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Abstract. Natural and anthropogenic emissions of primary
aerosols and sulphur dioxide (SO2) are estimated for the year
2010 by assimilating daily total and fine mode aerosol optical
depth (AOD) at 550 nm from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) satellite instrument into a
global aerosol model of intermediate complexity. The sys-
tem adjusts monthly emission fluxes over a set of predefined
regions tiling the globe. The resulting aerosol emissions im-
prove the model performance, as measured from usual skill
scores, both against the assimilated observations and a set
of independent ground-based measurements. The estimated
emission fluxes are 67 Tg S yr−1 for SO2, 12 Tg yr−1 for
black carbon (BC), 87 Tg yr−1 for particulate organic mat-
ter (POM), 17 000 Tg yr−1 for sea salt (SS, estimated at 80 %
relative humidity) and 1206 Tg yr−1 for desert dust (DD).
They represent a difference of+53, +73, +72, +1 and
−8 %, respectively, with respect to the first guess (FG) val-
ues. Constant errors throughout the regions and the year were
assigned to the a priori emissions. The analysis errors are re-
duced with respect to the a priori ones for all species and
throughout the year, they vary between 3 and 18 % for SO2,
1 and 130 % for biomass burning, 21 and 90 % for fossil fuel,
1 and 200 % for DD and 1 and 5 % for SS. The maximum er-
rors on the global-yearly scale for the estimated fluxes (con-
sidering temporal error dependence) are 3 % for SO2, 14 %
for BC, 11 % for POM, 14 % for DD and 2 % for SS. These
values represent a decrease as compared to the global-yearly
errors from the FG of 7 % for SO2, 40 % for BC, 55 % for
POM, 81 % for DD and 300 % for SS. The largest error re-
duction, both monthly and yearly, is observed for SS and the
smallest one for SO2. The sensitivity and robustness of the
inversion system to the choice of the first guess emission in-

ventory is investigated by using different combinations of
inventories for industrial, fossil fuel and biomass burning
sources. The initial difference in the emissions between the
various set-ups is reduced after the inversion. Furthermore, at
the global scale, the inversion is sensitive to the choice of the
BB (biomass burning) inventory and not so much to the in-
dustrial and fossil fuel inventory. At the regional scale, how-
ever, the choice of the industrial and fossil fuel inventory can
make a difference. The estimated baseline emission fluxes
for SO2, BC and POM are within the estimated uncertain-
ties of the four experiments. The resulting emissions were
compared against projected emissions for the year 2010 for
SO2, BC and POM. The new estimate presents larger emis-
sions than the projections for all three species, with larger
differences for SO2 than POM and BC. These projected SO2
emissions are outside the uncertainties of the estimated emis-
sion inventories.

1 Introduction

Aerosols play an important role in air quality, atmospheric
visibility and climate. Concentration levels of particulate
matter below 2.5 and 10 µm at the surface are used as in-
dicators of air quality and are known to have an adverse
impact on human health (Keuken et al., 2011; Pérez et al.,
2010). Aerosols also affect climate through their impact on
the Earth’s energy balance either through their interactions
with atmospheric radiation (absorption and scattering of so-
lar radiation; absorption, scattering and emission of terres-
trial radiation) or their interactions with clouds. Both types
of interactions are known to perturb the hydrological cycle
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through changes in the atmospheric and surface energy bud-
get, induced changes in atmospheric circulation, and changes
to the cloud microphysical evolution, but the respective im-
portance of these effects is poorly understood (Haywood
and Boucher, 2000; Forster et al., 2007; Denman et al.,
2007). Finally, aerosols play a significant role in tropospheric
chemistry through heterogeneous chemistry on their surface
(Bauer et al., 2004; Zhu et al., 2010).

Currently aerosols represent the largest source of uncer-
tainty when estimating the total anthropogenic radiative forc-
ing (Haywood and Schulz, 2007). A significant part of this
uncertainty is due to a lack of knowledge on the spatial and
temporal distribution of aerosol emissions (Lee et al., 2011).
Such knowledge is needed to quantify the impact of aerosols
on climate and air quality in regional and global aerosol mod-
els.

Natural emissions of desert dust (DD) and sea-salt (SS)
aerosols are either prescribed in such models or interactively
calculated as a function of surface wind speed and other lo-
cal surface and atmospheric variables. Actual measurements
characterizing dust and sea-salt emission processes, either in
controlled environments (such as in a wind tunnel) or in the
real world, remain limited (e.g., O’Dowd et al., 1997; Al-
faro et al., 2004; Rajot et al., 2003; Roney and White, 2006;
Sweeney et al., 2008; Sow et al., 2009). Parameterizations of
emissions either are empirical, as it is often the case for sea-
salt aerosols (de Leeuw et al., 2011), or combine a physical
basis with a more empirical diagnostic of source areas, as is
sometimes done for dust (Marticorena et al., 2004). For in-
stance, Ginoux et al. (2012) compute global dust emissions
by combining source hot spots based on Moderate Resolution
Imaging Spectroradiometer (MODIS) Deep Blue estimates
of dust optical depth with other information on land use and
presence of ephemeral water bodies. Model emissions are of-
ten validated indirectly through an assessment of the model
performance in simulating atmospheric concentrations, sur-
face deposition fluxes and/or aerosol optical depth (Ginoux
et al., 2001; Tegen et al., 2002; Laurent et al., 2008; Huneeus
et al., 2011). The different ways to parameterize these emis-
sions, the choice of input data to these parameterizations and
the differences in the simulated particle size (e.g. maximum
size distribution for DD can vary between 8.0 to 25 µm) ex-
plain the large diversity in the dust and sea-salt emissions
(Textor et al., 2006; Huneeus et al., 2011).

The emissions of anthropogenic primary aerosols and sul-
phur dioxide (SO2) from fossil-fuel combustion and indus-
trial activity are estimated from so-called “bottom-up” ap-
proaches. These methods combine information such as en-
ergy consumption, combustion efficiency, emission factors
and mitigation technology to compute disaggregated emis-
sions fluxes. Numerous studies have been conducted in this
way to estimate the emission on both the regional (e.g. Qin
and Xie, 2012; Lu et al., 2010, 2011) and global scale (e.g.
Olivier et al., 2005; Bond et al., 2004; van Aardenne et al.,
2001). Such studies have focused on specific sectors (Eyring

et al., 2010; Wang et al., 2011; Assamoi and Liousse, 2010)
or estimated the emissions from all sectors relying on fossil
fuels (e.g. Junker and Liousse, 2008). They have been cen-
tred on a given species (e.g. Smith et al., 2011) or estimated
simultaneously the emissions of a range of species (e.g. Den-
tener et al., 2006; Zhang et al., 2009; Lamarque et al., 2010;
Diehl et al., 2012). Some of these inventories not only con-
sidered present-day emissions but also past emissions over
some period (e.g. Lei et al., 2011; Streets et al., 2008; Ohara
et al., 2007). A thorough intercomparison of several of these
inventories is provided in Granier et al. (2011).

Building an inventory of anthropogenic emissions relies
on various sources of information available from govern-
ments, international organizations, research centres and in
the literature, in particular for emission factors (e.g. Junker
and Liousse, 2008; Olivier et al., 2005; Wang et al., 2011).
The uncertainties associated with these inventories are diffi-
cult to estimate and there have been only a few attempts to
quantify them (e.g. Bond et al., 2004; Smith et al., 2011).
They depend on the quality and uncertainties of the under-
lying information, but also on the methods used to deal with
missing information. In addition, studies estimating primary
aerosol emissions are very time demanding and are not con-
ducted on a regular basis. As a result a considerable time lag,
as long as 5 to 10 yr, often exists between a given target pe-
riod and the moment the inventory is produced.

Biomass burning emissions of SO2 and primary aerosols,
black carbon (BC) and organic carbon (OC) among others,
are usually estimated as the product of burned area, areal
fuel loads, combustion completeness and emission factors.
A commonly used inventory is the Global Fire Emissions
Database (GFED, van der Werf et al., 2006, 2010) that uses
burned areas product from MODIS. A similar approach was
used by Hoelzemann et al. (2004) to estimate the wildland
fire emissions for the year 2000 using burned area from the
Global Burnt Scar satellite product (GLOBSCAR). More re-
cently, the Global Fire Assimilation System (GFAS), de-
veloped by Kaiser et al. (2012), computes biomass burning
emissions by combining fire radiative power (FRP) from the
MODIS instrument with land surface characteristics. Other
estimates of biomass burning emissions exist that combine
bottom-up inventories with some satellite data (Streets et al.,
2003; Generoso et al., 2003; Ito and Penner, 2005; Vermote
et al., 2009).

In the last decade top-down (or inversion) techniques have
been developed that estimate aerosol emission by combin-
ing satellite data and numerical models. An important tech-
nique for this purpose is data assimilation, where observa-
tional data is combined with numerical models to find a sta-
tistically optimal solution that represents the best compro-
mise between a priori (or first guess) information and ob-
servations. Zhang et al. (2005) estimated biomass burning
emissions for 1997 by assimilating the Total Ozone Mapping
Spectrometer (TOMS) aerosol index. Hakami et al. (2005)
used a variational data assimilation approach to estimate BC
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emissions and initial conditions over East Asia by assimi-
lating concentration measurements. Yumimoto et al. (2007,
2008) applied the same approach to estimate dust emissions
for dust events by assimilating lidar observations. Dubovik
et al. (2008) estimated the emissions of fine and coarse mode
aerosols for a period of two weeks in August 2000 by as-
similating MODIS aerosol optical depth (AOD) at 550 nm
in the Goddard Chemistry Aerosol Radiation and Transport
(GOCART) aerosol model. Fu et al. (2012) estimated the
emissions of carbonaceous aerosols in China constraining
the fluxes with surface concentration measurements. Finally,
Huneeus et al. (2012) presented the first study to estimate
simultaneously the global emissions for multiple aerosol
species and one gaseous precursor, namely DD, SS, BC, par-
ticulate organic matter (POM) and SO2. The authors esti-
mated the emissions in a consistent and coherent manner by
assimilating daily total and fine mode AOD at 550 nm from
MODIS into an aerosol model of intermediate complexity.

This study builds on the work presented in Huneeus
et al. (2012), hereafter denoted HCB12, where a detailed de-
scription of the assimilation system as well as an assessment
of its preliminary application to estimate the aerosol and
SO2 emissions for the year 2002 were given. In the present
study we have improved our treatment of uncertainties and
have updated the a priori emissions inventory and the choice
of target regions for the source inversion. We produce here
a monthly and regional calibration of emissions of anthro-
pogenic primary aerosols and SO2 as well as monthly emis-
sions of natural aerosols of DD and SS at the model resolu-
tion for the year 2010. We also explore the sensitivity of the
results to the choice of the a priori emission inventories from
fossil fuel and biomass burning sources. No sensitivity anal-
ysis is conducted on natural emissions of DD and SS given
the absence of a reference emission inventory on one hand
and the physical nature of their emissions on the other hand.
Section 2 presents a brief description of the different com-
ponents of the inversion system, focusing on the evolution
since the HCB12 study. In Sect. 3 we describe the different
emission inventories used as a priori and present in Sect. 4
the estimated emissions for each inventory. We present the
main conclusions of this work in Sect. 5.

2 Assimilation system

The monthly emissions of BC, POM, DD, SS and SO2 are
estimated by assimilating fine mode and total aerosol optical
depth into a model of intermediate complexity. The method
applied is the same as used in HCB12, however, improve-
ments have been introduced in the definition of the emis-
sion regions (Sect. 2.3), the assignment of the emission er-
ror statistics (Sect. 2.4), and the emissions used as a priori
(Sect. 3). A brief description of the system and the intro-
duced changes will be given in the present section but the

reader should refer to HCB12 for more details about the as-
similation system.

2.1 Assimilation method

The estimated emission fluxes in this study represent the best
compromise between the observationsy and the a priori in-
formationxb. This optimal state vectorxa , also known as
analysis, is found by minimizing a cost functionJ . This cost
function is defined as the sum of the departures of a potential
solutionx and of the corresponding simulated observations
to the a priori informationxb and to the given observations
y:

J (x) = 1/2(x − xb)TB−1(x − xb) (1)

+ 1/2(H(x) − y)TR−1(H(x) − y),

whereH is the non-linear observation operator that computes
the equivalent of the observationsy for a given state vectorx,
R is the covariance matrix of the error statistics of the obser-
vations andB is the covariance matrix of the error statistics
of the a priori information (Rodgers, 2000). The superscript
T denotes the transpose.

The method used to minimize the cost functionJ depends
among other aspects on the size of the state vector as well as
the relative sizes of theB andR matrixes and the difficulties
associated with their inversion (Chevallier et al., 2005). Con-
sidering the relatively small size of our state vector (Sect. 2.3)
and the fact thatR is defined as a diagonal matrix (Sect. 2.4)
and is thus easy to invert, we compute the analysis through
the following analytical formulation:

xa
= xb

− (HTR−1H + B−1)−1HTR−1(Hxb
− y), (2)

whereH is the linearized operator ofH .
As observation operator, we use the simplified aerosol

model (hereafter SPLA) which has been documented in
Huneeus et al. (2009). This model computes the fine mode
and total AOD at three wavelengths, 550, 670 and 865 nm. It
was derived from the aerosol model embedded in the gen-
eral circulation model of the Laboratoire de Mét́eorologie
Dynamique (LMDZ) (Reddy et al., 2005). The SPLA model
groups the 24 original tracers simulated in LMDZ into
four tracers, namely the gaseous precursors, the fine mode
aerosols, the coarse sea salt aerosols and the coarse desert
dust aerosols. The gaseous aerosol precursor groups dimethyl
sulphide (DMS), SO2 and hydrogen sulphide (H2S) together.
The aerosol fine mode includes sulphate (SU), BC, POM,
DD with radii between 0.03 and 0.5 µm and SS aerosols with
radii smaller than 0.5 µm. The SS coarse mode groups to-
gether particles with radii between 0.5 and 20 µm whereas
the coarse DD mode corresponds to particles with radii be-
tween 0.5 and 10 µm. It should be noted that emissions for
each aerosol species and gaseous precursor are estimated as
in the original model; in particular the SS flux is estimated
for aerosols at 80 % relative humidity. These emissions are
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then lumped together to serve as emissions for our four trac-
ers, which are then treated as such in the model. New values
of deposition velocities, mass median diameter and mass ex-
tinction efficiencies were recomputed according to the defi-
nition of the new tracers. Furthermore, the sulphur chemistry
was reduced to an oxidation mechanism as a function of lat-
itude and no distinction between hydrophilic and hydropho-
bic OM and BC was made. The timescale for SO2 oxidation
varies as the cosine of the latitude from 1 day at the Equator
to 5 days at the poles (instead of 3 and 8 days, respectively,
in the original HCB12 study).

2.2 Observations

The daily total AOD over land and ocean and the fine
mode AOD over ocean only are assimilated. Both of these
AOD products are at 550 nm. The data is extracted from
the ICARE Data and Services Centre (http://www.icare.
univ-lille1.fr) where the aerosol products from multiple sen-
sors are generated and/or archived.

Data from the MODIS instrument onboard the Terra satel-
lite are used, specifically, the daily level 3 aerosol products
(MOD08) from collection 5.1. These level 3 data are aver-
aged on a 1◦ ×1◦ grid (MOD08 D3). Only the daily product
is included in our assimilation procedure and thus the time
of the measurement within the day is not considered. We
apply an additional quality check besides those already in-
cluded in the production of level 3 AOD MODIS product. In
the original processing, the level 3 AOD data are weighted
by the quality of each individual retrieval in order to prevent
poor retrievals from affecting the calculated statistics (Re-
mer et al., 2005; King et al., 2003; Hubanks et al., 2008).
By applying an additional quality check over ocean and over
land we seek to remove outliers and biases. We base our data
screening on the method described in Zhang and Reid (2006)
which we apply to both the total and fine mode AOD. We
remove retrievals with an AOD larger than 3 over ocean and
only consider 1◦×1◦ grid boxes with cloud fraction less than
80 %. In contrast to Zhang et al. (2008) we apply the cloud
fraction threshold also over land. In addition, we remove all
pixels south of 40◦ S to ensure that the known overestimation
of AOD over the Southern Hemisphere oceans southward
from 40◦ S does not impact the assimilation system nega-
tively (Zhang and Reid, 2006). Finally, the MODIS data are
thinned from their original resolution (1◦

×1◦) to the coarser
model resolution (3.75◦

× 2.5◦).

2.3 State vector

We assume, based on the dominant uncertainty about the
emission factors (EF) in the emission error budget, that
prior emission errors are dominated by time-independent
(over two-month periods) and spatially homogeneous pat-
terns, within large regions and for each emission type. This
assumption allows us to define a relatively short state vec-

tor, and therefore, to reduce the computational cost of the
inversion. To implement the above and further limit the com-
putational cost, the number of tracers was reduced from 24
in the original model to 4 in SPLA (Sect. 2.1). In addition, an
assimilation window of two months was defined allowing the
inversion to be independent from the initial aerosol concen-
trations. The results from an inversion cycle are considered to
be representative of the last month. Finally, the emission re-
gions were defined so that the main emission processes were
isolated from each other and sources with opposite seasonal-
ity do not belong to the same region. The result of our data
assimilation system is to uniformly increase or decrease the
emissions of each aerosol species within each region.

For fine and coarse SS, a single global region was de-
fined as this source term stems from a physical mechanism
that should be the same everywhere. For SO2, the eight re-
gions originally defined in HCB12 have been increased to 13
(Fig. 1a) to better represent different levels of development
(and therefore emissions) between the regions. The origi-
nal region of North America has been split into Central and
North America in order to separate Mexico from the USA
and Canada. Region Northern Africa in HCB12 has been di-
vided into Northern and Central Africa to account for pos-
sible underestimations in emissions in central African coun-
tries as suggested by Assamoi and Liousse (2010). Countries
of the Middle East that were located in the African and Asian
regions in HCB12 are now grouped together in one region. In
addition, the Asian region has been separated into Russia and
East Asia. The latter groups together the countries of China,
Mongolia, South and North Korea and Japan. Finally, South
Asia was split into India and South East Asia. The former
includes India, Pakistan, Bhutan, Nepal, Bangladesh and Sri
Lanka. The BC and POM emission regions were defined dif-
ferently for biomass burning (BB) or fossil fuel (FF) combus-
tion sources. The definition of the biomass burning regions is
based on the 14 regions defined in the GFED (van der Werf
et al., 2006) inventory. However, a few modifications have
been introduced to this regional definition. The Southern
Hemisphere South America (SHSA) region defined in GFED
has been divided into two regions, namely Central South
America (CESA) and Southern South America (SSAM) to
account for the differences in vegetation type between these
two regions (G. R. van der Werf, personal communication,
2013). In addition, the Middle East (MIDE) and Northern
Hemisphere Africa (NHAF) regions defined in GFED have
been combined into a single region, namely North Africa and
Middle East (NAME), because of the limited biomass burn-
ing emissions in MIDE (G. R. van der Werf, personal com-
munication, 2013). Finally, the GFED Central Asia (CEAS)
region has been split into Inner Asia (INAS) and China to
facilitate the comparison with existing biomass burning in-
ventories for China. The 15 biomass burning regions are il-
lustrated in Fig. 1b. For FF emissions the same 13 regions
defined for SO2 are used (Fig. 1a). These regions will be re-
ferred to as industrial (IND) hereafter. Finally, we use the
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Fig. 1. Definition of emission regions used in the control vector for SO2 and the different aerosol species.(a) Thirteen regions are defined
for emissions of both SO2 and other FF aerosols: North, Central and South America (NOAM, CEAM, and SOAM, respectively), Europe
(EURO), North, Central and South Africa (NOAF, CEAF, and SOAF, respectively), Middle East (MIEA), Russia (RUSS), India (INDIA),
East Asia (EEAS), South East Asia (SEAS) and Australia (AUST).(b) Fifteen regions are defined for BB aerosol emissions: Boreal North
America (BONA), Temperate North America (TENA), Central America (CEAM), Northern Hemisphere South America (NHSA), Central
South America (CESA), Southern South America (SSAM), Europe (EURO), North Africa and Middle East (NAME), Southern Hemisphere
Africa (SHAF), Inner Asia (INAS), Boreal Asia (BOAS), China (CHNA), South East Asia (SEAS) Equatorial Asia (EQAS) and Australia
(AUST). Biomass burning regions are based on GFED regions (Sect. 2.3).(c) Eleven regions are defined for dust emissions: North West
America (NWAM), North East America (NEAM), South America (SOAM), Western Sahara (WESH), Eastern Sahara (EASH), Sub-Sahara
(SUSH), Western Asia (WEAS), India (INDIA), Saudi Arabia (SARB), East Asia (EAAS) and Australia (AUST).

same eleven dust regions separating the main global deserts
as defined in HCB12 to estimate dust emission for each one
of the fine and coarse modes (Fig. 1c).

In summary, the state vector consists of 65 elements with
two global parameters for fine and coarse SS, 22 regional
parameters for fine and coarse DD, 13 for SO2, 13 for FF
and finally, 15 for BB regions.

The anthropogenic emissions used as first guess for FF
and SO2 (Sect. 3) consider emissions from ten active sec-
tors, namely energy production and distribution, industry,
land transport, maritime transport, residential and commer-
cial, solvents, agriculture, agriculture waste burning on fields
and waste. Only emissions associated to energy, industry,
land transport and residential and commercial emissions are
considered active and are therefore estimated. These emis-
sions are increased/decreased by the inversion in each region
in the same proportion for each active sector. Emissions from
agricultural waste burning emissions are not included in the
study since they are considered to be included in the biomass
burning inventory. The remaining emission fluxes included
in the model (i.e. dimethyl sulphide, volcanic SO2, emissions
from shipping and biogenic secondary organic aerosols) are
not considered in the state vector and are therefore not opti-
mized. The contribution of a number of small volcanoes to
stratospheric AOD (not represented in the model) remains
fairly small (∼ 0.003) for the period of interest in this study
and is therefore unlikely to affect significantly our inversion
and the conclusions which are drawn (Vernier et al., 2011).

2.4 Error covariances

The matricesB and R (Eq. 1) describe the error statistics
of the emission fluxes and of the observations, respectively.
Their relative magnitude determines the weight given to the
a priori information and to the observations. The error val-
ues presented in this section and hereafter correspond to one
standard deviation except when stated otherwise.

We follow HCB12 and defineB as a diagonal matrix ne-
glecting the possible prior error correlations between two
species within one region and for a given species between re-
gions. However, in view of the new definition of the state vec-
tor (Sect. 2.3) and the use of more updated a priori emission
inventories (Sect. 3) we have redefined the monthly emission
uncertainties for this work. We consider monthly regional
emission uncertainties of 130 % for BB and 90 % for com-
bustion of FF. These values are based on the emission range
for BC and OC of open biomass burning and of contained
combustion given in Bond et al. (2004). For SO2 emissions
we define the uncertainty in monthly regional emission to be
18 % in accordance to the estimate in Smith et al. (2011).
The authors in this work estimated that the regional uncer-
tainty could range up to 30 %. To our knowledge, no docu-
mented estimate of uncertainties in the natural emissions of
DD and SS exist and we therefore use the diversity of emis-
sions in global models to quantify them. We use monthly re-
gional uncertainties of 200 % for DD emissions and monthly
global ones of 300 % for SS based on Huneeus et al. (2011)
and Textor et al. (2006), respectively. The uncertainties in the
monthly regional emission fluxes are combined to provide
one on the global-yearly scale and thus ease the comparison
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with other results. This global-yearly uncertainty estimate is
first computed for each one of the species as the square root
of the sum of the regional and monthly squared errors (see
Appendix A). The resulting global-yearly uncertainties are
2 % for SO2, 13 % for BC, 20 % for POM, 26 % for DD and
86 % for SS. These estimates assume no temporal correla-
tion between the uncertainties from one month to the next.
However, some dependence in time can be expected and is
in fact implicit in the system because of the two-month win-
dow of the data assimilation (Huneeus et al., 2012). Tempo-
ral correlation in the emission uncertainties could arise from
various assumptions made in the preparation of the emission
inventory that would affect all months, such as the use of
erroneous energy statistics or emission factors. To estimate
the impact of this temporal dependency, we recomputed the
global-yearly error assuming that the uncertainties between
months are fully correlated. The resulting global-yearly un-
certainties are then 7 % for SO2, 40 % for BC, 55 % for POM,
81 % for DD and 300 % for SS. As reality is between these
two extreme assumptions (fully correlated and fully uncorre-
lated temporal uncertainties), we conclude that our regional
uncertainties provide realistic estimates of the global-yearly
emissions.

We also consider the observation error covariance matrix
(R) to be diagonal. We acknowledge that correlated errors
exist between adjacent pixels because of the dependence of
the MODIS algorithm on aerosol microphysics and boundary
conditions (Zhang et al., 2008). Yet, three adjustments are
made to compensate for not considering these correlations.
First we apply the bias correction procedure from Zhang and
Reid (2006) that corrects some of the systematic errors. Sec-
ond, we reduce the observation density by thinning the data
(Sect. 2.2) and lastly we inflate the observation errors from
0.05 to 0.1 in AOD over ocean and from 0.1 to 0.2 in AOD
over land. The last two actions are empirical adjustments that
have proven their effectiveness when inverting CO2 surface
fluxes (Chevallier, 2007). The larger errors over land than
over ocean take into account the higher precision of the ob-
servations over ocean (Remer et al., 2005). In theR matrix,
we also include the model and representation error of 0.02
already defined in HCB12. We make the hypothesis that the
model error is dominated by the simplifications introduced
in SPLA and consequently neglect the errors of the original
model it was derived from. In HCB12 the performance of the
assimilation system was tested for different model errors and
the system continued to result in improvement against obser-
vations with a model error as high as 0.5 in AOD.

3 Emission inventories

The reference data source used in this work combines the fos-
sil fuel and industrial emissions of SO2, BC and POM from
Lamarque et al. (2010), biomass burning emissions of SO2,
BC and POM from van der Werf et al. (2010), terpene emis-

sions from Lathìere et al. (2006), the daily volcanic emis-
sions from Dentener et al. (2006) and the natural emissions of
desert dust (DD), sea salt (SS) and dimethyl sulphide (DMS)
as presented in HCB12.

Lamarque et al. (2010), hereafter referred as L10, corre-
sponds to a community effort to include and combine the
best available information on global and regional emission
inventories at the time it was built. It was created to pro-
vide consistent and gridded emissions of reactive gases and
aerosols for use in chemistry model simulations and to sup-
port the Intergovernmental Panel on Climate Change (IPCC)
Fifth Assessment Report (AR5).

In L10 the monthly mean emissions of methane (CH4),
carbon monoxide (CO), nitrogen oxides (NOx), total and spe-
ciated non-methane volatile organic compounds (NMVOCs),
ammonia (NH3), organic carbon (OC), black carbon (BC)
and sulphur dioxide (SO2) are provided at a regular grid
of 0.5◦ in latitude and longitude. These emissions are pro-
vided for 12 sectors every 10 yr for the period between
1850 and 2000. Seasonal variations (at the monthly scale)
are only included for biomass burning, soil NOx, ship and
aircraft emissions. The anthropogenic emissions of BC and
OC are an update of Bond et al. (2007) and Junker and Li-
ousse (2008) while SO2 emissions combine data from Smith
et al. (2011), Environmental Protection Agency from the
United States (EPA), Environment Canada and the United
Nations Framework Convention on Climate Change (UN-
FCCC). No smoothing is done to remove potential discon-
tinuities across regional boundaries resulting from the com-
bination of different inventories at the regional scale (Lamar-
que et al., 2010). In the present work only the fossil fuel and
industrial emissions of BC, OC and SO2 for the year 2000
will be considered. We have updated the original biomass
burning inventory GFEDv2 (van der Werf et al., 2006) used
in L10 with the more recent version 3 (van der Werf et al.,
2010). This later version uses improved satellite data and sev-
eral modifications to the modelling framework were done,
such as explicitly accounting for deforestation and forest
degradation and partitioning fire emissions into different cat-
egories. This dataset provides daily emissions of SO2, BC
and OC with a resolution of 0.5◦ in latitude and longitude.

As a priori, we choose to use the anthropogenic emis-
sions representative for the year 2000, instead of available
projected emissions for the year 2010. We keep the projec-
tions for 2010 for later comparison against our estimated
fluxes. In view of the strong interannual variability in the
biomass burning emissions (van der Werf et al., 2006) we use
emissions corresponding to the simulated year (i.e. 2010) for
biomass burning emissions.

Volatile organic compounds (VOC) are represented as ter-
penes in the model (Huneeus et al., 2009) and their emissions
are taken from Lathière et al. (2006). Monthly mean biogenic
surface fluxes of isoprene, terpenes, acetone and methanol as
well as NO soil emissions are calculated for the period 1983–
1995 with the vegetation model ORCHIDEE (Organizing
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Carbon Hydrology in Dynamic EcosystEms). Even though
the estimated emissions do not correspond to the simulated
year and the interannual variability in biogenic emissions is
of the order of 10 % in this period (Lathière et al., 2006), we
decided to use this dataset in the present work for consistency
with the simulations conducted within the framework of the
AR5 (Szopa et al., 2012).

The DD emissions are pre-calculated offline at a higher
resolution (1.125◦

× 1.125◦) using the 6-hourly horizontal
10 m wind speed from the European Centre for Medium-
Range Weather Forecasts (ECMWF) and are then re-gridded
to the model resolution while conserving the global flux.
For SS we use the formulation of Monahan et al. (1986) as
a function of the 10 m wind speed (HCB12).

In addition to the above-described dataset, we explore the
sensitivity of the estimated emissions, on one hand by replac-
ing the GFEDv3 biomass burning emissions with the GFAS
v1.0 inventory (Kaiser et al., 2012), and on the other hand
by replacing the Lamarque et al. (2010) anthropogenic emis-
sions of SO2, BC and POM with the AeroCom emission in-
ventory of the year 2000 (Diehl et al., 2012). These invento-
ries not only change the regional prior values, but also the
prescribed sub-regional and temporal patterns. The differ-
ences between the biomass burning inventories and the an-
thropogenic emissions of SO2, BC and POM are analysed in
Kaiser et al. (2012) and Diehl et al. (2012), respectively.

The GFAS inventory estimates biomass burning emissions
by using the FRP observations from the MODIS instrument
onboard the Terra and Aqua satellites. It uses the quantitative
information on the combustion rate in the FRP and detects
fires in real time at high spatial and temporal resolution. We
follow the authors’ recommendation and apply a global en-
hancement factor of 3.4 to particulate matter emissions to
better match observed aerosol distributions.

The AeroCom inventory corresponds to a compilation of
anthropogenic emissions of BC, OC and SO2 for the period
1980–2010 to facilitate intercomparison of hindcast simula-
tions of aerosols (http://aerocom.met.no/). The BC and OC
emissions are based on the gridded inventory for 1996 from
Bond et al. (2004) while for SO2, the emissions are based
on the Emissions Database for Global Atmospheric Research
release version 4.1 (EDGARv4.1) inventory. This inventory
provides SO2 emissions from 1975 to 2000 every five years
and then yearly from 2000 until 2006. For BC and OC, the
emissions are updated over the period to account for regional
emission trends using data from Streets et al. (2006, 2008,
2009).

The combination of L10, also known as ACCMIP (Emis-
sions for Atmospheric Chemistry and Climate Model Inter-
comparison Project; Granier et al., 2011), with the GFEDv3
biomass burning emissions will be referred to as ACFED,
while the experiment using the combination of ACCMIP and
GFAS will be referred to as ACFAS. Finally, the experiments
combining AeroCom fossil fuel and industrial emissions and

biomass burning of GFED and GFAS will be referred to as
AEFED and AEFAS, respectively.

4 Results

We assess the validity and the quality of the estimated emis-
sion by examining first the model performance to repro-
duce the assimilated AOD and an independent AOD dataset
(Sect. 4.1). We then analyse the estimated fluxes both in
terms of global and regional values, assess their robustness
to the choice of the a priori emission inventories and com-
pare them to values from the literature (Sect. 4.2). To final-
ize, we will present the uncertainties of the estimated fluxes
and compare them to values found in the literature (Sect. 4.3).
The analysis will be conducted focusing on the ACFED com-
bination of inventories.

We make use of the tools developed at the Laboratoire
des Sciences du Climat et de l’Environnement (LSCE) in the
framework of the AeroCom project, which includes a plat-
form for detailed evaluation of aerosol simulation in global
models (http://aerocom.met.no/).

4.1 Statistical analysis

The first step to validate the estimated fluxes is to assess their
ability to improve the simulation of the AOD, with respect to
both the assimilated and independent observations. We do
so by examining the difference between the first guess (FG)
and the analysis (AN) to the observations via the root mean
square (RMS) error, mean bias and Pearson correlation co-
efficient (R). As independent dataset, we use measurements
from the AErosol RObotic NETwork (AERONET). This is
a global network of more than 300 sun photometers that mon-
itor AOD and aerosol properties under various different at-
mospheric aerosol loads (Holben et al., 1998, 2001).

Although AERONET also provides instantaneous and
daily-averaged AOD data, we shall focus on the monthly
values in accordance with the scale of the state vector
(Sect. 2.3). We compute the model monthly mean by sam-
pling only those days when AERONET data are available.
We use available stations with measurements for the year
2010. Stations above 1000 m a.s.l. are excluded since we do
not correct the model AOD for the station altitude. For the
analysis with respect to the MODIS data, the model monthly
mean is computed using only days and grid boxes when
MODIS observations are available.

The assimilation is effective in bringing the simulated
AOD closer to MODIS, for both total (Table 1) and fine mode
AOD (Table 2), in terms of root mean square error and cor-
relation coefficient. Larger impacts are seen in the total AOD
than in the fine mode AOD. For the former the RMS er-
ror (correlation coefficient) is reduced (increased) by 21 and
25 %, respectively, whereas for the latter, the RMS error (cor-
relation) is decreased (increased) by 5 and 18 %, respectively.
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Table 1.Statistics quantifying the difference in total AOD between the first guess (FG) or analysis (AN) and MODIS or AERONET for all
four experiments ACFED, ACFAS, AEFED and AEFAS. For each AERONET station, the closest model grid box is used. The statistics for
both, MODIS and AERONET, are computed at the global scale, considering the full yearly cycle.

Total AOD

ACFED ACFAS AEFED AEFAS

FG AN FG AN FG AN FG AN

MODIS RMS 0.125 0.099 0.122 0.098 0.125 0.099 0.122 0.098
Mean Bias −0.053 −0.040 −0.040 −0.039 −0.053 −0.040 −0.039 −0.039
Correlation 0.576 0.718 0.618 0.724 0.575 0.716 0.619 0.723

AERONET RMS 0.131 0.103 0.129 0.104 0.131 0.102 0.129 0.102
Mean Bias −0.007 −0.003 0.005 −0.002 −0.007 −0.006 0.005 −0.005
Correlation 0.554 0.736 0.599 0.733 0.556 0.743 0.600 0.742

Table 2.Same as Table 1 but for fine mode AOD.

Fine Mode AOD

ACFED ACFAS AEFED AEFAS

FG AN FG AN FG AN FG AN

MODIS RMS 0.048 0.046 0.054 0.046 0.049 0.046 0.055 0.046
Mean Bias −0.005 0.008 0.002 0.008 −0.005 0.008 0.002 0.008
Correlation 0.607 0.714 0.647 0.716 0.610 0.709 0.652 0.712

AERONET RMS 0.112 0.101 0.116 0.102 0.112 0.104 0.116 0.104
Mean Bias 0.037 0.044 0.050 0.045 0.037 0.041 0.049 0.042
Correlation 0.556 0.727 0.628 0.725 0.557 0.701 0.628 0.699

However, although the system reduces the bias in the total
AOD, it increases it slightly in the fine mode AOD. The same
is valid over ocean, where all statistics are improved for the
total AOD, whereas for the fine mode AOD the bias is also
increased in the AN compared to the FG (not shown). When
computing the statistics with respect to AERONET, the same
features are observed (Tables 1, 2). Larger improvements are
seen in the total AOD than the fine mode AOD. Addition-
ally, the RMS error (correlation coefficient) is decreased (in-
creased) for both total and fine mode AOD, whereas the mean
bias is decreased only for the total AOD. The decrease in
RMS error for the total AOD with respect to MODIS is ob-
served in all IND regions and all BB regions except Equa-
torial Asia (EQAS) (Fig. 2). Furthermore, the correlation is
also increased in all IND regions while it is increased in
all BB regions except EQAS and Temperate North Amer-
ica (TENA). Finally, the bias is increased in the BB regions
of Boreal North America (BONA), Inner Asia (INAS), Aus-
tralia (AUST), TENA, Europe (EURO) and China (CHNA)
and in the IND regions of North America (NOAM), North
Africa (NOAF), INDIA, East Asia (EAAS) and AUST.

The fine mode AOD is assimilated over ocean only, i.e.
in more remote and pristine conditions, and not over conti-
nents where large AOD values are observed in polluted re-
gions. Therefore, the fine mode AOD statistics with respect

to MODIS also evaluate the transport and removal processes
rather than just the emission intensity. However, this argu-
ment is not applicable for the bias with respect to AERONET
since most of the stations are over land measuring a mix of
remote and polluted conditions. Two factors could explain
this bias degradation for AERONET (despite betters RMS
errors and correlations): a mismatch and representation er-
ror between AERONET and MODIS due to the thinning of
the latter for their use in the assimilation (HCB12) and the
slightly different definition of the aerosol fine mode fraction
in the MODIS and AERONET algorithms (Kleidman et al.,
2005).

The statistics were computed for the four inversions with
different combinations of BB and IND emissions. All in all,
the same behaviour as described above is observed in the re-
maining three experiments, both with respect to MODIS and
AERONET (Tables 1, 2). The sole exceptions to the above
are the two combinations with GFAS that present a decrease
in bias for the fine mode AOD with respect to AERONET.

We highlight that for the total AOD, experiments using
GFAS in the a priori emissions have a FG closer to the ob-
servations (smaller RMS error and larger correlation) than
those using GFED, irrespective of whether the validation is
done with respect to MODIS or AERONET. Yet after in-
version the analysis in all four experiments presents similar
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Fig. 2. Total AOD change in rms error (green circles), mean bias (red diamond) and correlation (orange squares)

between FG and AN with respect to MODIS AOD [in %] for (a) biomass burning and (c) industrial regions

identified in the x-axis. In addition, bias in AOD [unitless] for FG (red) and AN (green) with respect to MODIS

for (b) biomass burning and (d) industrial regions (identified in the x-axis) are illustrated. Regions are presented

in Section 2.3 and illustrated in Fig. 1.
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Fig. 2. Total AOD change in RMS error (green circles), mean bias (red diamond) and correlation (orange squares) between FG and AN
with respect to MODIS AOD (in %) for(a) biomass burning and(c) industrial regions identified in thex axis. In addition, bias in AOD
(unitless) for FG (red) and AN (green) with respect to MODIS for(b) biomass burning and(d) industrial regions (identified in thex axis)
are illustrated. Regions are presented in Sect. 2.3 and illustrated in Fig. 1.

statistics, in particular in terms of RMS error. Small differ-
ences in bias and correlation can be seen for the AN with
respect to AERONET. They suggest that while the statistics
of the FG are mostly determined by the BB inventory, the
choice of the fossil fuel and industrial inventory determines
the statistics of the AN. Likewise for the fine mode AOD,
combinations with GFED and GFAS differ in their FG statis-
tics with respect to MODIS but present similar statistics after
the inversion with respect to AERONET. The statistics before
the inversion seem to be dominated by the BB inventory but
by the fossil fuel and industrial inventory after the inversion.

4.2 Emission fluxes

The estimated fluxes for the baseline experiment (i.e.
ACFED) are 67 Tg S yr−1 for SO2, 12 Tg yr−1 for
BC, 87 Tg yr−1 for POM, 1206 Tg yr−1 for DD and
16850 Tg yr−1 for SS (Table 3). Most of the emissions were
increased except for DD, which was decreased by 8 % with
respect to the FG. The largest increase is in BC (73 %) and
POM (72 %) emissions while the smallest is in SS emissions
(1 %). The increase in SO2 emissions is 36 %.

The emissions of SO2 and BC were increased in all exper-
iments after inversion, yet POM AN emissions for ACFAS
and AEFAS were reduced (Table 3). The maximum differ-

ence of the three a priori inventories to the reference one was
reduced from 11, 57 and 108 % down to 6, 13 and 17 % for
SO2, BC and POM, respectively. For both SS and DD, all
four experiments use the same a priori flux and after inver-
sion the emissions from the ACFAS, AEFED and AEFAS
experiments present differences with respect to ACFED that
do not exceed 2 %.

For anthropogenic and BB emissions, we compare the new
emission fluxes (AN) and FG fluxes to the projected emis-
sions for the year 2010 from the Representative Concentra-
tion Pathways (RCPs). The RCPs correspond to a total of
four harmonized emission scenarios for gaseous and particu-
late species developed as a basis for long-term and near-term
modelling experiments. These four scenarios span the range
from 2.6 to 8.5 Wm−2 radiative forcing values for the year
2100 (van Vuuren et al., 2011) but do not differ much for
the year 2010 which is of interest here. We use the RCP 8.5
emissions in this study. To ease the comparison we have con-
verted OC emissions given in L10 and the different RCPs to
POM by applying a conversion factor of 1.6 between both
species. This is the same method applied in SPLA to convert
OC to POM emissions (Huneeus et al., 2009).

We recall that the emissions used as FG correspond to in-
ventory L10 for the year 2000 and were used as starting point
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Table 3.Total FG and AN annual emissions in TgSyr−1 for SO2 and Tgyr−1 for the other aerosol species for the year 2010 and each one
of the four experiments. For SO2, BC and POM, only the fluxes of the active variables are provided.

ACFED ACFAS AEFED AEFAS

FG AN FG AN FG AN FG AN

SO2 44 67 44 65 50 71 50 70
BC 7 12 11 13 7 13 11 14
POM 51 87 105 102 45 80 100 96
DD 1305 1206 1305 1206 1305 1193 1305 1188
SS 16 612 16 851 16 612 16 820 16 612 16 810 16 612 16 781

Fig. 3. Global-yearly emissions of SO2 (in Tg S yr−1), BC and POM (in Tg yr−1) of first guess (FG, red),

analysis (AN, green) and projected RCP8.5 emissions for the year 2010 (RCP, black). The FG combines the

anthropogenic emissions from L10 and the GFED biomass burning emissions.

Fig. 4. Same as Fig. 3 but for annual SO2 emissions in the thirteen regions illustrated in Fig. 1a.
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Fig. 3. Global-yearly emissions of SO2 (in Tg S yr−1), BC and
POM (in Tg yr−1) of FG (red), AN (green) and projected RCP8.5
emissions for the year 2010 (RCP, black). The FG combines the an-
thropogenic emissions from L10 and the GFED biomass burning
emissions.

for the RCPs. The RCP8.5 emissions suggest a reduction in
the emission of SO2, BC and POM between the year 2000
and 2010, with a stronger reduction in SO2 than BC and
POM (Fig. 3). The reductions of RCP SO2 in NOAM and
EURO compensate for the increase in INDIA, EAAS and
South East Asia (SEAS) (Fig. 4). The assimilation of AOD
increases the global-yearly emissions of all three species
with stronger increase in SO2 than POM and BC. Except for
North America and Europe where the SO2 emissions are re-
duced, they are increased in most regions, with the largest
increase in South America, Russia, Middle East and East
Asia (Fig. 4). In most regions the SO2 AN presents larger
emissions than both the FG and RCP8.5 increasing the orig-
inal difference to the RCP8.5 emissions, yet in five regions
(NOAM, EURO, INDIA, EAAS and SEAS) the AN reduces
this original difference.

The projections for 2010 (RCP8.5) do not present ma-
jor differences with respect to the FG for BB emissions
(Fig. 5b, d) but differences are seen for BC emissions from

Fig. 3. Global-yearly emissions of SO2 (in Tg S yr−1), BC and POM (in Tg yr−1) of first guess (FG, red),

analysis (AN, green) and projected RCP8.5 emissions for the year 2010 (RCP, black). The FG combines the

anthropogenic emissions from L10 and the GFED biomass burning emissions.

Fig. 4. Same as Fig. 3 but for annual SO2 emissions in the thirteen regions illustrated in Fig. 1a.
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Fig. 4. Same as Fig. 3 but for annual SO2 emissions in the thirteen
regions illustrated in Fig. 1a.

FF combustion between FG and RCP8.5 in NOAM, South
America (SOAM), EURO, INDIA and EAAS which are not
present or less important for POM emissions (Fig. 5a, c, re-
spectively). The large increase in BC and POM emissions in
the AN (Fig. 3) are dominated by the fluxes in Central Africa
(CEAF) as a consequence of combustion of FF (Fig. 5a, c).
Additionally, emissions are also increased in India, South
Africa and the Middle East. For BB emissions the largest
increase in BC and POM are seen in CESA and Southern
Hemisphere Africa (SHAF) (Fig. 5b, d). The largest differ-
ences of the AN with respect to the projected emissions for
2010 (RCP8.5) coincide with regions where the largest AN
increase in emissions is observed. Although the AN emis-
sions mainly increased, a few regions exist where they de-
creased. For FF combustion the sole regions with reductions
are NOAM, EURO and NOAF, with the largest reduction
in NOAM, whereas for BB the reductions are in BONA,
NAME, SSAM and Boreal Asia (BOAS).

The global estimates for SO2 and BC are mostly indepen-
dent of the emission inventory used as FG whereas for POM
the choice of the FG influences the final estimate (Fig. 6),
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Fig. 5. Same as Fig. 3 but for annual emissions of (a) BC and (c) POM from fossil fuel (FF) combustion in the

thirteen regions illustrated in Fig. 1a and annual emissions of (b) BC and (d) POM from biomass burning (BB)

in the fifteen regions illustrated in Fig. 1b.
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Fig. 5. Same as Fig. 3 but for annual emissions of(a) BC and(c) POM from FF combustion in the thirteen regions illustrated in Fig. 1a and
annual emissions of(b) BC and(d) POM from BB in the fifteen regions illustrated in Fig. 1b.

Fig. 6. Global-yearly emissions of SO2 (in Tg S yr−1), BC and POM (in Tg yr−1) for the FG and AN of

the for experiments: ACFED (light and dark red, respectively), ACFAS (light and dark blue, respectively),

AEFED (light and dark green, respectively) and AEFAS (light and dark brown, respectively). Projected RCP8.5

emissions for the year 2010 (RCP, black) are also included.
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Fig. 6. Global-yearly emissions of SO2 (in Tg S yr−1), BC and
POM (in Tg yr−1) for the FG and AN of the for experiments:
ACFED (light and dark red, respectively), ACFAS (light and dark
blue, respectively), AEFED (light and dark green, respectively)
and AEFAS (light and dark brown, respectively). Projected RCP8.5
emissions for the year 2010 (RCP, black) are also included.

Fig. 7. Annual anthropogenic emissions of SO2 (in Tg S yr−1) for the FG emissions of the ACFED and AEFED

experiments (light and dark grey, respectively) and the AN emissions of the experiments ACFED (red), ACFAS

(blue), AEFED (green) and AEFAS (brown). Fluxes are presented for all regions illustrated in Fig. 1a.
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Fig. 7. Annual anthropogenic emissions of SO2 (in Tg S yr−1) for
the FG emissions of the ACFED and AEFED experiments (light and
dark grey, respectively) and the AN emissions of the experiments
ACFED (red), ACFAS (blue), AEFED (green) and AEFAS (brown).
Fluxes are presented for all regions illustrated in Fig. 1a.
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Fig. 8. Seasonal cycle of POM emissions (Tg month−1) from BB in the main four regions illustrated in Fig. 1b.

A black solid line illustrates the GFED emissions whereas a black dashed line illustrates the GFAS emissions.

The four possible combinations of anthropogenic and biomass burning emission inventories used in this work

are included, namely ACFED (red), ACFAS (blue), AEFED (green) and AEFAS (brown). Vertical bars corre-

spond to the uncertainties in the emissions and represent one standard deviation.
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Fig. 8.Seasonal cycle of POM emissions (Tg month−1) from BB in the main four regions illustrated in Fig. 1b. A black solid line illustrates
the GFED emissions whereas a black dashed line illustrates the GFAS emissions. The four possible combinations of anthropogenic and
biomass burning emission inventories used in this work are included, namely ACFED (red), ACFAS (blue), AEFED (green) and AEFAS
(brown). Vertical bars correspond to the uncertainties in the emissions and represent one standard deviation.

mainly due to the choice of BB inventory. On the regional
scale however, the choice of the FG has an impact on the esti-
mated fluxes (Figs. 7, 8). For SO2 the impact of the choice of
the first guess depends on the region. While for most regions
the differences between the ACCMIP and AeroCom inven-
tories are in general small, there are regions with large dis-
crepancies (Russia (RUSS), CEAF, Southern Africa (SOAF),
SOAM and EAAS). After the inversion, these differences are
largely reduced except over RUSS, INDIA, CEAF and SOAF
where they persist revealing the importance of the choice of
the FG (Fig. 7). We assume at this stage that the MODIS
AOD are not biased. Sophisticated methods exist to perform
bias corrections for the assimilated data but are beyond the
scope of this study.

We focus the analysis of the BB emissions to four regions,
namely CESA, SSAM, NAME and SHAF. These regions
represent approximately 64 % of the BB emissions between
1997 and 2009 (van der Werf et al., 2010). In general both BB
inventories present similar seasonal cycles except in SSAM
and CESA where the maximum emission from GFAS lags
one month behind GFED (Fig. 8). Over SSAM, all four AN
emissions coincide with GFAS and have the maximum one
month after GFED. In CESA, on the contrary, the emission
peak depends on the inventory and differs with both GFED
and GFAS. While ACFED and AEFED have the peak in

November, ACFAS and AEFAS have it one month before.
Important differences exist between both a priori invento-
ries in terms of magnitude, with the largest differences in
period of maximum emissions. The behaviour of the four ex-
periments varies from region to region. While in CESA all
four AN coincide in presenting larger emissions than both
FGs in the month with maximum emissions, in SHAF, on
the contrary, the four AN present magnitudes between both
FGs throughout most of the year but closer to GFAS from
October to December. In NAME the four AN are closer to
the GFED inventory except from June to September where
ACFAS and AEFAS present significant emissions contrast-
ing with the low emissions of the other inventories. Finally,
in SSAM all four AN present magnitudes closer to GFED
for the months of April to September, the ACFAS and AE-
FAS are closer to GFAS for the months of January, March,
October and December and the magnitudes of all four AN
are between GFED and GFAS for November. The choice of
anthropogenic inventory for fossil-fuel emissions used has
little impact on the inverted BB emissions; the AN emission
time series of the experiments based on GFED have distin-
guishing features from those based on GFAS. This appears
to be a clear improvement brought by our system to existing
emission inventories.
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Fig. 9. Difference in monthly mean errors (analysis – first guess) for (a) ACFED, (b) ACFAS, (c) AEFED and

(d) AEFAS. The number of rows in the figure corresponds to the number of elements in the control vector.

Each row corresponds to the seasonal cycle of the difference between analysis and first guess error of a given

emission flux and region illustrated in Fig. 1. DDF and DDC correspond to the fine and coarse mode of DD,

respectively. The rows between different species are separated by black discontinuous lines. The red/blue colors

indicate positive/negative differences.
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Fig. 9. Difference in monthly mean errors (analysis− first guess) for(a) ACFED, (b) ACFAS, (c) AEFED and(d) AEFAS. The number of
rows in the figure corresponds to the number of elements in the control vector. Each row corresponds to the seasonal cycle of the difference
between analysis and first guess error of a given emission flux and region illustrated in Fig. 1. DDF and DDC correspond to the fine and
coarse modes of DD, respectively. The rows between different species are separated by black discontinuous lines. The red/blue colours
indicate positive/negative differences.

Fig. 10. Global-yearly FG (squares) and AN (circles) emissions of SO2 (in Tg S yr−1), BC and POM (in

Tg yr−1) from experiment ACFED (black), ACFAS (blue), AEFED (red) and AEFAS (brown) for the year

2010. Vertical lines correspond to uncertainties of the corresponding fluxes. Projected RCP emissions are also

illustrated (diamond gold). Uncertainties correspond to two standard deviations.
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Fig. 10.Global-yearly FG (squares) and AN (circles) emissions of
SO2 (in Tg S yr−1), BC and POM (in Tg yr−1) from experiments
ACFED (black), ACFAS (blue), AEFED (red) and AEFAS (brown)
for the year 2010. Vertical lines correspond to uncertainties of the
corresponding fluxes. Projected RCP emissions are also illustrated
(diamond gold). Uncertainties correspond to two standard devia-
tions.

The estimated DD emission of 1206 Tgyr−1 from the ref-
erence set-up (ACFED) is close to the estimated flux of
1223 Tgyr−1 in Ginoux et al. (2012), within the range of
emission in global models given in Zender et al. (2004) and
Huneeus et al. (2011) and within the estimated emission
range in Cakmur et al. (2006). The emissions over both Sa-
haran regions and Saudi Arabia present large increase in DD
emissions, yet they do not exceed the decrease observed in
East and West Asia, India and North West America (not
shown). The FG and AN SS emissions are close to the Ae-
roCom mean of 15 global models (Textor et al., 2006) but
exceed by a factor of three the values given in Lewis and
Schwartz (2004) and Jaeglé et al. (2011).

4.3 Emission uncertainties

The uncertainty of the estimated emission fluxes or analy-
sis (A) can be estimated theoretically at the monthly regional
scale by combining the observation and model errors inR,
weighted by the sensitivities of the AOD to the emissions in
the linear operatorH, with the a priori errorsB in the follow-
ing way (Bouttier and Courtier, 1999):

A = (HTR−1H + B−1)−1 . (3)
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The initial monthly errors attributed to the FG were assumed
to be the same in all regions and throughout the year and were
defined as 18 % for SO2, 130 % for BB, 90 % for FF, 200 %
for DD and 300 % for SS (see Sect. 2.4). The analysis er-
rors however, vary throughout the regions and the year. This
variability in the error, both in space and time, is introduced
by the sensitivities in the linear operatorH. The regional
monthly errors vary between 3 and 18 % for SO2, 1 and
130 % for BB, 21 and 90 % for FF, 1 and 200 % for DD and
1 and 5 % for SS. The monthly errors are reduced with re-
spect to the FG in all regions and throughout the year for
SO2 and all aerosol species, with the largest reduction for SS
(Fig. 9a). This stronger reduction for SS is because the fine
mode is assimilated over ocean in addition to the total AOD
to constrain the SS emissions. The large upper bound for BB
and DD corresponds to regions and months without or small
emissions.

The four experiments present similar general features in
the seasonal variability of the error reduction (Fig. 9). All
experiments agree in presenting the largest reductions for SS
and DD for all regions and throughout the year and the small-
est ones for SO2. On the contrary, the intra-annual variability
of the error reduction for FF and BB depends on the FG.
For FF, ACFED and ACFAS present in general larger rel-
ative reductions (and therefore smaller relative AN errors)
than AEFED and AEFAS, while for BB, ACFAS and AE-
FAS present in general larger reductions than ACFED and
ACFAS.

The annual global errors are now computed for both the
initial errors (B) and the errors (A) of the AN. The spatial
covariance in errors between different species and/or regions
as given in theA matrix are considered. The temporal corre-
lations between months along the year are not assigned in the
inversion system (see Sect. 2.4). In order to account for possi-
ble temporal correlation in the annual errors, we compute the
global-yearly errors for the case of fully uncorrelated errors
and fully correlated ones considering that reality is some-
where in between. The global-yearly errors (with temporal
dependance) for the AN are 3 % for SO2, 14 % for BC, 11 %
for POM, 14 % for DD and 2 % for SS. These ranges repre-
sent a decrease compared to the global-yearly errors from the
FG (7 % for SO2, 40 % for BC, 55 % for POM, 81 % for DD
and 300 % for SS). As for the monthly regional errors, the
largest reduction is seen for SS and the smallest one for SO2
which is almost negligible.

The global-yearly AN fluxes of SO2, BC and POM of each
experiment are all within the uncertainty not only of the cor-
responding reference flux, but also of the remaining experi-
ments; the spread between the fluxes of the different exper-
iments is smaller than the smallest uncertainty range of the
four experiments (Fig. 10). We highlight that in the present
analysis the error bars correspond to two standard deviations
and therefore represent about 95 % of the uncertainty. Con-
trary to BC and POM, the SO2 FG fluxes are outside the un-
certainty range of their corresponding AN flux. Likewise, the

estimated RCP emissions are within the uncertainty range of
the corresponding AN flux from the different experiments,
except for SO2. Although this result suggests that the differ-
ence in the SO2 fluxes is significant, we cannot state at this
point whether this difference is due to FG or the projection
of the emissions.

5 Conclusions

Aerosols play an important role in air quality, atmospheric
visibility, climate and tropospheric chemistry. At present,
they represent the largest source of uncertainty when esti-
mating the total anthropogenic radiative forcing of climate,
partly due to a lack of knowledge on the spatial and temporal
distribution of aerosol emissions. Such knowledge is needed
to quantify the impact of aerosols on climate and air quality
in regional and global aerosol models.

We have presented a top-down emission inventory for SO2
and the main aerosol species, namely DD, SS, BC and POM.
Monthly mean emissions for the year 2010 were generated
by assimilating total and fine mode MODIS AOD at 550 nm
into an aerosol model of intermediate complexity. Aerosol
emissions are increased or decreased homogenously for each
aerosol species and gaseous precursor over a set of prede-
fined regions. These fluxes represent the best compromise be-
tween the assimilated observations and the available a priori
information on the emissions. The ACCMIP fossil fuel and
industrial emissions of SO2, BC and POM and the GFEDv3
biomass burning emissions of SO2, BC and POM are used as
a priori emissions in the baseline inversion. The sensitivity
and robustness of the inversion system to the choice of the
a priori emission inventory is investigated by using different
combinations of the ACCMIP and AeroCom fossil fuel and
industrial and the GFED and GFAS biomass burning sources.

The improvement to the model performance of the new
fluxes with respect to the first guess is assessed through
the root mean square error, bias and correlation coefficient
against the assimilated observations and a set of independent
ground-based observations. The resulting aerosol emissions
from the four experiments improve all statistics for the to-
tal AOD with respect to both sources of observations. For
the fine mode AOD, however, while the RMS error (correla-
tion) is decreased (increased), the bias is slightly increased.
The absence of fine mode AOD over the continents where the
largest AOD occur and the low bias of the FG may explain
this feature. Yet this suggests prospect for improvement if
fine mode AOD over continent is included in the assimila-
tion. Furthermore, while the FG statistics are determined by
the BB inventories, the AN statistics are determined by the
fossil fuel and industrial inventories. In addition, the spread
in statistics before the inversion is reduced after assimilation
of total and fine mode AOD.

The estimated fluxes for the reference experiment
(ACFED) were increased by 53, 73, 72 and 1 % for SO2,
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Table 4.Regional-monthly emission errors in % for the FG and the
range of AN errors between the four experiments.

Regional-Monthly

FG AN

SO2 18 3–18
BB 130 1–130
FF 90 21–90
DD 200 1–200
SS 300 1–5

Table 5. Global-yearly emission errors with temporal dependence
in % for the FG and the AN.

Global-Yearly

FG AN

SO2 7 3
BC 40 14
POM 55 11
DD 81 14
SS 300 2

BC, POM and SS, respectively, and decreased by 8 % for DD
with respect to the a priori values (Table 3). The maximum
difference between each one of the three a priori inventories
with respect to the reference one was reduced from 11, 57
and 108 % before the inversion, to 6, 13 and 17 % after the
inversion, for SO2, BC and POM, respectively. The result-
ing baseline emissions were compared to the RCP projected
emissions for 2010 for SO2, BC and POM. At the global
scale, the AN presents larger emissions than the RCP for all
three species, with larger differences for SO2 than POM and
BC. There are regions however, where the initial difference
to the RCP is reduced after inversion. The RCP emissions of
SO2, BC and POM are in general not within the uncertainty
range of any of the corresponding AN flux from the four ex-
periments. We cannot determine at this point if this suggests
a too conservative emission projection for these species. On
the global scale the AN is sensitive on the choice of the BB
inventory and not so much on the fossil fuel and industrial
inventory. Yet there are regions (RUSS, INDIA, CEAF and
SOAF) where the choice of the FG is relevant.

The same FG in the four experiments was used for nat-
ural emissions of DD and SS and the combination of fossil
fuel and industrial and BB inventory had little if any impact
on the final estimated emissions; the differences with respect
to the reference flux after the inversion did not exceed 2 %.
The estimated emissions of DD are within the range of emis-
sions used in global model and are close to the estimate of
Ginoux et al. (2012). The SS AN flux, although within the
range of emissions used in the AeroCom global models, dif-
fers largely with other estimates found in the literature.

The regional-monthly analysis errors are reduced for all
species and throughout the year with respect to the initial val-
ues (Table 4). The global-yearly errors were computed with
the above values and the impact of a temporal dependence
was explored. The errors for the AN were decreased when
contrasted to the global-yearly errors from the FG (Table 5).
The largest error reduction, both monthly and yearly, is seen
for SS and the smallest one for SO2. The estimated emis-
sion fluxes for SO2, BC and POM are within the uncertainties
of the four experiments. The projected SO2 RCP emissions
however, are outside the AN uncertainties of the different set-
ups tested. It is unclear at this point whether this is due to the
a priori emission inventories or to projections which are too
conservative.

The general validity of the resulting emission fluxes de-
pends also on the aerosol model used in the inversion. The
representation of processes such as the formation of sec-
ondary aerosols and the aging of particles could lead to biases
in the estimated fluxes. To explore the impact of these repre-
sentations on the resulting emissions, they need to be used in
models with higher complexity. The posterior validation of
the simulated AOD could reveal weaknesses in the simplifi-
cation of the aerosol model that will require improvement in
the future.

Appendix A

Regional monthly errors are directly available for the back-
ground and for the analysis, but in many applications the
global-yearly errors are needed. The method to compute the
global-yearly errors for a given species is presented here. We
take the example of the analysis, but the method applies for
the background errors as well.

The first step is to compute the global monthly errors. To
do so, we extract for each montht a sub-matrixAt of the full
analysis error covariance matrix with the relevant elements
for a given species. The matrixAt contains the variances and
covariances in terms of the relative errors, but the operations
to aggregate the errors are done in terms of absolute errors.
Let A’ t be the corresponding error covariance matrix in abso-
lute terms for montht . The standard deviation of the global
monthly flux for montht (Mt ) can be calculated as the square
root of the sum of all elements inA’ t .

To compute the global-yearly error, a 12× 12 matrixG is
constructed:

G=



M1
M2 cov(Mj ,Mi)

. . .

cov(Mi,Mj )
. . .

M12

. (A1)
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The diagonal termsMi correspond to the global monthly
error computed as described above. The off-diagonal terms
cov(Mi,Mj ) correspond to the temporal dependence in the
emission errors and are not estimated by the inversion sys-
tem. The following equation is used to compute this temporal
dependence:

Rij =
cov(Mi,Mj )
√

Mi

√
Mj

. (A2)

The covariance terms cov(Mi,Mj ) (i 6= j ) between the
global monthly errorMi andMj are therefore the product of
the standard deviation of these errors and of the correspond-
ing correlation coefficient. The global-yearly error is the
square root of the sum of the elements inG. The range of this
error (given by time-uncorrelated and fully time-correlated
errors) corresponds to covariance terms computed with cor-
relation coefficients (Rij ) equal to zero and 1, respectively.

This principle is valid for the global-yearly error of a sin-
gle species such as SO2 or the BC emissions of biomass
burning. The same method is applied to compute the global-
yearly errors of total BC emissions (i.e., from biomass burn-
ing and fossil fuel combustion). The only difference is the
size of the matrixA’ that in addition to including the vari-
ances and covariances associated to biomass burning and
combustion of fossil fuel, also includes the covariances be-
tween the two emission sources.
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