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Abstract

Background: In this article we propose a Space-Time Finite Element Method
(STFEM) for the resolution of mechanical problems involving three dimensions in
space and one in time. A special attention will be paid with the non separation of
the space and time variables because this kind of interpolation is well-suited to
mesh adaptation.

Methods: For that purpose, we have developed a technique of 4D mesh
generation adapted to space-time remeshing. A difficulty arose in the
representation of 4D finite elements and meshes. This original technique does not
require coarse-to-fine and fine-to-coarse mesh-to-mesh transfer operators and
does not increase the size of the linear systems to be solved, compared to
traditional finite element methods. Space-time meshes are composed of simplex
finite elements. Computations are carried out in the context of the continuous
Galerkin method.

Results: We have tested the method on a linearised elastodynamics problem.
Our technique of mesh adaptation was validated on elementary examples and
applied to a problem of mobile loading. The convergence and stability of the
method is studied and compared with existing methods.

Conclusion: This work is a first implementation of 4D space-time remeshing. A
stability criteria for the method is established, as well as a convergence rate of
about 2. Using simplex elements it is possible to develop a technique of mesh
adaptation able to follow a mobile loading zone.

Keywords: Finite Elements; Space-Time; elastodynamics; mesh adaptation

1 Background
The STFEM (Space-Time Finite Element Method) can be regarded as an extension

of the classical finite element method, applied to a boundary problem resulting

from a non-stationary problem. Currently, several approaches exist. One can quote

for example the Large Time INcrement method (LATIN [19]), the Discontinuous

Galerkin method [12, 13, 18], and our method which is a Continuous Galerkin

method. In most publications on the Discontinue Galerkin method, like in [6], the

interpolation functions are assumed to be a product of functions of space variables

and functions of time variables. We will see in this paper that special attention will

be paid with the non separation of the space and time variables. The reason for

this choice is not motivated by the accuracy of the numerical results, but rather

by what constitutes the aim of our study: remeshing. We will see that this kind of
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interpolation is well-suited to mesh adaptation. The space-time mesh adaptation

we developed is based on a method of mesh generation not structured in space and

time. The construction of 4D meshes collides with the limits of representation. To

overcome this difficulty, we propose an automatic method of construction inspired by

what can be achieved in 2D and 3D. Our technique of mesh adaptation was applied

to a problem of mobile load like contact forces. Our approach makes possible the

building of an evolutionary mesh able to follow the clamping zone.

Moreover, this technique does not require a mesh-to-mesh transfer operator and

allows the preservation of the exact sizes of the linear systems on each space-time

slab.

Let us note that one of the drawbacks of the STFEM such as defined in the works

of [4] and [15] is the size of the linear systems to be solved. The use of a laminated

mesh does not allow us to assemble the total matrix of the problem, but only the

submatrices. This drastically reduces the size of the systems to be solved. The size

of these linear systems is exactly the same as that obtained in the case of approaches

coupling an incremental method of finite differences type to solve time integration,

with the ”classic” finite element method being used to solve the space problem.

Another large group of methods is based on semi-discretisation, whereby finite

elements are used in space and finite differences are used in time. Even if this well-

known technique is simpler to use in a classical framework, the remeshing required

is expensive due to the necessity of the construction of interpolation/restriction

operators between the grids.

The paper is organised as follows. In section 2, the elastodynamics problem is

formulated and the space-time finite element method is developed. The 4D mesh

generation is presented in section 3, and a paragraph is specially devoted to adaptive

mesh refinement. Numerical results are presented and discussed in section 4.

2 Principle of the method
We consider the motion of an elastic body within the small perturbations. Let Ω be

the set taken up by the body and [0, T ] a time interval. The body is under volume

force density fd, boundary force density Fd on its boundary part ∂1Ω and imposed

displacements ud on its boundary part ∂0Ω (∂Ω = ∂0Ω∪ ∂1Ω, ∂0Ω∩ ∂1Ω = ∅). The

dynamic problem is: Seek the displacement u and the Cauchy stress tensor σ such

that 

div(σ(x, t)) + fd(x, t) = ρü(x, t) ∀(x, t) ∈ Ω×]0, T [
σ(x, t)n(x, t) = Fd(x, t) ∀(x, t) ∈ ∂1Ω× [0, T ]
u(x, t) = ud(x, t) ∀(x, t) ∈ ∂0Ω× [0, T ]
u(x, t) = u0(x) ∀(x, t) ∈ Ω× {0}
u̇(x, t) = u̇0(x) ∀(x, t) ∈ Ω× {0}
σ(x, t) = aε(x, t) ∀(x, t) ∈ Ω× [0, T ]

(1)

where ρ is the specific mass, ü is the second derivative of the displacement with

respect to time, u0 is the initial displacement, u̇0 is the initial velocity, a is the

Hooke tensor and ε is the infinitesimal strain tensor. The aim of this study is to use

a finite element method. Then the previous dynamic problem has to be considered

as a boundary problem on the time interval [0, T ]. As in the discontinuous Galerkin

method [11, 12, 17], and the LArge Time INcrement (LATIN) method [16, 19], the
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variational formulation is written on the whole space-time domain Ω × [0, T ]. The

variational formulation of the previous boundary problem can be written as follows:

Find u ∈ Uad such that

∫ T

0

∫
Ω

(ρüv + aε(u) : ε(v)− fdv) dxdt =

∫ T

0

∫
∂1Ω

Fdvdsdt,

∀v ∈ U0
ad

(2)

where Uad is the set of displacements, regular enough, which verifies the boundary

kinematic conditions and the initial conditions, v is the virtual displacement and U0
ad

is the set of virtual displacements, regular enough, which verify boundary kinematic

conditions only .

The first term on the left hand side of the equation (2) is integrated by part in

time in order to determine the first derivative of u and the initial velocity. It gives

∫ T

0

∫
Ω

ρüvdxdt = −
∫ T

0

∫
Ω

ρu̇v̇dxdt

+

∫
Ω

[ρu̇T (x)v(x, T )− ρu̇0(x)v(x, 0)]dx
(3)

where u̇T (x) is the velocity at time t = T .

The space-time finite element method (STFEM) has been proposed in [5, 25].

Their discretisation use structured space-time meshes obtained as the Cartesian

product of spatial elements and a time interval, which is not generally suitable for

space-time mesh adaptations. Since then, numerous papers on STFEM have been

published. Most of them, like [17, 20], deal with the discontinuous Galerkin method

in time, but the discretisation also uses structured meshes obtained as the Cartesian

product of spatial elements and a time interval. However, the STFEM proposed in

[12] has been developed on unstructured meshes. It also employs the discontinuous

Galerkin method in time and incorporates stabilising terms of least squares type.

The space and time discontinuities of all variables are taken into account. In our

study, we use a continuous Galerkin method. Classical Lagrange polynomials are

used. The finite elements are isoparametrics. On a space-time finite element Ee

(figure 1) the displacement verifies

u(x, t) =

ne∑
i=1

ϕei (x, t)u
e
i (4)

where ne is the total number of nodes for the element Ee, ϕ
e
i are the interpolation

functions and uei the nodal displacements. Using a matricial notation, one has

u(x, t) = Ne(x, t)Ue where Ue = (ue1, ..., u
e
ne

)T (5)

The same interpolation is used for the virtual displacement v. Then

v(x, t) = Ne(x, t)Ve where Ve = (ve1, ..., v
e
ne

)T (6)



Jourdan et al. Page 4 of 13

Let p be the total number of space-time elements, thus the previous discretisation

gives

∫ T

0

∫
Ω

ρu̇v̇dxdt =

p∑
e=1

V Te MeUe (7)

where

Me =

∫ ∫
Ee

ρ
∂NT

e

∂t

∂Ne
∂t

dxdt (8)

is the elementary matrix relative to the inertia forces. One can notice that Me is

symmetric. Concerning the discretisation of the initial and final impulses contribu-

tions, one has

∫
Ω

[ρu̇T (x)v(x, T )− ρu̇0(x)v(x, 0)]dx =

p∑
e=1

V Te Λe (9)

where Λe is the elementary vector relative to the initial and final impulses. It is

defined by

Λe = [

∫
Ee

⋂
ΩT

ρNT
e u̇T dx−

∫
Ee

⋂
Ω0

ρu̇0dx] (10)

where Ω0 is the domain at time t = 0 and ΩT is the domain at time t = T .

Similarly, let Be be the matrix such that

ε(u(x, t)) = Be(x, t)Ue , (11)

the virtual works of internal and external forces are respectively discretised by

∫ T

0

∫
Ω

aε(u) : ε(v)dxdt =

p∑
e=1

V Te KeUe (12)

and

∫ T

0

∫
Ω

fdvdxdt+

∫ T

0

∫
∂1Ω

Fdvdsdt =

p∑
e=1

V Te Fe (13)

where the elementary matrix Ke relative to internal forces is

Ke =

∫ ∫
Ee

BTe aBedxdt (14)

and the elementary vector Fe relative to external forces is

Fe =

∫ ∫
Ee

NT
e fddxdt+

∫ ∫
Ee

⋂
∂1Ω

NT
e Fddsdt. (15)
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This space-time discretisation leads to the following linear system:

([M̃u] + [K̃u]){U} = {Fu}+ {Λ} (16)

where [M̃u] is the assembled matrix relative to the inertia forces, [K̃u] is the as-

sembled matrix relative to the internal forces, {Fu} is the nodal vector of external

forces, Λ is the nodal vector of impulses and {U} is the nodal vector of displace-

ments. One can note that the matrices [M̃u] and [K̃u] are symmetric. In order to

have band matrices, and because we have in mind making computations incremen-

tally in time, the meshes are built to be stratified in time, as in figure 2. Moreover,

the node numbering is conduced in such a way that all nodes in a same stratum

have close numbers, then the left-hand side of the system (16) verifies

([M̃u] + [K̃u]){U} = [T ]{U} =


[T11] [T12] 0 0 0 0
[T21] [T22] [T23] 0 0 0

0 [T32] [T33] [T34] 0 0
. . . . . .
0 0 0 [Tn/n−1] [Tn/n] [Tn/n+1]
0 0 0 0 [Tn+1/n] [Tn+1/n+1]




{U0}
{U1}

.

.

.
{Un}

 .

Using the space-time mesh described in figure 2, one has

{U0} =


u1

u2

u3

u4

 , {U1} =


u5

u6

u7

u8

 et {U2} =


u9

u10

u11

u12

 .

With this numbering, the total matrix [T ] and the sub-matrices [Tij ] are band

matrices.

Comments:

— Choosing a Lagrange interpolation for displacements implies that displacements

are continuous, but the velocities are discontinuous. As a consequence, integration

by parts as in (3) is not precise enough and it is necessary to use the discontinuous

Galerkin, which amounts to writing the derivative of velocity within the theory of

distributions. We will preserve the formulation in (3), knowing that the error here is

of the same order as in the case of traditional finite elements in space. Indeed, with

a Lagrange interpolation local displacements are continuous, whereas the global

deformation is discontinuous.

— The advantage of using a laminated mesh such as defined here is that it becomes

possible, rather than assembling the total matrix [T ], to only assemble the sub-

matrices [Tij ]. This considerably reduces the size of the systems to be solved. In

fact, the size of these linear systems is exactly the same as that obtained in the case

of approaches based on the coupling of finite incremental differences in time with

finite elements in space.

— We specify that the nodal vector relating the boundary conditions with velocity

{Λ} is written as

{Λ} = ({Λ0}, 0, ..., 0, {Λn})T
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where {Λ0} is given starting from conditions of initial velocity while {Λn} is un-

known. Consequently, the resolution of system (16) is the following:

The first system of equations,

[T11]{U0}+ [T12]{U1} = {F0}+ {Λ0} (17)

provides {U1}, the systems of equations

[Ti/i−1]{Ui−2}+ [Ti/i]{Ui−1}+ [Ti/i+1]{Ui} = {Fi−1} 2 ≤ i ≤ n , (18)

provides the displacements {Ui} and the last system of equations,

[Tn+1/n]{Un−1}+ [Tn+1/n+1]{Un} = {Fn}+ {Λn} , (19)

gives {Λn}.
— Finally, the matrices of resolution [Ti/i+1] are generally a non-symmetric, even

if the total matrix [T ] is symmetric. Thus, for the algorithm presented above, non-

symmetrical solver should be used. This can appear penalising in terms of computing

time. However, since the final objective is to use this approach to deal with problems

of contact with friction, and since the nonlinear resolution we developed in [2] is of

the Gauss Seidel nonlinear type, asymmetries do not affect computing time.

3 4D mesh and remeshing

In order to be able to propose a remeshing technique it is necessary to be able to

build 4D meshes. Obtaining only one 4D finite element does not pose real problems,

except for some difficulties in graphic representation (see figure 3). On the other

hand, building a 4D mesh, even the most elementary, is far from being commonplace,

except in the case of regular meshes formed by finite elements of multiplexing type

(functions of interpolation obtained as the products of functions of space by func-

tions of time). But in the general case, and in particular the problem of remeshing

which is what of interest here, the meshing remains an issue.

3.1 4D mesh generation

Figure 3 identifies parts of elementary 2D, 3D and 4D meshes with their node

numbering. One denotes by n0 the total number of nodes at time t = 0 of the entire

space mesh, and we assume this total number is the same at time t = h.

For the 2D mesh, the connectivities are

i, j, n0 + i

j, n0 + i, n0 + j.
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For the 3D mesh, the connectivities are

i, j, k, n0 + i

j, k, n0 + i, n0 + j

k, n0 + i, n0 + j, n0 + k.

Using the previous building of connectivities, obtained by circular permutations, we

propose the following generalisation of connectivities for the 4D mesh.

i, j, k, l, n0 + i

j, k, l, n0 + i, n0 + j

k, l, n0 + i, n0 + j, n0 + k

l, n0 + i, n0 + j, n0 + k, n0 + l.

This 4D mesh is constituted by 4 hypertetrahedrons[1]. We propose to build 4D

space-time meshes, resulting from unspecified 3D space meshes, by applying the

building technique, developed above, for each 3D finite element of the 3D space

mesh. But in this case it must be checked that the total space-time volume is

covered by the 4D mesh. For this purpose we computed the sum of the volumes

of the hypertetrahedrons of the 4D mesh and compared it with the total volume

generated by the 3D object multiplied by the time interval.

For a 3D mesh made up of tetrahedrons, the interfaces between the elements

are triangles. In 4D these interfaces are tetrahedrons (see diagram at the bottom

of figure 4). So we must thus check that for our technique of mesh generation all

couples of adjoining 4D finite elements have a common tetrahedron. As we use a

building technique containing circular permutations, it is necessary to respect a

particular order in the numbering of the nodes of each 3D finite element. A way of

doing this is to arrange the nodes of each element 3D in the ascending order. Table

1 gives an example of a table of connectivities for an elementary 4D mesh, resulting

from the 3D space mesh represented by the left-hand diagram of figure 4. Let us

note that this 4D mesh contains 8 finite elements, against 2 for the 3D mesh source

and that n0 = 5. It is observed that the connectivities are arranged in ascending

order. In this case, it is checked that the tetrahedra filling the space-time interface

(diagram at the bottom of figure 4) are common to the adjoining elements. Indeed,

elements 1 and 5 contain the tetrahedron (1; 2; 4; 6), elements 2 and 6 contain the

tetrahedron (2; 4; 6; 7). Lastly, elements 4 and 7 contain the tetrahedron (4; 6; 7;

9).

3.2 Remeshing technique

In this paragraph we present our technique of space-time mesh adaptations. In the

literature, many articles on mesh adaptations, [7], [9], [12, 13], [23, 24], [8], [10]

and [22], can be found. Among these papers a large number deals with space-time

mesh adaptations. They use the discontinuous Galerkin method. In the majority,

the approach is incremental, i.e. remeshing is carried out at given steps of times.

Generally the values of the unknown of the new mesh are obtained by approxima-

tion or interpolation from those of the old mesh, which we will call ”mesh-to-mesh

[1]The hypertetrahedron is the four-dimensional tetrahedron. Other names are sim-

plex or pentatope.
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transfer”. Moreover, the interpolation used is of a multiplexing type; the function

of interpolation is defined by the product of a function of space by a function of

time.

In article [3] we proposed an incremental technique for mesh adaptation which

does not require mesh-to-mesh transfer. It was coupled with problems of rubbing

contact (see [2]). In addition, we developed a nonincremental technique of mesh

adaptation, based on non-structured space-times meshes.

Some teams have already worked on this problem. One can quote the works of

Hugues and Hulbert [12, 13], Tezduyar et al. [23, 24], Idesman et al. [14, 15]. They

use the continuous or discontinuous Galerkin method. In these approaches, calcula-

tions are carried out on the whole space-time domain Ω× [0, T ]. Thus for a field Ω

of dimension d and a total number N of nodes of the space-time mesh, the dimen-

sion of the linear problem to be solved is d×N , which quickly becomes large when

d = 2 or d = 3. A solution to decrease the computational time is to use parallel

computations. This is the option chosen in [15] and [4].

In the context of the continuous Galerkin method, we suggested, in [1] and [3], a

nonincremental solution, which substitutes the concept of step of time by that of a

“space-time front”. Erickson et al. [8] have also proposed an advancing-front mesh

generation, in the context of the discontinuous Galerkin method. This technique was

successfully used by Miller et al. [21] in their multi-field space-time discontinuous

Galerkin method, for d = 1 and 2 in linearised elastodynamics applications. The

advantage of this frontal resolution is that it decreases the size of the linear systems

to be solved. Due to technical difficulties, the frontal resolution in the case of d = 3

has not yet been implemented. Nevertheless, we propose a particular incremental

remeshing technique based on the construction of 4D space-time meshes that are

able to follow an evolutionary loaded zone. This technique of mesh generation uses

simplex finite elements. Figure 5 gives an illustration of the technique. The princi-

ple is to maintain the same number of nodes during the simulation, but to locate

a sufficiently large number of them under the loaded area. In this particular case

it is possible to preserve the matrices Ti/i−1, Ti/i, Ti/i+1 identical for all i, which

involves a reduction of the computational time. An example of mechanical applica-

tion is provided in the following paragraph. This technique is aimed at application

in simulating problems of wear between two bodies in contact.

4 Numerical analysis
Our space-time finite elements method was programmed using MATLAB software

and was validated on elementary examples.

4.1 Stability

Preliminary results on the stability of the method have been established in [3] and

compared with the Newmark integration scheme. Here we resume the main results.

Let δ and θ be the parameters of the Newmark integration scheme, they verify

 {U̇i+1} = {U̇i}+ ∆t
[
(1− δ) {Üi}+ δ{Üi+1}

]
{Ui+1 = {Ui}+ ∆t{U̇i}+ ∆t2

[(
1
2 − θ

)
{Üi}+ θ{Üi+1}

]
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where ∆t is the time step of integration, {U̇i+1} and {Üi+1} are respectively the

assembled vector of nodal velocities and accelerations at time (i+1)∆t. We showed

in [3] that:

- for 1D space-time elastodynamic applications, the use of the STFEM method

with linear simplex elements is similar to the use of the implicit Newmark integration

scheme with δ = 1/2 and θ = 1/3. The method is then stable for all time step values.

- for 2D space-time elastodynamic applications, the use of the STFEM method

with linear simplex elements is similar to the use of the explicit Newmark integration

scheme with δ = 1/2 and θ = 0. The method is then stable under conditions on the

time step.

- for higher dimensions (3D and 4D) no direct relationship between the STFEM

and the Newmark method has been established. But we noted that our method

required a very fine space-time slabs ”small time step of discretization”, of the

same order as explicit methods of integration.

- Furthermore, the use of the STFEM method with multiplex elements is similar

to the use of the implicit Newmark integration scheme with δ = 1/2 and θ = 1/3, for

1D, 2D, 3D and 4D space-time applications. In this case, the change in space-time

dimension do not affect the method.

In the present study a specific numerical investigation has been carried out to

estimate the conditions of stability for the STFEM method with linear simplex

elements for 4D space-time elastodynamic applications. The stability was tested on

a beam of length L = 0.1 m and square section of 0.01×0.01 m2 (see figure 6). The

Young modulus E was equal to 1,000 Pa, the Poisson’s ratio ν was equal to 0.3 and

the density ρ was equal to 680 kg/m3.

We built boundaries conditions in order to respect the following analytic solution:

u(x, t) = cos(
πx1

L
) cos(

πct

L
)e1 (20)

where c is the velocity of the wave propagation. On faces (1) and (2) null Neuw-

man conditions were imposed. On the other 4 faces (Σc) Dirichlet conditions were

imposed in order to satisfy the analytic solution (20). The volume external force

density fd was assumed to be null, but for that, the wave velocity c must verifies

c =

√
E

ρ(1 + ν)
(1 +

ν

ρ(1− 2ν)
)

Results plotted in figure 7 give the dependence of the time discretisation (size of

the space-time slab) ∆t to the average size h of the 3D finite elements, to ensure

the stability of the method.

Linear fitting suggests that the stability criteria is

∆t ≤ αh

with α ' 1/2c. Indeed, in our example c = 1.407 m/s.



Jourdan et al. Page 10 of 13

4.2 Convergence

In the case of simplex finite elements, the convergence is like the Newmark scheme,

for 1D, and 2D. For the convergence analysis of the STEFEM in 4D, we used the

previous example. The time discretisation ∆t is scaled with respect to h. It is de-

duced from the stability criteria obtained in the previous paragraph. We computed

the maximum error over space at the last time step between the analytic solution

and the numerical solution for each mesh size h. Theesults are plotted in figure 8.

We can note that the convergence rate for the method is of about 2.

5 Numerical results on mesh adaptation

To illustrate our technique of mesh adaptation we consider the example of a brake

disc subjected to the clamping of a plate on one of its faces (see source model

with coarse mesh in figure 9) and blocked on the opposite face. The disc is made

of steel with a Young’s modulus equal to 210,000 MPa, a Poisson’s ratio equal to

0.3 and a density equal to 7,800 kg/m3. The internal radius of the disc is equal to

40 mm, its external radius is equal to 100 mm and its thickness is 10 mm. Two

3D initial meshes have been tested: a coarse mesh which contains 634 nodes and

1,752 elements, and a fine mesh which contains 6,476 nodes and 25,856 elements

(see figure 13).

The clamping area is modeled by a constant pressure of 100 MPa. This area is

moved along the circumference of the disc with a rotational speed equal to that of

the propagating wave V = 1
2πR

√
E
ρ , where R = 70 mm is the average radius of the

disc. We built an incremental 4D space-time mesh, which preserves the 3D mesh

at each time step, by imposing an axial rotation to keep the finest zone of the 3D

mesh under the loading area. An illustration is shown schematically in figure 5.

The results of the calculations presented were obtained for space-times slabs of

10−7s (this is equivalent to using a time step equal to 10−7s). The vertical displace-

ments obtained with fine and coarse meshes have been compared for points located

on a circle of control, of radius R (see figure 10).

Numerical values are gathered in figure 11 for the results at time t = 2.10−5s and

in figure 12 for the results at time t = 2.10−5s . Each check point is defined by its

angle, in polar coordinates.

Numerical comparisons show that the coarse and fine meshes give similar results

in the clamping zone. But apart from this zone, the results are somewhat different.

Let us note that nodal displacements cannot be identical because dynamic effects

depend on the fineness of the mesh.

Figures 13 and 14 show the norm of incremental displacements at time t = 2.10−5s

and t = 4.10−5s for the coarse and the fine mesh respectively. For the coarse mesh,

we can observe that the refined zone really remains under the zone of clamping.

The distribution of the norm of node displacements is similar for the two positions

of the load. It is important to note that they are incremental displacements and not

total displacements.

Finally, it must be noted that computational time is 6.6 times faster using the

coarse mesh.
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6 Conclusion
The method we have presented for space-time mesh generation for 4D domains,

using simplex elements, made it possible to develop a technique of mesh adaptation

able to follow a mobile loading zone. This original technique has been carried out to

ensure a minimal computational time and does not require coarse-to-fine and fine-

to-coarse mesh transfer operators. The convergence and stability of the method

were studied and compared with existing methods. This approach opens the way to

4D remeshing. It allows, thanks to simplex elements, remeshing in both space and

in time. Conceptually this is not a new idea, but this work is a first implementation

of 4D space-time remeshing.

However, to demonstrate the entire capacities of this method, it is necessary to

go much further in the mechanical applications and to propose a technique of 4D

mesh adaptation using the frontal approach, as presented in articles [2] and [3] or

in [8] and [21].
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Figures

Figure 1 2D space-time finite element

Figure 2 2D regular space-time mesh

Figure 3 2D, 3D and 4D space-time mesh

Figure 4 3D initial mesh (scheme at the top); part of the 4D mesh generated by the triangle
(1;2;4) common to the two finite elements of the 3D initial mesh (scheme at the bottom)

Figure 5 Space-time mesh generation by rotation of the loaded area. The loaded area is
represented by arrows

[height=6cm]Maillage-poutre.pdf

Figure 6 Geometry and 3D mesh of a beam with h = 6.6 10−3m

Figure 7 Time step discretisation size ∆t necessary for stability versus average size h of the 3D
finite elements

Figure 8 Maximum error over the space, at the last time step, between the analytic solution and
the numerical solution for each mesh size h, in logarithmic scale
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Figure 9 3D initial coarse mesh: Mesh is finer under the clamping zone

Figure 10 Location zone of checked displacements: circle of radius equal to 70 mm

Figure 11 Comparison of vertical displacements for points situated on the circle of control,
expressed in mm, at time t = 2.10−5s. Each check point is defined by its angular coordinate,
expressed in radian.

Figure 12 Comparison of vertical displacements for points situated on the circle of control,
expressed in mm, at time t = 4.10−5s. Each check point is defined by its angular coordinate,
expressed in radian.

Figure 13 Isovalues of the norm of nodal displacements, expressed in mm, at t = 2.10−5s for the
coarse mesh (image at the top) and for the fine mesh (image at the bottom)

Figure 14 Isovalues of the norm of nodal displacements, expressed in mm, at t = 4.10−5s for the
coarse mesh (image on the top) and for the fine mesh (image on the bottom)

Table 1 Table of connectivities of the 4D space-time mesh resulting from the elementary 3D space
mesh of figure 4

Element number Node 1 Node 2 Node 3 Node 4 Node 5
1 1 2 3 4 6
2 2 3 4 6 7
3 3 4 6 7 8
4 4 6 7 8 9

5 1 2 4 5 6
6 2 4 5 6 7
7 4 5 6 7 9
8 5 6 7 9 10

Tables
Additional Files
Additional file 1 — Figure 1

Additional file 2 — Figure 2

Additional file 3 — Figure 3

Additional file 4 — Figure 4

Additional file 5 — Figure 5

Additional file 6 — Figure 6

Additional file 7 — Figure 7

Additional file 8 — Figure 8

Additional file 9 — Figure 9

Additional file 10 — Figure 10

Additional file 11 — Figure 11

Additional file 12 — Figure 12

Additional file 13 — Figure 13

Additional file 14 — Figure 14
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