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Alternative splicing is the main mechanism of increasing the proteome diversity coded by a limited number of genes. It is
well established that different tissues or organs express different splicing variants. However, organs are composed of
common major cell types, including fibroblasts, epithelial, and endothelial cells. By analyzing large-scale data sets gen-
erated by The ENCODE Project Consortium and after extensive RT-PCR validation, we demonstrate that each of the three
major cell types expresses a specific splicing program independently of its organ origin. Furthermore, by analyzing
splicing factor expression across samples, publicly available splicing factor binding site data sets (CLIP-seq), and exon array
data sets after splicing factor depletion, we identified several splicing factors, including ESRP1 and 2, MBNL1, NOVA1,
PTBP1, and RBFOX2, that contribute to establishing these cell type–specific splicing programs. All of the analyzed data sets
are freely available in a user-friendly web interface named FasterDB, which describes all known splicing variants of human
and mouse genes and their splicing patterns across several dozens of normal and cancer cells as well as across tissues.
Information regarding splicing factors that potentially contribute to individual exon regulation is also provided via
a dedicated CLIP-seq and exon array data visualization interface. To the best of our knowledge, FasterDB is the first database
integrating such a variety of large-scale data sets to enable functional genomics analyses at exon-level resolution.

[Supplemental material is available for this article.]

Human genes are an assemblage of exons that can be differentially

selected during splicing. Alternative splicing, which can produce

splicing variants with different exonic content from a single gene,

is the rule rather than an exception, as 95% of human genes

generate several splicing variants (Kim et al. 2008; Hallegger et al.

2010; Kalsotra and Cooper 2011; Blencowe 2012; Kelemen et al.

2013). Alternative splicing relies on the combinatory action of

splicing factors (e.g., SR and hnRNP proteins) that bind to exonic

or intronic splicing regulatory sequences to either strengthen or

inhibit splice site recognition by the splicing machinery, therefore

enhancing or repressing the inclusion of alternative exons (Barash

et al. 2010; Goren et al. 2010; Witten and Ule 2011). Similarly to

how transcription factors control transcriptional programs by

directing the expression of gene networks, splicing factors control

splicing programs by regulating alternative splicing of co-regulated

exons (Hartmann and Valcarcel 2009; Barash et al. 2010; Goren

et al. 2010; Witten and Ule 2011). Alternative splicing is the main

mechanism used to increase the proteome diversity coded by a

limited number of genes, as the majority of alternative exons

contains coding sequences (Kim et al. 2008; Hallegger et al. 2010;

Kalsotra and Cooper 2011; Blencowe 2012; Kelemen et al. 2013).

Because of the diversity generated by alternative splicing and the

complexity of its regulation, functional genomics at exon-level

resolution requires the development of new integrative bio-

informatics approaches.

Functional genomics at exon-level resolution is necessary

to better understand tissue-specific functions. Indeed, it is well

established that different tissues (or organs) express different

splicing variants (Bland et al. 2010; de la Grange et al. 2010;

Hartmann et al. 2011; Llorian and Smith 2011; Barbosa-Morais

et al. 2012; Merkin et al. 2012). The development of new tech-

nologies like splicing-sensitive microarrays and massive RNA se-

quencing fully establish that different tissues express different

splicing programs as a consequence of the combinatorial actions of

more-or-less tissue-specific splicing factors (Pan et al. 2008; Wang

et al. 2008; Merkin et al. 2012). However, most organs are com-

posed of common cell types, such as fibroblast and epithelial cells,

which perform specific functions. Epithelial cells are tightly con-

nected cells arranged in monolayer with several functions, such as

protection, diffusion, secretion, absorption, and excretion, and

establishing boundaries between compartments. Fibroblasts com-

prise the structural framework of tissues and synthesize the extra-
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cellular matrix, a supportive framework for epithelial cells. Unlike

epithelial cells, fibroblasts can migrate as individual cells. Another

important cell type is represented by endothelial cells that compose

the endothelium, the thin layer of cells that lines the interior surface

of blood vessels that supply tissues and organs with blood.

Recent large-scale analyses suggest that splicing programs may

contribute to establishing cell type–specific functions. Indeed, the

epithelial-to-mesenchymal transition (EMT) that corresponds to

the trans-differentiation of epithelial to mesenchymal (fibroblast-

like) cells relies not only on transcriptional programs but also on

extensive changes in alternative splicing (Warzecha et al. 2009a,

2010; Shapiro et al. 2011; Venables et al. 2013). Splicing factors,

including ESRP1 and 2 and RBFOX2 (RBM9), have been reported to

play a key role in EMT (Warzecha et al. 2009a, 2010; Shapiro et al.

2011; Dittmar et al. 2012; Venables et al. 2013). Although a recent

report indicates that several dozen genes are differentially spliced

when comparing normal fibroblasts to epithelial cells isolated

from colon and ovarian tissues (Venables et al. 2013), it is currently

not known whether the major common cell types, namely fibro-

blast, epithelial, and endothelial cells, express specific splicing

programs independently of their organ origin.

To address this question, we analyzed an ENCODE data set

based on exon arrays performed on RNAs prepared from several

dozen normal fibroblast, epithelial, and endothelial cells isolated

from different tissues (Thurman et al. 2012). After extensive RT-

PCR validation, we show that each major cell type expresses a

specific splicing program independently of their tissue origin,

suggesting a role of alternative splicing in establishing specific

functions of common cell types shared by many tissues. Addi-

tionally, by analyzing several publicly available large-scale data sets

related to these factors, we identified a set of splicing factors that

coordinate these splicing programs. In order to provide the com-

munity with full support for alternative splicing analysis, we have

made all of the analyzed data sets freely available through a user-

friendly web interface named FasterDB, which describes all the

known splicing variants of human and mouse genes as well as their

splicing patterns across several dozens of normal cells, cancer cells,

and tissues. Furthermore, FasterDB integrates several kinds of

publicly available data sets, namely, splicing factor binding sites

(CLIP-seq) and splicing factor depletion followed by exon-array

analysis, to provide users with information regarding the splicing

factors that potentially contribute to regulating each exon. To the

best of our knowledge, FasterDB is the first database to integrate

such a variety of data sets, thereby enabling functional genomics at

exon-level resolution.

Results

Identification of cell type–specific splicing programs
independent of tissue origin

While a splicing program switch has been shown to occur in

a few models of trans-differentiation of epithelial to mesenchymal

(fibroblast-like) cells (Warzecha et al. 2009a, 2010; Shapiro et al.

2011; Dittmar et al. 2012; Venables et al. 2013), we tested whether

epithelial cells and fibroblasts express a different splicing program

independently of their tissue of origin. For this purpose, we ana-

lyzed an ENCODE data set corresponding to 18 and 12 normal

fibroblast and epithelial cells, respectively, isolated from different

organs (Supplemental Table S1). As shown in Figure 1A, fibroblast

and epithelial cells express a transcriptome that differs both

quantitatively (at the gene level) and qualitatively (at the exon

level) (Supplemental Table S2). Focusing on variations at the exon

level and using annotations based on known publicly available

transcripts (see below), we observed that ;20% of the cases cor-

responded to alternative first exons (AFE) and alternative last

exons (ALE), while 12% of the cases corresponded to alternatively

spliced exons (ASE) (Fig. 1A). About half of the cases were not

annotated (NA), indicating potentially novel alternative exons.

Remarkably, using the splicing index (SI), which represents the

inclusion rate of the differentially spliced exons, fibroblasts and

epithelial cells were clustered independently of their organ origin

(Fig. 1B; Supplemental Fig. S1). Similar results were obtained by

principal component analyses, which showed a clear clustering of

the variables (cell lines) depending on their type (epithelial or fi-

broblast; Supplemental Fig. S3).

As shown in Figure 1C (see also Supplemental Fig. S1), a large

set of ASE events was validated by RT-PCR. Further demonstrating

that a set of exons can be differentially spliced in major cell types

even if they have the same tissue origin, the splicing pattern ob-

served in HMEC cells, which are epithelial cells from the mammary

gland, was different from the splicing pattern observed in HMF

cells, which are fibroblast cells also from the mammary gland.

Additionally, the splicing pattern observed in HMEC cells was

similar to the splicing pattern observed in other epithelial cells

from different tissues, and the splicing pattern observed in HMF

cells was similar to the splicing pattern observed in other fibroblast

cells from different tissues (Fig. 1C).

Endothelial cells are also a general cell type present in all or-

gans, as they form blood vessels that supply organs with blood.

Because of some functional similarities, endothelial cells are often

compared to epithelial cells although they have different embry-

onic origins. It is not known whether endothelial cells express

a specific splicing program or not. As shown in Figure 2, A and B,

endothelial cells differ from epithelial cells in both transcriptional

and splicing programs (Supplemental Table S3); this was addi-

tionally validated by RT-PCR (Fig. 2C; Supplemental Fig. S2).

Likewise, endothelial cells differ from fibroblasts in their tran-

scriptional and splicing programs (Supplemental Table S4).

A gene ontology (GO) annotation analysis revealed that genes

regulated at the splicing level (i.e., ASE) may contribute to cell

type–specific cellular programs, as they were mainly involved in

cytoskeleton, cell adhesion, and motion, which are the main fea-

tures distinguishing these cell types (Figs. 1A, 2A).

To further challenge a model in which each of the three major

cell types (fibroblast, epithelial, and endothelial) is characterized

by specific splicing programs independently from their tissue of

origin, we compared each cell type to the other two (Supplemental

Tables S5–S7). Remarkably, we identified a set of alternative cas-

sette exons whose splicing index allowed a perfect clustering of

each major cell type (Fig. 3A; Supplemental Fig. S4). Thus, we

identified a set of exons that are differentially spliced across three

major cell types independently of their tissue origin, as validated

by RT-PCR (Fig. 3B; Supplemental Table S1). Similar results were

obtained using alternative first or last exons (AFE or ALE, re-

spectively), demonstrating that major cell types can differ by the

exonic content (ASE, AFE, and ALE) of the transcripts they express

(Supplemental Figs. S5, S6).

Cell type–specific splicing programs are controlled by balanced
expression of antagonist splicing factors

By focusing on splicing factors with a marked cell type–specific

expression pattern (e.g., up-regulated in only one cell type and
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down-regulated in the other two; see Supplemental Table S8), we

identified a set of splicing factors whose expression level allowed us

to classify each cell type (Fig. 4A; Supplemental Fig. S7). In par-

ticular, ESRP1 had a higher level of expression in epithelial cells

than in other cell types, as confirmed by RT-qPCR (Fig. 4A,B;

Supplemental Table S1), as expected (Warzecha et al. 2009a, 2010;

Figure 1. Epithelial- and fibroblast-specific splicing variants. (A) Transcriptome analysis of fibroblasts (fibro) as compared to epithelial (epi) cells at both
gene and exon levels. The number of genes differentially expressed at the gene and/or exon level when comparing both cell types is shown in the left panel.
The middle panel indicates the classification of events corresponding to exon level variations. Differentially expressed exons were classified according to their
annotation using publicly available transcripts: alternative first exon (AFE), alternative last exon (ALE), and alternative skipped exon (ASE). Not annotated (NA)
corresponds to exons that do not correspond to any of the above-mentioned categories. The cellular functions of genes differentially spliced when comparing
fibroblasts to epithelial cells are indicated in the right panel. (B) Heatmap presentation of the splicing index (SI) values for exons differentially spliced when
comparing fibroblast to epithelial cells. Each line corresponds to a regulated exon, while each column corresponds to a specific cell. Green boxes (–1.5 < SI < 0)
correspond to a low inclusion level in the cell as compared to all the others; red boxes (0 < SI < 1.5), high inclusion level; black boxes (SI = 0), no difference
for exon inclusion between cells; and gray boxes, missing values. Exons were computationally split into several groups depending on their inclusion rate
that correlates with the two major cell types. (C ) RT-PCR validations using RNAs from fibroblasts and epithelial cells, as indicated.
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Dittmar et al. 2012). Interestingly, PTBP1 (PTB) and MBNL1, which

have been suggested to play a role in angiogenesis (Pascual et al.

2006; Pen et al. 2007; Masuda et al. 2009), were enriched in

endothelial cells (Fig. 4A,B; Supplemental Table S1). Finally,

RBFOX2 (RBM9) and NOVA1 were enriched in fibroblasts (Fig.

4A,B). Interestingly, in addition to sharing many common target

exons with NOVA1, RBFOX2 is up-regulated during EMT and plays

a critical role in this process (Zhang et al. 2008; Venables et al.

2013). These results were confirmed by analyzing the expression

level of these splicing factors using RNA-seq and gene expression

array data sets (Supplemental Fig. S8).

To go a step further, we focused on the PTBP1, ESRP1, and

RBFOX2 splicing factors, since their expression levels allowed each

major cell type to be clustered (Supplemental Fig. S7B) and since

large-scale data sets corresponding to these factors are publicly

available (Warzecha et al. 2009b; Xiao et al. 2009; Xue et al. 2009;

Yeo et al. 2009; Katz et al. 2010; Llorian et al. 2010; Huelga et al.

2012). As shown in Figure 4C, ESRP1 and 2 expression levels pos-

itively and negatively correlated with the inclusion rate (e.g., SI) of

a set of included (EPI+) and excluded (EPI–) exons, respectively.

Inversely, ESRP1 and 2 expression levels negatively and positively

correlated with the inclusion rate of a set of included (FIBRO+) and

excluded (FIBRO–) exons, respectively. Meanwhile, RBFOX2 ex-

pression levels positively and negatively correlated with the in-

clusion rate of a set of included (FIBRO+) and excluded (FIBRO–)

exons, respectively. Finally, PTBP1 expression levels also nicely

Figure 2. Epithelial- and endothelial-specific splicing variants. (A) Same as in Figure 1A but comparing endothelial (Endo) to epithelial (Epi) cells. (B)
Same as in Figure 1B but comparing endothelial (Endo) to epithelial (Epi) cells. (C ) RT-PCR validations using RNAs from endothelial and epithelial cells, as
indicated.

Mallinjoud et al.
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correlated with the inclusion rate of different exons enriched in

endothelial cells.

To further explore the contribution of these splicing factors in

controlling cell type–specific splicing programs, we analyzed

publicly available data sets of crosslinking/immunoprecipitation-

sequencing (CLIP-seq) and/or exon array or RNA-seq analyses after

RNAi for PTBP1, ESRP1, and RBFOX2 in human cell lines (Warzecha

et al. 2009b; Xiao et al. 2009; Xue et al. 2009; Yeo et al. 2009; Katz

et al. 2010; Llorian et al. 2010; Huelga et al. 2012). These analyses

(Fig. 4D; Supplemental Table S8; see Supplemental Fig. S7 for the

strategy used) and the RT-PCR validations (Fig. 4F; Supplemental

Fig. S7) demonstrated that ESRP1/2, PTBP1/2, and RBFOX2 regu-

late a large subset within the cell type–specific alternative exons.

Additionally, ESRP1/2 binding sites were enriched in introns

downstream from epithelial-included exons and upstream of epi-

thelial-excluded exons (Fig. 4E; Supplemental Fig. S9; Supple-

mental Table S8), as expected from the previously reported ESRP

splicing code (Warzecha et al. 2009a, 2010; Shapiro et al. 2011;

Dittmar et al. 2012). Likewise, RBFOX2 and PTBP1 binding sites

were differentially enriched when comparing fibroblast-included

and -excluded exons or endothelial-included and -excluded exons,

respectively (Fig. 4E; Supplemental Fig. S9; Supplemental Table S8),

Figure 3. Cell type–specific splicing programs. (A) Heatmap presentation of the SI values for exons differentially spliced across fibroblast, endothelial,
and epithelial cells. Exons were computationally split into several groups depending on their inclusion rate in the three major cell types. Every brace
corresponds to a group (names are indicated on the left); their exons are surrounded by a yellow rectangle on the heatmap. The different categories of
exons are indicated as follows: epithelial-included (EPI+), epithelial-skipped (EPI–), endothelial-included (ENDO+), endothelial-skipped (ENDO–), fibro-
blast-included (FIBRO+), and fibroblast-skipped (FIBRO–) exons. (B) Inclusion rate of selected exons measured after RT-PCR using cells from different
origins. The gene symbol and exon position are indicated. Inclusion rates are given for epithelial cells compared to both fibroblast and endothelial cells
(upper panel), fibroblasts compared to both epithelial and endothelial cells (middle panels), and endothelial cells compared to both fibroblast and epithelial
cells (lower panel).

Cell type–specific splicing programs
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Figure 4. Cell type–specific expression of splicing factors. (A) Heatmap of splicing factor expression level. Each line represents a splicing factor, while
each column represents a specific cell. The color of the square corresponds to the variation of the expression level of the splicing factor in each specific cell
as compared to the others (green, less expressed in the cell; red, more expressed in the cell; and black, no difference). (B) RT-qPCR analysis of the
expression level of ESRP1, PTBP1, MBNL1, RBFOX2, and NOVA1 in a collection of fibroblasts, epithelial and endothelial cells. (C ) Spearman correlations
between splicing factor expression level and the inclusion rate of epithelial-included (EPI+), epithelial-skipped (EPI–), endothelial-included (ENDO+),
endothelial-skipped (ENDO–), fibroblast-included (FIBRO+), and fibroblast-skipped (FIBRO–) exons. Warm colors indicate positive correlation (e.g., a high
exon inclusion level that correlates with a high splicing factor expression level), whereas cold colors indicate negative correlation (e.g., a low exon inclusion
level that correlates with a high splicing factor expression level). Gray boxes indicate correlations that were discarded because of values that were not
statistically significant or insufficient data available to compute correlations. (D) Summary table of epithelial-, fibroblast-, and endothelial-specific exons
predicted to be regulated by the ESRP1, PTBP1, and RBFOX2 splicing factors using RNA-seq, exon array, and CLIP-seq data sets (see Supplemental Fig. S4
for more information). The number and percentage of exons predicted to be regulated by each splicing factor in each category are indicated. (E)
Schematic representation of splicing factor binding site enrichment in several sets of exons differentially regulated across epithelial, endothelial, or
fibroblast cells. Columns define regions in which the binding site searches were done. (F) RT-PCR analyses of the effect of depleting ESRP1, RBFOX2, or
PTBP1 on alternative splicing of selected genes in the MCF-7 epithelial cell line, the MDA-MB-231 fibroblast-like cell line, or the HUVEC endothelial cell line,
respectively. (G) Venn diagrams representing the number of epithelial-, fibroblast-, and endothelial-specific exons predicted to be regulated by ESRP1,
PTBP1, and/or RBFOX2.
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in agreement with the previously reported RBFOX2 and PTBP1

splicing codes (Xue et al. 2009; Llorian et al. 2010).

Remarkably, a large number of fibroblast-, epithelial-, or

endothelial-specific exons were predicted to be targeted by at least

two splicing factors (Fig. 4G; Supplemental Table S8). Strikingly, as

illustrated here for a few genes, some ESRP-regulated exons were

regulated inversely by RBFOX2, while some RBFOX2-regulated

exons were regulated inversely by PTBP1/2 (Supplemental Fig. S7).

These data suggest that cell type–specific splicing programs may be

controlled by a balanced expression of antagonist splicing factors.

In other words, the splicing signature of a specific cell type likely

depends on the combinatorial effects of both up- and down-regulated

splicing factors, rather than by only up-regulated factors.

FasterDB: An integrative bioinformatics platform
dedicated to alternative splicing analysis

In order to provide full support for performing functional geno-

mics at exon-level resolution, the data sets presented above were

organized in a freely available and user-friendly web interface. This

novel database, named FasterDB (http://fasterdb.lyon.unicancer.fr/),

provides researchers with information regarding the splicing var-

iants generated for their genes of interest. Supplemental Figures

S10–S21 demonstrate the use of FasterDB on the ENAH gene,

which codes for the MENA protein that modulates cell adhesion

and migration (Di Modugno et al. 2012) and which has an exon

(exon 12) that is specifically included in epithelial cells (Figs. 1C, 3B).

Thus, once the ENAH gene symbol is entered into the FasterDB

search engine, FasterDB provides the description of the human and

mouse genes as well as all known gene transcripts reported in

public databases (Supplemental Fig. S10). Information regarding

alternative use of exons, various features of exons and introns,

exon conservation, UTRs, and miRNA binding site prediction can

be obtained as well (Supplemental Figs. S11–S16).

FasterDB also provides information on the expression and

splicing pattern of all protein-coding genes across a collection of 73

human cell lines (both normal and cancerous), 11 normal human

tissues, nine mouse cell lines, and 11 normal mouse tissues cor-

responding to Affymetrix exon array data sets generated by

The ENCODE Project Consortium and Affymetrix (Thurman et al.

2012). Clicking on ‘‘Expression’’ in the main toolbar (Supple-

mental Fig. S10B) reveals the relative level of gene expression

across these panels (Supplemental Fig. S17) and provides the in-

clusion rate of any selected exon across the sample collection

(Supplemental Fig. S18A), which can be helpful for selecting the

adequate cellular model for functional studies of alternative

splicing variants. To help with data mining, users can click on each

cell line for a direct link to a dedicated visualization interface,

named ELEXIR (Supplemental Figs. S18, S19).

Finally, FasterDB provides some clues about the splicing fac-

tors that might be involved in splicing regulation of their favorite

gene. Indeed, the ‘‘Splicing factors’’ button in the main toolbar

(Supplemental Fig. S10B) allows users to select different splicing

factors and to access different kinds of information based on

publicly available data sets (Hung et al. 2008; Warzecha et al.

2009b; Xiao et al. 2009, 2012; Xue et al. 2009; Yeo et al. 2009; Katz

et al. 2010; Llorian et al. 2010; Wang et al. 2010; Grellscheid et al.

2011; Lebedeva et al. 2011; Mukherjee et al. 2011; Huelga et al.

2012; Lagier-Tourenne et al. 2012; Zarnack et al. 2013). For ex-

ample, selecting hnRNPH/F on the ‘‘Splicing factors’’ screen (Sup-

plemental Fig. S20) gives access to predicted binding motifs (Fig.

5A) as well as to a dedicated CLIP-seq data visualization interface

(Supplemental Fig. S21) based on the data set generated by Huelga

and Katz (Katz et al. 2010). From there, it is possible to zoom in and

view the in cellulo binding sites of the selected splicing factor in the

vicinity of the selected exon. For example, two hnRNPF binding

sites were identified around ENAH exon 12, suggesting that

hnRNPH/F might regulate ENAH splicing (Fig. 5B). To further

challenge this possibility, the ‘‘Exon Arrays’’ button (Fig. 5A) gives

access to Affymetrix exon array data obtained after hnRNPH/F

depletion by Xiao and collaborators (Xiao et al. 2009). As shown in

Figure 5C (upper panel), ENAH exon 12 probes appear red when

comparing hnRNPH/F-depleted cells to control cells. This suggests

that hnRNPH/F depletion favors exon inclusion, as validated by

RT-PCR (Fig. 5C). Meanwhile, analysis of the ESRP data set gener-

ated by Warzecha et al. (2009b) predicts that ESRP depletion in-

duces skipping of this exon (Fig. 5C, lower panel), as validated by

RT-PCR (Fig. 4F). In sum, FasterDB will provide support for per-

forming functional genomics at exon-level resolution by inte-

grating publicly available large-scale data sets.

Discussion
It is well established that different tissues or organs (e.g., liver or

kidney) express different splicing variants (Pan et al. 2008; Wang

et al. 2008; Bland et al. 2010; de la Grange et al. 2010; Hartmann

et al. 2011; Llorian and Smith 2011; Barbosa-Morais et al. 2012;

Merkin et al. 2012). However, all organs are composed of common

major cell types like fibroblast, epithelial, and endothelial cells. In

this report, we demonstrate that each major cell type expresses

a specific splicing program independently of their organ origin

(Figs. 1–3). It will be interesting to next determine whether a major

cell type (e.g., endothelial cells) isolated from different tissues also

expresses tissue-specific splicing programs. Looking at each col-

umn representing one specific cell type from a given organ in

the clustering analyses (Figs. 1, 2; Supplemental Figs. S1–S3), the

splicing pattern seems likely to integrate at least two levels of

specificity, of cell type and tissue origin (Supplemental Fig. S22).

Our observation has several consequences. For example, some

tissue-specific splicing variants previously identified by comparing

different tissues could in fact reflect the different relative pro-

portions between common cell types in those tissues, as illustrated

in Supplemental Figure S22. This could be particularly relevant for

tumors that are often compared to normal control tissues to

identify cancer-associated splicing variants. As many cancer cells

derive from epithelial cells, some previously reported cancer-as-

sociated splicing variants could reflect epithelial cell enrichment

in tumors as compared to normal tissues.

Remarkably, it has been previously shown that clustering cells

based on global gene expression level also reveals that most cell

lines cluster together rather than with their tissues of origin (Lukk

et al. 2010). As similar results were obtained using alternative

spliced exons (ASE) (Fig. 3) and alternative first or last exons (AFE

or ALE, respectively) (Supplemental Figs. S5, S6), this demonstrates

that major cell types not only differ by the set of genes they

expressed but also by the exonic content (e.g., ASE, AFE, and ALE)

of the transcripts produced by the expressed genes. Therefore, our

data imply that understanding the function of cell types not only

requires the characterization of expressed genes but also of splicing

variants generated by these expressed genes. In this context, it

is interesting to underscore that genes that are differentially

spliced in fibroblasts, epithelial, and endothelial cells are often

involved in cell–cell or cell–substrate interactions (Supplemental

Fig. S23). This suggests that alternative splicing may play a role

Cell type–specific splicing programs
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in modeling interactions with neighboring cells and with the

microenvironment.

We also identified three splicing factors, ESRP1, PTBP1, and

RBFOX2, which are likely to play a major role in setting up these

cell type–specific splicing programs (Fig. 4). Obviously, other

splicing factors may contribute as well (Supplemental Table S8).

For example, the highly related hnRNPH1 and hnRNPF splicing

factors, which are in the same family as ESRP1 and are also in-

volved in EMT (Warzecha et al. 2009a, 2010; Shapiro et al. 2011;

Dittmar et al. 2012), were shown to also have an enriched ex-

pression in epithelial cells (Fig. 4A; Supplemental Table S8). Of

note, although NOVA1 plays a role in establishing a neuronal

splicing program, we observed that NOVA1 expression was

enriched in fibroblasts, similar to RBFOX2 (Supplemental Table

S8). Interestingly, it has been shown that the targets of RBFOX2

and of NOVA1 often overlap (Zhang et al. 2008). Conducting

splicing analysis in a cell type–specific manner might allow new

cellular functions of splicing factors to be identified. In this con-

text, our data suggest a role of the PTBP1 and MBNL1 splicing

factors in endothelial cell biology (Supplemental Table S8). In-

terestingly, PTBP1 and MBNL1 have been suggested to play a role

in angiogenesis (Pascual et al. 2006; Pen et al. 2007; Masuda et al.

2009).

Functional genomics now needs to be performed at an exonic

resolution level, given the prevalence and importance of alterna-

tive splicing. This will require new integrative bioinformatic ap-

Figure 5. Dedicated CLIP-seq data visualization web interface. (A) Localization of predicted hnRNPH/F binding motifs in the vicinity of the ENAH exon 12
and their link to splicing factor data sets. (B) Reads from a CLIP-seq experiment corresponding to hnRNPF binding sites in the vicinity of the ENAH exon 12. (C )
Visualization of exon array probe intensities in hnRNPH/F- or ESRP1-depleted cells as compared to control cells. RT-PCR analysis of the ENAH exon 12 inclusion
rate in hnRNPH/F-depleted or control cells.
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proaches to be developed that can handle the diversity of alter-

native exons and the complexity of alternative splicing regulation.

In this setting, we have made the analyzed data sets used in this

report freely available through the user friendly web interface of

FasterDB, which describes all known splicing variants of human

and mouse genes and their splicing pattern across several dozen

normal and cancer cells and tissues, as well as information re-

garding which splicing factors contribute to individual exon reg-

ulation. The aim of this database is to help researchers identify

the different splicing variants of their favorite genes as well as the

tissue, cell type, or cell line in which they are expressed, in order to

facilitate further functional and/or mechanistic studies. For ex-

ample, when researchers identify a splicing variant in physio-

pathological conditions, FasterDB will be useful in deciding which

cellular model might be suitable for functional analysis.

The second aim of FasterDB is to help researchers charac-

terize the splicing factors regulating the identified splicing vari-

ants. To the best of our knowledge, FasterDB is the first database

integrating large-scale data sets focused on splicing, including

CLIP-seq and splicing-sensitive microarray data sets (Hung et al.

2008; Warzecha et al. 2009b; Xiao et al. 2009, 2012; Xue et al.

2009; Yeo et al. 2009; Katz et al. 2010; Llorian et al. 2010; Wang

et al. 2010; Grellscheid et al. 2011; Lebedeva et al. 2011; Mukherjee

et al. 2011; Huelga et al. 2012; Lagier-Tourenne et al. 2012; Zarnack

et al. 2013). Our next goal will be to include other data sets, such as

RNA-seq data sets. We also aim to label the protein domains coded

by each alternatively spliced exon in order to help users predict po-

tential functional consequences resulting from alternative splicing.

Methods

FasterDB core database
Human and mouse exons were collected from Ensembl (release 60,
assemblies GRCh37 and NCBI m37) (Flicek et al. 2013) and aligned
against the NCBI transcript database using MEGABLAST (v 2.2.25).
These exons were aligned against genomic sequences to define
their chromosomal coordinates and then clustered by genomic
position to define seven major events (e.g., alternative first exon,
alternative last exon, alternative 39 splice site, alternative 59 splice
site, intron retention, exon deletion, and exon skipping). Scores
were computed using MaxEntScan for each splice site. For each
gene, a nonredundant repertory of untranslated regions was
established using all corresponding transcripts. UTRs were more
fully characterized by describing the motifs found in their se-
quences using PatSearch Tool (Grillo et al. 2003). miRNA binding
sites were predicted using PITA, miRanda, and PicTar (John et al.
2004; Lewis et al. 2005; Kertesz et al. 2007). Conserved exons be-
tween human and mouse were identified by aligning each human
exon against the exons of its orthologous mouse gene as provided
by Ensembl. The ‘‘in silico PCR’’ tool is based on a multialignment
of the transcript exons performed with ClustalW. FasterDB is built
in Perl (v5.14.2) and runs on a Ubuntu server (v12.04.1) that hosts
Apache (v.2.2.16) and MySQL (v5.1.49) servers. More information
is available in Supplemental Material and can be downloaded from
http://fasterdb.lyon.unicancer.fr.

Exon array data set analyses

Cell lines and tissues expression data were downloaded from the
GEO and Affymetrix websites and corresponded to Affymetrix
Exon Arrays data sets as listed in Supplemental Table S10. The
preprocessing pipeline is described in more detail in the Supple-

mental Material (Part 2, Section 2.2, page 9). Briefly, low-quality
and cross-hybridizing probes were removed, and signals were
summarized at the gene level by using the median over all
remaining probes. Three different ways of computing the in-
clusion/exclusion rates of a given exon were computed by mea-
suring the ratio of (1) its expression level versus the gene expres-
sion level (NI); (2) its NI in the condition of interest relative to the
NI in the control condition (global SI); or (3) its expression level
versus the expression level of the flanked exons (local SI). Com-
putation of the global and local SI is described in more detail in the
Supplemental Material (Part 2, section 2.2, page 10). Identification
of cell type–specific alternative exons was performed after com-
puting local SI and selecting exons with local SI above 1.45 and
with a P-value <0.05. Heatmaps were generated using the multi-
experiment viewer application of the TM4 package. Hierarchical
clustering of Mev4 was also used to cluster cell lines that have
similar regulation. Input data contains the SI of each of the regu-
lated ASEs in each of the analyzed cell lines. The SI was computed
for each cell line in comparison with all the different types of cell
lines. Functional enrichment and KEGG pathway mapping were
done using DAVID (Huang da et al. 2009).

Elexir web interface

Elexir is a web application that allows users to choose an experi-
ment within a set of stored exon array experiments. This interface
was developed to allow the end user to easily browse and query the
expression levels of one or more genes between conditions, with
possible replicates for each condition. Different test conditions can
be chosen for each experiment. A condition can be defined as a cell
line, a tissue type, or a treatment. Paired or unpaired analyses can
be done depending on sample relationships used for test and
control conditions. The intensity report displays a schematic graph
of the gene being analyzed with corresponding probes for each
exon. The height of each bar represents the normalized probe in-
tensity (in log2). The color reflects the ratio of probe intensity
between test and control conditions. Green and red indicate that
the probe intensity in the test condition is lower and higher, re-
spectively, than the control condition. Information for each probe
is given in the underlying descriptive table or can be easily ob-
tained by clicking on the bar.

Splicing factor analyses

The regulation of cell type–specific ASEs by specific splicing factors
was tested using three different sources: microarray data, literature
RNA-seq, and CLIP-seq data sets. Chromosomal coordinates of
exons regulated by ESRP1, PTBP1, and/or RBFOX2 identified by
RNA-seq were retrieved from previously published work (Warzecha
et al. 2009b; Xiao et al. 2009; Xue et al. 2009; Yeo et al. 2009; Katz
et al. 2010; Llorian et al. 2010; Huelga et al. 2012). ASEs predicted
to be regulated by a splicing factor using exon array or RNA-seq
data sets were compared to ASEs predicted to be cell type–specific.
For each cell type, we paid attention to the ASE regulation sense.
For example, PTBP1 is up-regulated, while ESRP1 and RBFOX2 are
down-regulated, in endothelial cells; thus, an endothelial ASE is
predicted to be regulated by one of these factors if it is skipped
upon PTBP1 depletion or included by ESRP1 or RBFOX2 depletion.
To be considered as confident, CLIP hits must have been detected
in the exon or within 100 nt upstream of or downstream from
the exon.

Splicing factor binding sites were searched with the PatSearch
Tool (Grillo et al. 2003) for the genomic sequences using previously
defined splicing factor binding motifs (see Supplemental Table S8).
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A set of 1000 randomly selected alternative exons, and a set of 1000
randomly selected constitutive exons, were used as controls. Four
regions were defined: 100 nt upstream of and downstream from
the exon, the first 60 nt of the exon and the last 60 nt of the exon.
For each region, a sliding window of a specific length was con-
sidered, and the enrichment score of the splicing factor was com-
puted at each position as (S number of factor motifs at position X /
total number of analyzed sequences) 3 100. The total number of
binding sites found in each region of each exon group was used to
compute the standard deviation value.

Experimental validation

RNA from different cell types were purchased as indicated in
Supplemental Table S1. Primers used for RT-PCR are described in
Supplemental Table S9. RT-qPCR analyses were performed using
primers described in Supplemental Table S9. Epithelial MCF-7, fi-
broblast-like MDA-MB-231 cells, and endothelial HUVEC cells
were transfected using RNAiMax (Invitrogen) with control siRNAs
or siRNAs against ESRP1 and 2, RBFOX2, or PTBP1 and 2 (Sup-
plemental Table S9) 48 h before RNA extraction. Electrophoretic
gels were analyzed with ImageJ software.

Data access
The FasterDB database is available at http://fasterdb.lyon.unicancer.fr/.
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