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1 Introduction

Two-player stochastic games played on finite arenas are considered, where
to each state a reward is attached. The players objectives are to maximize,
and respectively minimize the average reward on the long run. The purpose
of this note is to point out an error in the proof given by Ligget and Lippman
in [6] that both players have optimal strategies that are positional, and to
provide one possible resolution.

The arena consists of a finite set of states Si controled by player i ∈
{1, 2}, for all s ∈ S1∪S2 = S a set of actions denoted A(s), and a transition
probability p : S × A(S) → ∆(S) where A(S) = ∪s∈SA(s) and ∆(S) the
set of probability distributions on S, i.e functions d : S → R

+ with the
property that

∑

s∈S d(s) = 1. The game starts at some state s0 ∈ Si whence
player i chooses an action a in A(s0) after which the chance of being in state
s1 is p(s0, a)(s1), and so on for an infinite duration. Denote by S∗ (Sω) the
set of finite (infinite) sequences of elements of S. Strategies for player i are
functions σi : S∗Si → A(S). The positional strategies are of the type
σi : Si → A(S). Fixing an initial state s0 ∈ S and two strategies σ1, σ2 for
each player, gives rise to a unique probability measure on the sigma-algebra
generated by the cylinders {pSω | p ∈ S∗}, denoted P

σ1,σ2

s0 , with the property

P
σ1,σ2

s0
(s1s2 · · · snS

ω) =

n−1
∏

i=0

p(si, σk(si)(s0 · · · si))(si+1),

1



where k(si) = j if si ∈ Sj. A payoff functions is a function f : Sω → R.
We will deal mainly with the following payoff functions:

Dβ(s0s1 · · · ) =
∞
∑

i=0

βir(si)

M(s0s1 · · · ) = lim inf
n→∞

1

n+ 1

n
∑

i=0

r(si)

M(s0s1 · · · ) = lim sup
n→∞

1

n+ 1

n
∑

i=0

r(si),

where β ∈ [0, 1) and r : S → R
+ describes the rewards attached to states.

Let Ti for i ∈ N be the random variable defined as: Ti(s0 · · · si · · · ) = si. We
abbreviate the random variable Dβ(T0T1 · · · ) as Dβ, and the same for the
two other payoff functions.

Having fixed the notation, we proceed by presenting the proof of the
following theorem, to which [6] is devoted.

Theorem 1 ([6]). There exist a pair of positional strategies σ∗

1, σ
∗

2 such that
for all strategies σ1, σ2 and s ∈ S,

E
σ1,σ

∗

2

s [M ] ≤ E
σ∗

1
,σ∗

2

s [M ] ≤ E
σ∗

1
,σ2

s [M ],

where M(s0s1 · · · ) = limn→∞
1

n+1

∑n
i=0 r(si).

We introduce two results on which the proof is based.

Theorem 2 ([1]). For one player games (when Si = ∅ for one i ∈ {1, 2}),
there exists a positional strategy σ∗ and β∗ ∈ [0, 1) such that for all β ≥ β∗,
strategies σ, and s0 ∈ S,

E
σ∗

s0
[Dβ ] ≥ E

σ
s0
[Dβ ],

if S2 = ∅, and the opposite inequality if S1 = ∅.

Theorem 3 ([7]). For all β ∈ [0, 1) there exists positional strategies σ∗

1 , σ
∗

2

such that for all strategies σ1, σ2 and s0 ∈ S,

E
σ1,σ

∗

2

s0 [Dβ] ≤ E
σ∗

1
,σ∗

2

s0 [Dβ ] ≤ E
σ∗

1
,σ2

s0 [Dβ].
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Fixing a positional strategy for one player results in a Markov decision
process. Let σ2 be a positional strategy for player 2, then according to
Theorem 2 there exists a positional strategy σ∗

1 and βσ2
∈ [0, 1) such that

for all strategies σ1 for player 1 and β ≥ βσ2
, E

σ∗

1
,σ2

s [Dβ ] ≥ E
σ1,σ2

s [Dβ] for
all s ∈ S. By fixing a positional strategy of player 1, we get a symmetric
statement. Let β∗ = max{βσ | σ a positional strategy}, i.e the largest β

resulting from Theorem 2 by fixing positional strategies for either player.
Let σ∗

1, σ
∗

2 be the pair positional strategies for β = β∗ in Theorem 3. The
erroneous claim in [6] is that theorems 2 and 3 imply the following: for all
β ≥ β∗ and s0 ∈ S

E
σ1,σ

∗

2

s0 [Dβ] ≤ E
σ∗

1
,σ∗

2

s0 [Dβ ] ≤ E
σ∗

1
,σ2

s0 [Dβ], (1)

as shown by the example in the next session.

2 An example

Consider the following one-player game with two states.

s0 s1

a
b

Figure 1: A one player game

Assume that r(s0) = 0 and r(s1) = 1 and that S1 = {s0, s1}. For all
β ≥ 0 the optimal strategy is to play b in s0 with a gain of

∑

k β
k. But regard

that for β = 0 the strategy that plays a in s0 is also optimal. Therefore β∗

can be equal to 0 and σ∗

1 in Theorem 3 can be the strategy that plays a in
s0. But for this pair (1) is not true, since for β > 0, the strategy that plays
b in s0 is strictly better.

We provide a different proof of the existence of positional strategies which
are optimal for β ≥ β∗. This proof follows closely the one given in [3] for the
discrete case, which in turn follows the one given in [4] for Markov decision
processes.
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3 A different proof

Lemma 1 ([3],[4]). There exist a pair of positional strategies σ∗

1, σ
∗

2 and
β∗ ∈ [0, 1) such that for all β ≥ β∗ and s0 ∈ S,

E
σ1,σ

∗

2

s0 [Dβ] ≤ E
σ∗

1
,σ∗

2

s0 [Dβ ] ≤ E
σ∗

1
,σ2

s0 [Dβ]. (2)

Proof. Let σ1, σ2 be two positional strategies and s0 ∈ S. We argue that
f(β) = E

σ1,σ2

s0 [Dβ ] is a rational function (a ratio between two polynomials
in β). Indeed since the fixed strategies are positional, the dynamics of the
game are described by the Markov chain given in the form of the S × S

stochastic matrix

Pσ1,σ2
(s, s′) =

{

p(s, σ1(s), s
′) if s ∈ S1

p(s, σ2(s), s
′) if s ∈ S2

.

For s ∈ S let s be the Dirac distribution on s given in the form of a row
matrix (i.e 1 × S matrix with all components 0 except in position s), and
let r be the column vector of rewards. Then

E
σ1,σ2

s0
[Dβ] = s0

∞
∑

k=0

(βPσ1,σ2
)kr,

where P 0
σ1,σ2

= I, the identity matrix. It is a theorem (cf. [5]) that

if limk→∞(βPσ1,σ2
)k = 0, then the matrix I − βPσ1,σ2

is invertible and
∑

∞

k=0(βPσ1,σ2
)k = (I − βPσ1,σ2

)−1, from where we conclude that f(β) =
E
σ1,σ2

s0 [Dβ] is a rational function, with both polynomials having a finite de-
gree.

Let (β′

n) be a sequence with elements in [0, 1) such that limn→∞ β′

n = 1.
By Theorem 2 for all β′

n we have a pair of positional strategies that are
optimal, and since the set of positional strategies is finite we may assume
that there exists σ∗

1 , σ
∗

2 positional, such that (2) holds for a subsequence
(βn) ⊆ (β′

n) and the pair of strategies σ∗

1, σ
∗

2 . We argue that there exists
β∗ ∈ [0, 1) such that (2) holds for all β ≥ β∗. Assume on the contrary
that for all β∗ ∈ [0, 1) there exist β ≥ β∗, a pair of positional strategies

τ1, τ2, and a state s0 ∈ S such that, either E
τ1,σ

∗

2

s0 [Dβ ] > E
σ∗

1
,σ∗

2

s0 [Dβ ] or

E
σ∗

1
,τ2

s0 [Dβ ] < E
σ∗

1
,σ∗

2

s0 [Dβ ]. Consequently there exists a sequence (µn) with

µn ∈ [0, 1) and limn→∞ µn = 1 such that either E
τ1,σ

∗

2

s0 [Dµn
] > E

σ∗

1
,σ∗

2

s0 [Dµn
]

or E
σ∗

1
,τ2

s0 [Dµn
] < E

σ∗

1
,σ∗

2

s0 [Dµn
] for all n ∈ N. Assume the latter. But then

g(β) = E
σ∗

1
,τ2

s0 [Dµn
]−E

σ∗

1
,σ∗

2

s0 [Dµn
] would have infinitely many zeros, which is

not possible since we showed that it is a rational function. Similarly if we
assume the former inequality.
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We give the rest of the proof of Theorem 1 found in [6] for the sake
of completeness. For all n ∈ N define Hn(s0s1 . . . ) =

∑n
k=0 r(sk), and

abbreviate by Hn the random variable Hn(T0T1 · · · ). Let σ∗

1, σ
∗

2 be a pair
of positional strategies resulting from Lemma 1. Now from Theorem 4.2 in
[2] we have for all s ∈ S:

E
σ∗

1
,σ∗

2

s [Hn]− sup
σ

E
σ,σ∗

2

s [Hn] is bounded uniformely in n.

Therefore for all strategies σ,

E
σ∗

1
,σ∗

2

s [M ] = lim
n→∞

1

n
sup
σ′

E
σ′,σ∗

2

s [Hn] ≥ lim sup
n→∞

1

n
E
σ,σ∗

2

s [Hn] = E
σ,σ∗

2

s [M ],

and symmetrically for the inequality E
σ∗

1
,σ∗

2

s [M ] ≤ E
σ∗

1
,σ

s [M ].
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