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Abstract: In this paper, Formal verification and Discrete controller synthesis are combined within a component-

based design method. Formal verification finds design errors and provides counter-examples. The Discrete 

Controller Synthesis technique attempts to enforce previously verified specifications which do not hold. It 

automatically produces control code, which is correct by construction with respect to the specification to enforce. 

This approach is presented and illustrated on an industrial railway system. 

Key words: Discrete controller synthesis, formal verification, supervisory control, embedded systems, component-

based design. 

 

1. Introduction 

Design errors have serious consequences when they 

appear in critical control systems, such as robotized 

plants, energy production plants, or transport systems. 

Such errors may cost human lives, or at best, a large 

amount of money to redesign the system. Such systems 

are often modeled as synchronous reactive systems, by 

using communicating finite-state machines. They call 

for safe design methods and techniques, ensuring 

functional correctness against a set of specifications. 

Besides simulation, the property checking formal 

verification technique is unavoidable for discovering 

subtle bugs, usually known as corner-case 

configurations, which are very difficult to uncover by 

simulation. However, the designer must correct these 

errors manually, which is an error-prone process in 

general. It is usual that by attempting to manually 

correct an error, another error is introduced, which 

creates a vicious circle situation. However, this design 

process allows the progressive creation of reusable 

building blocks considered as “certified”: enough time 

has been spent in design/verification, without finding 

any more significant errors. Such re-usable blocks can 

be managed internally, or acquired from commercial 

vendors; they are known generically as commercial 

off-the-shelf (COTS) components. A COTS 

encompasses both a behavior, and a set of 

specifications. COTS can be assembled according to 

their specifications, in order create new behaviors, 

satisfying more complex specifications, and gain a lot 

of time through code reuse. However, even though 

each of them has been individually and thoroughly 

verified, they are rarely designed to perfectly operate 

together. Design errors can appear by simply 

assembling a collection of correct COTS and their 

manual correction is likely to be error-prone and time-

consuming. Thus, COTS integration can remain an 

expensive task. The Discrete Controller Synthesis 

(DCS) technique is an emerging solution able to build 

correct-by-construction designs, by automatically 

generating a controller. It was first proposed by 

Ramadge and Wonham in 1989 [1], to generate 

controllers for manufacturing plants. DCS seems a 

promising approach for automatically producing 

correct designs, or correcting design errors. In this 

paper, we propose a component-based design approach 

for safe design of COTS-based hardware systems. This 

approach uses property checking in synergy with 

discrete controller synthesis. We demonstrate the 

validity of this approach on an example: the door 

control system of a train. 

The rest of this paper is organized as follows; section 2 

briefly recalls the formal verification basic concepts. 

Section 3 explains the discrete controller synthesis 

technique. Section 4 introduces the safe design method 

for component-based hardware systems. Section 5 

illustrates our method on a train door control system. 

Section 6 describes the application of the proposed 

method and the results obtained. Finally, in section 7 

we recall few former works related to ours   

2. The property checking technique 

This technique checks the behavior of a design against 

a formal specification written in temporal logic [2]. 

The design is modeled by a set of communicating 

finite state machines. The verification algorithm 

performs a symbolic exhaustive search inside the state 

space of the studied model, and returns the set of states 

satisfying the specification.  Property checking is more 

powerful than simulation since it verifies the system 

against all its possible input values instead of only 

selected scenario. In addition [3], it is able to provide a 

diagnostic counterexample in case a specification is 

violated. However, its performance decreases 

dramatically with the size of the design under 

verification because of its exponential complexity in 

the number of design’s variables. Property checking is 

suitable for verifying small/medium-sized designs, in 

order to find corner-case errors [4]. 



3. Discrete Controller Synthesis 

3.1. Preliminary 

Given a design M and a formal specification P 

expressing safety (possibly in temporal logic), the DCS 

technique attempts to build a supervisor SUP, which, 

once composed with M, guarantees the invariance of P 

as shown in figure1. The satisfaction of P is considered 

within a “game”, where the supervisor, if it exists, 

plays against the environment; at each moment it is 

able to implement a “non-losing” strategy, preventing 

M to reach a state where P does not hold. The input set 

of M is divided into two disjoint subsets: controllable 

(Xc) and uncontrollable (Xuc) inputs. Controllable 

inputs are driven by the supervisor, whereas the 

uncontrollable inputs are driven by the environment. 

The DCS technique operates in two steps as show in 

figure2. First, an invariant under control set IUC is 

built; as long as M stays inside IUC, the game cannot 

be “lost”: states not satisfying P cannot be reached. 

This is performed by selecting controllable values 

which always lead to IUC, whatever the uncontrollable 

values provided by the environment. The second step 

constructs the supervisor SUP, as the set of all 

transitions leading to IUC.  

                   

               

Figure 1 controller adding to a COTS design 

3.2. Notation 

A discrete event system can be modeled as a 

combination of finite state machines, FSM. Each of 

them represents a component COTS. We denote a FSM 

of a DES as a tuple G = {s0, S, X, Y, T, O}; where s0 is 

the initial state, S is a finite set of Binary state 

variables, X is the set of Binary input variables, X = Xc 

∪ Xuc, Y is set of Binary output variables. T is the 

transition function:  

T: B
|s|
 × B

|Xc|
× B

|Xuc|
 × B

|s| 
→ B (1) 

O is the output function:  

O: B
|s|

 × B
|Xc|

× B
|Xuc|

 → B
|y|

 (Mealy machine)  (2) 

Or  O: B
|s|
 → B

|y|
 (Moore machine)  (3) 

We denote the set of invariant under control as 

follows: 

IUC
0
 = {s | P holds in s} (4) 

IUC
i+1

= {s∈ IUC
i
 | ∀ xuc∃ xc :T(s, xc, xuc,s’) → s’ ∈ 

IUC
i
} (5) 

A supervisor does exist if IUC is not empty and 

contains s0. The supervisor is the set of transitions 

denoted as follows:  

SUP = {(s,xc,xuc,s’) | ∀ xuc ∃ xc | s’ ∈ IUC }  (6)  

 

Figure 2 controller calculating for a DES 

4. Safe component-based design 

Figure 3 presents our design flow. In order to build a 

new control function, formally specified by a temporal 

logic assertion spec, the designer describes the 

functional behavior of the components by 

communicating, concurrent, synchronous, finite state 

machines, and instantiate these models in the design.  

Two or more COTS can be composed together, 

according to the new specifications to satisfy. This task 

amounts to a synchronous composition between FSMs. 

The composite design is formally verified against spec. 

If the verification passes, the newly obtained design 

can be inserted in the COTS library as a new reusable 

component. Otherwise, the property checking tool 

produces a counter-example. By visually analyzing the 

counter-example, the designer can isolate a set of 

suspect input variables, involved in the failure of spec. 

These variables are chosen as controllable candidates. 

A DCS step attempts to build a supervisor which 

attempts to enforce spec by controlling the variables 

previously chosen. If a supervisor exists, it is 

implemented as a set of control functions f [5]. 

Otherwise, the designer can attempt to enlarge the set 

of controllable variables and retry a DCS application. 

Sometimes DCS produces very restrictive supervisors 

which ensure spec by disabling most interesting 

behaviors. This is why the last simulation step is 

required in order to dynamically validate the newly 

obtained control solution. If no satisfying solution is 

possible, the designer must either modify the original 

design of a component or give up some properties and 

validate the composition with certain properties. In the 

following, this design method is illustrated on an 

example.  



5. Passenger’s Access system 

The Passenger’s system consists of six components 

separately prebuilt. Components interact with the 

environment and between each other via sensors, push 

buttons, switches and internal signals. Fig.4 illustrates 

only the internal signals between components to avoid 

complicating the figure. Components are illustrated in 

table1.  

Table 1 Passenger's Access omponents 

Num COTS name Functionality 

COTS1 z-switcher Controls mainly a 3s timer 

COTS2 door controller 

controls the authorization 

to open and command the 

door close 

COTS3 ringing signal 

announces the imminence 

of closing inside the 

driving cabin 

COTS4 light signal 
indicates the authorization 

of opening the doors 

COTS5 open inhibition 
inhibits the open 

authorization  

COTS6 open authorization allows doors to open 

Each one of these components is modeled as a finite 

state automaton as illustrated in figure.5. We suppose 

that the internal functionality of each component is 

correct and no local design errors occur. The global 

behavior of each assembly of components has to obey 

some temporal properties.  

5.1. Behavior description 

In this section, we explain how components behave 

individually. COTS1 has three positions; pos_o 

represents the initial position of the component where 

doors are allowed to be open. pos_s intermediate 

position triggers the ringing signal. pos_p, as long as 

the switch is at this position, the driver can give the 

order to close doors. Its output is the signal timer. 

COTS2, it sends to the physical door the command to 

close and the authorization to open. Its input signals p, 

o correspond to the position of the z-switch, the signal 

timeout is the output signal received from a 3s timer, 

the signal closed indicates closed door sensor. Signal 

f_open_aut is the output of COTS6, which commands 

the doors to open. COTS3, it can be either ringing or 

silent. Its inputs are the s, p and timeout signals 

explained before, its output signal is ring. As soon as it 

is triggered to ring, it rings for at least 3s after that it 

stops ringing if it receives a true value on signal p from 

the z-switcher. COTS4, this light signal shines when 

the driver selects a group of doors to open, and fades 

when the open authorization is inhibited. COTS5, 

receives from the environment signals 

pb_cancel_open_aut and pb_open_aut that reflect the 

states of the push buttons open-authorization and 

cancel-open-authorization respectively, COTS5 

controls the inhibition of open authorization and 

indicates the selection of a group of doors to be opened 

or closed. COTS6 produces the command to authorize 

door-opening f_open_aut. Signals L_speed, H_speed 

the speed sensors, speed is less than 0.5 km/h and more 

than 2km/h respectively. 

 Figure 3 safe component-based design method 

 Figure 4 internal components interaction 

5.2. Global System behavioral 

For safety reasons, we suppose that the initial state of 

each component is an Idle state, which means the z-

switch is in the O_position state, the door controller in 

state PO, doors are opened, light and ringing signals 

are turned-off, doors are inhibited of opening and no 

doors group is selected to be closed/opened. The train 

driver can first select group of doors to be closed, and 

then move the z-switch to pos_s to announce the 

imminence of closing, then he moves the switch to 

pos_p to command the closing. When the doors and the 

filling gaps are safely closed, the driver can then move 

the vehicle. As soon as the speed of the train passes the 

high-threshold, (speed > 2km/h) the doors will be 

inhibited of opening. Until the speed reaches again the 

 



low-threshold (speed < 0.5 km/h) then the doors can be 

authorized to open. The driver must choose which line 

door side (left/right) to open regarding the platform in 

the station. 

 

 

5.3. Functional requirements (properties) 

We mention here some safety properties we wish to 

enforce when combining several COTS each property 

is expressed in LTL logic.  

 P1, prevents the states pos_s of COTS1 and silent 

of COTS3 to be present at the same moment. P1: 

G!(pos_s ∧ silent).  

 P2, when combining COTS3 and COTS4; the light 

signal must not be shining when the closing signal 

is ringing. P2: G !(ringing ∧ LS_on)  

 P3, when combining COTS1 and COTS4. If z-

switch in pos_s or pos_p this means doors are 

commanded to close, which provokes the light 

signal not to be shining. P3: G !((LS_on) ∧ ( pos_p 

∨ pos_s)).       

 P4, it combines the 3 former properties together 

G!((pos_s and silent) or (ringing and LS_on) or 

((LS_on and (pos_s or pos_p))))  

6. Safe Design of Passenger’s Access 

The component-based method is applied to passenger’s 

access system. COTS models are described and 

assembled using the synchronous language Mode 

Automata [6] and let operate simultaneously. The 

formal verification demonstrates that the studied 

properties are violated by the global system. 

Tables.2,3,4 show the variable values involved in 

violating the properties p1, p2, p3 respectively. This 

calls the DCS step to generate controllers, explicitly 

connected to groups of COTS and heal the concurrency 

mismatches. Each of these controllers is called glue. 

Table 2 counter-example P1 

Table 3 counter-example P2 

State Variables t0 t1 

silent 1 0 

ringing 0 1 

LS_OFF 1 0 

LS_ON 0 1 

Input Variables    

s 1 0 

p 0 0 

timeout 0 0 

State variable t0 t1 t2 t3 

pos_o 1 1 0 0 

pos_s 0 0 1 1 

pos_p 0 0 0 0 

silent 1 1 0 1 

ringing 0 0 1 0 

Input variable      

s 1 1 0 1 

o 0 0 1 0 

p 0 0 1 0 

timeout 0 0 0 1 

COTS6 

COTS5 

COTS4 

COTS3 

COTS2 

Figure 5 components FSM model 

COTS1 



door_select 1 1 

inhibit_open 0 0 

H_speed 0 0 

pb_cancel_open_aut 0 0 

Table3 counter-example P3 

State Variables  t0 t1 

pos_o 1 0 

pos_s 0 1 

pos_p 0 0 

LS_OFF 1 0 

LS_ON 0 1 

Input Variables   

s 1 1 

o 0 0 

p 0 0 

door_select 1 1 

inhibit_open 0 0 

H_speed 0 0 

pb_cancel_open_aut 0 0 

6.1. Glue Automatic generating  

The DCS step is achieved by the tool SIGALI [7]. We 

produce a controller for every assembly of components 

in order to enforce a specification as shown in table 3. 

The properties are provided to the DCS tool as a set of 

states to be made invariant. The process to calculating 

the controller is realized by the two steps explained in 

section 3. 

Table 4 Assembly of COTS and properties to respect 

COTS assembled  controller Property 

COTS1, COTS3 Cont.1 P1 

COTS3, COTS4 Cont.2 P2 

COTS1, COTS4 Cont.3 P3 

COTS1, COTS3, COTS4 Cont.4 P4 

6.1.1. Hypothesis 

The different signals mentioned in section 5.1 are the 

inputs and outputs of the system, and with respect to its 

industrial nature, we suppose few hypotheses over the 

controllability of those signals. We treat the signals as 

events arrive to the system   

 All events represent a push button action or a 

switch action, are controllable.  

 All signals received from sensors are 

uncontrollable.  

 All output signals are uncontrollable. 

 All signals, which are outputs of some COTS and 

inputs for other COTS, are uncontrollable. 

Over these assumptions, we distinguish two sets of 

input signals for the passenger access system, 

illustrated in table.4.  

Table 5. Controllable and uncontrollable inputs 

Controllable Input Uncontrollable Input 

s closed 

p H_speed 

o L_speed 

pb_cancel_open_aut  

pb_open_aut  

6.2. The correct circuit  

We produce one controller, named glue, for every 

group of components that cooperate in order to realize 

a task or to form more complex component and 

enforce one or multiple functional requirement related 

to the global functionality of assembled COTS. The 

properties are provided to the DCS tool as a bunch of 

forbidden states.  

The produced controllers prevent the system from 

reaching the undesired states. We mention four cases 

illustrating the robustness of controllers w.r.t the 

specified properties.  

 Cont.1: In order to respect p1, when the system in a 

situation where COTS1 pos_s and COTS2 at 

Ringing state, and if signals p and timeout are both 

true, the controller forces the controllable o to false, 

so the system does not reach the undesired case 

(pos_s and silent) 

 Cont.2: P2 aims to prevent the system from 

reaching the case (ringing and LS_on), the 

controller enforces signal p to true value when the 

signal door_select is true, so the undesired situation 

will not be reached. 

 Cont.3: P3 aims to prevent the system to reach the 

case (LS_on and (pos_s or pos_p)). Whenever the 

system in state (pos_s and LS_off) the controller 

enforces values false, true to signals p, o 

respectively to achieve property respecting. 

 Cont.4: When assembling the original components 

COTS1, COTS3, COTS4 and generating the 

controller cont.4, the simulation step shows that 

this controller is very restrictive; it blocks the 

system in the states where position pos_p holds. 

This means, we achieve the goal of respecting the 

three properties together, but we lose the 

functionality of the system. We have tried to 

enlarge the list of controllable variables but we 

keep receiving a blocking controller. In such dead 

case, we advise the designer to modify the original 

design of the components. 
 

 

 



7. Related Work  

A similar work has been proposed in [5] a discrete 

serial to parallel converter was studied, where the 

original plant specification faces a date lose problem, 

during the transformation process between two 

components of the system. A discrete controller was 

automatically generated to avoid this loose, by forcing 

the first component to wait a signal, from the second 

one, to indicate the capability to receive new data. In 

[8] authors have applied the controller synthesis 

technique to realize safe functionality of a power 

transfer station, and to provide a best quality of 

service. In [9] authors solve the compatibility problem 

between software components (two communicating 

protocols). They propose a refinement relation, 

generated by a converter, to ensure the satisfaction of a 

property. They demonstrate that the existence of such a 

relation is necessary and sufficient to confirm the 

compatibility between communicating components. 

The solution is based on the idea of defining 

enforceable events among the controllable events, 

buffer those enforceable events and then use them to 

enforce transitions. The converter they propose can 

realize three missions: 1) disabling a transition. 2) 

Forcing a transition. 3) Buffering events to be used 

latter. Whereas the controller calculated by the DCS 

can only disable the undesired transitions. A question 

that one can ask: how the designer can choose the 

enforceable events. In [10] authors use the 

Fractal/Cecilia framework to implement a 

reconfigurable Comanche HTTP Server they 

decompose the system into Hardware and software 

components, and use the Heptagon synchronous 

language and its extension BZR to model the 

components and the properties respectively. The 

studied properties are related to the system 

reconfiguration and quality of service. It was not 

clearly mentioned the use of Sigali to calculate the 

controller, but to our knowledge, BZR is linked to 

Sigali tool to calculate such controllers. Therefore, a 

manager (controller) is calculated, in C code, and then 

wrapped to the components and integrated into the 

distributed environment. 

8. Conclusion and perspectives  

In this article, we present a compositional safe design 

framework over prebuilt, reusable COTS components. 

The method uses property checking in synergy with 

Discrete Controller Synthesis for finding and 

automatically correcting design errors. The method 

proposed is illustrated on a railway system. The results 

obtained demonstrate the validity of the proposed 

method in producing correct by construction designs. 

Current investigations include possible performance 

enhancements for the DCS step, in order to tackle its 

theoretic exponential complexity. We aim in future 

work synthesize livness properties by using the optimal 

controller synthesis method    
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