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Note: On A Proof Of Positionality Of Mean-Payoff Stochastic Games

Introduction

Two-player stochastic games played on finite arenas are considered, where to each state a reward is attached. The players objectives are to maximize, and respectively minimize the average reward on the long run. The purpose of this note is to point out an error in the proof given by Ligget and Lippman in [START_REF] Thomas | Stochastic games with perfect information and time average payoff[END_REF] that both players have optimal strategies that are positional, and to provide one possible resolution.

The arena consists of a finite set of states S i controled by player i ∈ {1, 2}, for all s ∈ S 1 ∪ S 2 = S a set of actions denoted A(s), and a transition probability p : S × A(S) → ∆(S) where A(S) = ∪ s∈S A(s) and ∆(S) the set of probability distributions on S, i.e functions d : S → R + with the property that s∈S d(s) = 1. The game starts at some state s 0 ∈ S i whence player i chooses an action a in A(s 0 ) after which the chance of being in state s 1 is p(s 0 , a)(s 1 ), and so on for an infinite duration. Denote by S * (S ω ) the set of finite (infinite) sequences of elements of S. Strategies for player i are functions σ i : S * S i → A(S). The positional strategies are of the type σ i : S i → A(S). Fixing an initial state s 0 ∈ S and two strategies σ 1 , σ 2 for each player, gives rise to a unique probability measure on the sigma-algebra generated by the cylinders {pS ω | p ∈ S * }, denoted P σ 1 ,σ 2 s 0 , with the property

P σ 1 ,σ 2 s 0 (s 1 s 2 • • • s n S ω ) = n-1 i=0 p(s i , σ k(s i ) (s 0 • • • s i ))(s i+1 ), 1
where k(s i ) = j if s i ∈ S j . A payoff functions is a function f : S ω → R. We will deal mainly with the following payoff functions:

D β (s 0 s 1 • • • ) = ∞ i=0 β i r(s i ) M (s 0 s 1 • • • ) = lim inf n→∞ 1 n + 1 n i=0 r(s i ) M (s 0 s 1 • • • ) = lim sup n→∞ 1 n + 1 n i=0 r(s i ),
where β ∈ [0, 1) and r : S → R + describes the rewards attached to states. Let T i for i ∈ N be the random variable defined as:

T i (s 0 • • • s i • • • ) = s i . We abbreviate the random variable D β (T 0 T 1 • • • ) as D β ,
and the same for the two other payoff functions.

Having fixed the notation, we proceed by presenting the proof of the following theorem, to which [START_REF] Thomas | Stochastic games with perfect information and time average payoff[END_REF] is devoted.

Theorem 1 ([6]

). There exist a pair of positional strategies σ * 1 , σ * 2 such that for all strategies σ 1 , σ 2 and s ∈ S,

E σ 1 ,σ * 2 s [M ] ≤ E σ * 1 ,σ * 2 s [M ] ≤ E σ * 1 ,σ 2 s [M ],
where

M (s 0 s 1 • • • ) = lim n→∞ 1 n+1 n i=0 r(s i ).
We introduce two results on which the proof is based.

Theorem 2 ([1]

). For one player games (when S i = ∅ for one i ∈ {1, 2}), there exists a positional strategy σ * and β * ∈ [0, 1) such that for all β ≥ β * , strategies σ, and s 0 ∈ S,

E σ * s 0 [D β ] ≥ E σ s 0 [D β ],
if S 2 = ∅, and the opposite inequality if S 1 = ∅.

Theorem 3 ([7]

). For all β ∈ [0, 1) there exists positional strategies σ * 1 , σ * 2 such that for all strategies σ 1 , σ 2 and s 0 ∈ S,

E σ 1 ,σ * 2 s 0 [D β ] ≤ E σ * 1 ,σ * 2 s 0 [D β ] ≤ E σ * 1 ,σ 2 s 0 [D β ].
Fixing a positional strategy for one player results in a Markov decision process. Let σ 2 be a positional strategy for player 2, then according to Theorem 2 there exists a positional strategy σ * 1 and β σ 2 ∈ [0, 1) such that for all strategies σ 1 for player 1 and

β ≥ β σ 2 , E σ * 1 ,σ 2 s [D β ] ≥ E σ 1 ,σ 2 s [D β ]
for all s ∈ S. By fixing a positional strategy of player 1, we get a symmetric statement. Let β * = max{β σ | σ a positional strategy}, i.e the largest β resulting from Theorem 2 by fixing positional strategies for either player. Let σ * 1 , σ * 2 be the pair positional strategies for β = β * in Theorem 3. The erroneous claim in [START_REF] Thomas | Stochastic games with perfect information and time average payoff[END_REF] is that theorems 2 and 3 imply the following: for all β ≥ β * and s 0 ∈ S

E σ 1 ,σ * 2 s 0 [D β ] ≤ E σ * 1 ,σ * 2 s 0 [D β ] ≤ E σ * 1 ,σ 2 s 0 [D β ], (1) 
as shown by the example in the next session.

An example

Consider the following one-player game with two states.

s 0 s 1 a b
Figure 1: A one player game Assume that r(s 0 ) = 0 and r(s 1 ) = 1 and that S 1 = {s 0 , s 1 }. For all β ≥ 0 the optimal strategy is to play b in s 0 with a gain of k β k . But regard that for β = 0 the strategy that plays a in s 0 is also optimal. Therefore β * can be equal to 0 and σ * 1 in Theorem 3 can be the strategy that plays a in s 0 . But for this pair (1) is not true, since for β > 0, the strategy that plays b in s 0 is strictly better.

We provide a different proof of the existence of positional strategies which are optimal for β ≥ β * . This proof follows closely the one given in [START_REF] Gimbert | Applying blackwell optimality: Priority mean-payoff games as limits of multi-discounted games[END_REF] for the discrete case, which in turn follows the one given in [START_REF] Hordijk | Blackwell optimality[END_REF] for Markov decision processes.

A different proof

Lemma 1 ([3], [START_REF] Hordijk | Blackwell optimality[END_REF]). There exist a pair of positional strategies σ * 1 , σ * 2 and β * ∈ [0, 1) such that for all β ≥ β * and s 0 ∈ S,

E σ 1 ,σ * 2 s 0 [D β ] ≤ E σ * 1 ,σ * 2 s 0 [D β ] ≤ E σ * 1 ,σ 2 s 0 [D β ].
(2)

Proof. Let σ 1 , σ 2 be two positional strategies and s 0 ∈ S. We argue that

f (β) = E σ 1 ,σ 2 s 0 [D β
] is a rational function (a ratio between two polynomials in β). Indeed since the fixed strategies are positional, the dynamics of the game are described by the Markov chain given in the form of the S × S stochastic matrix

P σ 1 ,σ 2 (s, s ′ ) = p(s, σ 1 (s), s ′ ) if s ∈ S 1 p(s, σ 2 (s), s ′ ) if s ∈ S 2 .
For s ∈ S let s be the Dirac distribution on s given in the form of a row matrix (i.e 1 × S matrix with all components 0 except in position s), and let r be the column vector of rewards. Then

E σ 1 ,σ 2 s 0 [D β ] = s 0 ∞ k=0 (βP σ 1 ,σ 2 ) k r,
where P 0 σ 1 ,σ 2 = I, the identity matrix. It is a theorem (cf. [START_REF] John | Finite markov chains[END_REF]) that if lim k→∞ (βP σ 1 ,σ 2 ) k = 0, then the matrix I -βP σ 1 ,σ 2 is invertible and

∞ k=0 (βP σ 1 ,σ 2 ) k = (I -βP σ 1 ,σ 2 ) -1 , from where we conclude that f (β) = E σ 1 ,σ 2 s 0 [D β ]
is a rational function, with both polynomials having a finite degree.

Let (β ′ n ) be a sequence with elements in [0, 1) such that lim n→∞ β ′ n = 1. By Theorem 2 for all β ′ n we have a pair of positional strategies that are optimal, and since the set of positional strategies is finite we may assume that there exists σ * 1 , σ * 2 positional, such that (2) holds for a subsequence (β n ) ⊆ (β ′ n ) and the pair of strategies σ * 1 , σ * 2 . We argue that there exists β * ∈ [0, 1) such that (2) holds for all β ≥ β * . Assume on the contrary that for all β * ∈ [0, 1) there exist β ≥ β * , a pair of positional strategies τ 1 , τ 2 , and a state s 0 ∈ S such that, either

E τ 1 ,σ * 2 s 0 [D β ] > E σ * 1 ,σ * 2 s 0 [D β ] or E σ * 1 ,τ 2 s 0 [D β ] < E σ * 1 ,σ * 2 s 0 [D β ].
Consequently there exists a sequence (µ n ) with

µ n ∈ [0, 1) and lim n→∞ µ n = 1 such that either E τ 1 ,σ * 2 s 0 [D µn ] > E σ * 1 ,σ * 2 s 0 [D µn ] or E σ * 1 ,τ 2 s 0 [D µn ] < E σ * 1 ,σ * 2 s 0 [D µn ] for all n ∈ N. Assume the latter. But then g(β) = E σ * 1 ,τ 2 s 0 [D µn ] -E σ * 1 ,σ * 2 s 0 [D µn ]
would have infinitely many zeros, which is not possible since we showed that it is a rational function. Similarly if we assume the former inequality.

We give the rest of the proof of Theorem 1 found in [START_REF] Thomas | Stochastic games with perfect information and time average payoff[END_REF] for the sake of completeness. For all n ∈ N define H n (s 0 s 1 . . . ) = n k=0 r(s k ), and abbreviate by H n the random variable H n (T 0 T 1 • • • ). Let σ * 1 , σ * 2 be a pair of positional strategies resulting from Lemma 1. Now from Theorem 4.2 in [START_REF] Barry W Brown | On the iterative method of dynamic programming on a finite space discrete time markov process[END_REF] we have for all s ∈ S: 

E σ * 1 ,