
HAL Id: hal-01091237
https://hal.science/hal-01091237

Submitted on 4 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Component-based Safe Design method for train
control systems

Salam Hajjar, Emil Dumitrescu, Eric Niel

To cite this version:
Salam Hajjar, Emil Dumitrescu, Eric Niel. A Component-based Safe Design method for train control
systems. Embedded Real Time Software and Systems, Feb 2012, Toulouse, France. �hal-01091237�

https://hal.science/hal-01091237
https://hal.archives-ouvertes.fr

A Component-based Safe Design method for train control systems

Salam HAJJAR, Emil DUMITRESCU, Eric NIEL

Laboratoire Ampère, Université de Lyon, INSA de Lyon

[fistname.lastname]@insa-lyon.fr

Abstract: In this paper, Formal verification and Discrete controller synthesis are combined within a component-

based design method. Formal verification finds design errors and provides counter-examples. The Discrete

Controller Synthesis technique attempts to enforce previously verified specifications which do not hold. It

automatically produces control code, which is correct by construction with respect to the specification to enforce.

This approach is presented and illustrated on an industrial railway system.

Key words: Discrete controller synthesis, formal verification, supervisory control, embedded systems, component-

based design.

1. Introduction

Design errors have serious consequences when they

appear in critical control systems, such as robotized

plants, energy production plants, or transport systems.

Such errors may cost human lives, or at best, a large

amount of money to redesign the system. Such systems

are often modeled as synchronous reactive systems, by

using communicating finite-state machines. They call

for safe design methods and techniques, ensuring

functional correctness against a set of specifications.

Besides simulation, the property checking formal

verification technique is unavoidable for discovering

subtle bugs, usually known as corner-case

configurations, which are very difficult to uncover by

simulation. However, the designer must correct these

errors manually, which is an error-prone process in

general. It is usual that by attempting to manually

correct an error, another error is introduced, which

creates a vicious circle situation. However, this design

process allows the progressive creation of reusable

building blocks considered as “certified”: enough time

has been spent in design/verification, without finding

any more significant errors. Such re-usable blocks can

be managed internally, or acquired from commercial

vendors; they are known generically as commercial

off-the-shelf (COTS) components. A COTS

encompasses both a behavior, and a set of

specifications. COTS can be assembled according to

their specifications, in order create new behaviors,

satisfying more complex specifications, and gain a lot

of time through code reuse. However, even though

each of them has been individually and thoroughly

verified, they are rarely designed to perfectly operate

together. Design errors can appear by simply

assembling a collection of correct COTS and their

manual correction is likely to be error-prone and time-

consuming. Thus, COTS integration can remain an

expensive task. The Discrete Controller Synthesis

(DCS) technique is an emerging solution able to build

correct-by-construction designs, by automatically

generating a controller. It was first proposed by

Ramadge and Wonham in 1989 [1], to generate

controllers for manufacturing plants. DCS seems a

promising approach for automatically producing

correct designs, or correcting design errors. In this

paper, we propose a component-based design approach

for safe design of COTS-based hardware systems. This

approach uses property checking in synergy with

discrete controller synthesis. We demonstrate the

validity of this approach on an example: the door

control system of a train.

The rest of this paper is organized as follows; section 2

briefly recalls the formal verification basic concepts.

Section 3 explains the discrete controller synthesis

technique. Section 4 introduces the safe design method

for component-based hardware systems. Section 5

illustrates our method on a train door control system.

Section 6 describes the application of the proposed

method and the results obtained. Finally, in section 7

we recall few former works related to ours

2. The property checking technique

This technique checks the behavior of a design against

a formal specification written in temporal logic [2].

The design is modeled by a set of communicating

finite state machines. The verification algorithm

performs a symbolic exhaustive search inside the state

space of the studied model, and returns the set of states

satisfying the specification. Property checking is more

powerful than simulation since it verifies the system

against all its possible input values instead of only

selected scenario. In addition [3], it is able to provide a

diagnostic counterexample in case a specification is

violated. However, its performance decreases

dramatically with the size of the design under

verification because of its exponential complexity in

the number of design’s variables. Property checking is

suitable for verifying small/medium-sized designs, in

order to find corner-case errors [4].

3. Discrete Controller Synthesis

3.1. Preliminary

Given a design M and a formal specification P

expressing safety (possibly in temporal logic), the DCS

technique attempts to build a supervisor SUP, which,

once composed with M, guarantees the invariance of P

as shown in figure1. The satisfaction of P is considered

within a “game”, where the supervisor, if it exists,

plays against the environment; at each moment it is

able to implement a “non-losing” strategy, preventing

M to reach a state where P does not hold. The input set

of M is divided into two disjoint subsets: controllable

(Xc) and uncontrollable (Xuc) inputs. Controllable

inputs are driven by the supervisor, whereas the

uncontrollable inputs are driven by the environment.

The DCS technique operates in two steps as show in

figure2. First, an invariant under control set IUC is

built; as long as M stays inside IUC, the game cannot

be “lost”: states not satisfying P cannot be reached.

This is performed by selecting controllable values

which always lead to IUC, whatever the uncontrollable

values provided by the environment. The second step

constructs the supervisor SUP, as the set of all

transitions leading to IUC.

Figure 1 controller adding to a COTS design

3.2. Notation

A discrete event system can be modeled as a

combination of finite state machines, FSM. Each of

them represents a component COTS. We denote a FSM

of a DES as a tuple G = {s0, S, X, Y, T, O}; where s0 is

the initial state, S is a finite set of Binary state

variables, X is the set of Binary input variables, X = Xc

∪ Xuc, Y is set of Binary output variables. T is the

transition function:

T: B
|s|
 × B

|Xc|
× B

|Xuc|
 × B

|s|
→ B (1)

O is the output function:

O: B
|s|

 × B
|Xc|

× B
|Xuc|

 → B
|y|

 (Mealy machine) (2)

Or O: B
|s|
 → B

|y|
 (Moore machine) (3)

We denote the set of invariant under control as

follows:

IUC
0
 = {s | P holds in s} (4)

IUC
i+1

= {s∈ IUC
i
 | ∀ xuc∃ xc :T(s, xc, xuc,s’) → s’ ∈

IUC
i
} (5)

A supervisor does exist if IUC is not empty and

contains s0. The supervisor is the set of transitions

denoted as follows:

SUP = {(s,xc,xuc,s’) | ∀ xuc ∃ xc | s’ ∈ IUC } (6)

Figure 2 controller calculating for a DES

4. Safe component-based design

Figure 3 presents our design flow. In order to build a

new control function, formally specified by a temporal

logic assertion spec, the designer describes the

functional behavior of the components by

communicating, concurrent, synchronous, finite state

machines, and instantiate these models in the design.

Two or more COTS can be composed together,

according to the new specifications to satisfy. This task

amounts to a synchronous composition between FSMs.

The composite design is formally verified against spec.

If the verification passes, the newly obtained design

can be inserted in the COTS library as a new reusable

component. Otherwise, the property checking tool

produces a counter-example. By visually analyzing the

counter-example, the designer can isolate a set of

suspect input variables, involved in the failure of spec.

These variables are chosen as controllable candidates.

A DCS step attempts to build a supervisor which

attempts to enforce spec by controlling the variables

previously chosen. If a supervisor exists, it is

implemented as a set of control functions f [5].

Otherwise, the designer can attempt to enlarge the set

of controllable variables and retry a DCS application.

Sometimes DCS produces very restrictive supervisors

which ensure spec by disabling most interesting

behaviors. This is why the last simulation step is

required in order to dynamically validate the newly

obtained control solution. If no satisfying solution is

possible, the designer must either modify the original

design of a component or give up some properties and

validate the composition with certain properties. In the

following, this design method is illustrated on an

example.

5. Passenger’s Access system

The Passenger’s system consists of six components

separately prebuilt. Components interact with the

environment and between each other via sensors, push

buttons, switches and internal signals. Fig.4 illustrates

only the internal signals between components to avoid

complicating the figure. Components are illustrated in

table1.

Table 1 Passenger's Access omponents

Num COTS name Functionality

COTS1 z-switcher Controls mainly a 3s timer

COTS2 door controller

controls the authorization

to open and command the

door close

COTS3 ringing signal

announces the imminence

of closing inside the

driving cabin

COTS4 light signal
indicates the authorization

of opening the doors

COTS5 open inhibition
inhibits the open

authorization

COTS6 open authorization allows doors to open

Each one of these components is modeled as a finite

state automaton as illustrated in figure.5. We suppose

that the internal functionality of each component is

correct and no local design errors occur. The global

behavior of each assembly of components has to obey

some temporal properties.

5.1. Behavior description

In this section, we explain how components behave

individually. COTS1 has three positions; pos_o

represents the initial position of the component where

doors are allowed to be open. pos_s intermediate

position triggers the ringing signal. pos_p, as long as

the switch is at this position, the driver can give the

order to close doors. Its output is the signal timer.

COTS2, it sends to the physical door the command to

close and the authorization to open. Its input signals p,

o correspond to the position of the z-switch, the signal

timeout is the output signal received from a 3s timer,

the signal closed indicates closed door sensor. Signal

f_open_aut is the output of COTS6, which commands

the doors to open. COTS3, it can be either ringing or

silent. Its inputs are the s, p and timeout signals

explained before, its output signal is ring. As soon as it

is triggered to ring, it rings for at least 3s after that it

stops ringing if it receives a true value on signal p from

the z-switcher. COTS4, this light signal shines when

the driver selects a group of doors to open, and fades

when the open authorization is inhibited. COTS5,

receives from the environment signals

pb_cancel_open_aut and pb_open_aut that reflect the

states of the push buttons open-authorization and

cancel-open-authorization respectively, COTS5

controls the inhibition of open authorization and

indicates the selection of a group of doors to be opened

or closed. COTS6 produces the command to authorize

door-opening f_open_aut. Signals L_speed, H_speed

the speed sensors, speed is less than 0.5 km/h and more

than 2km/h respectively.

 Figure 3 safe component-based design method

 Figure 4 internal components interaction

5.2. Global System behavioral

For safety reasons, we suppose that the initial state of

each component is an Idle state, which means the z-

switch is in the O_position state, the door controller in

state PO, doors are opened, light and ringing signals

are turned-off, doors are inhibited of opening and no

doors group is selected to be closed/opened. The train

driver can first select group of doors to be closed, and

then move the z-switch to pos_s to announce the

imminence of closing, then he moves the switch to

pos_p to command the closing. When the doors and the

filling gaps are safely closed, the driver can then move

the vehicle. As soon as the speed of the train passes the

high-threshold, (speed > 2km/h) the doors will be

inhibited of opening. Until the speed reaches again the

low-threshold (speed < 0.5 km/h) then the doors can be

authorized to open. The driver must choose which line

door side (left/right) to open regarding the platform in

the station.

5.3. Functional requirements (properties)

We mention here some safety properties we wish to

enforce when combining several COTS each property

is expressed in LTL logic.

 P1, prevents the states pos_s of COTS1 and silent

of COTS3 to be present at the same moment. P1:

G!(pos_s ∧ silent).

 P2, when combining COTS3 and COTS4; the light

signal must not be shining when the closing signal

is ringing. P2: G !(ringing ∧ LS_on)

 P3, when combining COTS1 and COTS4. If z-

switch in pos_s or pos_p this means doors are

commanded to close, which provokes the light

signal not to be shining. P3: G !((LS_on) ∧ (pos_p

∨ pos_s)).

 P4, it combines the 3 former properties together

G!((pos_s and silent) or (ringing and LS_on) or

((LS_on and (pos_s or pos_p))))

6. Safe Design of Passenger’s Access

The component-based method is applied to passenger’s

access system. COTS models are described and

assembled using the synchronous language Mode

Automata [6] and let operate simultaneously. The

formal verification demonstrates that the studied

properties are violated by the global system.

Tables.2,3,4 show the variable values involved in

violating the properties p1, p2, p3 respectively. This

calls the DCS step to generate controllers, explicitly

connected to groups of COTS and heal the concurrency

mismatches. Each of these controllers is called glue.

Table 2 counter-example P1

Table 3 counter-example P2

State Variables t0 t1

silent 1 0

ringing 0 1

LS_OFF 1 0

LS_ON 0 1

Input Variables

s 1 0

p 0 0

timeout 0 0

State variable t0 t1 t2 t3

pos_o 1 1 0 0

pos_s 0 0 1 1

pos_p 0 0 0 0

silent 1 1 0 1

ringing 0 0 1 0

Input variable

s 1 1 0 1

o 0 0 1 0

p 0 0 1 0

timeout 0 0 0 1

COTS6

COTS5

COTS4

COTS3

COTS2

Figure 5 components FSM model

COTS1

door_select 1 1

inhibit_open 0 0

H_speed 0 0

pb_cancel_open_aut 0 0

Table3 counter-example P3

State Variables t0 t1

pos_o 1 0

pos_s 0 1

pos_p 0 0

LS_OFF 1 0

LS_ON 0 1

Input Variables

s 1 1

o 0 0

p 0 0

door_select 1 1

inhibit_open 0 0

H_speed 0 0

pb_cancel_open_aut 0 0

6.1. Glue Automatic generating

The DCS step is achieved by the tool SIGALI [7]. We

produce a controller for every assembly of components

in order to enforce a specification as shown in table 3.

The properties are provided to the DCS tool as a set of

states to be made invariant. The process to calculating

the controller is realized by the two steps explained in

section 3.

Table 4 Assembly of COTS and properties to respect

COTS assembled controller Property

COTS1, COTS3 Cont.1 P1

COTS3, COTS4 Cont.2 P2

COTS1, COTS4 Cont.3 P3

COTS1, COTS3, COTS4 Cont.4 P4

6.1.1. Hypothesis

The different signals mentioned in section 5.1 are the

inputs and outputs of the system, and with respect to its

industrial nature, we suppose few hypotheses over the

controllability of those signals. We treat the signals as

events arrive to the system

 All events represent a push button action or a

switch action, are controllable.

 All signals received from sensors are

uncontrollable.

 All output signals are uncontrollable.

 All signals, which are outputs of some COTS and

inputs for other COTS, are uncontrollable.

Over these assumptions, we distinguish two sets of

input signals for the passenger access system,

illustrated in table.4.

Table 5. Controllable and uncontrollable inputs

Controllable Input Uncontrollable Input

s closed

p H_speed

o L_speed

pb_cancel_open_aut

pb_open_aut

6.2. The correct circuit

We produce one controller, named glue, for every

group of components that cooperate in order to realize

a task or to form more complex component and

enforce one or multiple functional requirement related

to the global functionality of assembled COTS. The

properties are provided to the DCS tool as a bunch of

forbidden states.

The produced controllers prevent the system from

reaching the undesired states. We mention four cases

illustrating the robustness of controllers w.r.t the

specified properties.

 Cont.1: In order to respect p1, when the system in a

situation where COTS1 pos_s and COTS2 at

Ringing state, and if signals p and timeout are both

true, the controller forces the controllable o to false,

so the system does not reach the undesired case

(pos_s and silent)

 Cont.2: P2 aims to prevent the system from

reaching the case (ringing and LS_on), the

controller enforces signal p to true value when the

signal door_select is true, so the undesired situation

will not be reached.

 Cont.3: P3 aims to prevent the system to reach the

case (LS_on and (pos_s or pos_p)). Whenever the

system in state (pos_s and LS_off) the controller

enforces values false, true to signals p, o

respectively to achieve property respecting.

 Cont.4: When assembling the original components

COTS1, COTS3, COTS4 and generating the

controller cont.4, the simulation step shows that

this controller is very restrictive; it blocks the

system in the states where position pos_p holds.

This means, we achieve the goal of respecting the

three properties together, but we lose the

functionality of the system. We have tried to

enlarge the list of controllable variables but we

keep receiving a blocking controller. In such dead

case, we advise the designer to modify the original

design of the components.

7. Related Work

A similar work has been proposed in [5] a discrete

serial to parallel converter was studied, where the

original plant specification faces a date lose problem,

during the transformation process between two

components of the system. A discrete controller was

automatically generated to avoid this loose, by forcing

the first component to wait a signal, from the second

one, to indicate the capability to receive new data. In

[8] authors have applied the controller synthesis

technique to realize safe functionality of a power

transfer station, and to provide a best quality of

service. In [9] authors solve the compatibility problem

between software components (two communicating

protocols). They propose a refinement relation,

generated by a converter, to ensure the satisfaction of a

property. They demonstrate that the existence of such a

relation is necessary and sufficient to confirm the

compatibility between communicating components.

The solution is based on the idea of defining

enforceable events among the controllable events,

buffer those enforceable events and then use them to

enforce transitions. The converter they propose can

realize three missions: 1) disabling a transition. 2)

Forcing a transition. 3) Buffering events to be used

latter. Whereas the controller calculated by the DCS

can only disable the undesired transitions. A question

that one can ask: how the designer can choose the

enforceable events. In [10] authors use the

Fractal/Cecilia framework to implement a

reconfigurable Comanche HTTP Server they

decompose the system into Hardware and software

components, and use the Heptagon synchronous

language and its extension BZR to model the

components and the properties respectively. The

studied properties are related to the system

reconfiguration and quality of service. It was not

clearly mentioned the use of Sigali to calculate the

controller, but to our knowledge, BZR is linked to

Sigali tool to calculate such controllers. Therefore, a

manager (controller) is calculated, in C code, and then

wrapped to the components and integrated into the

distributed environment.

8. Conclusion and perspectives

In this article, we present a compositional safe design

framework over prebuilt, reusable COTS components.

The method uses property checking in synergy with

Discrete Controller Synthesis for finding and

automatically correcting design errors. The method

proposed is illustrated on a railway system. The results

obtained demonstrate the validity of the proposed

method in producing correct by construction designs.

Current investigations include possible performance

enhancements for the DCS step, in order to tackle its

theoretic exponential complexity. We aim in future

work synthesize livness properties by using the optimal

controller synthesis method

Acknowledgment

Authors would like to thank the community

FerroCOTS, registered in i-Trans project, for financial

support. We are grateful to Ken McMillan, Eric Rutten

and Gwenaël Delaval for their help.

References:

[1] P. J. . Ramadge and W. M. Wonham, “The

control of discrete event systems,” Proceedings of the

IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[2] A. Pnueli, “The Temporal Semantics of

Concurrent Programs,” in Proceedings of the

International Sympoisum on Semantics of Concurrent

Computation, 1979, pp. 1–20.

[3] O. Laurent, P. Michel, and V. Wiels, “Using

Formal Verification Techniques to Reduce Simulation

and Test Effort,” in Proceedings of the International

Symposium of Formal Methods Europe on Formal

Methods for Increasing Software Productivity, 2001,

pp. 465–477.

[4] J. Yang, P. Twohey, D. Engler, and M.

Musuvathi, “Using model checking to find serious file

system errors,” in Proceedings of the 6th conference

on Symposium on Opearting Systems Design &

Implementation - Volume 6, San Francisco, CA, 2004,

pp. 19–19.

[5] E. Dumitrescu, M. Ren, L. Pietrac, and E.

Niel, “A supervisor implementation approach in

Discrete Controller Synthesis,” in IEEE International

Conference on Emerging Technologies and Factory

Automation, 2008. ETFA 2008, 2008, pp. 1433-1440.

[6] F. Maraninchi and Y. Rémond, “Mode-

Automata: About Modes and States for Reactive

Systems,” IN EUROPEAN SYMPOSIUM ON

PROGRAMMING, 1998.

[7] H. Marchand, P. Bournai, M. LeBorgne, P.

LeGuernic, and P. Le Guernic, “Synthesis of Discrete-

Event Controllers based on the Signal Environment,”

IN DISCRETE EVENT DYNAMIC SYSTEM: THEORY

AND APPLICATIONS, vol. 10, no. 10, p. 325--346,

2000.

[8] H. Marchand and M. Samaan, “Incremental

Design of a Power Transformer Station Controller

Using a Controller Synthesis Methodology,” IEEE

Trans. Softw. Eng., vol. 26, no. 8, pp. 729–741, Aug.

2000.

[9] P. Roop, A. Girault, R. Sinha, and G.

Goessler, “Specification Enforcing Refinement for

Convertibility Verification,” in Proceedings of the

2009 Ninth International Conference on Application of

Concurrency to System Design, 2009, pp. 148–157.

[10] T. Bouhadiba, Q. Sabah, G. Delaval, and É.

Rutten, “Synchronous Control of Reconfiguration in

Fractal Component-based Systems -- a Case Study,”

30-May-2011. [Online]. Available:

http://hal.inria.fr/inria-00596883. [Accessed: 16-Jun-

2011].

