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SUBGAUSSIAN CONCENTRATION INEQUALITIES FOR

GEOMETRICALLY ERGODIC MARKOV CHAINS

JÉRÔME DEDECKER AND SÉBASTIEN GOUËZEL

Abstract. We prove that an irreducible aperiodic Markov chain is geometrically ergodic
if and only if any separately bounded functional of the stationary chain satisfies an appro-
priate subgaussian deviation inequality from its mean.

Let K(x0, . . . , xn−1) be a function of n variables, which is separately bounded in the
following sense: there exist constants Li such that for all x0, . . . , xn−1, x

′
i,

(1) |K(x0, . . . , xi−1, xi, xi+1, . . . , xn−1)−K(x0, . . . , xi−1, x
′
i, xi+1, . . . , xn−1)| 6 Li.

It is well known that, if the random variables X0,X1, . . . are i.i.d., then K(X0, . . . ,Xn−1)
satisfies a subgaussian concentration inequality around its average, of the form

(2) P(|K(X0, . . . ,Xn−1)− EK(X0, . . . ,Xn−1)| > t) 6 2e−2t2/
∑

L2

i ,

see for instance [McD89].
Such concentration inequalities have also attracted a lot of interest for dependent random

variables, due to the wealth of possible applications. For instance, Markov chains with good
mixing properties have been considered, as well as weakly dependent sequences.

A particular instance of function K is a sum
∑

f(xi) (also referred to as an additive
functional). In this case, one can hope for better estimates than (2), involving for instance
the asymptotic variance instead of only Li (Bernstein-like inequalities). However, for the
case of a general functional K, estimates of the form (2) are rather natural.

Under very strong assumptions ensuring that the dependence is uniformly small (say,
uniformly ergodic Markov chains, or Φ-mixing dependent sequences), subgaussian concen-
tration inequalities are well known (see [Rio00] for the extension of (2) and [Sam00] for
other concentration inequalities). For additive functionals, Lezaud [Lez98, p 861] proved a
Prohohorov-type inequality under a spectral gap condition in L

2, from which a subgaussian
bound follows. However, there are very few such results under weaker assumptions (say, ge-
ometrically ergodic Markov chains, or α-mixing dependent sequences), where other type of
exponential bounds are more usual (let us cite [MPR11] for α-mixing sequences and [AB13]
for geometrically ergodic Markov chains; see also the references in those two papers for
a quite complete picture of the literature). As an exception, let us mention the result of
Adamczak, who proves in [Ada08] subgaussian concentration inequalities for geometrically
ergodic Markov chains under the additional assumptions that the chain is strongly aperiodic
and that the functional K is invariant under permutation of its variables.

Our goal in this note is to prove subgaussian concentration inequalities for aperiodic
geometrically ergodic Markov chains, extending the above result of [Ada08]. Such a setting
has a wide range of applications, in particular to MCMC (see for instance Section 3.2
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in [AB13]). Our proof is mainly a reformulation in probabilistic terms of the proof given
in [CG12] for dynamical systems. It is based on a classical coupling estimate (Lemma 6
below), but used in an unusual way along an unusual filtration (the relationship between
coupling and concentration has already been explored in [CR09]). Similar results can also
be proved for Markov chains that mix more slowly (for instance, if the return times to
a small set have a polynomial tail, then polynomial concentration inequalities hold). The
interested reader is referred to the articles [CG12] and [GM14] where such results are proved
for dynamical systems: the proofs given there can be readily adapted to Markov chains using
the techniques we describe in the current paper (the only difficulty is to prove an appropriate
coupling lemma extending Lemma 6). Since the main case of interest for applications is
geometrically ergodic Markov chains, and since the proof is more transparent in this case,
we only give details for this situation.

Our results are valid for Markov chains on a general state space S, but they are already
new and interesting for countable state Markov chains. The reader who is unfamiliar with
general state space Markov chains is therefore invited to pretend that S is countable. We
chose to present our results for general state space firstly because of the wealth of appli-
cations, and secondly because of a peculiarity of general state space that does not exist
for countable state space: there is a distinction between strongly aperiodic and aperiodic
chains, and several mixing results only apply in the strongly aperiodic case (i.e., m = 1 in
Definition 1 below) while our argument always applies.

From this point on, we consider an irreducible aperiodic positive Markov chain (Xn)n>0

on a general state space S, which we assume as usual to be countably generated. We refer
to the books [Num84] or [MT93] for the classical background on Markov chains on general
state spaces. Let us nevertheless recall the meaning of some of the above terms, since it
may vary slightly between sources.

First, we are given a measurable transition kernel P of the chain, that is, for any measur-
able set A in S,

P (x,A) = E (1X1∈A | X0 = x) .

Starting from any point x0, we obtain a chain X0 = x0,X1,X2, . . . , where Xi is distributed
according to the measure P (Xi−1, ·). This chain is irreducible, aperiodic and positive if there
exists a (necessarily unique) stationary probability measure π such that, for all x, all set A
with π(A) > 0 and all large enough n (depending on x and A), one has Pn(x,A) > 0 (where
Pn denotes the kernel of the Markov chain at time n). Other definitions of irreducibility only
require this property to hold for almost every x (in this case, one can restrict to an absorbing
set of full π-measure to obtain it for all x there), we follow the definition of [MT93].

We will be interested in a specific class of such Markov chains, called geometrically ergodic.
There are many equivalent definitions of this class, in terms of the properties of the return
time to a nice set, or of mixing properties. Essentially, geometrically ergodic Markov chains
are those Markov chains that mix exponentially fast, see [MT93, Chapters 15 and 16] for
several equivalent characterizations. For instance, they can be defined as follows [MT93,
Theorem 15.0.1(ii)].
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Definition 1. An irreducible aperiodic positive Markov chain is geometrically ergodic if
the tails of the return time to some small set are exponential. More precisely, there exist a
set C, an integer m > 0, a probability measure ν, and δ ∈ (0, 1), κ > 1 such that

• For all x ∈ C, one has

(3) Pm(x, ·) > δν.

• The return time τC to C satisfies

(4) sup
x∈C

Ex(κ
τC ) < ∞.

A set C satisfying (3) is called a small set (there is a related notion of petite set, these
notions coincide in irreducible aperiodic Markov chains, see [MT93, Theorem 5.5.7]).

In the case of a countable state space, this property is equivalent to the fact that the
return time to some (or equivalently any) point has an exponential moment.

From Theorem 15.0.1 of [MT93], it follows that if a chain is geometrically ergodic in the
sense of Definition 1, then

(5) ‖Pn(x, ·) − π‖ 6 V (x)ρn ,

where ‖·‖ is the total variation norm, ρ ∈ (0, 1) and V is a positive function such that
the set SV = {x : V (x) < ∞} is absorbing and of full measure. This property (5) is in
fact another classical definition for geometric ergodicity: from Theorem 15.4.2 in [MT93]
(or Theorem 6.14 in [Num84]) it follows that if a chain is irreducible, aperiodic, positively
recurrent (so that there exists an unique stationary distribution π) and satisfies (5), then
there exists a small set C for which (4) holds.

We prove the following theorem.

Theorem 2. Let (Xn) be an irreducible aperiodic Markov chain which is geometrically
ergodic on a space S. Let π be its stationary distribution. Let C be a small set as in
Definition 1. There exists a constant M0 (depending on C) with the following property. Let
n ∈ N. Let K(x0, . . . , xn−1) be a function of n variables on Sn, which is separately bounded
with constants Li, as in (1). Then, for all t > 0,

(6) Pπ(|K(X0, . . . ,Xn−1)− EπK(X0, . . . ,Xn−1)| > t) 6 2e−M−1

0
t2/

∑
L2

i ,

and for all x in the small set C,

(7) Px(|K(X0, . . . ,Xn−1)− ExK(X0, . . . ,Xn−1)| > t) 6 2e−M−1

0
t2/

∑
L2

i .

As will be clear from the proof, the constant M0 can be written explicitly in terms of
simple numerical properties of the Markov chain, more precisely of its coupling time and of
the return time to the small set C. We shall in fact prove (7), and show how it implies (6)
(see the first step of the proof of Theorem 2).

Note that there is no strong aperiodicity assumption in our theorems (i.e., we are not
requiring m = 1), contrary to several mixing results for Markov chains. The reason for this
is that we will use the splitting method of Nummelin (see Definition 5 below) only to control
coupling times, but we will not need the independence of the blocks between two successive
entrance times to the atom of the split chain as in [Ada08]. Following the classical strategy
of McDiarmid, we will rather decompose K as a sum of martingale increments, and estimate
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each of them. However, if we try to use the natural filtration given by the time, we have no
control on what happens away from C. The main unusual idea in our argument is to use
another filtration indexed by the next return to C, the rest is mainly routine.

The following remarks show that the above theorem is sharp: it is not possible to weaken
the boundedness assumption (1), nor the assumption of geometric ergodicity.

Remark 3. It is often desirable to have estimates for functions which are unbounded.
A typical example in geometrically ergodic Markov chains is the following. Consider an
appropriate drift function, i.e., a function V > 1 which is bounded on a small set C and
satisfies PV (x) 6 ρV (x) + A1C(x) for some numbers ρ < 1 and A > 0 (where P is the
Markov operator of the chain). One thinks of V as being “large close to infinity”. A natural
candidate for stronger concentration inequalities would be functions K satisfying

(8) |K(x0, . . . , xi−1, xi, xi+1, . . . , xn−1)−K(x0, . . . , xi−1, x
′
i, xi+1, . . . , xn−1)|

6 Lif(V (xi) ∨ V (x′i)),

for some positive function f going to infinity at infinity, for instance f(t) = log(1 + t).
Unfortunately, subgaussian concentration inequalities do not hold for such functionals of
geometrically ergodic Markov chains: there exists a geometrically ergodic Markov chain
such that, for any M0, for any function f going to infinity, there exist n and a functional K
satisfying (8) for which the inequality (6) is violated. Even more, concentration inequalities
fail for additive functionals.

Consider for instance the chain on {1, 2, . . . } given by P(1 → s) = 2−s for s > 1 and

P(s → s − 1) = 1 for s > 1. The function V (s) = 2s/2 satisfies the drift condition, for the

small set C = {1}, since PV (s) = 2−1/2V (s) for s > 1 and PV (1) = 2−1/2/(1− 2−1/2) < ∞.
The stationary measure π is given by π(s) = 2−s. In particular, V is integrable.

Assume by contradiction that a concentration inequality (6) holds for all functionals

satisfying the bound (8), for some function f going to infinity and some M0 > 0. Let f̃ be

a nondecreasing function with f̃(x) 6 min(f(x), x), tending to infinity at infinity. Define

a function g(s) = f̃(V (s)), except for s = 1 where g(1) is chosen so that
∫

g dπ = 0. Let
K(x0, . . . , xn−1) =

∑

g(xi), it satisfies (8) with Li = L constant and EπK = 0.
For any N > 0 and n > 0, the Markov chain has a probability 2−n−N to start from

X0 = n +N , and then the next n iterates are n +N − i > N . In this case, g(X0) + · · · +
g(Xn−1) > ng(N). Applying (6), we get

2−n−N = π(n+N) 6 Pπ(|K − EπK| > ng(N)) 6 2e−M−1

0
(ng(N))2/(nL2) = 2e−M−1

0
L−2g(N)2n.

Letting n tend to infinity, we deduce that M−1
0 L−2g(N)2 6 log 2. This is a contradiction if

N is large enough, since g tends to infinity.
For instance, if one takes f(t) =

√

ln(t ∨ e), then g satisfies the subgaussian condition
Eπ(exp(g(X0)

2)) < ∞, but nevertheless the subgaussian inequality for the additive func-
tional g(X0) + · · ·+ g(Xn−1) fails.

Remark 4. One may wonder if the subgaussian concentration inequality (6) can be proved
in larger classes of Markov chains. This is not the case: (6) characterizes geometrically
ergodic Markov chains, as we now explain.
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Consider an irreducible aperiodic Markov chain such that (6) holds for any separately
bounded functional. We want to prove that it is geometrically ergodic. By [MT93, Theorem
5.2.2], there exists a small set, i.e., a set C satisfying (3), for some m > 1. If the original
chain satisfies subgaussian concentration inequalities, then the chain at times which are
multiples of m (called its m-skeleton) also does. Moreover, an irreducible aperiodic Markov
chain is geometrically ergodic if and only if its m-skeleton is, by [MT93, Theorem 15.3.6].
It follows that is suffices to prove the characterization when m = 1, which we assume from
now on.

The proof uses the split chain of Nummelin (see [Num78] and [Num84]), which we describe
now.

Definition 5. Let P be a transition kernel satisfying (3) for δ ∈ (0, 1) and ν a probability
measure. The split chain is a Markov chain Yn on S̄ = S × [0, 1], whose transition kernel
P̄ is as follows: if x /∈ C, then P̄ ((x, t), ·) = P (x, ·) ⊗ λ, where λ is the uniform measure
on [0, 1]. If x ∈ C, then if t ∈ [0, δ] one sets P̄ ((x, t), ·) = ν ⊗ λ, and if t ∈ (δ, 1] then
P̄ ((x, t), ·) = (1− δ)−1(P̄ (x, ·)− δν)⊗ λ.

Essentially, the corresponding chain behaves as the chain on S, except when it enters C
where the part of the transition kernel corresponding to δν is explicitly separated from the
rest.

For x ∈ S, let Px̄ denote the distribution of the Markov chain Yn started from δx ⊗ λ.
The first component of Yn, living on S, is then distributed as the original Markov chain
started from x. In the same way, the chain Yn started from π̄ = π⊗ λ has a first projection
which is distributed as the original Markov chain started from π. For obvious reasons, we
still denote by Xn the first component of Yn.

Let C̄ = C× [0, δ]. This is an atom of the chain Yn, i.e., P̄ (y, ·) does not depend on y ∈ C.
We will show that the return time τC̄ to C̄ has an exponential moment. Let C ′ = C × [0, 1],
and let Un be the second component of Yn. Each time the chain Xn enters C, i.e., Yn

enters C ′, then Yn enters C̄ if and only if Un 6 δ. Denote by tk the k-th visit to C ′ of
the chain Yn, and note that (tk) is an increasing sequence of stopping times. By the strong
Markov property, it follows that (Utk ) is an i.i.d. sequence of random variables with common
distribution λ. Let K(X1, . . . ,Xn) =

∑n
i=1 1C(Xi) denote the number of visits of Xi to C.

For any k 6 n, {K(X1, . . . ,Xn) > k} = {tk 6 n}. It follows that, for any k 6 n,

Pπ̄(τC̄ > n) 6 Pπ(K(X1, . . . ,Xn) < k) + Pπ̄(tk 6 n, τC̄ > n)

6 Pπ(K(X1, . . . ,Xn) < k) + Pπ̄(tk 6 n,Ut1 > δ, . . . , Utk > δ)

6 Pπ(K(X1, . . . ,Xn) < k) + (1− δ)k .

Take k = εn for ε = π(C)/2 < π(C). The subgaussian concentration inequality (6) applied
to K gives, for some c > 0, the inequality Pπ(K(X1, . . . ,Xn) 6 εn) 6 2e−cn. We deduce
that τC̄ has an exponential moment, as desired, first for π̄, then for its restriction to C̄ since
π̄(C̄) > 0, and then for any point in C̄ since it is an atom (i.e., all starting points in C̄ give
rise to a chain with the same distribution after time 1). Hence, for some κ > 1,

sup
y∈C̄

Ey(κ
τC̄ ) < ∞.
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By definition, this shows that the extended chain Yn is geometrically ergodic in the sense
of Definition 1. It is then easy to deduce that Xn also is, as follows. By (5), there exists a
measurable function V̄ which is finite π-almost everywhere such that

‖P̄n(y, ·)− π̄‖ 6 V̄ (y)ρn

for ρ ∈ (0, 1) and all y. We may take V̄ (y) = supn>1 ρ
−n‖P̄n(y, ·) − π̄‖. For x 6∈ C, this

function V̄ is constant on {x} × [0, 1] since the chains Yn starting from (x, t) or (x, t′) have
the same distribution after time 1. In the same way, for x ∈ C, the function V̄ is constant
on {x}× [0, δ] and on {x}×(δ, 1]. In particular, V̄ is bounded, hence integrable, on π-almost
every fiber {x}× [0, 1]. Letting V (x) =

∫

V̄ (x, t) dt, we get ‖(δx ⊗ λ)P̄n − π̄‖ 6 V (x)ρn (we
use the standard notation: for any measure ν on S̄, the measure νP̄n on S̄ is defined by
νP̄n(A) =

∫

P̄n(y,A)ν(dy)). Since the first marginal of the chain Yn started from δx ⊗ λ
is Xn started from x, this yields ‖Pn(x, ·) − π‖ 6 V (x)ρn, where V is finite π-almost
everywhere. As we already mentioned, this implies that the chain is geometrically ergodic
in the sense of Definition 1, by Theorem 15.4.2 in [MT93].

For the proof of Theorem 2, we will use the following coupling lemma. It says that the
chains starting from any point in C or from the stationary distribution can be coupled in
such a way that the coupling time has an exponential moment.

Let us first be more precise about what we call a coupling time. In general, a coupling
between two random variables U and V is a way to realize these two random variables
on a common probability space, usually to assert some closeness property between them.
Formally, it is a probability space Ω∗ together with two random variables U∗ and V ∗ on Ω∗,
distributed respectively like U and V . Abusing notations, we will usually implicitly identify
U and U∗, and V and V ∗.

Let µ and µ̃ be two initial distributions on S. They give rise to two chains Xn and X̃n.
We will construct couplings (X∗

n) and (X̃∗
n) between these two chains with the following

additional property: there exists a random variable τ : Ω∗ → N, the coupling time, such
that X∗

n = X̃∗
n for all n > τ .

Lemma 6. Consider an irreducible aperiodic geometrically ergodic Markov chain and a
small set C as in Definition 1. There exist constants M1 > 0 and κ > 1 with the following
property. Fix x ∈ C. Consider the Markov chains Xn and X ′

n starting respectively from
x, and from the stationary measure π. Then there exists a coupling between them with a
coupling time τ such that

E(κτ ) 6 M1.

While this lemma has a very classical flavor, we have not been able to locate a precise
reference in the literature. We stress that the constants κ and M1 are uniform, i.e., they do
not depend on x ∈ C.

Proof. We will first give the proof when the chain is strongly aperiodic, i.e., m in Definition 1
is equal to 1. Then, we will deduce the general case from the strongly aperiodic one.

Assume m = 1. We use the split chain Yn on S̄ = S × [0, 1] introduced in Definition 5.
We will use the notations of Remark 4, in particular C̄ = C × [0, δ] and π̄ = π ⊗ λ is the
stationary distribution for Yn. Every time the Markov chain Xn on S returns to C, there
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is by definition a probability δ that the lifted chain Yn enters C̄. Hence, it follows from (4)
that, for some κ1 > 1,

(9) sup
(x,s)∈C×[0,1]

E(x,s)(κ
τC̄
1 ) < ∞.

In the same way, the entrance time to C starting from π has an exponential moment, by
Theorem 2.5 (i) in [NT82]. It follows that, for some κ2 > 1,

(10) Eπ̄(κ
τC̄
2 ) < ∞.

Define T0 = inf{n > 0 : Yn ∈ C̄} and the return times

T0 + · · ·+ Ti+1 = inf{n > T0 + · · ·+ Ti : Yn ∈ C̄}.

Then T0 is independent of (Ti)i>0 and T1, T2, . . . are i.i.d. Denote by Pπ̄ the probability
measure on the underlying space starting from the invariant distribution π̄, and by Px̄ the
probability measure starting from δx ⊗ λ for x ∈ S: the corresponding Markov chains lift
the Markov chains on S starting from π and x respectively. We infer from (9) and (10) that
there exist κ3 > 1 and M < ∞ such that

(11) sup
x∈C

Ex̄(κ
T0

3 ) 6 M, Eπ̄(κ
T0

3 ) 6 M and E(κT1

3 ) 6 M.

Let now Yn and Y ′
n be the Markov chains on S̄ where Y0 ∼ δx⊗λ with x ∈ C, and Y ′

0 ∼ π̄.
It follows from (11) that their respective return times T0 + · · ·+ Ti and T ′

0 + · · · + T ′
i to C̄

are such that:

• Both T0 and T ′
0 have a uniformly bounded exponential moment, i.e., E(κT0

3 ) 6 M

and E(κ
T ′

0

3 ) 6 M .
• The times Ti and T ′

i for i > 1 are all independent, identically distributed, and their
common distribution p is aperiodic with an exponential moment.

Define τ as

τ = inf{n > 0 : ∃i with n = T0 + · · ·+ Ti and ∃j with n = T ′
0 + · · ·+ T ′

j}+ 1.

Lindvall [Lin79, Page 66] proves that, under the above two assumptions, τ has an exponential
moment: there exist κ < 1, M1 < ∞, depending only on κ3, M and p, such that E(κτ ) 6 M .

Let Y ∗
n = Yn if n < τ and Y ∗

n = Y ′
n if n > τ . As both Yτ−1 and Y ′

τ−1 both belong to the

atom C̄ by definition of τ , the strong Markov property shows that (Y ∗
n )n∈N is distributed as

(Yn)n∈N. Hence, we have constructed a coupling between Yn and Y ′
n, with a coupling time

τ which has an exponential moment, uniformly in x. Considering their first marginals, this
yields the desired coupling between Xn (the Markov chain on S started from x) and X ′

n

(the Markov chain on S started from π). This concludes the proof when m = 1.
Assume now m > 1. In this case, one uses the m-skeleton of the original Markov chain,

i.e., the Markov chain at times in mN. By [MT93, Theorem 15.3.6], this m-skeleton is still
geometrically ergodic, and the return times to C have a uniformly bounded exponential
moment. Hence, the result with m = 1 yields a coupling between the chains (Xmn)n∈N and
(X ′

mn)n∈N started respectively from x ∈ C and from π, with a coupling time τ having a
uniformly bounded exponential moment. Thus, we deduce a coupling between (Xn)n∈N and
(X ′

n)n∈N together with a random variable τ taking values in mN, such that Xnm = X ′
nm

for all nm ∈ [τ,+∞) ∩ mN (from the technical point of view, this follows by seeing the
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fact that (Xnm) is a subsequence of (Xn) as a coupling between these two sequences, and
then using the transitivity of couplings given by Lemma A.1 of [BP79]). This is not yet the
desired coupling since there is no guarantee that Xi = X ′

i for i > τ , i /∈ mN. Let X∗
i = Xi

for i < τ , and X∗
i = X ′

i for i > τ . It is distributed as (Xn) by the strong Markov property
since Xτ = X ′

τ , and satisfies X∗
i = X ′

i for all i > τ as desired. �

The following lemma readily follows.

Lemma 7. Under the assumptions of Lemma 6, let K(x0, . . . ) be a function of finitely or
infinitely many variables, satisfying the boundedness condition (1) for some constants Li.
Then, for all x ∈ C,

|Ex(K(X0,X1, . . . ))− Eπ(K(X0,X1, . . . ))| 6 M1

∑

i>0

Liρ
i,

where M1 > 0 and ρ < 1 do not depend on x or K.

Proof. Consider the coupling given by the previous lemma, between the Markov chain Xn

started from x and the Markov chain X ′
n started from the stationary distribution π. Re-

placing successively X ′
i with Xi for i < τ , we get

|K(X0,X1, . . . )−K(X ′
0,X

′
1, . . . )| 6

∑

i<τ

Li.

Taking the expectation, we obtain

∣

∣E(K(X0,X1, . . . ))− E(K(X ′
0,X

′
1, . . . ))

∣

∣ 6 E

(

∑

i<τ

Li

)

=
∑

i

LiP(τ > i)

6
∑

i

Liκ
−i
E(κτ ) 6 M1

∑

Liκ
−i. �

We start the proof of Theorem 2. To simplify the notations, consider K as a function of
infinitely many variables, with Li = 0 for i > n. We start with several simple reductions in
the first steps, before giving the real argument in Step 5.

First step: It suffices to prove (7), i.e., the concentration estimate starting from a point
x0 ∈ C.

Indeed, fix some large N > 0, and consider the function

KN (x0, . . . , xn+N−1) = K(xN , . . . , xN+n−1).

It satisfies Li(KN ) = 0 for i < N and Li(KN ) = Li−N (K) for N 6 i < n+N . In particular,
∑

Li(KN )2 =
∑

Li(K)2. Applying the inequality (7) to KN , we get

(12) Px0
(|K(XN , . . . ,XN+n−1)− Ex0

K(XN , . . . ,XN+n−1)| > t) 6 2e−M−1

0
t2/

∑
i>0

L2

i .

Let
gn(x) = E(K(X0, . . . ,Xn−1)|X0 = x) = E(K(XN , . . . ,XN+n−1)|XN = x) .

When N → ∞, the distribution of XN converges towards π in total variation, by (5). Since
gn is bounded, it follows that

Ex0
K(XN , . . . ,XN+n−1) = Ex0

gn(XN ) → Eπgn(X0) = EπK(X0, . . . ,Xn−1) as N → ∞.



CONCENTRATION INEQUALITIES FOR MARKOV CHAINS 9

Hence, for any ε > 0, their difference is bounded by ε if N is large enough. We obtain

Pπ(|K(X0, . . . ,Xn−1)− EπK(X0, . . . ,Xn−1)| > t)

6 Pπ(|K(X0, . . . ,Xn−1)− Ex0
K(XN , . . . ,XN+n−1)| > t− ε)

6 ε+ Px0
(|K(XN , . . . ,XN+n−1)− Ex0

K(XN , . . . ,XN+n−1)| > t− ε),

using again the fact that the total variation between π and the distribution of XN starting
from x0 is bounded by ε. Using (12) and letting then ε tend to 0, we obtain the desired
concentration estimate (6) starting from π, i.e.,

Pπ(|K(X0, . . . ,Xn−1)− EπK(X0, . . . ,Xn−1)| > t) 6 2e−M−1

0
t2/

∑
i>0

L2

i .

Second step: It suffices to prove that, for x0 ∈ C,

(13) Ex0
(eK−Ex0

K) 6 eM2

∑
i>0

L2

i ,

for some constant M2 independent of K.
Indeed, assume that this holds. Then, for any λ > 0,

Px0
(K − Ex0

K > t) 6 Ex0
(eλK−λEx0

K−λt) 6 e−λteλ
2M2

∑
i>0

L2

i ,

by (13). Taking λ = t/(2M2
∑

L2
i ), we get a bound e−t2/(4M2

∑
L2

i ). Applying also the same
bound to −K, we obtain

Px0
(|K − Ex0

K| > t) 6 2e
− t2

4M2

∑
L2
i ,

as desired.

Third step: Fix some ε0 > 0. It suffices to prove (13) assuming moreover that each Li

satisfies Li 6 ε0.
Indeed, assume that (13) is proved whenever Li(K) 6 ε0 for all i. Consider now a general

function K. Take an arbitrary point x∗ ∈ S. Define a new function K̃ by

K̃(x0, . . . , xn−1) = K(y0, . . . , yn−1),

where yi = xi if Li(K) 6 ε0, and yi = x∗ if Li(K) > ε0. This new function K̃ satisfies

Li(K̃) = Li(K)1(Li(K) 6 ε0) 6 ε0. Therefore, it satisfies (13). Moreover, |K − K̃| 6
∑

Li(K)>ε0
Li(K) 6

∑

Li(K)2/ε0. Hence,

Ex0
(eK−Ex0

K) 6 e2
∑

Li(K)2/ε0Ex0
(eK̃−Ex0

K̃) 6 e2
∑

Li(K)2/ε0eM2

∑
Li(K̃)2 .

This is the desired inequality.

Let us now start the proof of (13) for a function K with Li 6 ε0 for all i. We consider
the Markov chain X0,X1, . . . starting from a fixed point x0 ∈ C. We define a stopping
time τi = inf{n > i : Xn ∈ C}. Let Fi be the σ-field corresponding to this stopping
time: an event A is Fi-measurable if, for all n, A ∩ {τi = n} is measurable with respect to
σ(X0, . . . ,Xn). Let

Di = E(K | Fi)− E(K | Fi−1).
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It is Fi-measurable. By definition of Di,

K(X0, . . . )− Ex0
(K(X0, . . . )) =

n
∑

i=1

Di .

Fourth step: It suffices to prove that

(14) E(eDi | Fi−1) 6 eM3

∑
k>i L

2

k
ρk−i

,

for some M3 > 0 and some ρ < 1, both independent of K.
Indeed, assume that this inequality holds. Conditioning successively with respect to Fn,

then Fn−1, and so on, we get

E(eK−EK) = E(e
∑

Di) 6 eM3

∑n
i=0

∑
k>i L

2

k
ρk−i

6 eM3/(1−ρ)·
∑

i L
2

i .

This is the desired inequality.

Fifth step: Proof of (14).
Note first that on the set {τi−1 > i − 1} one has τi−1 = τi, and consequently Di = 0.

Hence, the following decomposition holds:

Di =

∞
∑

j=i

(E(K | Fi)− E(K | Fi−1))1τi=j,τi−1=i−1

=

∞
∑

j=i

(gj(X0, . . . ,Xj)− gi−1(X0, . . . ,Xi−1))1τi=j,τi−1=i−1,

(15)

where
gj(x0, . . . , xj) = EX0=xj

K(x0, . . . , xj ,X1, . . . ,Xn−j−1).

Here, we have used the fact that

E(K | Fi)1τi=j = E(K1τi=j | Fi) = E(K1τi=j | X0, . . . ,Xj) = E(K | X0, . . . ,Xj)1τi=j,

which is commonly used in the proof of the strong Markov property for stopping times.
Let now

gj,π(x0, . . . , xj) = EX0∼πK(x0, . . . , xj ,X1, . . . ,Xn−j−1).

By Lemma 7, for any xj ∈ C,

(16) |gj(x0, . . . , xj)− gj,π(x0, . . . , xj)| 6 M1

∑

k>j+1

Lkρ
k−j.

From (15) and (16), we infer that

Di =
∞
∑

j=i

(gj,π(X0, . . . ,Xj)− gi−1,π(X0, . . . ,Xi−1))1τi=j,τi−1=i−1

+O





∑

k>τi+1

Lkρ
k−τi



+O





∑

k>i

Lkρ
k−i



.

(17)

Since π is the stationary measure, gj,π can also be written as

gj,π(x0, . . . , xj) = EX0∼πK(x0, . . . , xj ,Xj−i+2, . . . ,Xn−i).
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It follows that

(18) |gj,π(x0, . . . , xj)− gi−1,π(x0, . . . , xi−1)| 6

j
∑

k=i

Lk.

Write τ = τi − (i− 1) for the return time to C of Xi−1. From (18), we get that

(19)

∞
∑

j=i

(gj,π(X0, . . . ,Xj)− gi−1,π(X0, . . . ,Xi−1))1τi=j,τi−1=i−1 6

(

i+τ−1
∑

k=i

Lk

)

1τi−1=i−1.

Since
∑

k>iLkρ
k−i 6

∑i+τ−1
k=i Lk +

∑

k>i+τ Lkρ
k−i−τ , it follows from (17) and (19) that

(20) |Di| 6 M4





i+τ−1
∑

k=i

Lk +
∑

k>i+τ

Lkρ
k−i−τ



1τi−1=i−1.

As all the Lk are bounded by ε0, we obtain

(21) |Di| 6 M4ε0(τ + 1/(1 − ρ))1τi−1=i−1 6 M5ε0τ1τi−1=i−1.

Choose σ ∈ [ρ, 1). The equation (20) also gives

|Di| 6 M4





∑

k>i

Lkσ
k−iσ−τ



1τi−1=i−1.

By the Cauchy-Schwarz inequality, this yields

|Di|
2
6 M2

4σ
−2τ





∑

k>i

L2
kσ

k−i









∑

k>i

σk−i



1τi−1=i−1

6 M6σ
−2τ





∑

k>i

L2
kσ

k−i



1τi−1=i−1.

(22)

We have et 6 1 + t + t2e|t| for all real t. Applying this inequality to Di, taking the
conditional expectation with respect to Fi−1 and using that E(Di | Fi−1) = 0, this gives

E(eDi | Fi−1) 6 1 + E(D2
i e

|Di| | Fi−1).

Combining this estimate with (21) and (22), we get

E(eDi | Fi−1) 6 1 + E



M6e
M5ε0τσ−2τ

∑

k>i

L2
kσ

k−i | Fi−1



1τi−1=i−1

6 1 +M6





∑

k>i

L2
kσ

k−i



E
(

eM5ε0τσ−2τ | Xi−1

)

1Xi−1∈C .

By the definition of geometric ergodicity (see Definition 1) one can choose ε0 small enough
and σ close enough to 1 in such a way that

sup
x∈C

E
(

eM5ε0τσ−2τ | Xi−1 = x
)

< ∞ .
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It follows that
E(eDi | Fi−1) 6 1 +M7

∑

k>i

L2
kσ

k−i
6 eM7

∑
k>i L

2

k
σk−i

.

This concludes the proof of (14), and of Theorem 2. �
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