from where they would be without interaction (denoted by crosses). When the

attenuation mechanisms are accounted for (b), a similar observation can be done, even if the observation is

not so clear due to the smoothing of waves.

5. Conclusion

In this contribution, we have studied some properties of the full Sugimoto’s model with nonlinear atten-

uation. Theoretical analysis has shown that the coefficient m can produce problems (increase of energy, loss

of stability). Since this coefficient has a negligible practical influence, we propose to remove it. Numerical

experiments have allowed to examine situations difficult to reproduce experimentally. They have shown that

typical features of solitons are maintained despite the nonlinear attenuation mechanisms.
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