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a b s t r a c t

Laser shock processing is a recently developed surface treatment designed to improve the mechanical
properties and fatigue performance of materials, by inducing a deep compressive residual stress field.
The purpose of this work is to investigate the residual stress distribution induced by laser shock process-
ing in a 2050-T8 aeronautical aluminium alloy with both X-ray diffraction measurements and 3D finite
element simulation. The method of X-ray diffraction is extensively used to characterize the crystallo-
graphic texture and the residual stress crystalline materials at different scales (macroscopic, mesoscopic
and microscopic).

Shock loading and materials’ dynamic response are experimentally analysed using Doppler velocimetry
in order to use adequate data for the simulation. Then systematic experience versus simulation compar-
isons are addressed, considering first a single impact loading, and in a second step the laser shock
processing treatment of an extended area, with a specific focus on impact overlap. Experimental and
numerical results indicate a residual stress anisotropy, and a better surface stress homogeneity with
an increase of impact overlap.

A correct agreement is globally shown between experimental and simulated residual stress values,
even if simulations provide us with local stress values whereas X-ray diffraction determinations give
averaged residual stresses.

1. Introduction

During the past 20 years, laser shock processing (LSP) has been
proposed as a competitive alternative technology to classical sur-
face treatments for improving fatigue, corrosion and wear resis-
tance of metals. It has recently been developed as a practical
process amenable to production engineering. This process (Fig. 1)
aims at introducing a deep (mm range) residual compressive stress
field on metallic targets.

More precisely, LSP uses high energy laser pulses (in the GW/
cm2 range) to impact the surface of a metal coated with a protec-
tive film (organic paint, tape or thin metallic film), and covered
with a transparent layer (usually water). As the laser beam passes
through the transparent layer and hits the surface of the material, a
thin layer of the ablative layer is vaporized (nearly 1 lm/shot). The
vapor continues to absorb the remaining laser energy and is heated
and ionized into a high pressure plasma. Due to the confining effect

of the transparent layer, the plasma pressure is amplified (up to
several GPa), and the resulting pressure discontinuity propagates
into the material as a shock wave [1,2]. This plasma confined
regime, allows obtaining maximum impact pressures of up to 5–
6 GPa in the 8–10 GW/cm2 intensity regime for 10–20 ns pulse
duration, as experimentally shown in [3].

In turn, the shock wave can cause plastic deformation and
compressive stresses, provided the plasma pressure is of sufficient
magnitude to exceed the Hugoniot Elastic Limit (HEL) of the
metal. Consequently, the specimen will undergo extremely high
strain-rate (greater than 106 s�1) during a short period of time
(ffi10–20 ns in our case) and be dynamically yielded.

Recent developments of industrial systems have been proposed
by some companies [4–6] using either low output energy (around
1 J/pulse) or higher energies (20–40 J/pulse) lasers [7,8]. They have
shown the feasibility of using LSP in an industrial environment,
with a large range of configurations (between 5 mm and 10 lm
diameters of impacts), materials and applications. The benefits of
the treatments versus other impact treatments (shot-peening,
ultrasonic peening, deep rolling) are rather well known: a rather
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good preservation of surface roughness, large affected depths
(superior to 1 mm), and nearly the same amplitude of compressive
stresses at the surface of metallic materials.

To predict the residual stress field and optimize laser shock
parameters, several experimental and analytical formulations have
been reported in the literature, starting by the early analytical
work by Ballard [9]. The Finite Element Method (FEM) was first
introduced by Braisted and Brockman [10] to predict the residual
stresses induced by LSP on carbon steels using Abaqus software,
and a combined explicit + implicit approach in 1999. From then
on, several researchers have used Abaqus to analyse laser shock
waves propagation into different metal materials, and the resulting
residual deformations and stresses [11–14]. Some of these simula-
tions have shown a close match with experimentally measured
residual stresses. A recent work has also developed a three-
dimensional FEM model to simulate a metal subjected to a square
laser spot [15] using the ANSYS code. Last, we can mention
the recent work by Hirano et al. [16] who has demonstrated for
the first time analytically, that residual stresses induced by LSP
could be anisotropic.

Most of these numerical works have usually considered average
in-depth stresses induced by LSP, without really addressing surface
stress gradients, and their dependence with LSP conditions such as
overlapping rate, or spot diameters. Moreover, the validation of
pressure loading conditions P = f(x,y, t), or material’s behavior
under purely uniaxial shock conditions was not systematically
addressed.

In the light of the above discussion, a 3D numerical model was
developed with different objectives: (1) identifying pressure
loading and shock yield stress using both Doppler velocimetry,
and single impact analysis, (2) making systematic comparisons
between measured and calculated residual stresses for different
LSP conditions, (3) investigating numerically surface stress
gradients, and their dependence with overlapping rate, (4) for
the same overlapping rate, spot diameter, and impact pressure,
investigating the influence of different LSP paths.

More precisely, the time and spatial distribution of the loading
pressure P = f(x,y, t) could be identified by checking surface defor-
mations induced by a single laser impact, using both 2D profilom-
etry and numerical simulation, using an analytical formulation for
the pressure. In a second step, the LSP treatment of an extended
area is considered, using up to 25 impact loading, and addressing
different LSP parameters such as laser spot sizes, pressure ampli-
tude, or overlapping rate.

2. The base 2050-T8 Al alloy

The material under investigation in this paper is a 2050-T8 alu-
minium alloy (AA) which is mainly composed of 3.5 Cu, 0.9 Li, 0.3

Mg, 0.4 Mn, 0.05 Fe and Al in weight %. This material, recently
developed for structural aerospace application, has a high elastic
limit (0.51 GPa), due to Al2Cu nanometric precipitation strengthen-
ing. In addition, grain sizes ranging between 20 lm and 500 lm
were identified by EBSD analysis, with a texture orientated along
the rolling direction [17]. The resulting mechanical properties are
illustrated in Table 1.

3. Experimental setup and procedures

3.1. LSP conditions

The 2050-T8 alloy was laser-peened with a Nd:YAG pulsed laser,
producing 10 ns duration pulses with up to 1.5 J per pulse at
0.53 lm. The 0.53 lm wavelength allowed us to use large water
thickness without generating extended laser light absorption. Using
our classical LSP configuration, the target was completely
immersed in water (5–10 cm thick), and a high pressure water
nozzle was used to remove ablation dusts. Classically, 1–2 mm
diameter impacts were used, with intensities in the 3–8 GW/cm2

range corresponding to estimated pressures in-between 2 GPa
and 5 GPa using empirical equation P ðGPaÞ ¼ 1:65 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I ðGW=cm2Þ

p
[18] and the LSP treatment of extended areas could be achieved
by the overlap of successive spots until the desired region was
completely covered. Prior to LSP treatment, 8 mm-thick aluminium
samples were protected from thermal rise by a 80 lm-thick
aluminium adhesive, and a 10 lm organic paint, to ensure a pure
mechanical loading on targets.

In this work, we imposed a fixed number of identical and over-
lapped pressure pulse impacting a target material successively as
shown in Fig. 2. Two main directions were considered: the rxx

(ffir11) stresses parallel to the LSP direction and the ryy (ffir22)
stresses perpendicular to the main LSP direction. In addition, the
overlapping rate R% was defined by (=Dd/d with d = impact
diameter and Dd = distance between two impacts). Different
overlapping rates will tend to modify surface topography as shown
in Fig. 3a (33% overlap) and Fig. 3b (50% overlap).

3.2. VISAR determination of impact pressures and elastic precursors

The measurement of impact pressure and shock yield strengths
were both carried out by VISAR (Velocity Interferometer System for
Any Reflector) Doppler velocimetry. This technique already used
successfully in the past 15 years [18,19], allowed us, by a simple
measurement of back free surface velocities UF (m/s) behind thin
foils to analyse shock wave propagation, and deduce the P = f(t)
profiles on 1.5 mm diameter impacts, using Hugoniot conservation
equations (P = 1/2q�D�UF, with D = sound velocity (m/s), and
q = density (kg/m3))1.

A back free velocity profile obtained behind a 430 lm-thick
2050-T8 foil is shown in Fig. 5. The maximum velocity can be

Fig. 1. Laser peening process.

Table 1
Mechanical properties of AA2050-T8 material.

Properties Value Unit

Density, q 2750 kg m�3

Elastic modulus, E 72 GPa
Static yield stress rY 0.51 GPa
Poisson’s ratio, t 0.33
Bulk sound velocity, C0 5386 m s�1

s 1.339
C 2

s is the Constant of the material and C is the coefficient of Grüneisen [4,5,24].

1 For more details about VISAR determinations, please refer to [15–17]



directly related to the pressure amplitude 500 lm below the
surface, whereas the inflexion evidenced in the shock rise time is
known as the elastic precursor, and corresponds to the elastic–
plastic transition under uniaxial shock loading. On Fig. 5, a
170 m/s velocity level is evidenced at the elastic–plastic transition,

which corresponds to a 1.38 GPa yield stress under planar laser-
shock loading (or Hugoniot limit) PH (see Eq. (1)).

PH ¼
1
2
q � Cel � UF ð1Þ

With Cel = elastic wave velocity = 6000 m/s, q = 2750 kg/m3.
The determination of PH allows us to determine the strain rate

sensitivity as an input data for constitutive Johnson–Cook’s Eq.
(3) using the following formula:

PH ¼
1� t

1� 2t
rdyn

y ð2Þ

With t = anisotropy Poisson’s coefficient (0.33 on 2050-T8),
rdyn

y = dynamic Yield stress at 106 s�1.
In turn, using PH = 1.38 GPa we obtain a dynamic yield stress

value rdyn
y equal to 0.7 GPa, and a strain rate sensitivity coefficient

C = 0.02 (for rY = 0.51 GPa). The C value was estimated by checking
the elastic precursor (=PH) value with a VISAR interferometer
system [15].

Fig. 2. (a) The overlapping laser shock processing, (b) LSP treatment with 50%
overlapping rate.

Fig. 3. Surface topography after – (a) a 33% overlap LSP, (b) a 50% overlap LSP
(1.5 mm spot diameters, 5 GW/cm2 power density).

Fig. 4. Normalized pressure pulse induced by a 8–10 ns laser pulse (resulting in a
20 ns width at half maximum) used in ABAQUS.
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Therefore, using VISAR measurements, P = f(t) profiles (Fig. 4),
and shock yield stress (Fig. 5) could be determined and used as
input data in the numerical simulation.

3.3. Residual stress determination using the XRD technique

The residual stresses were measured using the well known X-
ray diffraction, using two different conditions, both corresponding
to a 10–11 lm penetration depth of X-rays. The X-rays patterns
were first recorded using a SET-X device with a 20 kV voltage, a
5 mA intensity, and a 1.5 mm diameter X-ray spot. The classical
sin2w method was used to determine residual stresses, selecting
{311} as a diffracting plane because of a low anisotropy effect of
the material. The corresponding diffraction conditions are summa-
rized in Table 2.

Recent developments based on micro X-ray diffraction (lXRD)
have allowed us to extend X-ray examination to a microscopic
level, using a 100 lm diameter probe X-ray beam. lXRD uses spe-
cific optics to focus the excitation beam to a small spot on the sam-
ple surface so that very local areas can be analysed on the sample.
The measurements have been realized in ICB laboratory, using a
Brucker diffractometer, with a Cu source, theta–theta geometry,
Gobel mirror parallel optics with 50–500 lm collimator, and a
2D detector (Table 3).

4. Initial conditions and work-hardening levels

The surface analysis was carried out by XRD on the surface of
the sample before and after LSP treatment. Before LSP treatment
(Fig. 6a), residual stresses attributed to mechanical polishing have
a low amplitude (�40 MPa), are homogeneous and isotropic
(r11 � r22).

In addition, the study of the integral width of X-ray peaks pro-
vides useful information about work-hardening. In Fig. 6b, a small
variation of peak width is evidenced after LSP (+5% to 20%), which
confirms the limited work-hardening induced by LSP on 2050-T8
alloy (Fig. 7). Vickers Hardness tests were also carried out at the
surface of impacted materials, with a 25 g load resulting in nearly
20 lm indent sizes, and 5 lm indented depths. Results indicate
rather similar hardness variations (+35%) than X-ray peaks integral
widths, from 1.2 GPa average value for the as-polished condition,
up to 1.6 GPa mean value after LSP treatment. The scattering
observed on Vickers measurements may be attributed to grain ori-
entations versus shock loading main direction, that promote or not
dislocation formation. Such limited work-hardening levels are con-
sistent with most of previous works on aluminum alloys after LSP
treatments [14,20].

5. 3D simulation of the LSP process

5.1. Description of the numerical model

In most of recent FEM analysis procedures of LSP [11,13,15],
two distinct steps were considered to obtain an absolutely stable

residual stress field: (1) a dynamic explicit analysis to investigate
shock wave propagation and (2) a static analysis using an implicit
algorithm to calculate residual stress fields. In our case, a single
explicit dynamic calculation was selected to estimate directly a
quasi-residual stress field, for a large number of impact loadings.
A 3D finite element model was developed on ABAQUSTM 6.9 Expli-
cit software to simulate the LSP process, including for each impact
shock propagation and relaxation in a single step.

A schematic of the 3D model is shown in Fig. 8. Infinite
elements have been adopted as non-reflecting boundaries to avoid
shock wave reflections on free surfaces. Up to 2759918 continuum
solid hexahedral linear elements were used to mesh a 25 mm
� 25 mm � 5 mm body, resulting, with the use of a BIAS
geometrical function allowing a mesh refinement, in 100 lm
� 100 lm � 10 lm element sizes near the impacted surface.

Table 2
Diffraction condition using Set-X diffractometer.

Cr anode kka = 0.229 nm
Filter V
Collimator 1.5 mm
Plans {hkl} {311}
Number of w angles 15
Oscillations of w +/�5
Acquisition time (s) 100 s

Table 3
Diffraction condition using Brucker diffractometer.

Cu anode kka = 1.709 nm
Filter V
Collimator 0.5 lm
Plans {hkl} {311}
Number of w angles 22
Oscillations of w +/�5
Acquisition time (s) 100 s
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The use of very thin elements, allowed us to consider correctly
the stress wave propagation (at C0 speed) near the surface for a
20 ns duration pressure pulse.

Before using the numerical description of laser shocks, a con-
vergence test was carried out [11] in order to define optimal inte-
gration times for the calculation (by default, Abaqus Explicit
provided us with an integration time of t0 = 8.6 ns for our meshing
conditions). At least a factor 4 reduction of this time (t0 = 2 ns) was
shown to provide constant stresses and deformations.

In addition, when simulating several impacts applied at
different locations and times, a minimum time interval between

successive impacts had to be selected to ensure a quasi-residual
stress field. Above 10�5 s time interval, the kinetic energy of the
3D body was shown to turn to a near-zero value (Fig. 9), thus
allowing us to simulate multiple stabilized impacts. It has to be
mentioned that this time period for the global calculation of one
impact (shock + relaxation) appears to be much longer than the
pressure loading duration itself (200 ns in Fig. 3).

Following this, the in-depth stress wave attenuation could be
checked accurately (Fig. 10), for different propagation times ti

and positions – z (with z = D�ti with D = sound velocity).

5.2. Constitutive material’s behaviour

Due to the high strain rate involved during LSP events (near
106 s�1), the Johnson–Cook stain sensitive plasticity model is clas-
sically used for problems where strain rates vary over a large
range. If ep is the equivalent plastic strain, the Von Mises flow
stress, according to the Johnson–Cook model, is given by:

r ¼ ðry þ Ken
pÞ 1þ C Ln

_e
_e0

� �� �
1� T � T0

Tmelt � T0

� �m� �
ð3Þ

where ry, K, C, n, and m are material constants (ry = yield stress, K
and n = work-hardening modulus and coefficient, C strain rate sen-
sitivity, Tmelt = fusion temperature, etc.).

For our experimental conditions, preliminary investigations
using fully coupled thermo-mechanical-elements DC3D8T con-
firmed that the thermal contribution of Eq. (3) could be
neglected: on a single 4 GPa–20 ns impact, the local thermal rise
due to shock wave propagation and plastic deformation was less
than 40 K, and did not modify significantly the residual stress
field, even with a 100% inelastic heat fraction. Consequently, the
thermal part of Johnson–Cook’s equation was omitted in our sim-
ulation. Corresponding Johnson–Cook’s coefficients for 2050-T8
are presented in Table 4. The C = 0.02 value was experimentally
determined by VISAR measurements of dynamic Yield stress
(see Section 3.2).

5.3. Simulation of a single laser impact

The simulation of a unique laser impact and its validation using
experimental data has nearly never been addressed in the litera-
ture. Our objective was twice: (1) validating the pressure spatial
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distribution P = f(x,y), (2) validating the model by checking the
residual stress field, using a l X-ray diffraction technique.

5.3.1. Identification of the spatial pressure distribution P = f(x,y)
A fortran subroutine was used (*VDLOAD type) to generate non-

uniform spatial and temporal loadings P = f(x,y, t) and locate pre-
cisely impact position. The P = f(x,y) distribution was adjusted to
fit exactly experimental surface deformations u33 = f(x) for a given
laser intensity I (W/cm2). Considering a single 1.5 mm impact
(r0 = 0.75 mm), and a maximum available impact pressure

P = 5 GPa, the best agreement with experimental results (Fig. 11)
was found for a near-spherical spatial distribution of pressure
(Eq. (4)). The corresponding maximum deformation u33 induced
by a single impact is shown to be approximately �10 lm. This
allowed us validating the P = f(x,y, t) loading for the calculation of
a large number of laser impacts.

Pðx; y; tÞ ¼ P0ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2
x2 þ y2

r2

� �s
ð4Þ

5.3.2. Determination of residual stresses on a single 1.5 mm impact
In this section, we considered the pressure dependence of resid-

ual stresses for a single impact, together with an experimental val-
idation using the micro X-ray diffraction technique [21], and the
classical 2h = f(sin2w) method. A 50 lm X-ray collimator was used
at ICB-Dijon for analyzing stress distributions, corresponding, after
beam divergence to a 100 lm XRD spot on the metal.

Simulations indicate an interesting and important result: the
stress drop at the centre of circular impacts seems to be promoted
by the use of high pressures: a 3 GPa pressure provides less homo-
geneous stress field than a 2 GPa pressure (as we can see in Fig. 12).
Indeed, for the case of 3 GPa applied pressure, a pronounced stress
singularity appears.

The comparison between experimental and simulated residual
stress values was shown to indicate a 100 MPa overestimation of
residual stress amplitude (�300 MPa versus �200 MPa) using a
2 GPa impact pressure. Two factors may explain why the experi-
mental to numerical comparison is not that satisfactory on one
impact: (1) the lXRD patterns are mostly obtained inside grains
on very small diffracting crystallites that may not be representative
for the global aluminium diffraction constants, (2) the experimen-
tal residual stress field is overwhelmed by the central stress drop,
which is more pronounced and extended than numerically
predicted.

We analysed the residual stresses in the depth (see Fig. 13), we
noted that the stress field heterogeneity is focused to the surface of
the material in a depth about 250 lm for P = 2 GPa and 675 lm for
P = 3 GPa. The depth of compressive zone increase with the applied
pressure P. This is due to the plastic flow increasing with respect to
the applied pressure.
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5.4. Simulation of 25 overlapped impacts

Results of the simulations of 25 impacts on 2050-T8 are pre-
sented in Figs. 14–16, for a classical LSP path (50% overlap and a
continuous line by line y increment: Fig. 3), which corresponds
to the surface finish presented in Fig. 3b.

These simulations indicate a strongly heterogeneous and peri-
odic surface stress field (Fig. 14a and b), attributed both to impact
overlaps, and to the stress drops at the centre of circular impacts.
Approximately 100 to 200 lm thick layers are affected by this

stress heterogeneity. Below 200 lm in-depth, the stress field
becomes much more homogeneous.

The comparison of simulation with experience was made using:
(1) 2D profilometry, (2) conventional surface X-ray diffraction
(1.5 mm XRD spot), (3) in-depth XRD diffraction using matter
removal.

The experimental and numerical analysis of residual stresses on
x and y axis (with x = main LSP axis: cf Fig. 3a and b), indicates an
anisotropic stress generation, already investigated analytically by
Zhang et al. [13].
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Fig. 15. Experimental versus simulated surface deformation u33 induced by 25 laser
impacts (1.5 mm – 3.5 GW/cm2 – 50% overlap) – simulation with a spherical
P = f(x,y) distribution and P = 3 GPa maximum pressure.

(a)

(b)

6 8 10 12 14 16 18
-600

-500

-400

-300

-200

-100

0

100

S
tr

es
s 

σ 1
1 

(M
P

a)

X (mm)

6 8 10 12 14 16 18
-600

-500

-400

-300

-200

-100

0

100

S
tr

es
s 

σ 2
2 

(M
P

a)

X (mm)

Experimental
Simulation

Experimental
Simulation

Fig. 16. XRD experiments versus simulations, 25 impacts, d = 1.5 mm at P = 3 GPa,
overlapping 50% (a) r11, (b) r22.



The r22 stresses (Figs. 14b and 16b) are always higher than r11

stresses (Figs. 14a and 16a), independently of the initial rolling
direction of the base material. This result has never been pointed
out experimentally by many authors except by [22] on aluminium
alloys. This result is globally confirmed by simulations, where local
r22 values are more compressive than r11 values.

The appearances of tensile stress, in red local area as we can see
in Fig. 14, are harmful in fatigue. Fortunately, this critical problem
is reduced by the overlap and remains in the boarders of the LSP
treated area. So to avoid this harmful problem we just manage
the LSP treated area in such manner to move away these critical
area from the most mechanically stressed zones.

The comparison between simulated and experimental surface
deformations is satisfactory (Fig. 15). The periodic deformation,
and its maximum amplitude umax

33 is shown to be nearly the same
(1.7 mm), even if finer meshes would have possibly improved
numerical data, and more specifically the shape of peak curvatures,
which are shown to be sharper on simulations than on
experiments.

A comparison of numerical simulations with XRD surface deter-
minations, carried out with 1.5 mm XRD spot diameters first
requires an averaging of r11 and r22 simulated profiles as shown
in Fig. 14a (black arrows), to allow comparison at the same scale.
Similarly, in-depth simulated stresses also correspond to averaged
data, considered using 12 in-depth lines located inside a 1.5 mm
diameter circle.

The corresponding surface averaged values are shown in
Fig. 16a and b (black line) and compared with XRD determinations.
For a 4–5 GW/cm2 – 50% overlap condition, the comparison of r11

values shows that experimental values (ffi�350 MPa) are found in-
between higher and lower simulated residual stresses values, but
are approximately 100 MPa lower in amplitude than average sim-
ulated values (ffi�350 MPa). If we now consider the non-averaged
simulated profiles (in grey lines on Fig. 16a and b), the oscillating
aspect of residual stress profile at 50% overlap provokes large local
stress maximum gradients ðrmax

11 � rmin
11 =DxÞ, estimated to 0.5 MPa/

lm.
The difference between averaged simulated stresses and mea-

sured data is nearly the same for r22 values, but with even more
pronounced simulated stress gradients near 1.4 MPa/lm. Such
sharp residual stress gradients, that would necessitate to be con-
firmed by micro-X-ray diffraction tests (but with extremely long
acquisition time), would play an active role on surface reactivity
in electrochemical environment, by the formation of local galvanic
coupling phenomena [23].

In-depth comparisons (Fig. 17), using averaged profiles, indicate
a rather good correlation for impact pressures ranging between
2 GPa (3 GW/cm2) and 3 GPa (5 GW/cm2) as shown in Fig. 16a
and b. They also indicate that anisotropy effects (r22–r11) are
mostly superficial and seem to be restricted to the first 0.1–
0.2 mm in depth.

5.5. Influence of percentage overlap

If we now check the influence of different percentage overlaps
(A%), ranging between 33% and 66%, on the surface stress field,
we can make the following remarks:

(1) The average surface stress tends to increase with A%:
�340 MPa to �410 MPa for r11, and �350 to �420 MPa for
r22.

(2) Increasing the percentage overlap rate A% (from 33% overlap
to 66% overlap) tends to reduce surface stress gradients
(Fig. 18), and therefore favours surface stress homogeneity
by smoothing the residual surface stress field. This is shown

on average values in Fig. 18, but is even more pronounced
considering maximum stress gradients from local simulated
stresses (Table 5).

The geometrical effect of stress concentration, which must be
calculated with the depth of the indentations and the curvature
radius. With LSP, this effect s is significantly lower than the curva-
ture radius induced by shot peening.

5.6. Influence of different LSP strategies

Compared with a classical shot-peening treatment where beads
randomly impact surfaces, laser-shock peening allows program-
ming not only the precise position of each impact, but also the glo-
bal-and possibly complex-time sequence of a large number of
impact loadings. In turn, LSP can be considered as a deterministic
mechanical surface treatment, where impact chronology relative
to each other is expected to play a significant role on local stress
amplitudes and gradients.

To confirm this assumption, another LSP path (or strategy) was
tested (Fig. 19) where LSP treatment is not geometrically continu-
ous, and where LSP lines are progressively fulfilling a free space,
from two external lines, but with a similar 50% percentage overlap.
The resulting chronology of impacts is different.

Simulation results indicate clearly that such a change of LSP
path does not modify the global shape of residual stress field in
itself, but affects significantly local stress amplitudes and gradi-
ents. On specific areas, the 2nd strategy generates lower stress
amplitudes (Fig. 20) than the classical configuration. Consequently,
these preliminary results confirm that impact chronology, and
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Fig. 17. Influence of impact pressure on in-depth residual stress profile
(d = 1.5 mm, 50% overlap) (a) r11, (b) r22 (simulation results are averaged values
using 12 in-depth profiles considered inside a 1.5 mm diameter circular area similar
to XRD spot).



more widely, the LSP strategy can be considered as a non-negligi-
ble contributor to RS generation.

6. Discussion

A 3D model has been proposed for simulating residual stresses
induced by LSP, with a particular focus on several aspects:

The use of experimental validations for impact loading, shock
yield stress, and the XRD measurement of residual stresses induced
either by one single impact, or by a large number of impact
overlaps;

The FEM analysis of surface stress distribution, and surface
stress gradients, which has never been extensively considered in
the past.

The critical point to address concerning this model came from
the XRD validation of numerical simulations which provided us
with integrated values whereas simulations calculated local stres-
ses. To overcome this issue, we considered averaged simulation
values to be compared with XRD data, and this allowed us to glob-
ally validate the complex and heterogeneous residual stress field
induced by LSP.

An attractive solution would have certainly been to make resid-
ual stress mappings using the micro-diffraction technique (0.1 mm
spot), that we used for analyzing one single impact. However, this
technique is extremely time consuming and a global mapping of a
large number of impacts would have been impossible.
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distribution: (a) r11, (b) r22.

Table 5
Influence of percentage overlaps A% on the maximum local surface stress gradients.

ðrmax
11 � rmin

11 Þ=Dx

A = 33% 0.7 MPa/lm
A = 50% 0.5 MPa/lm
A = 66% 0.25 MPa/lm

1 

2 

3 

4 

5 

Fig. 19. Surface treatment with a non-continuous LSP path.
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To obtain better experimental data on residual stress local gra-
dients, future prospects should certainly use materials with small
grains, allowing using smaller XRD collimators.

A last point to be mentioned is the precise knowledge of LSP
conditions: the estimation of impact pressures was made using
an empirical model where pressure can be directly calculated from
the laser intensity value I (GW/cm2). This necessitates a precise
determination of impact diameter which is not that obvious when
impacts are small (1–2 mm). Indeed, laser spot diameter is some-
what different (smaller) than impact diameter, due to lateral
expansion of the plasma. In turn, a 1.5 mm diameter impact can
be due to a 1.2 mm laser spot. This could explain why laser inten-
sities I (GW/cm2) presented in this paper include a significant error
bar, because of an approximately 10–20% incertitude on impact
diameter.

The anisotropy effect, predicted analytically [16], and evidenced
on 2050-T8 alloy (and previously on another Al alloy: 6056-T4
[24]), seems to be rather specific to aluminium alloys, but should
be investigated more widely to understand the singularity of such
materials versus LSP treatment.

Last, numerical results indicate severe surface stress gradients
due to impact overlaps which could play a significant role on
surface reactivity by generating galvanic coupling between low
and high amplitude local stress areas. The validation of such a
heterogeneous surface stress field should require further
experiments on materials with much smaller grains allowing
determining more local stresses with smaller XRD collimators
(0.5 mm).

The use of microdiffraction, possible on a single impact (each
measurement takes approximately 2 h X-ray counting time on
each direction), cannot be envisaged for characterizing a large
peened surface.

7. Conclusions

A 3D numerical model for laser shock processing has been
proposed, and validated experimentally on 2050-T8 al alloy. A
tendency to residual stress anisotropy, and large surface stress gra-
dients were shown to be the main factors describing LSP-induced
residual stress fields. Future prospects should consider materials
with small grains to improve experimental versus calculation
comparisons.
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