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By Delphine Blanke*’§, Edith Gabriel*’§ and Didier Josselin*^
§ L.A.N.L.G., Université d’Avignon et des Pays de Vaucluse

and ^ U.M.R. ESPACE, Université d’Avignon et des Pays de Vaucluse
Abstract.

We compare 43 location estimators as regards their robustness
through a Monte Carlo study. Their behaviour is examined for five
sample sizes and 42 sampling distributions: 24 of which are centrally
symmetric and 18 are asymmetric contaminated normal laws. We
particularly focus on a new class of location estimators based on a
combination of the empirical mean and médian, derived from 1818
Laplace’s work. The calculation of these estimators is given in the
normal and uniform case, and they are approximate by bootstrap
(“method 1”, see Efron [6]) in the general case, based on an exact
expression obtained for Cov (Xn, Mn).

Résumé.
Nous comparons, dans une étude Monte Carlo, la robustesse de

43 estimateurs d’un paramètre de localisation. Leur comportement
est étudié pour cinq tailles d’échantillon et 42 lois, dont 24 sont
symétriques et 18 sont des normales contaminées asymétriques. Nous
nous intéressons en particulier aux résultats obtenus pour une nou-
velle classe d’estimateurs, définis par une combinaison linéaire de la
moyenne et de la médiane empirique et inspirés des travaux de La-
place (1818). La forme explicite de ces estimateurs est donnée pour le
cas des lois normale et uniforme et une forme approchée est également
obtenue par bootstrap (“méthode 1”, cf Efron [6]) dans le cas général,
en se basant sur une expression exacte de Cov (Xn,Mn).

1. Introduction. In many statistical analysis, the estimation of location for
a given distribution is of importance, i.e. one wants to find a typical or central
value that describes well the data. A large literature may be found around robust
estimation of location. Roughly speaking, robustness can be defined through the
stability of inference when the assumed model does not quite fit. Historical accounts
of robustness appear in Huber [9], Hampel et al. [7]. We particularly refer to Ruiz-
Gazen [23], in the présent volume, for a detailed review. A comparative study,
using Monte Carlo methods, was done by Andrews et al. [1], This major study
was next extended by Wegman and Carroll [25] to include estimators not previously
examined, like adaptive ones developed in Hogg [8] (defined through preliminary
sample-based calculation of some required statistics).
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In this paper, we focus on Laplace’s estimator defined by a suitable combination
of the empirical mean An and médian Mn and dérivé a new family of adaptive
estimators. We perform a comprehensive simulation study to compare these adaptive
estimators with classical location estimators, including the most popular, known
for their efficiency and/or robustness. In previous Monte Carlo studies, principal
measures of performance were relative efficiency or mean squared error criteria.
Unfortunately, the obtained ranking often dépends on the chosen criterion which
implies some lack of robustness in the final decision. We suggest the use of a new

criterion, the penalized risk ratio, designed to select estimators that are both efficient
in the least favourable cases and whose overall behaviour is the most satisfactory.

The paper is organised as follows: Section 2 présents Laplace’s idea and some
derived adaptive estimators of location. These estimators are based on theoretical
quantities that can be evaluated by bootstrap. To this aim, we propose to esti-
mate Cov (XntMn) by a direct theoretical calculation, avoiding any time-consuming
Monte-Carlo approximation and referred by Efron [6] as bootstrap “method 1”
(a method independently derived by Maritz and Jarrett [21] for the estimation of
Var (Mn)). In Section 3, we présent our numerical study by comparing the perfor-
mance of 43 estimators for 5 sample sizes (21,51,101,501,1001) and 42 distributions
(symmetric and asymmetric contaminated ones). Section 4 is devoted to some dis-
cussion as well as potential applications in Geography. Ail technical and theoretical
results are postponed to the Appendix.

2. Laplace estimator and its variants.

2.1. Framework. Consider a sample Ai,..., Xn derived from a symmetric law
P# (Xi — —(Ai — 9)), 9 € 0 C R, with absolutely continuons distribution
function F and density denoted by /. We suppose also that A^’s are intégrable
(E | Ai | < oo) and that / is positive in a neighbourhood of 9. Symmetry implies
that for ail real x, f(9 -f x) — f{9 — x). The theoretical center, 9, is well-defined: it
is unique and corresponds to both the médian of P# (F(0) = P#(Ai < 9) = \) and
its expectation (E [Ai] = f^ xf(x) dx = 9). Then, two classical estimators of 9 are
the empirical mean Xn and médian Mn. More precisely, we set Xn = ^ Ya=i ^
and Mn = A(p+i) if n — 2p + 1 while Mn HSl(A(p) + A(p+i)) if n = 2p, and where
Am,...,Xtn\ is the order statistics associated with Ai,...,Xn (so that, one has
almost surely Am < A(2) < • • • < A(nA.

Since P is symmetric, Xn and Mn are unbiased estimators (whatever the parity
of n) of 0, see Appendix A.l. Here, we focus on linear combination of An and Mn:

(2.1) Tn(a) = (1 — a)Xn + aMn,

with a G IR. By this way, we expect with an “optimal” choice of a (to be defined)
to combine robustness properties of Mn with efficiency of Xn while keeping the
unbiasedness property.
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It is noteworthy that such estimators hâve been studied since the nineteenth cen-
tury by Laplace [18] where a specifical choice of a is discussed. Since then, these
estimators hâve been several times “re-discovered” and studied independently under
different forms. In particular, optimal linear combination of two unbiased estima-
tors of 9 is studied by Samuel-Cahn [24] ; Chan and He [4] address nonparametric
estimation of a while an adaptive binary (0-1) choice of a appears in Lai et al. [17].
The Laplace estimator is also cited and used in a simplified form by geographers in
problems of optimal location Josselin and Ladiray [13, 15], Josselin [11, 12] or image
fîltering Josselin et al. [16], as well as in signal processing by Aysal and Barner [2].

2.2. On a choice. In Laplace [18]’s work, the choice of a results in the minimiza-
tion of Var (Tn{a)). Indeed, since Xn and Mn are unbiased (in the symmetric case),
we hâve Var ([Tn(a)) = E [(Tn (a) — #)2]. The following expression is obtained:

| Var(Xn)-Cov(Xn,Mn)(2.2) a i 11 9 = .

Var (Xn) + Var (Mn) - 2€ov (Xn, Mn)

Josselin and Ladiray [13] propose to use the “MeAdian” (Médienne in French):
namely a weighted mean of Xn and Mn, with a weight inversely proportional to
each variance:

(2.3) a21 - .
Var {Xn) + Var (Mn)

This choice présents several advantages: a simple geographical interprétation of the
related estimator of 0, lying between Xn et Mn and expected to be doser to the
empirical mean (respectively the empirical médian) as variance of the médian (resp.
the mean) is large.

In this paper, we propose a more “robust” approach, namely less sensitive to
possible data asymmetry (see Blanke and Gabriel [3]). Our strategy relies on the
minimization of the mean squared error E [(Tn{a) — #)2], also called L-risk or
Mean Squarred Error (MSE), instead of variance, to get:

, , . . | E [X„(X„ - M„)] - CTE [Xn - M„]
E [(Xn - M„)2]

It is easy to see that cq = as{9) (for ail 9) as soon as E [Mn\ = E [Xn] = 9. However,
estimators of a derived from the corresponding empirical risks will be different.
Using some prior estimate of the unknown 9 in (2.4), we expect to improve efficiency
of Laplace estimator at least toward potentially contaminated distributions (since
the assumption of symmetry is not involved in the définition of 0:3).

2.3. Use of bootstrap. Except for spécial cases (see Appendix A.3), the exact
value of cq’s is somewhat hard to compute. Based on the asymptotic joint distribu-
tion of (An, Mn) with limit covariance matrix depending on the unknown density



68

/, Chan and He [4] propose a nonparametric kernel density estimator of the asymp-
totic value of a\ (assuming implicitly convergence of moments in their limit-in-law
resuit). Moreover they consider only convex combinations; that is a G [0,1], while
a is likely to be négative (particularly, a æ #1/2 in the uniform case, as shown in
Appendix A.3.2).

Similarly to Josselin and Ladiray [14], we follow a bootstrap approach to evaluate
the empirical counterparts of our a^’s. By this way, the délicate choice of any
smoothing parameter (as the bandwidth in the kernel case) is avoided and, moreover,
better results for small sizes of sample are expected. Indeed, the methodology of
Chan and He [4] can be rather inefficient since their proposed estimator concerns

only the possibly asymptotic value of ai.
Let us recall that bootstrap’s terminology was introduced in the paper of Efron

[6]. The bootstrap “method 1” is based on the empirical measure of the sample,
and was independently derived in Maritz and Jarrett [21] for variance estimation of
the médian. When theoretical calculation is not straightforward, Efron [6] propose
a resampling of the data to obtain a Monte-Carlo approximation for the resulting
random variable. In this paper, by following the same methodology as in Maritz and
Jarrett [21], we give, in Appendix A.4, the bootstrap équivalent of the theoretical
quantities involved in our a^’s for odd n. Expressions are rather complicated and
we denoted them as ap.

a yâ?(T„)-c^(V„,M„)
Var (Xn) + Var (Mn) — 2Cov (Xn, Mn)

%t(Xn)
a2 — . - .

Var (Xn) + Var (Mn)

Here Var (Xn) represents the classical empirical estimator of the variance while
Var (Mn) and Cov (Xn, Mn) may be deduced from (A.8)-(A.10) if n = 2p + 1. By
this way, using ai and a.2 we obtain two estimators:

(2.5) ^Lap = {l-â\)Xn + ôt\Mn
(2.6) #jl = (1 - OL2)Xn + û?2Mn

Concerning a3 defined by (2.4), two strategies are considered to take into account
the presence of the unknown 9 in its formulation:

- plug-in method: 9 is replaced by some prior estimate 9 of 9:

(2.7) êf = (1 - S3(0))Xn + a3{è)Mn

a3(6>)
Ê ■Ê[X„Mn]-0(Ê[X„]-Ê[Mn])

Ê br21^
n + IM-2Ê [X„M„]

with
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- direct resolution: we solve in 6 the relation:

e = (l-as(6))Xn + a3(6)Mn

resulting in the estimator

, 0s ^ —XnFi [Mn(Xn — Mn)] + MnE ^Xn(Xn — Mn)]
(2.oj “dir 5 ^ 5 3 I 3

E [(Xn - M„) (E [Xn] - E [MnB
A large panel of classical, robust and/or adaptive, location estimators are also

defined in Section 3.3 to allow an exhaustive comparison of the performance of each.

3. Methodology. In this section, we compare through a Monte-Carlo study
the estimators defined in (2.5)-(2.8) to a wide variety of location estimators. The
Monte-Carlo study involved J — 42 sampling distributions (see Section 3.2), I = 43
estimators (see Section 3.3) and K = 5 sample sizes: n = 1001,501,101,51,21. For
each combination of distribution and sample size, L = 3000 réplications hâve been
simulated. In the following, Oijkt defines the i-th estimator evaluated from the i-th
replicate with the j-th distribution and the k-th sample size.

3.1. Discussion of risk criteria. First, we compute the three classical and em-
pirical L2-criteria (variance, bias, mean squared error, i.e. L2-risk) calculated over
ail réplications:

Vijk

Dijk

Dijk

2 (ûijkl ~ Ôijk-'j >
i= 1

1 L I
2 WM ~ il^

i=i

1 AI
2 y^jÔijte - 0)2 — Vijk + B2jk.^

t= i

For fixed k, several criteria may be considered to select the best estimator. Among
them, we first discuss the three criteria defined by:

- relative (variance) efficiency: RE/- = max minj^^^^Si j Vijk
- minimax risk: MR/- — min max R™/-,

i j
R Ü

- minimax risk ratio: MRR/- = min max .

i j mm/ Rijk
The relative (variance) efficiency RE is a classical criterion for comparing unbiased

estimators or asymptotically unbiased ones for large samples. To get the estimator
less sensitive to the nature of data, the selected estimator maximizes the worst-case
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ratio, defined by the minimum (among ail distributions) value of ratio between the
variance of the estimator and the smallest possible expected one for the relevant
distribution. We do not retain this first criterion because we want to compare

possibly biased estimators. In particular for small sample size, bias can be significant
and should not be neglected. Therefore, we prefer to replace variance by an overall
risk like the mean squared error. Despite of its widespread use, we will not consider
either the minimax L2-risk MR. Its main drawback lies in its own définition, too
pessimistic by nature: the selected estimator is the most efficient only in the worst
case and may be inherently worse than ail other estimators for ail other distributions.
In the same spirit as in the RE criterion, a possible alternative to the minimax
criterion would be the minimax risk ratio MRR. This criterion selects the estimator

minimizing the worst-case risk ratio. Such ratio can be interpreted as a weighted
minimax risk, the overly pessimistic minimax viewpoint is then relaxed. Also this
relative loss in MSE présents the advantage of being scale-invariant.

Finally, we suggest the use of the penalized risk ratio PRR:

(3.1) PRR/; 5 min (max 1- sd^
i \ j mmiRijk

where sdm
N

i

J \mini Rijk
With this last criterion, we hope to select

a robust estimator toward the least favourable distributions, but also behaving well
among ail considered ones.

3.2. Distributions. In the Monte Carlo study, we set 9 — 0. About 24 real
centrally symmetric distributions and 18 asymmetric contamined distributions hâve
been simulated.

3.2.1. Centrally symmetric distributions. Among the centrally symmetric distri-
butions, 7 are non-mixtures:

1. the standard normal distribution A/"(0,1): exp(—x2/2),
2. the uniform distribution U\—\f3, \/3]: if x G [—y/S, Vo], 0 other-

wise.

3. the standard Cauchy distribution C(0,1): f(x) = •<

4. the logistic distribution: f(x) =

5. the Laplace distribution: f(x) = le'x'
6. the slash distribution: f(x) = ; where (p(x)

function of the standard normal distribution

7. the Student distribution with 3 degrees of freedom:

is the probability density

/w = ^(1+ï)‘2
and 17 are two-components mixtures:
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1. One-Out: (n — 1) observations are simulated from a Af(0,1) and one from
V(0,9)

2. One-Wild: (n — 1) observations are simulated from a jV(0,1) and one from
AT(0,100)

3. Normal-o: Normal contaminated: (1 — a)J\f(0,1) + aj\f(0, k2), with k = 3,10
4. Normal-o; Cauchy contaminated: (1 — a)J\f(0,1) + aC{0,1)
5. Uniform-a Normal contaminated: (1 - ot)U[— v3, \/3] + oA/”(0,1)
6. Normal-o; Normal/Uniform contaminated: (1 — a)J\f(0,1) + a —

with o = 5%, 10%, 20%.

3.2.2. Asymmetric contaminated distributions. The asymmetric contaminated
distributions are two-component mixtures with the main component being the stan-
dard normal distribution and the contamination component being a normal distri-
bution centered at a point [lj-9. For o = 5%, 10%, 20%, these are:

(1 - a)U{0,1) -I- oJ\f(/i, A;2),
with p — 2,4 and k = 1,3,10.

3.3. Estimators. We hâve considered both standard and adaptive estimators,
mainly defined from the empirical mean and médian. Table 1 provides a code and
a short description of each estimator.

3.3.1. Standard estimators. The empirical mean is well known to be a non-robust
estimator, as very sensitive to outliers, and trimmed or winsorized means must be
preferred. The o% symmetrically trimmed mean is defined by

n—k

Tm(a) = îm E
i=k-\-lL

and the o% symmetrically winsorized mean by
n—k—1 j

111 l)^(fc+l) jj E + {k + l)X(n_fc) |,
i=k+2 J

where k = [(n + l)a\ and [•] is the greatest integer function. The trimmed (resp.
winsorized) estimators are defined with 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%
and 45% trimming (resp. winsorizing). We hâve also considered the trimean, which
is defined by a weighted average of the quartiles: \{Qi + 2Q2 + Qz}-

n

M-estimators of location are solution of the équation arg min(y^p(Æ\,fl)), where
i=i

p is called the objective function. Let us dénoté S the médian of absolute déviation,
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Table 1

Code and short description of the location estimators
Code Description
An Mean
Mn Médian

tukey4 One-step Tukey’s biweight, k = 4
tukey6 One-step Tukey’s biweight, k = 6
tukey9 One-step Tukey’s biweight, k = 9
mean05 5% symmetrically trimmed mean
meanlO 10% symmetrically trimmed mean
meanl5 15% symmetrically trimmed mean
mean20 20% symmetrically trimmed mean
mean25 25% symmetrically trimmed mean
mean30 30% symmetrically trimmed mean
mean35 35% symmetrically trimmed mean
mean40 40% symmetrically trimmed mean
mean45 45% symmetrically trimmed mean
winsor05 5% symmetrically winsorized mean
winsorlO 10% symmetrically winsorized mean
winsorl5 15% symmetrically winsorized mean
winsor20 20% symmetrically winsorized mean
winsor25 25% symmetrically winsorized mean
winsor30 30% symmetrically winsorized mean
winsor35 35% symmetrically winsorized mean
winsor40 40% symmetrically winsorized mean
winsor45 45% symmetrically winsorized mean
huberl One-step Huber, k = 1
huberlô One-step Huber, k — 1.5
huber2 One-step Huber, k — 2
trimean Weighted average of quartiles
HG1 Hogg-type adaptor using trimmed means 38%, 19%, mean and outer-mean
HG2 Hogg-type adaptor using trimmed means 38%, 25%, 10%
HG3 Hogg-type adaptor using trimmed means 38%, 10%, 5%
HG4 Hogg-type adaptor using trimmed means 38%, 25%, 19%
HG5 Hogg-type adaptor using trimmed means 38%, 25%
HG6 Hogg-type adaptor using trimmed means 38%, 19%
JLJ Adaptive linear combination of trimmed means

Adaptive linear combination of mean and médian: Tn{a) = (1 — cx)Xn + aMn,
where:

&L&p a minimizes Var (Tn(a)), see (2.5)
chan a is estimated non-parametrically
0JL a is a weight inversely proportional to each variance, see (2.6)
ai?)
C7tukey4 a minimizes E [(Tn(a) — a)2] and tukey4 is plugged, see (2.7)
ûip)
"tukeyô idem with plug tukeyô
aip)
^tukeyQ idem with plug tukey9
n(p)
C7HG1 idem with plug HGl
û{p)
“jLJ idem with plug JLJ
$dir direct resolution in a, see (2.8)
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S = median\x — Mn|. With p(x,9) := p(\x — 9\), the objective function of the
one-step Tukey’s biweight estimator is given by

p{u) | [l — (1 — w2)]2 if \u\ < 1
| if jwj > 1

where u = x and we used k — 4,6,9. The objective function of the one-step
Huber estimator is given by

/ I f \u2 if H < k
~ { k\u\ - \k2 if \u\>k I

U = and we Used m 1? 1.5; 2.

3.3.2. Adaptive estimators. Adaptive estimators based on trimmed means in-
clude Hogg-type estimators and Jaeckel’s adaptive trimmed mean (Andrews et al.
[1] ; Wegman and Carroll [25]). For U (a) the average of the na largest order statis-
tics and L(a) the average of the na smallest, OM(a) —.{U(a) + L(a)}/2, and
Q = %%TL^ and Q' = Uu(q(5)-1l^ > adaptive Hogg-type estimators (Hogg
[8] ; Wegman and Carroll [25]) are defined by:

HGi= <

'

Tm(0.38)
Tm(0.19)

f OM{0.25)

Q > 3.2
2.6 < Q < 3.2
2 < Q < 2.6
Q< 2

hg2 = <

'

Tm(0.38)
Tra(0.25)

k Tm(0.10)

Q’ > 1.87
1.81 < Q' < 1.87
Q1 < 1.81

hg3 = <

r

Tm(0.38)
Tm(0.10)

k Tm(0.05)

Q' > 1.87
1.81 < Q' < 1.87
Q1 < 1.81

hg4 = <

'

Tm(0.38)
Tm(0.25)

kTm(0.19)

Q’ > 1.8
1.55 < Q' < 1.8
Q' < 1.55

hg5 = .
rTm(0.38)
Tm(0.25)

Q' > 2.2
Q1 < 2.2

HGe = .
Tra(0.38)
Tm(0.19)

Q1 > 2.2
Q' < 2.2

Jaeckel [10] proposed a linear combination of two trimmed means:

JLJ | cTm(0.05) 4- (1 - c)Tm(0.25),
with

g ^ [0.05n1 [0.25n1 ^ ^ ^ [0.25n]
C_

A ^ [0-05n] ^ PB ( f°-05n1, f°-25n] ) I ^ ( f°'25n1 ) ’
where for n — 2p and a < /3,

n(a-l)

A(a)=7rvM2 ev ’ j=p+1
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B(a,P)
j ( n(l-3)

(1 - 2a)(1 - 2p) | (X(i) “X(n-i il))
n(l—a)

+ Z-l fà(j) ~ X(n_j+i^) (X(n(l-P)) ~ X(nP+l))
n( 1-/3)

+û; (-^'(n(l‘-|9)) — ^(n/3+1)) (-^"(n(l-a)) ^^"(ncH-lj) r

Adaptive estimators defined in section 2 are linear combination of empirical mean
and médian Tn(a) = (1 — a)Xn-j-aMn. Laplace’s estimator is such that a minimizes
Var (Tn(a)), see équation (2.5). Josselin and Ladiray defined a; as a weight inversely
proportional to the variance of Xn and Mn, see (2.6). In Chan and He [4], a is
defined by 1 - min{l, max{7To, 0}}, where

_

= 2/(g) m0 2lf72 ■■ 2_\’^\ax + WWjm W) -*

with ï) — E [|A — 61] and a2 — E [(A Q)2]. In practice, they consider a gaussian
kernel to estimate f(9): f(9) ~ ^ Ylï=i V ? with h = 0.79n-1/5 min{Q3 -

Quâx}- .

In our proposai, a minimizes the mean squared error E [(Tn(a) — 9)2} and thus de-
pends on 0. For the obtained estimator (2.7), we propose to plug 9 by JLJ, HG1 and
Tukey’s biweight estimators, as these estimators belong to the three ones having the
minimum risk average when considering symmetric distributions, asymmetric con-
taminated distributions and ail distributions for the different sample sizes. Finally,
$dir avoids the plug with a direct solution, see (2.8).

3.4. Results. Table 2 provides ranks of the estimators according to the PRR
criterion defined in (3.1). The findings are summarized as follows.

• For symmetric distributions, and thus when there is no bias, the best estima-
q®) yMHN9

tors are HG1, , ^ey9 and #Lap for every sample size.
• For asymmetric contaminated distributions as well as ail distributions com-

bined and for n > 51, tukey4, ^[ 4, JLJ and hâve the smallest ranks.
When n — 21, JLJ and ffi are replaced by tukey6 and #^ey6.
Note that the estimators with good ranks when there is no contamination
obtain high ranks in presence of contamination.

• The RE, MRR and PRR criteria provide similar results when considering
symmetric distributions. In the case of asymmetric contamination, the MRR
and PRR criteria here lead to very closed results.
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In practice, data reliability is unknown. So, it is important to combine the results
of the three different distribution types (symmetric, asymmetric contaminated and
ail). Table 3 gives the average ranks of Table 2 over ail distribution types and over
ail distribution types and sample sizes. From this table, we can see that 0^ 4,

^tuke 6’ ^jlj | tukey4 and tukey6 always appear in the four smallest ranks. This is
quite similar to the results observed from Table 2, except that the plugged estimators
are better ranked because they are a far better ranked for symmetric distributions
than tukey4 and tukey6. When the average is made over ail sample sizes, we get
the same results as the ones above described for Table 2. Finally, when ordering the
estimators according to the average made over ail distribution types and ail sample
sizes, we get ^^.ey4, tukeyô, ^ley6 and ûj^j at the four first positions.

Note that similar results hâve been obtained for 6 = 4. Finally, we also plugged 6
pÊ|||

in (2.7). The resulting “estimator”, 9g , was the first ranked one for every situations
and whatever the criterion.

4. Discussion.

4.1. Criteria. The relative efüciency (RE) criterion is suitable for symmetric
distributions when comparing unbiased estimators. Because of data uncertainty, in
practice the minimax risk ratio (MRR) should be preferred. Indeed, asymmetric
contamination leads to biased estimators; thus the variance is no longer a good
criterion of robustness. In this case, RE is outperformed by MRR which is based
on the Zr-risk rather than on the variance. Even if in our simulation study the
penalized risk ratio (PRR) and the MRR provide similar results, PRR should be
preferred as it ensures the estimator to hâve a good global behaviour.

4.2. Estimators. Choosing an estimator is not simple task as its performance
often dépends on the nature of data and on the sample size. We hâve seen that
HGl, ^hq15 $tukev9 and #Lap are good for symmetric distributions, whilst they are
sensitive to asymmetric contamination, the case in which tukey4, JLJ and
'Yv) ’n(v) /iLd) /îfp)
0jLj must be preferred. In ail situations combined, 0t^.eyA, tukey6, 0^ey6 and 6^
can be retained. Thus, it appears that adaptive estimators are the most robust.

The simulation study showed that our adaptive estimators derived from Laplace’s
idea provide very good results. Their theoretical properties (efüciency, breakdown
point, ... ) should now be studied and this work is in progress (Blanke and Gabriel
[3]). We could also extend this work to the spatial case and develop some new bivari-
ate location estimators based on linear combination of mean and médian. However
this is not straightforward as there exist several deünitions of the médian in two-
dimensional case.
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Table 2
Rank of the estimators according to PRR, for each type of distibution (symmetric ”S”, asymmetric

contaminated ”AS”, ail combined) and each sample size.
n =1001 n=501 n=101 n=51 n=21

S AS ail S AS ail S AS ail S AS ail S AS ail

Xn 43 42 42 43 42 42 43 42 43 43 42 43 43 42 43

Mn 38 7 7 38 7 7 38 6 6 38 10 11 35 11 28

tukey4 28 1 1 28 1 1 28 1 1 29 1 2 32 1 22

tukey6 10 5 5 12 5 5 11 11 12 11 12 12 11 2 1

tukey9 7 32 32 7 32 32 8 30 30 8 26 26 8 24 15
mean05 39 39 39 39 39 39 40 39 39 40 40 40 40 39 40
meanlO 21 34 34 20 34 34 27 34 34 32 34 34 36 37 37
meanl5 16 28 28 17 28 28 16 27 27 19 28 28 25 32 32

mean20 22 21 21 22 20 20 19 21 21 18 21 21 15 23 14

mean25 26 18 18 26 18 18 26 17 17 23 17 17 19 17 7
mean30 31 15 15 31 14 14 30 13 13 28 11 10 23 10 11

mean35 32 12 12 32 12 12 31 9 9 30 9 7 26 5 16
mean40 34 10 10 35 10 10 34 8 8 33 5 5 31 4 21

mean45 37 8 8 37 8 8 37 5 5 36 7 8 34 7 26
winsor05 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41

winsorlO 40 40 40 40 40 40 39 40 40 39 39 39 39 40 39
winsorl5 30 38 38 29 38 38 33 38 38 37 38 38 37 38 38
winsor20 17 33 33 16 33 33 20 33 33 26 33 33 30 36 36
winsor25 18 25 25 19 25 25 17 24 24 16 24 24 21 26 20
winsor30 23 19 19 23 19 19 21 18 18 21 18 18 17 20 8
winsor35 29 16 16 30 16 16 29 15 14 27 13 14 24 12 13

winsor40 33 13 13 33 13 13 32 10 10 31 8 9 29 8 19

winsor45 36 9 9 36 9 9 36 7 7 35 6 6 33 6 24

huberl 15 23 23 15 21 21 14 20 20 14 19 19 12 21 9
huberl5 9 29 30 9 30 30 15 31 31 17 30 30 16 28 25

huber2 19 35 35 18 35 35 22 36 36 25 37 37 27 35 34
trimean 24 22 22 24 22 22 23 22 22 20 22 22 20 22 12

HG1 1 37 37 1 37 37 1 37 37 1 36 36 1 34 33

HG2 13 14 14 13 15 15 10 19 19 9 20 20 10 13 4

HG3 8 20 20 8 24 24 7 25 25 4 25 25 7 19 5

HG4 27 11 11 27 11 11 24 12 11 24 14 13 22 9 10

HG5 25 17 17 25 17 17 25 16 16 22 16 16 18 16 6
HG6 20 24 24 21 23 23 18 23 23 15 23 23 9 27 23

JLJ 35 3 3 34 3 3 35 2 3 34 3 3 38 18 35

$Lap 4 26 26 4 26 26 3 26 26 3 29 29 4 30 29

chan 5 27 27 5 27 27 6 32 32 7 32 32 6 29 27

B 12 30 29 11 31 29 9 28 28 10 31 31 14 31 30
B
l7tukey4 11 2 2 10 2 2 12 3 2 13 2 1 13 3 2

m̂
tukeyd 6 6 6 6 6 6 5 14 15 6 15 15 5 15 3
H
^tukev» 3 31 31 3 29 31 4 29 29 5 27 27 3 25 18
Sb>)
”hgi 2 36 36 2 36 36 2 35 35 2 35 35 2 33 31
o(p)
^JLJ 14 4 4 14 4 4 13 4 4 12 4 4 28 14 17

$dir 42 43 43 42 43 43 42 43 42 42 43 42 42 43 42
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Table 3

Average of ranks related to PRR.
average over distribution types average

n = 1001 n = 501 n = 101 n — 51 n = 21 over ail

Xn 42.33 42.33 42.67 42.67 42.67 42.53

Mn 17.33 17.33 16.67 19.67 24.67 19.13

tukey4 10 10 10 10.67 18.33 11.8

tukeyô 6.67 7.33 11.33 11.67 4.67 8.33

tukey9 23.67 23.67 22.67 20 15.67 21.13

mean05 39 39 39.33 40 39.67 39.4

meanlO 29.67 29.33 31.67 33.33 36.67 32.13

meanl5 24 24.33 23.33 25 29.67 25.27

mean20 21.33 20.67 20.33 20 17.33 19.93

mean25 20.67 20.67 20 19 14.33 18.93

mean30 20.33 19.67 18.67 16.33 14.67 17.93

mean35 18.67 18.67 16.33 15.33 15.67 16.93

mean40 18 18.33 16.67 14.33 18.67 17.2

mean45 17.67 17.67 15.67 17 22.33 18.07

winsor05 41 41 41 41 41 41

winsorlO 40 40 39.67 39 39.33 39.6

winsorl5 35.33 35 36.33 37.67 37.67 36.4

winsor20 27.67 27.33 28.67 30.67 34 29.67

winsor25 22.67 23 21.67 21.33 22.33 22.2

winsor30 20.33 20.33 19 19 15 18.73

winsor35 20.33 20.67 19.33 18 16.33 18.93

winsor40 19.67 19.67 17.33 16 18.67 18.27

winsor45 18 18 16.67 15.67 21 17.87

huberl 20.33 19 18 17.33 14 17.73

huberl5 22.67 23 25.67 25.67 23 24

huber2 29.67 29.33 31.33 33 32 31.07

trimean 22.67 22.67 22.33 21.33 18 21.4

HG1 25 25 25 24.33 22.67 24.4

HG2 13.67 14.33 16 16.33 9 13.87

HG3 16 18.67 19 18 10.33 16.4

HG4 16.33 16.33 15.67 17 13.67 15.8

HG5 19.67 19.67 19 18 13.33 17.93

HG6 22.67 22.33 21.33 20.33 19.67 21.27

JLJ 13.67 13.33 13.33 13.33 30.33 16.8

$Lap 18.67 18.67 18.33 20.33 21 19.4

chan 19.67 19.67 23.33 23.67 20.67 21.4

0JL 23.67 23.67 21.67 24 25 23.6

c,tukey4 5 4.67 5.67 5.33 6 5.33
niP)
^tukeyô 6 6 11.33 12 7.67 8.6

■
‘'tukeyQ 21.67 21 20.67 19.67 15.33 19.67
wm
”hgi 24.67 24.67 24 24 22 23.87

ffp)
"JLJ 7.33 7.33 7 6.67 19.67 9.6

m 42.67 42.67 42.33 42.33 42.33 42.47
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4.3. Applications in Geography. By the way, the L2-risk is often used in Geog-
raphy, especially in the field of Remote Sensing and Image Analysis, under its close
simpler expression: the RMSE (Root Mean Squared Error, Longley et al. [20]). For
instance, this error assessment is used to match or assemble images which don’t hâve
the same geographical projection. In that particular case, we consider a theoretical
reference image that encompasses the ’good’ projection, as the 9. Then the second
image, i.e. the estimated image, needs to be stretched into the reference projection,
using a set of reference points. Since unbiased estimators are usually computed, only
the sample variance is given instead of the MSE, separating the variance from the
bias. It could be of interest to study the overall robustness of L2-risk, compared to
the variance. Indeed, although Lr-risk advantageously introduces a bias term, both
still suffer from weak robustness due to important sensitivity to outliers. Instead of
considering criterion (3.1), it also would be possible to replace the variance by the
Least or the Médian Absolute Déviations (resp. LAD and MAD) ; for instance, the
MAD is used for several M-estimators we tested in this paper. In general, using
robust estimâtes of centrality becomes crucial when users hâve to deal with empir-
ical data coming from ground observation. On the one hand, these data can be
handled within large sets of little distributions including only a few individuals. On
another hand, it is really difficult for geographers to precisely détermine which is
the underlying statistical related law(s). Are they general ? Do they only hâve a
local effect ? In these conditions, finding the most robust location estimator that
is able to adapt to empirical batches of data or/and unknown statistical laws is of
prior interest in spatial analysis. Notwithstanding this estimator useful adaptability,
we also propose to search for the possible local or general spatial laws in order to
choose, according to space peculiarities, the appropriate simulated theoretical laws
during Monte-Carlo processing. This would allow to adapt the estimator efficiency
assessment while keeping its global property of robustness.

APPENDIX A: DEVELOPMENTS

A.l. Bias of empirical médian.

Case: n odd. If n = 2p + 1, one has Mn — XA+1) which has the density (see e.g.
David [5, p. 8]):

(A.l) /(p+1)^) = - F{x)?f(x).

By symmetry of P#, we hâve F(0 — x) = 1 — F(0 + x) and f(9 + x) = f(9 — x). From
(A.l), we get that f(pi.\){9 + x) — /(JJi)(# - x) for ail real x, therefore /(p+i) is also
a symmetric density. ■
Case: n even. If n = 2p, we hâve Mn = + X(p+1)). Symmetry of P<? implies
also that f^(x + 9) — fx{n_r+x){9 — x) (see e.g. David [5, p. 19, Ex. 2.12]) giving
in turn, for r = p + 1, that /(p+i)(0 + x) = f(p){9 — x) for ail real x. We obtain



79

successively

1 f°° 1E (Mn) — 2 xf(p)(x)S® A 2 / ^/(p+i)^) dx«Z—00 J — oo

1 /'0O,/) , ,oo
E 2XJ* ~ y)/(î,)(0 -tidy + ïj (9 + |/(i# - ») dÿ = 9.

A.2. General expressions for E(AnAfn).
Case: n = 2p + 1.

Proposition A.l. IFe hâve for i.i.d. X{:

2p+l

(A.2) E(^Xi|Mn = i) = + i +
and

(A.3)
— (2üV Z*00 r

«(«) = J xV’-'Wa - r(x)r-1f(x){p(ï - F(a:))E(A1l{x1<a:})
+ pF(x)E (Ail{Xl>a;}) + F(x)(l - F(x))x j âx.

Proof: Let /(j)P+1) be the density of (Iw,I(p+1)). We use (A.l) and also, from
David [5, page 9]:
(A.4)

W>(m) = ^tl!L_r-i(x)/(;c)(FW -F(æ))”-i(i |FW)’>/(t)iI<t
for i = 1,..., p while for i = p + 2,..., 2p + P

(A.5) /(P+M)(x,t) =

(r-7iS2P%!i-8)!/PM/w^) -
First, one may write

2p+l 2p+l

E(£ Xi | M„ = t) = £ E(X| | Mn = t)
Î=1 Î=1

p 2p+l
= E (X(i) | Mn = t) +1 + ^ E pi|p | Afn = ty

i= 1 i=p+2
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Then (A.2) follows from the study of E (X^ | Mn = t). First, for 1,... ,p:

r !w - F(x))”“i/(x)iI<t |
-J.mH m d*

from (A.l), (A.4). Next, the Binomial formula implies:
P roc (F(x) + F(t) _ F(x))P_1y rc

EE(% I Mn=t)=P /
•

-, J —( FP(t) /(x)læ<idx

P P

m j„c æ/(x)dæ H —-E(Xilx,<0-F(t)
For i — p + 2,..., 2p + 1 and using (A.5), we arrive at

P M2p+l

5] E(X(i) :pwnlo =
î=p+2

xf(x) dru1 - F(t) Jt ~ 1 - F (t)

and (A.2) is proved. For E(XnMn), we write with the help of (A.l):

E(XnMn) = -E(M„E(Y*M„))
n z—■1

2=1

px

W II (^)E (Xll{Xi^})+*2+r^)E (Ill(ï'>i|))
x Ep(:r)(l — F(x))pf(x) dæ

and (A.3) follows easily.
Case: n = 2p.

Proposition A.2. We hâve for i.i.d. X^:

2P

(A.6) E (^2 Xi | X{p) = x, X{v+1) = y) =
2=1

|^yE (Xil{Xl<*<?/}) + ar + y + ;fTF^yE (^{Xi^*})
and

e (XnMn)=(?fw II
x {(p - 1)(1 -F(y))E(X1lw<!C,) + (p- l)F(i)E(Xil{Xl>ï})

I F(æ)(l - F(y))(x I
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PROOF: Similar to the proof of Proposition A.l, on the basis of David [5, page 9]:

(a.7) ((P- l)!)2 x<yi

and

(»)!r1(t)/(l)(F(r)|F(i)fi'1(l - V(y))r^f(x)f(y)
(i — l)!(p — i - l)!(p — 1)!

for i = 1,...,p -91 while for i — p + 2,..., 2p:

f(p,p+i,ï) (Xi Vi t)
(2p)WV-l(x)f(t)(W(t) - F(j/))^~p~2(l - F(t)ŸP~if(x)f(y)

(i — p — 2)\(2p — i)\(p — 1)!

t<x<y>

x<y<t■

A.3. Détermination of a^s in spécial cases. In this part, we compute exact
values of c^’s, defined in (2.2)-(2.4), for data with gaussian and uniform distribution.

A.3.1. The normal case. For i.i.d. Xi with distribution J\f(9,a2), one gets that
Xn is independent from Xtr\ — Xn for ail r = 1,..., n, see e.g. David [5, page 31].
This implies that for odd n, n = 2p + 1:

Cov (Xn, Mn) ~ Cov (Xn, X(p+ij - Xn) + Var (Xn) -- Var (Xn) =

and similarly in the even case (n 2p):

Cov(Xn,Mn) L -Cov {XnyX(p) — Xn) + -Cov (Xn,X(p+i) — Xn)+Var (Xn) = —.

Since oc\ =
Var (Xn) - Cov (Xn, Mr

= as(9) (for ail 9), we obtain in
Vax [Xn) + Var (M„) - 2Cov (Xn, Mn)

_

both cases that ai = 03 = 0 implying in turn that #Lap — #piUg,6> i Xn as expected
in the gaussian case where optimality of empirical mean is well known.

Concerning no explicit expression is available for Var (Mn). From Price and
Bonett [22], we get the computed values of Var (Mn) for small n while the asymptotic
is équivalent to (4nf2(9))~1. For n = 19, 9 « 0 and a2 — 1, we deduce that
02 — 0.394 and, asymptotically, «2 — 0.389. By this way, a non negligible mass is
allowed for the sample médian in the calculation of 0jl-
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A.3.2. The uniform case. For i.i.d. random variables from U\Q_a>Q+ai, one gets
after some easy but tedious calculation (from expressions given in (A.l) and (A.7))
that for n — 2p+l. E (M2) = 92 +^ while for n = 2p. E (M%) = 92 + (p+i).(fp+i) •
To compute the covariance, the easier way is to start from (A.2) with the évaluation
of E (XnMn | Mn). Since F(t) = £=$£* for £ G [9 — a, 9 + a] and E{Xt{x<t}) =

E (X1{X>(}) = ÿ+2zm±S±îl, we get for n = 2p +1:

nE (X„M„%E (M„E (£ X, Im„))
= |E (M2 + (0 - a)M„) + E (M2) + |E (M2 + (0 + a)M„)
= (p+l)E(M2)+jj0E(M„)
= {2p l)ti2 +

(p +1 )a2
3 + 2p

yielding to E (XnMn
the basis of (A.6):

92
2n(n+2) f°r °dd n- ^ n — 2p, we proceed similarly on

nE(X„Mn) = E(M„E(£xi I -^"(p)> -A(p+1))
i—1

|| {Mn(X(p} + 9 — a)) + 2M2 + —E (Mn{9 + a + -X^i)))
= (î>+l)E(M2) + (î>-l)0E(Mn)

^2
32

= 2p^
pa

1 + 2p‘

implying that E (XnMn) = 92 + 2^_!) for n even.
A gain a\ == 0:3(0) for ail 9, and we deduce that au — — ^ for odd n and ai =

~

2(n—i) even case- We may conclude that a négative mass is placed on Mn,
the estimator privileging Xn to Mn, a fact already noticed by Samuel-Cahn [24],
Indeed for unimodal symmetric densities, or more generally densities symmetric
about zéro and satisfying f(x) < /(O) for ail x, the asymptotic efficiency of Mn to
Xn is always greater than m the lower bound being attained only for the uniform
distribution, see Lehmann [19, page 359]. By this way, in the uniform case, Mn
reaches his worst behaviour toward Xn.

Concerning 0jl, since this estimator is a convex combination of Xn and Mn, we
obtain a very different resuit: «2 — for n = 2p + 1 while «2 = ^-H)(n+2)+3ng
for n = 2p so that 02 ~ î in both cases.
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A.4. Bootstrap “method 1” for n — 2p + 1* Approximations of E (Mn)
and Var (Mn), E (Mn) and Var (Mn), had been proposed by Maritz and Jarrett [21]
and independently derived by Efron [6]. We recall their results, for r G IN* and
n = 2p + 1:

(A.8) Ê(M„)= (2^|)21)!f]X(i)(B(^,p + l,p + l)BE(^l,p + l,p+l)),

(A.9) Var (Mn) =

(2p +1)!
(pl)2

10

pjÊl,p+ 1) - B(
i — 1

n
p+i,P + i))-{i(Mn))2,

where IB(x, a, b) is the incomplète beta function defined by
f*X

IB(x, a, b) = ta~l (lWmt)b~l dt.
Jo

Finally, note that the case n = 2p is also addressed by Maritz and Jarrett [21].

Of course, the same methodology applies for E (Xn) and Var (Xn) and gives, as
expected, the classical empirical estimâtes:

_ _ _ in _

Ê(A„) = E(X1) = X„ and nVar (X„) = Var(Xi) = - WJfo - Xn)\Tl .

l—l

Here, we propose to compute similar approximations of E (XnMn) to deduce
Cov (Xn, Mn), both involved in (2.5) and (2.7). For n = 2p-\-1, we start from (A.3):

E(XnMn) = iFi'-1(i)(l-F(I)r1/(I){!,(l-F(i))E(X1l{;ïl<l))
+ pE(x)E (Ail{Xl>a:}) + E(x)(l - F(æ))æ j dæ

We hâve:

px

E(Xit{Xl<x})= tdF{t)= E_1(^)d2: and
IMfrOO 10

Iroo plV(X1t{Xl>x})= tdF(i)=/ F-1!)*Jx Jw(x)
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This gives:

E (X»mJ M J - vr'x
\p{^-y) J F 1(z)dz+py I F 1(z)dz + y(l Iy)F 1(y)}dy'o

The empirical counterpart is:

HI t a^ \ i=ij=i+i j—
zp(l — z)p 1

1 i—1 ü9»DH^-^^EE-rço^ n^'ii-zfdz
i=1 n |j||pl=2 j=l :n "

i — 1
+pE■ ■I - —b'-1i - *)”B+E■ /1^(i I 4PH

2=1 2=1

and easy but tedious calculations give the following équivalent:

(A.10)

ê]Ü=Nk^CflnSBr 2=1 B

1 n i-1 . . ■ _ -, 1

t=2 j=l
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