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Abstract: In this article, a Space-Time Finite Element Method (STFEM) is proposed for the resolution
of mechanical problems involving three dimensions in space and one in time. Special attention will
be paid to the non-separation of the space and time variables because this kind of interpolation is well
suited to mesh adaptation. For that purpose, we have developed a technique of 4D mesh generation
adapted to space-time remeshing. A difficulty arose in the representation of 4D finite elements and
meshes. This original technique does not require coarse-to-fine and fine-to-coarse mesh-to-mesh
transfer operators and does not increase the size of the linear systems to be solved, compared to
traditional finite element methods. Space-time meshes are composed of simplex finite elements.
Computations are carried out in the context of the continuous Galerkin method. We have tested the
method on a linearized elastodynamics problem. Our technique of mesh adaptation was validated on
elementary examples and applied to a problem of mobile loading. The convergence and stability of
the method are studied and compared with existing methods. This work is a first implementation of
4D space-time remeshing. A stability criterion for the method is established, as well as a convergence
rate of about two. Using simplex elements, it is possible to develop a technique of mesh adaptation
able to follow a mobile loading zone.

Keywords: finite elements; space-time; elastodynamics; mesh adaptation

1. Introduction

The STFEM (Space-Time Finite Element Method) can be regarded as an extension of the classical
finite element method, applied to a boundary problem resulting from a non-stationary problem.
Currently, several approaches exist. One can quote for example the Large Time INcrement method
(LATIN [1]), the discontinuous Galerkin method [2–4] and our method, which is a continuous Galerkin
method [5,6]. In most publications on the discontinuous Galerkin method, like in [7], the interpolation
functions are assumed to be a product of functions of space variables and functions of time variables.
We will see in this paper that special attention will be paid to the non-separation of the space and time
variables. The reason for this choice is not motivated by the accuracy of the numerical results, but rather
by what constitutes the aim of our study: remeshing. We will see that this kind of interpolation is well
suited to mesh adaptation. The space-time mesh adaptation we developed is based on a method of
mesh generation not structured in space and time. The construction of 4D meshes collides with the
limits of representation. To overcome this difficulty, we propose an automatic method of construction
inspired by what can be achieved in 2D and 3D. Our technique of mesh adaptation was applied
to a problem of mobile load like contact forces. Our approach makes possible the building of an
evolutionary mesh able to follow the clamping zone.
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Moreover, this technique does not require a mesh-to-mesh transfer operator and allows the
preservation of the exact sizes of the linear systems on each space-time slab.

Let us note that one of the drawbacks of the STFEM such as defined in the works of [8,9] is
the size of the linear systems to be solved, since it is necessary to solve the full 4D problem at once.
The use of a laminated mesh allows us to avoid the assembling of the total matrix of the problem
and permits us to consider only submatrices. This drastically reduces the size of the systems to be
solved. The size of these linear systems is exactly the same as that obtained in the case of approaches
coupling an incremental method of finite differences type to solve time integration, with the “classical”
finite element method being used to solve the space problem.

Another large group of methods is based on semi-discretisation, whereby finite elements are used
in space and finite differences are used in time. Even if this well-known technique is simpler to use in
a classical framework, the remeshing required is expensive due to the necessity of the construction of
interpolation/restriction operators between the grids.

The paper is organized as follows. In Section 2, the elastodynamics problem is formulated, and
the space-time finite element method is developed. The 4D mesh generation is presented in Section 3,
and a paragraph is specially devoted to adaptive mesh refinement. Numerical results are presented
and discussed in Section 4.

2. Principle of the Method

We consider the motion of an elastic body within the small perturbations hypothesis. Let Ω be the
set taken up by the body and [0, T] a time interval. The body is submitted to volume force density fd,
boundary force density Fd on its boundary part ∂1Ω and imposed displacements ud on its boundary
part ∂0Ω (∂Ω = ∂0Ω ∪ ∂1Ω, ∂0Ω ∩ ∂1Ω = ∅). The dynamic problem is: seek the displacement u and
the Cauchy stress tensor σ such that:





div(σ(x, t)) + fd(x, t) = ρü(x, t) ∀(x, t) ∈ Ω×]0, T[
σ(x, t)n(x, t) = Fd(x, t) ∀(x, t) ∈ ∂1Ω× [0, T]
u(x, t) = ud(x, t) ∀(x, t) ∈ ∂0Ω× [0, T]
u(x, t) = u0(x) ∀(x, t) ∈ Ω× {0}
u̇(x, t) = u̇0(x) ∀(x, t) ∈ Ω× {0}
σ(x, t) = aε(x, t) ∀(x, t) ∈ Ω× [0, T]

(1)

where ρ is the specific mass, ü is the second derivative of the displacement with respect to time, u0 is the
initial displacement, u̇0 is the initial velocity, a is the Hooke tensor and ε is the infinitesimal linear strain
tensor. The aim of this study is to use a finite element method. Then, the previous dynamic problem
has to be considered as a boundary problem on the time interval [0, T]. For that purpose, as in the cases
of the discontinuous Galerkin method [2,10,11] and the LArge Time INcrement (LATIN) method [1,12],
the variational formulation is written on the whole space-time domain Ω× [0, T]. The variational
formulation of the previous boundary problem can be written as follows:

Find u ∈ Uad such that:

∫ T

0

∫

Ω
(ρüv + aε(u) : ε(v)− fdv) dxdt =

∫ T

0

∫

∂1Ω
Fdvdsdt,

∀v ∈ U0
ad

(2)

where Uad is the set of displacements, regular enough, which verifies the boundary kinematic
conditions and the initial conditions, v is the virtual displacement and U0

ad is the set of virtual
displacements, regular enough, which verify boundary kinematic conditions only.
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The first term on the left-hand side of Equation (2) is integrated by parts in time in order to
determine the first derivative of u and the initial velocity. It gives:

∫ T

0

∫

Ω
ρüvdxdt = −

∫ T

0

∫

Ω
ρu̇v̇dxdt

+
∫

Ω
[ρu̇T(x)v(x, T)− ρu̇0(x)v(x, 0)]dx

(3)

where u̇T(x) is the velocity at time t = T.
The space-time finite element method (STFEM) was firstly proposed in [5,6]. Their discretisation

used structured space-time meshes obtained as the Cartesian product of spatial elements and a time
interval, which is not generally suitable for space-time mesh adaptations. Since then, numerous papers
on STFEM have been published. Most of them, like [11,13], deal with the discontinuous Galerkin
method in time, but the discretisation also uses structured meshes obtained as the Cartesian product
of spatial elements and a time interval. However, the STFEM proposed in [2] has been developed on
unstructured meshes. It also employs the discontinuous Galerkin method in time and incorporates
stabilizing terms of the least squares type. The space and time discontinuities of all variables are taken
into account. In our study, we use a continuous Galerkin method. Classical Lagrange polynomials
are used. The finite elements are isoparametric. On a space-time finite element Ee (Figure 1), the
displacement verifies:

u(x, t) =
ne

∑
i=1

ϕe
i (x, t)ue

i (4)

where ne is the total number of nodes of the element Ee, ϕe
i are the interpolation functions and ue

i the
nodal displacements. Using matrix notation, one has:

u(x, t) = Ne(x, t)Ue where Ue = (ue
1, ..., ue

ne)
T and Ne(x, t) = (ϕe

1(x, t), ..., ϕe
ne(x, t)) (5)
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The same interpolation is used for the virtual displacement v. Then

v(x, t) = Ne(x, t)Ve where Ve = (ve
1, ..., ve

ne)
T (6)

Let p be the total number of space-time elements, the previous discretization gives

∫ T

0

∫

Ω
ρu̇v̇dxdt =

p

∑
e=1

VT
e MeUe (7)

where

Me =
∫ T

0

∫

Ee
ρ

∂NT
e

∂t
∂Ne

∂t
dxdt (8)

is the elementary matrix relative to the inertia forces. One can notice that Me is symmetric. Concerning
the discretization of the initial and final impulses contributions, one has

∫

Ω
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p

∑
e=1

VT
e Λe (9)
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The same interpolation is used for the virtual displacement v. Then:

v(x, t) = Ne(x, t)Ve where Ve = (ve
1, ..., ve

ne)
T (6)

Let p be the total number of space-time elements; the previous discretization gives:

∫ T

0

∫

Ω
ρu̇v̇dxdt =

p

∑
e=1

VT
e MeUe (7)
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where:

Me =
∫ T

0

∫

Ee
ρ

∂NT
e

∂t
∂Ne

∂t
dxdt (8)

is the elementary matrix relative to the inertia forces. One can notice that Me is symmetric. Concerning
the discretization of the initial and final impulses’ contributions, one has:

∫

Ω
[ρu̇T(x)v(x, T)− ρu̇0(x)v(x, 0)]dx =

p

∑
e=1

VT
e Λe (9)

where Λe is the elementary vector relative to the initial and final impulses. It is defined by:

Λe = [
∫

Ee
⋂

ΩT

ρNT
e u̇Tdx−

∫

Ee
⋂

Ω0

ρu̇0dx] (10)

where Ω0 is the domain at time t = 0 and ΩT is the domain at time t = T.
Similarly, let Be be the matrix such that:

ε(u(x, t)) = Be(x, t)Ue , (11)

the virtual works of internal and external forces are respectively discretized by:

∫ T

0

∫

Ω
aε(u) : ε(v)dxdt =

p

∑
e=1

VT
e KeUe (12)

and: ∫ T

0

∫

Ω
fdvdxdt +

∫ T

0

∫

∂1Ω
Fdvdsdt =

p

∑
e=1

VT
e Fe (13)

where the elementary matrix Ke relative to internal forces is:

Ke =
∫ T

0

∫

Ee
BT

e aBedxdt (14)

and the elementary vector Fe relative to external forces is:

Fe =
∫ T

0

∫

Ee
NT

e fddxdt +
∫ T

0

∫

Ee
⋂

∂1Ω
NT

e Fddsdt. (15)

This space-time discretization leads to the following linear system:

([M̃u] + [K̃u]){U} = {Fu}+ {Λ} (16)

where [M̃u] is the assembled matrix relative to the inertia forces, [K̃u] is the assembled matrix relative
to the internal forces, {Fu} is the nodal vector of external forces, Λ is the nodal vector of impulses and
{U} is the nodal vector of displacements. One can note that the matrices [M̃u] and [K̃u] are symmetric.
In order to have band matrices, and because we have in mind making computations incrementally
in time, the meshes are built to be stratified in time, as in Figure 2. Moreover, the node numbering is
conducted in such a way that all nodes in a same stratum have close numbers, then the left-hand side
of the system (16) verifies.
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([M̃u] + [K̃u]){U} = [T]{U} =



[T11] [T12] 0 0 0 0
[T21] [T22] [T23] 0 0 0

0 [T32] [T33] [T34] 0 0
. . . . . .
0 0 0 [Tn/n−1] [Tn/n] [Tn/n+1]

0 0 0 0 [Tn+1/n] [Tn+1/n+1]







{U0}
{U1}

.

.

.
{Un}




.

Using the space-time mesh described in Figure 2, one has:

{Uj} =




uj+1
uj+2
uj+3
uj+4


 for j = 0, ..., n.

With this numbering, the total matrix [T] and the sub-matrices [Tij] are band matrices.

Comments:

• Choosing a Lagrange interpolation for displacements implies that displacements are continuous,
but the velocities are discontinuous. As a consequence, integration by parts as in (3) is not totally
rigorous, and it could be necessary to use the discontinuous Galerkin formulation, which amounts
to writing the derivative of velocity within the theory of distributions. We will preserve the
formulation in (3), knowing that the error here is of the same order as in the case of traditional
finite elements in space. Indeed, with a Lagrange interpolation local displacements are continuous,
whereas the global deformation is discontinuous.

• Even if it is not absolutely necessary, the advantage of using a laminated mesh such as defined
here is that it becomes possible, rather than assembling the total matrix [T], to only assemble the
sub-matrices [Tij]. This considerably reduces the size of the systems to be solved. More precisely,
the size of these linear systems is exactly the same as that obtained in the case of approaches based
on the coupling of finite incremental differences in time with finite elements in space. Moreover,
the method is not limited to simplex elements, and the spatial position of each set of nodes can
vary from one time plane to the other. It is one of the main advantages of the method.
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• We specify that the nodal vector relating the boundary conditions with velocity {Λ} is written as:

{Λ} = ({Λ0}, 0, ..., 0, {Λn})T

where {Λ0} is given starting from conditions of initial velocity while {Λn} is unknown.
Consequently, the resolution of System (16) is the following:

The first system of equations,

[T11]{U0}+ [T12]{U1} = {F0}+ {Λ0} (17)

provides {U1}; the system of equations:

[Ti/i−1]{Ui−2}+ [Ti/i]{Ui−1}+ [Ti/i+1]{Ui} = {Fi−1} 2 ≤ i ≤ n , (18)

provides the displacements {Ui}; and the last system of equations,

[Tn+1/n]{Un−1}+ [Tn+1/n+1]{Un} = {Fn}+ {Λn} , (19)

gives {Λn}.
• Finally, the matrices of resolution [Ti/i+1] are generally non-symmetric, even if the total matrix

[T] is symmetric. Thus, for the algorithm presented above, a non-symmetrical solver should be
used. This can appear penalizing in terms of computing time. However, since the final objective
is to use this approach to deal with problems of contact with friction and since the nonlinear
resolution we developed in [14] is of the Gauss–Seidel nonlinear type, asymmetries do not affect
computing time.

3. 4D Mesh and Remeshing

In order to propose a remeshing technique, it is firstly necessary to be able to build 4D meshes.
Obtaining only one 4D finite element does not pose real problems, even if some difficulties in graphic
representation arise (see Figure 3). On the contrary, building a 4D mesh, even the most elementary
is far from being commonplace, except in the case of regular meshes formed by finite elements
of multiplexing type (functions of interpolation obtained as the products of functions of space by
functions of time). However, in the general case and in particular with the problem of remeshing,
which is what is of interest here, the meshing remains an issue.

3.1. 4D Mesh Generation

Figure 3 identifies parts of elementary 2D, 3D and 4D meshes with their node numbering.
One denotes by n0 the total number of nodes at time t = 0 of the entire space mesh, and we assume
this total number is the same at time t = h.

For the 2D mesh, the connectivities are
i, j, n0 + i
j, n0 + i, n0 + j.

For the 3D mesh, the connectivities are
i, j, k, n0 + i
j, k, n0 + i, n0 + j
k, n0 + i, n0 + j, n0 + k.

Using the previous building of connectivities, obtained by circular permutations, we propose the
following generalization of connectivities for the 4D mesh.

i, j, k, l, n0 + i
j, k, l, n0 + i, n0 + j
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k, l, n0 + i, n0 + j, n0 + k
l, n0 + i, n0 + j, n0 + k, n0 + l.
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Figure 3. 2D, 3D and 4D space-time mesh.

This 4D mesh is constituted by four hypertetrahedrons (The hypertetrahedron is the
four-dimensional tetrahedron. Other names of this element type are simplex or pentatope). We propose
to build 4D space-time meshes, resulting from unspecified 3D space meshes, by applying the building
technique developed above, for each 3D finite element of the 3D space mesh. However, in this case,
it must be checked that the total space-time volume is covered by the 4D mesh. For this purpose, we
computed the sum of the volumes of the hypertetrahedrons of the 4D mesh and compared it with the
total volume generated by the 3D object multiplied by the time interval.

For a 3D mesh made up of tetrahedrons, the interfaces between the elements are triangles. In 4D,
these interfaces are tetrahedrons (see the diagram at the bottom of Figure 4). Therefore, we must thus
check that for our technique of mesh generation, all couples of adjoining 4D finite elements have a
common tetrahedron. As we use a building technique containing circular permutations, it is necessary
to respect a particular order in the numbering of the nodes of each 3D finite element. A way of doing
this is to arrange the nodes of each 3D element in ascending order. Table 1 gives an example of a table
of connectivities for an elementary 4D mesh, resulting from the 3D space mesh represented by the
left-hand diagram of Figure 4. Let us note that this 4D mesh contains eight finite elements, against
two for the 3D mesh source, and that n0 = 5. It is observed that the connectivities are arranged in
ascending order. In this case, it is checked that the tetrahedra filling the space-time interface (diagram
at the right-hand of Figure 4) are common to the adjoining elements. Indeed, Elements 1 and 5 contain
the tetrahedron (1; 2; 4; 6), and Elements 2 and 6 contain the tetrahedron (2; 4; 6; 7). Lastly, Elements 4
and 7 contain the tetrahedron (4; 6; 7; 9). Let us notice that the tetrahedron (1; 2; 3; 4; 5) at time t and
the related tetrahedron (6; 7; 8; 9; 10) (not represented) at time t + ∆t could also have different shapes
and could be localized at different places (see for example Figure 5). In this case, the triangles (1; 2; 4)
and (6; 7; 9) in the right part of Figure 4 can be different.
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For a 3D mesh made up of tetrahedrons, the interfaces between the elements are triangles. In152

4D these interfaces are tetrahedrons (see diagram at the bottom of figure 4). So we must thus check153

that for our technique of mesh generation all couples of adjoining 4D finite elements have a common154

tetrahedron. As we use a building technique containing circular permutations, it is necessary to respect155

a particular order in the numbering of the nodes of each 3D finite element. A way of doing this is156

to arrange the nodes of each element 3D in the ascending order. Table 1 gives an example of a table157

of connectivities for an elementary 4D mesh, resulting from the 3D space mesh represented by the158
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Figure 4. 3D initial mesh (scheme at the left); part of the 4D mesh generated by the triangle (1;2;4)
common to the two finite elements of the 3D initial mesh (scheme at the right)

3.2. Remeshing technique168

In this paragraph we present our technique of space-time mesh adaptations. In the literature,169

many articles on mesh adaptations, [7], [9], [12,13], [23,24], [8], [10] and [22], can be found. Among170

these papers a large number deals with space-time mesh adaptations. They use the discontinuous171

Galerkin method. In most of them, the approach is incremental, i.e. remeshing is carried out at given172

steps of time. Generally the values of the unknown of the new mesh are obtained by approximation or173

interpolation from those of the old mesh, which we will call "mesh-to-mesh transfer". Moreover, the174

1 The hypertetrahedron is the four-dimensional tetrahedron. Other names of this element type are simplex or pentatope.
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Table 1. Table of connectivities of the 4D space-time mesh resulting from the elementary 3D space
mesh of Figure 4.

Element Number Node 1 Node 2 Node 3 Node 4 Node 5

1 1 2 3 4 6
2 2 3 4 6 7
3 3 4 6 7 8
4 4 6 7 8 9
5 1 2 4 5 6
6 2 4 5 6 7
7 4 5 6 7 9
8 5 6 7 9 10

3.2. Remeshing Technique

In this section, we present our technique of space-time mesh adaptations. In the literature, many
articles on mesh adaptations [2,3,15–21] can be found. Among these papers, a large number deals
with space-time mesh adaptations. They use the discontinuous Galerkin method. In most of them, the
approach is incremental, i.e., remeshing is carried out at given steps of time. Generally, the values of the
unknown of the new mesh are obtained by approximation or interpolation from those of the old mesh,
which we will call “mesh-to-mesh transfer”. Moreover, the interpolation used is of a multiplexing type;
the function of interpolation is defined by the product of a function of space by a function of time.

In [22], we proposed an incremental technique for mesh adaptation, which does not
require mesh-to-mesh transfer. It was coupled with problems of rubbing contact (see [14]).
In addition, we developed a non-incremental technique of mesh adaptation, based on non-structured
space-time meshes.

Some teams have already worked on this problem. One can quote the works of Hugues
and Hulbert [2,3], Tezduyar et al. [20,21] and Idesman et al. [9,23]. They use the continuous or
discontinuous Galerkin method. In these approaches, calculations are carried out on the whole
space-time domain Ω× [0, T]. Thus, for a field Ω of dimension d and a total number N of nodes of the
space-time mesh, the dimension of the linear problem to be solved is d× N, which quickly becomes
large when d = 2 or d = 3. A solution to decrease the computational time is to use parallel computations.
This is the option chosen in [8,9].

In the context of the continuous Galerkin method, we suggested, in [22,24], a non-incremental
solution, which substitutes the concept of a step of time by that of a “space-time front”.
Erickson et al. [16] have also proposed an advancing-front mesh generation, in the context of the
discontinuous Galerkin method. This technique was successfully used by Miller et al. [25] in their
multi-field space-time discontinuous Galerkin method, for d = 1 and 2 in linearized elastodynamics
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applications. The advantage of this frontal resolution is that it decreases the size of the linear systems
to be solved. Due to technical difficulties, the frontal resolution in the case of d = 3 has not yet
been implemented. Nevertheless, we propose a particular incremental remeshing technique based
on the construction of 4D space-time meshes that are able to follow an evolutionary loaded zone.
This technique of mesh generation uses simplex finite elements. Figure 5 gives an illustration of the
technique. The principle is to maintain the same number of nodes during the simulation, but to locate a
sufficiently large number of them under the loaded area. In this particular case, it is possible to preserve
the matrices Ti/i−1, Ti/i, Ti/i+1 identical for all i, which involves a reduction of the computational time.
An example of mechanical application is provided in the following section. This technique is aimed at
applications in simulating problems of wear between two bodies in contact.
Version May 15, 2018 submitted to MDPI 9 of 18
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4. Numerical Analysis

Our space-time finite elements method was programmed using MATLAB software and was
validated on elementary examples.

4.1. Stability

Preliminary results on the stability of the method have been established in [22] and compared
with the Newmark integration scheme. Here, we summarize the main results. Let δ and θ be two real
parameters; the Newmark integration scheme reads:

{
{U̇i+1} = {U̇i}+ ∆t

[
(1− δ) {Üi}+ δ{Üi+1}

]

{Ui+1 = {Ui}+ ∆t{U̇i}+ ∆t2
[(

1
2 − θ

)
{Üi}+ θ{Üi+1}

]

where ∆t is the time step of integration, {U̇i+1} and {Üi+1} are respectively the assembled vector of
nodal velocities and accelerations at time (i + 1)∆t. We showed in [22] that:

• For 1D space-time elastodynamic applications, the use of the STFEM method with linear simplex
elements is similar to the use of the implicit Newmark integration scheme with δ = 1/2 and
θ = 1/3. The method is then unconditionally stable.

• For 2D space-time elastodynamic applications, the use of the STFEM method with linear simplex
elements is similar to the use of the explicit Newmark integration scheme with δ = 1/2 and θ = 0.
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The method is then conditionally stable. Classically, the time step has to verify the CFLcondition:
∆t ≤ minJ

2
ωJ

, where each ωJ is the frequency of a normal mode of vibration.
• For higher dimensions (3D and 4D), no direct relationship between the STFEM and the Newmark

method has been established. Nevertheless, we noted that our method required sufficiently small
space-time slabs, of the same order of the discretization time step necessary with explicit methods
of integration.

• Furthermore, the use of the STFEM method with multiplex elements is similar to the use of
the implicit Newmark integration scheme with δ = 1/2 and θ = 1/3, for 1D, 2D, 3D and 4D
space-time applications. In this case, the method is unconditionally stable.

In the present study, a specific numerical investigation has been carried out to estimate the stability
conditions for the STFEM method with linear simplex elements for 4D space-time elastodynamic
applications. The stability was tested on a beam of length L = 0.1 m and a square section of
0.01 × 0.01 m2 (see Figure 6). The Young modulus E was equal to 1000 Pa; the Poisson’s ratio ν

was equal to 0.3; and the density ρ was equal to 680 kg/m3.
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m2 (see figure 6). The Young modulus E was equal to 1,000 Pa, the Poisson’s ratio ν was equal to 0.3229

and the density ρ was equal to 680 kg/m3.230

L’idée de cette application est de construire un maillage espace-temps qui
suivrait la propagation de l’onde élastique.

Notre méthode de calcul par éléments finis espace-temps 4D a été program-
mée à l’aide du logiciel MATLAB. ‌

Conditions aux limites imposées
‌

– Sur (1) et (2) , on impose des CL de Neumann :
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Par exemple, pour le maillage espace-temps de la figure 2.2, on a
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En utilisant ce type de numérotation, la matrice totale [T ] et les sous-matrices
[Tij ] sont de type bande.‌

2.2. Résultats numériques
‌

Dans ce paragraphe on présente les résultats numériques obtenus pour la
simulation d’une poutre en traction-compression.

On considère le problème d’une poutre admettant un déplacement imposé
à t = 0 en ses extrémités. Son module de Young E est égale à 103 Pa, sa sec-
tion S à 10�4m2, sa masse volumique ⇢ à 680 kg/m et sa longueur L à 0.1 m. ‌

Figure 3. Poutre en traction et maillage à l’aide gmsh

‌

11

Figure 6. Geometry and 3D mesh of a beam with h = 6.6 10−3m

We built boundaries conditions in order to obtain the following analytic solution:

u(x, t) = cos(
πx1

L
) cos(

πct
L

)e1 (20)

where c is the velocity of the wave propagation. On faces (1) and (2) null Neumann conditions were
imposed. On the other 4 faces (Σc) Dirichlet conditions were imposed in order to satisfy the analytic
solution (20). The volume external force density fd was assumed to be vanishing. This impose that the
wave velocity c must verifies

c =

√
E

ρ(1 + ν)
(1 +

ν

ρ(1− 2ν)
)

Results plotted in figure 7 give the dependence of the time discretization (size of the space-time231

slab) ∆t to the average size h of the 3D finite elements, to ensure the stability of the method.232

Linear fitting suggests that the stability criterion is

∆t ≤ αh

with α ' 1/2c. Indeed, in our example c = 1.407 m/s.233

4.2. Convergence234

In the case of simplex finite elements, the convergence with the STFEM method is comparable to235

the convergence with the Newmark scheme, for 1D and 2D problem. Concerning the convergence236
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Figure 6. Geometry and 3D mesh of a beam with h = 6.6× 10−3 m.

We built boundary conditions in order to obtain the following analytic solution:

u(x, t) = cos(
πx1

L
) cos(

πct
L

)e1 (20)

where c is the velocity of the wave propagation. On Faces (1) and (2), null Neumann conditions were
imposed. On the other four faces (Σc), Dirichlet conditions were imposed in order to satisfy the analytic
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solution (20). The volume external force density fd was assumed to be vanishing. This imposes that
the wave velocity c must verify:

c =

√
E

ρ(1 + ν)
(1 +

ν

ρ(1− 2ν)
)

Results plotted in Figure 7 give the dependence of the time discretization (size of the space-time
slab) ∆t on the average size h of the 3D finite elements, to ensure the stability of the method.
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Figure 7. Size of the time step of discretization ∆t necessary for stability with respect to the average
size h of the 3D finite elements

analysis of the STFEM in 4D, we used the previous example. The time step of discretization ∆t is237

scaled with respect to h, using the stability criterion obtained in the previous paragraph. We computed238

the maximum error over space at the last time step between the analytic solution and the numerical239

solution for each mesh size h. The results are plotted in figure 8.240

We can note that the convergence rate for the method is nearly quadratic.241

5. Numerical results on mesh adaptation242

To illustrate our technique of mesh adaptation we consider the example of a brake disc subjected243

to the clamping of a plate on one of its faces (see source model with coarse mesh in figure 9) and244

blocked on the opposite face. The disc is made of steel with a Young’s modulus equal to 210,000 MPa, a245

Poisson’s ratio equal to 0.3 and a density equal to 7,800 kg/m3. The internal radius of the disc is equal246

to 40 mm, its external radius is equal to 100 mm and its thickness is 10 mm. Two 3D initial meshes247

have been tested: a coarse mesh which contains 634 nodes and 1,752 elements, refined only in the area248

of the clamping, and a fine mesh which contains 6,476 nodes and 25,856 elements and has a uniform249

mesh fineness over all the sample (see figure 13).250

The clamping area is modeled by a constant pressure of 100 MPa. This area is moved along the251

circumference of the disc with a rotational speed equal to that of the propagating wave V = 1
2πR

√
E
ρ ,252

where R = 70 mm is the average radius of the disc. For the both 3D initial meshes, we built an253

incremental 4D space-time mesh, which preserves the 3D mesh at each time step, by imposing an254

axial rotation to keep the finest zone of the 3D mesh under the loading area. An illustration is shown255

schematically in figure 5.256

The results of the calculations presented were obtained for space-times slabs of 10−7s (this is257

equivalent to using a time step equal to 10−7s). The vertical displacements obtained with fine and258

Figure 7. Size of the time step of discretization ∆t necessary for stability with respect to the average
size h of the 3D finite elements.

Linear fitting suggests that the stability criterion is:

∆t ≤ αh

with α ' 1/2c. Indeed, in our example, c = 1.407 m/s.

4.2. Convergence

In the case of simplex finite elements, the convergence with the STFEM method is comparable to
the convergence with the Newmark scheme, for the 1D and 2D problem. Concerning the convergence
analysis of the STFEM in 4D, we used the previous example. The time step of discretization ∆t is
scaled with respect to h, using the stability criterion obtained in the previous paragraph. We computed
the maximum error over space at the last time step between the analytic solution and the numerical
solution for each mesh size h. The results are plotted in Figure 8.
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Figure 8. Maximum error over the space, at the last time step, between the analytic solution and the
numerical solution for each mesh size h, in the logarithmic scale.

We can note that the convergence rate for the method is nearly quadratic.

5. Numerical Results on Mesh Adaptation

To illustrate our technique of mesh adaptation, we consider the example of a brake disc subjected
to the clamping of a plate on one of its faces (see the source model with the coarse mesh in Figure 9) and
blocked on the opposite face. The disc is made of steel with a Young’s modulus equal to 210,000 MPa,
a Poisson’s ratio equal to 0.3 and a density equal to 7800 kg/m3. The internal radius of the disc is equal
to 40 mm; its external radius is equal to 100 mm; and its thickness is 10 mm. Two 3D initial meshes
have been tested: a coarse mesh, which contains 634 nodes and 1752 elements, refined only in the area
of the clamping, and a fine mesh, which contains 6476 nodes and 25,856 elements and has a uniform
mesh fineness over all the sample.

The clamping area is modeled by a constant pressure of 100 MPa. This area is moved along the

circumference of the disc with a rotational speed equal to that of the propagating wave V = 1
2πR

√
E
ρ ,

where R = 70 mm is the average radius of the disc. For both 3D initial meshes, we built an incremental
4D space-time mesh, which preserves the 3D mesh at each time step, by imposing an axial rotation to
keep the finest zone of the 3D mesh under the loading area. An illustration is shown schematically in
Figure 5.

The results of the calculations presented were obtained for space-time slabs of 10−7 s (this is
equivalent to using a time step equal to 10−7 s). The vertical displacements obtained with fine and
coarse meshes have been compared for points located on a circle of control, of radius R equal to 70 mm
(see Figure 10).
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Figure 9. 3D initial coarse mesh: the mesh is finer under the clamping zone.

Figure 10. Location zone of checked displacements: circle of radius equal to 70 mm.

Numerical values are gathered in Figure 11 for the results at time t = 2.10−5 s and in Figure 12 for
the results at time t = 4.10−5 s. Each check point is defined by its angle, in polar coordinates.

Numerical comparisons show that the coarse and fine meshes give similar results in the clamping
zone. However, apart from this zone, the results are somewhat different. Let us note that nodal
displacements cannot be identical because dynamic effects depend on the fineness of the mesh.
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Figure 11. Comparison of vertical displacements for points situated on the circle of control, expressed in
mm, at time t = 2.10−5 s. Each check point is defined by its angular coordinate, expressed in radians.

Figure 12. Comparison of vertical displacements for points situated on the circle of control, expressed
in mm, at time t = 4.10−5 s. Each check point is defined by its angular coordinate, expressed in radians.

Figures 13 and 14 show the norm of incremental displacements at time t = 2.10−5 s and
t = 4.10−5 s for the coarse and the fine mesh, respectively. For the coarse mesh, we can observe
that the refined zone really remains under the zone of clamping. The distribution of the norm of
node displacements is similar for the two positions of the load. It is important to note that they are
incremental displacements and not total displacements.
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Finally, it must be noted that the computational time is 6.6-times faster using the coarse mesh.

Figure 13. Isovalues of the norm of nodal displacements, expressed in mm, at t = 2.10−5 s for the
coarse mesh (image at the top) and for the fine mesh (image at the bottom).
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Figure 14. Isovalues of the norm of nodal displacements, expressed in mm, at t = 4.10−5 s for the
coarse mesh (image on the top) and for the fine mesh (image on the bottom).

6. Conclusions

The method we have presented for space-time mesh generation for 4D domains, using simplex
elements, made it possible to develop a technique of mesh adaptation able to follow a mobile loading
zone. This original technique has been carried out to ensure a minimal computational time and does
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not require coarse-to-fine and fine-to-coarse mesh transfer operators. The convergence and stability of
the method were studied and compared with existing methods. This approach opens the way to 4D
remeshing. It allows, thanks to simplex elements, remeshing in both space and in time.

However, to demonstrate the all the capacities of this method, it is necessary to go much further
in the mechanical applications and to propose a technique of 4D mesh adaptation using the frontal
approach, as presented in [14,16,22,25].
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