Pierre Roux
email: pierre.roux@onera.fr

Keywords: floating-point arithmetic, rounding error, numerical analysis, proof assistant, Coq, matrices, Cholesky decomposition

published or not. The documents may come

Introduction

Floating-point arithmetic is a very efficient solution to perform computations in the real field R. Unfortunately, intermediate results of computations need to be rounded to fit in the floating-point format used. Due to this rounding errors, final results of computations differ from what would have been obtained by computing in the real field R, although both results usually remain pretty close.

Fortunately, each rounding can only introduce a bounded error. By combining these atomic errors, one can get a bound on the error affecting the final result. Numerical analysis [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF] thus aims at bounding these differences between results of numerical algorithms using floating-point or real arithmetic. Using such mathematical properties, rigorous results can be obtained despite the use of floating-point arithmetic [START_REF] Rump | Verification methods: Rigorous results using floating-point arithmetic[END_REF], ensuring that no disastrous rounding error can happen during the computation. More precisely, denoting f a function in the real field R and f its actually computed floating-point counterpart, we have f (x) = f (x) + e. The value e is called the forward error and is expected to be negligible in front of f (x). When f (x) = f (x +d), d is called a backward error. The goal is then to prove some bound b, preferably as small as possible, such that |e| ≤ b(x) (respectively |d| ≤ b(x)).

Proofs of this kind of mathematical results are hard to automate when they involve an arbitrary number of operations and are therefore mostly done by hand. However, they can be particularly painful and repetitive which make them specially error prone. That is why we want to investigate the ability of a proof assistant, namely Coq [START_REF] Bertot | Interactive theorem proving and program development : Coq'Art : the calculus of inductive constructions[END_REF][START_REF]The Coq proof assistant reference manual[END_REF], to check them. Matrices being pervasive in numerical algorithms, we will particularly focus on them.

Formal proofs of error bounds have already been performed with proof assistants such as HOL [START_REF] Harrison | Floating point verification in HOL[END_REF] or Coq [START_REF] Boldo | Formal proof of a wave equation resolution scheme: The method error[END_REF] or with automatic tools such as Gappa [START_REF] Florent De Dinechin | Assisted verification of elementary functions using Gappa[END_REF]. Yet, to the extent of author's knowledge, those work only address results with a fixed number of basic arithmetic operations whereas algorithms with an arbitrary, parameterized, number of operations are targeted in this paper.

Throughout the paper, references are made to our Coq development, available at http://cavale.enseeiht.fr/formalbounds2014/.

The paper is organized as follows. The remainder of this section first introduces our motivating example (Section 1.1) and a secondary example (Section 1.2), then gives basic properties of floating-point arithmetic (Section 1.3) and eventually details a simple proof about summations (Section 1.4). Section 2 then gives the detailed specification of floating-point arithmetic used while Section 3 shows how error terms can be combined. Section 4 eventually details proofs of numerical analysis results involving matrices, Section 5 deals with overflows, that were ignored until there, and Section 6 concludes.

Motivating Example: Cholesky Decomposition

We will use as motivating example throughout this paper a Cholesky decomposition which is a typical example of numerical algorithm involving matrices. Checking positive definiteness of matrices is one common use of Cholesky decomposition. A symmetric matrix A ∈ R n×n is said to be positive semi-definite, written A 0, when for all x ∈ R n , x T A x ≥ 0.

To prove that a scalar a ∈ R is non negative, one can exhibit some r ∈ R such that a = r 2 (typically r = √ a). Similarly, one can prove that a symmetric matrix A ∈ R n×n is positive semi-definite by exposing a matrix R such that A = R T R (for x T (R T R) x = (Rx) T (Rx) = Rx 2 2 ≥ 0 for all x ∈ R n). The Cholesky decomposition algorithm, shown on Figure 1, can compute such a matrix R, thus playing on matrices a similar role to the square root on reals. Indeed, taking as input a symmetric matrix A ∈ R n×n , if the algorithm runs to completion, without ever attempting to take the square root of a negative value or perform a division by zero, it returns a matrix R such that A = R T R (this can be proved by induction on n). Thus, the mere termination of the Cholesky decomposition without error is enough to prove A 0. Conversely, R := 0 ; for j from 0 to n -1 do for i from 0 to j -

1 do R i, j := A i, j -∑ i-1 k=0 R k,i R k, j /R i,i ; od R j, j := A j, j -∑ j-1 k=0 R k, j
2 ; od Fig. 1 Cholesky decomposition: from a symmetric matrix A ∈ R n×n , attempts to compute R such that A = R T R. The resulting matrix R is upper-triangular (its elements R i, j with i ≤ j are the only one assigned after the initialization to 0). The elements R i, j are computed from left to right (outer loop) and from top to bottom (inner loop), each element being assigned exactly once a value obtained from the corresponding element A i, j of the input A and previously computed elements of R (i.e., elements on its top left). Due to the three nested loops (one being hidden in the Σ notation), the algorithm performs Θ (n 3) arithmetic operations (that is n √ n operations if n is the size of the input).

the decomposition will terminate without error for all symmetric positive definite matrix A (i.e., such that for all x ∈ R n , if x = 0 then x T A x > 0).

This would work perfectly if the algorithm were run using real arithmetic. However, performing it with floating-point arithmetic, it could run to completion while A 0, due to rounding errors. That is, there could be x ∈ R n such that x T A x < 0. But rounding errors remain bounded, so that there exists a bound c ∈ R, such that, if the floating-point Cholesky decomposition of A succeeds, then for all x ∈ R n , It can be noticed that the method is sound but not complete. It may fail to prove that some matrices A are positive semi-definite. In particular, if A is positive semidefinite but not positive-definite (i.e., there is x = 0 such that x T A x = 0), then Ac I with c > 0 is not positive semi-definite (x T (Ac I) x < 0 for the previous x) and the Cholesky decomposition will certainly fail. Thus, since the method only works for positive-definite matrices 2 A 0, it could as well prove A 0 rather than just A 0. This is done by choosing c such that if the decomposition succeeds, then for all x, x T A x > -c x 2 2 (strict inequality instead of the wide one above). This ability to prove only strict, and not wide, inequalities is a common characteristic of this kind of numerical methods, due to the rounding errors [START_REF] Rump | Verification methods: Rigorous results using floating-point arithmetic[END_REF]. 1 Indeed, replacing A by Ac I leads to another bound c which actually implies (Ac I) + c I 0. However c ≤ c, hence A 0 (c.f., Corollary 4.4, page 15 for details).

x T A x ≥ -c x
2 More generally, the method will fail to prove A 0 when the smallest eigenvalue of A is too small compared to c.

x := 0; while true do // u models input read from sensors u := ?(-1, 1); // random value in R p with u ∞ ≤ 1 x := Ax + B u; // send orders to actuators and wait for next period od Fig. 2 Model of a typical linear controller: such a controller can be used to maintain a physical system in a wanted state, when one can get some physical quantities of the system thanks to some sensors and has to act accordingly on the system through some actuators. The body of the infinite loop is repeatedly executed at periodic instants of time (for instance, every 10 milliseconds). At each iteration, the variable u first receives values from the sensors (this value being bounded, for instance between -1 and 1). Then, the variable x is updated according to its value from the previous iteration and the value of u. Finally, the value of x could be used to send some orders to the actuators.

Secondary Example: Ellipsoidal Invariants for Linear Controllers

Figure 2 shows a code modeling a typical linear controller. One may want to prove that, as long as the value of u ∈ R p remains bounded (u ∞ ≤ 1), the value of x in R n will remain bounded along any execution of this code. This is the case if and only if there exists a positive definite matrix P ∈ R n×n and a scalar λ ∈ R such that "x T P x ≤ λ " is an inductive loop invariant. That is "x T P x ≤ λ " holds before entering the loop (i.e., for x = 0, which amount to λ ≥ 0) and if it holds before an iteration of the loop (i.e., if x T P x ≤ λ) then it still holds after the iteration (i.e., (Ax + Bu) T P (Ax + Bu) ≤ λ for any u such that u ∞ ≤ 1). Denoting x = (x 0 , . . . , x n-1), the expression x T P x is a polynomial of degree 2 in the n variables x 0 ,. . . , x n-1 and when P is positive definite, the set x ∈ R n x T P x ≤ λ is, geometrically speaking, an ellipsoid. Since the variable x remains in this bounded set along any execution of the program, it remains bounded. All this is illustrated on Figure 3.

The goal will be to show that an invariant "x T P x ≤ λ " for an ideal program executed with real arithmetic (i.e., Ax + Bu computed in the real field) remains valid, under some conditions, for the actual program using floating-point arithmetic (i.e., Ax + Bu computed with floating-point arithmetic).

Definitions and Basic Properties

+ 2 + 3) denotes the value •(•(1 + 2) + 3). x x T Px ≤ λ Ax x T Px ≤ λ Ax (k) + Bu ||u|| ∞ ≤ λ x (k) Ax (k)
Fig. 3 "x T P x ≤ λ " is an inductive invariant: for any x (k) in the dark gray ellipse (i.e., x T (k) P x (k) ≤ λ), Ax (k) is in the light gray one. The white paralelogram represents the potential values of Bu for any bounded input u. Eventually, Ax (k) + Bu is in the original dark gray ellipse (i.e., (Ax (k) + Bu) T P (Ax (k) + Bu) ≤ λ). In geometric terms, the Minkowski sum of the light gray ellipse and the white paralelogram is included in the dark gray ellipse.

In practice, a floating-point value f ∈ F is encoded as a mantissa m ∈ Z and an exponent e ∈ Z such that f = mβ e where β is the radix (commonly 2). Since f is encoded with a constant number of bits, m lies in a bounded range. More precisely, if the mantissa m is encoded with a precision of prec bits: |m| < β prec . To fully exploit the available precision, m and e can be chosen such that |m| ≥ β prec-1 . Such numbers are called normalized.

The exponent e also lies in a bounded range. We will initially treat e as unbounded above which means that we ignore potential overflows 4 . In contrary, e is bounded below: e ≥ e min . This leads to an underflow phenomena: numbers close to 0 (i.e., with absolute value less than β e min +prec-1) cannot be represented with the usual precision of prec bits. However, these numbers can be represented with a decreased precision when they are not too close from 0 (i.e., with absolute value larger than β e min). Such numbers are called denormalized.

Thus, a real number x ∈ R not too close from 0 can be represented by a normalized number (10 -16) and eta = 2 -1075 (10 -323).

•(x) ∈ F such that |x -•(x)| ≤ β 1-prec |x| (or β 1-prec /2 |x| if
These constants allow to bound the rounding errors of the basic arithmetic operations.

Property 1.5 For all x, y ∈ F ∃δ ∈ R, |δ | ≤ eps ∧ fl(x y) = (1 + δ)(x y), for ∈ {+, -} ∃δ , η ∈ R, |δ | ≤ eps ∧ |η| ≤ eta ∧ fl(x y) = (1 + δ)(x y) + η, for ∈ {×, /} ∃δ ∈ R, |δ | ≤ eps ∧ fl √ x = (1 + δ) √ x.
For multiplication and division, the above property is a direct consequence of Definition 1.3. For addition, subtraction and square root, it also takes into account that, under mild conditions on the floating-point format, these operations are exact in case of underflow.

Simple Example: the Sum

The previous bounds on rounding errors of basic operations can be combined to get bounds on the error of larger expressions, as for instance a summation in the following classic result [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF][START_REF] Rump | Verification methods: Rigorous results using floating-point arithmetic[END_REF].

We first define γ n that will be extensively used in the following.

Definition 1.6 For all n ∈ N, γ n := n eps 1-n eps .

These terms are particularly useful to accumulate relative errors (1 + δ) thanks, among others, to the following property. The following proof is a good example of how equalities with error terms are used to derive such results. It gives a first overview of the properties and lemmas required about these error terms.

Lemma 1.7 (phi_gamma) For all i, j ∈ N, δ ∈ R j-i , if 2(j -i)eps < 1 and for all k, |δ k | ≤ eps, then ∃θ , |θ | ≤ γ j-i ∧ j-1 ∏ k=i (1 + δ k) = 1 + θ . Theorem 1.8 (fsum_l2r_err_abs) For all n ∈ N, a ∈ F n , if 2(n -1)eps < 1, then fl n-1 ∑ i=0 a i - n-1 ∑ i=0 a i ≤ γ n-1 n-1 ∑ i=0 |a i | .
Proof We have by direct application of Property 1.5

fl n-1 ∑ i=0 a i = fl fl n-2 ∑ i=0 a i + a n-1 = (1 + δ n) fl n-2 ∑ i=0 a i + a n-1 for some δ n-1 ∈ R, |δ n-1 | ≤ eps. Then fl n-1 ∑ i=0 a i = (1 + δ n-1) (1 + δ n-2) fl n-3 ∑ i=0 a i + a n-2 + a n-1 for some δ n-2 ∈ R, |δ n-2 | ≤ eps. By an immediate induction fl n-1 ∑ i=0 a i = n-1 ∏ j=1 (1 + δ j) a 0 + n-1 ∑ i=1 n-1 ∏ j=i (1 + δ j) a i (1)
for some δ j ∈ R, δ j ≤ eps. Then by Lemma 1.7, for all i ∈ 1, n -1 , there exist

θ n-i ∈ R such that |θ n-i | ≤ γ n-i and ∏ n-1 j=i (1 + δ j) = 1 + θ n-i , hence fl n-1 ∑ i=0 a i = (1 + θ n-1) a 0 + n-1 ∑ i=1 (1 + θ n-i) a i = n-1 ∑ i=0 a i + θ n-1 a 0 + n-1 ∑ i=1 θ n-i a i . (2) Finally, since for all i ∈ 1, n -1 , |θ n-i | ≤ γ n-i ≤ γ n-1 , there exists θ ∈ R such that |θ | ≤ γ n-1 and fl n-1 ∑ i=0 a i = n-1 ∑ i=0 a i + θ n-1 ∑ i=0 |a i | (3)
which enables to conclude.

One may notice that this result admits somewhat simpler proofs by direct induction. This proof was chosen in order to illustrate some basic use of the error terms δ and θ which play a key role in proofs of more complicated results 6 .

It is also worth noting that this is a rather simple result and that proofs of more complicated results can rapidly involve more error terms. The use of a proof assistant then becomes a good way to get some confidence that no term is accidentally dropped or mixed with another which can easily happen with pen and paper proofs.

Specification of Floating-Point Arithmetic

We now detail the formal specification of floating-point arithmetic used in our Coq development and already informally introduced in Section 1.3.

As seen in Property 1.5 and Theorem 1.8, both definitions and proofs make intensive use of real numbers with a bounded absolute value. To ease the manipulation of these error terms, we use a dependent record bounded r packing a real number with a proof that its absolute value is less than a non-negative real number r:

Record bounded (r : R) := { bounded_val :> R; bounded_prop : |bounded_val| ≤ r }.

Since the set of floating-point values F is a subset of R, we will similarly define floating point values as a value in R along with a proof that it lies in F:

Record Ff format := { F_val :> R; F_prop : format F_val }.
where format is a predicate over R identifying real numbers that are in F.

The floating-point arithmetic specification is then given by the following large record which will be used as parameter of all our subsequent developments. The unary minus fopp is then derived from format_opp and the subtraction and division of x and y are defined respectively as fplus x (fopp y) and frnd (x/y).

Having performed our proofs with a proof assistant, we are guaranteed that the above record contains all the hypotheses about floating-point arithmetic used in these proofs. It is interesting to notice that this specification of floating-point arithmetic is really broad. In particular, it encompasses floating-point formats with gradual or abrupt underflow (i.e., denormalized numbers are respectively used or not) and any rounding mode. Fixed-point arithmetic can even be handled by just setting eps to 0, i.e., no relative, only absolute error occur. However, most of our developments are carried on with floating-point arithmetic in mind and the proved bounds might be pretty poor in a fixed-point arithmetic setting.

It is common practice in numerical analysis to ignore underflows [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]. Although this gives good indications on the numerical behavior of algorithms, underflows can appear with any practical implementation of floating-point arithmetic, potentially breaking such results. In our development, they are taken into account, thanks to the eta constant.

In our Coq development, the above specification of floating-point arithmetic is proved to hold for the floating point format with gradual underflow and rounding to nearest with any tie-break rule modeled in the Flocq library [START_REF] Boldo | Flocq: A Unified Library for Proving Floating-point Algorithms in Coq[END_REF] with parameters corresponding to the binary64 format 5 (albeit without NaNs nor overflows, c.f., record binary64 in our development). Other formats such as binary32 7 could be obtained by just modifying two constants defining size of the mantissa and minimal exponent.

In contrary to underflows, not handling NaNs and overflows does not constitute an actual issue. In fact, results considering those special values can easily be derived from results in our model with only finite values as will be shown in Section 5.

Combining Error Terms

Bounded Error Terms

Values of the type bounded defined at beginning of Section 2 are coercible to R and we developed a few helpful lemmas about them. The two following lemmas can be used to create such values.

Lemma 3.1 (bounded_le_1) ∀r 1 , r 2 ∈ R, |r 1 | ≤ r 2 ⇒ ∃b : bounded 1, r 1 = b r 2 Lemma 3.2 (bounded_scale) ∀r 1 , r 2 ∈ R, b 1 : bounded r 1 , 0 < r 2 ⇒ ∃b 2 : bounded r 2 , b 1 = b 2 r 1 r 2 7 Usual implementation of type float in C.
It is often needed to say that a value of type bounded b is also of type bounded b for any b ≥ b (for instance, in proof of Theorem 1.8, to state that the θ n-i : bounded γ n-i are all of type bounded γ n-1): Finally, probably the most important lemma about error terms allows to factor them and was exemplified between (2) and (3) in the proof of Theorem 1.8:

Lemma 3.6 (bounded_distrl, big_bounded_distrl) ∀r, r 1 , r 2 ∈ R, ∀b 1 , b 2 : bounded r, ∃b : bounded r, b 1 r 1 + b 2 r 2 = b (|r 1 | + |r 2 |) ∀r, ∈ R, ∀n : N, ∀a ∈ R n , ∀b : (bounded r) n , ∃b : bounded r, ∑ i b i a i = b ∑ i |a i |
It is worth noting that this last property involves tuples (a and b) and sums of an arbitrary number of terms (∑ i b i a i for instance). Those are efficiently handled thanks to the bigop operator from the SSReflect library [START_REF] Bertot | Canonical big operators[END_REF].

Accumulating Relative Errors

As already seen, for instance in the proof of Theorem 1.8 (between (1) and (2)), error terms of the form (1 + δ 1) . . . (1 + δ n), with |δ i | ≤ eps, easily occur when relative errors accumulate. The terms γ n := n eps 1-n eps nicely enable to compact them into 1 +θ n , |θ n | ≤ γ n as will be exposed in this section.

Most of the following lemmas require hypothesis of the form n eps < 1 for various values of n. In our Coq code, a set of small lemmas 8 allow to easily manipulate theses hypothesis so that they do not constitute an annoying burden in practice. First, a few very basic properties of the γ n are proved. Namely, that they are non negative (provided n eps < 1), strictly less than 1 (provided 2n eps < 1) and constitute a monotone sequence: for all n ≤ m, γ n ≤ γ m (provided m eps < 1).

We then get some more interesting properties.

Lemma 3.7 ([10, Lemma 3.3], gamma_{mult{,_nat},plus{_mult"_eps})

For all n, m ∈ N n ≤ m ⇒ 2m eps < 1 ⇒ γ n γ m ≤ γ n (n m)eps < 1 ⇒ n γ m ≤ γ n m (n + m)eps < 1 ⇒ γ n + γ m + γ n γ m ≤ γ n+m (n + m)eps < 1 ⇒ γ n + γ m ≤ γ n+m (n + 1)eps < 1 ⇒ γ n + eps ≤ γ n+1
Allowing to prove properties about the θ n : bounded γ n .

Lemma 3.8 ([10, Lemma 3.3], gammap1_{mult{,_epsp1},div{_le,}}) For all n, m ∈ N, for all θ n : bounded γ n , θ m : bounded γ m and δ : bounded eps

2(n + m)eps < 1 ⇒ ∃θ n+m : bounded γ n+m , (1 + θ n)(1 + θ m) = 1 + θ n+m 2(n + 1)eps < 1 ⇒ ∃θ n+1 : bounded γ n+1 , (1 + θ n)(1 + δ) = 1 + θ n+1 m ≤ n ⇒ 2(n + m)eps < 1 ⇒ ∃θ n+m : bounded γ n+m , (1 + θ n)/(1 + θ m) = 1 + θ n+m 2(n + 2m)eps < 1 ⇒ ∃θ n+2m : bounded γ n+2m , (1 + θ n)/(1 + θ m) = 1 + θ n+2m
Lemma 3.9 (phi_gamma,inv_phi_gamma) For all i, j, n ∈ N, δ :

(bounded eps) n , if 0 ≤ i ≤ j ≤ n then 2(j -i)eps < 1 ⇒ ∃θ j-i : bounded γ j-i , j-1 ∏ k=i (1 + δ k) = 1 + θ j-i (j -i)eps < 1 ⇒ ∃θ j-i : bounded γ j-i , 1 ∏ j-1 k=i (1 + δ k) = 1 + θ j-i
It should be noted that, unlike the terms γ n , the subscripts n in the notation θ n are only present to improve readability but don't hold any semantic value.

It is also interesting to notice about the division [10, §3.4] that, although (according to Lemma 3.8)

(1 + θ n)/(1 + θ m) = 1 + θ n+m only holds for m ≤ n, according to the above lemma ∏ n (1 + δ i)/ ∏ m (1 + δ i) = 1 + θ n+m even when m > n.
The notations δ and θ n , with |δ | ≤ eps and |θ n | ≤ γ n , used in the above lemmas are particularly convenient and popular to carry proofs about error bounds. In fact, like the Landau big O notation, they greatly simplify proofs by enabling the use of simple equalities9 instead of a collection of inequalities, or limits. However, it is easy to misuse them or forget hypotheses, such as m ≤ n in Lemma 3.8. The use of a proof assistant ensures that this does not happen.

First Applications

Thanks to all the above lemmas, the Theorem 1.8, bounding the rounding error of a sum, is easily proved (c.f., fsum_l2r_err_abs in our Coq development). Similar results are also proved for the dotproduct of two vectors of floating point values.

Lemma 3.10 (fdotprod_l2r_err_abs) For all n ∈ N and a, b ∈ F n , if 2n eps < 1, then

fl n-1 ∑ i=0 a i b i - n-1 ∑ i=0 a i b i ≤ γ n n-1 ∑ i=0 |a i b i | + 2n eta.
Another example, in case the first operand a is constituted of real numbers, which have to be rounded to floating-point values prior to computation of the dotproduct. This will be used in the last application of this paper.

Lemma 3.11 (fdotprod_l2r_fstr_err)

For all n ∈ N, a ∈ R n and b ∈ F n , if 2(n + 1)eps < 1, then fl n-1 ∑ i=0 a i b i - n-1 ∑ i=0 a i b i ≤ γ n+1 n-1 ∑ i=0 |a i b i | + 2 n + n-1 ∑ i=0 |b i | eta.
Due to the presence of existential quantifiers in most intermediate lemmas, proof style in the Coq proof assistant heavily relies on forward proving. This does not appear to add much burden to the proof writing process, as long as proofs are well structured into lemmas of reasonable size 10 . Otherwise, one can first provide some dummy terms and later step back to replace them by the, then more obvious, adequate terms. Using the evar mechanism of Coq might also be a solution. In the "big enough numbers" for ε, η proofs about limits [START_REF] Cohen | Construction of real algebraic numbers in coq[END_REF], constraints of the form η ≤ η k are first accumulated as a list of the η k and then simplified as η ≤ min k η k . Unfortunately, we are manipulating equalities of arithmetic expressions involving error terms rather than inequalities and we do not see such an easy simplification in this setting.

Errors on Matrix Operations

Real Numbers Matrices

As stated in the introduction (Section 1.1), we intend to prove numerical analysis results on algorithms involving matrices. In our Coq development, we borrow matrix algebra from the SSReflect library [START_REF] Gonthier | A Small Scale Reflection Extension for the Coq system[END_REF]. But we also need some results which are specific to matrices of real numbers. We therefore introduce some basic definitions and lemmas about pointwise orders and absolute values, dotproducts and quadratic norms.

First, the pointwise extensions of the order ≤ and < as well as the absolute value |.| are defined and a group of lemmas are proved about them. Most of these lemmas are just lifting of the existing results on the real field R: reflexivity and transitivity of the order ≤, compatibility of this order with matrix addition or scaling, triangular inequality of the absolute value (∀A, B ∈ R n×m , |A + B| ≤ |A| + |B|) and so on.

In order to deal with quadratic norms, we first define positive (semi-)definite matrices. A matrix P ∈ R n×n is said to be positive semi-definite, written P 0, when for all x ∈ R n , x T P x ≥ 0 and it is said to be positive definite, written P 0, when for all x = 0, x T P x > 0. Thus for a symmetric (P T = P) positive definite matrix P, we define the dotproduct of two vectors x, y ∈ R n as x T P y and the quadratic norm

x P as √

x T P x. The dotproduct is then proved to actually be a dotproduct (bilinear, symmetric, definite and non negative). It follows that the quadratic norm is definite non-negative and satisfies the scaling property (λ x P = |λ | x P) which eventually enables to prove two usual inequalities: the Cauchy-Schwarz inequality: ∀x, y ∈ R n , x T P y ≤ x P y P and the triangular inequality: ∀x, y ∈ R n , x + y P ≤ x P + y P .

In the particular case when P := I, the quadratic norm will be written . 2 and a few additional properties are proved: ∀x,

y ∈ R n , |x| ≤ |y| ⇒ x 2 ≤ y 2 |x| 2 = x 2 [1 . . . 1] T 2 = √ n x 1 ≤ √ n x 2
where

x 1 := ∑ i |x i |.
We eventually needed 110 lemmas. Thanks to the nice SSReflect matrices [START_REF] Gonthier | A Small Scale Reflection Extension for the Coq system[END_REF], they are proved using only 394 lines of tactics (hence an average of 3.6 lines of tactic per lemma, the longest proof being the Cauchy-Schwarz inequality with 36 lines of tactic).

Main Application: Cholesky Decomposition

As explained in Section 1.1, given a matrix A we want to check its positive definiteness, that is to prove A 0. This will be done by proving that there exists a constant c ∈ R such that when the Cholesky decomposition (c.f., Figure 1) of Ac I, performed with floating-point arithmetic, runs to completion without error (square root of negative value or division by zero), then A 0. We follow the proof in [START_REF] Rump | Verification of positive definiteness[END_REF] 11 .

The first lemmas proved deal with the two "basic blocks" of the Cholesky decomposition: the assignments performed in the inner then the outer loop (c.f., Figure 1, page 3). The two following lemmas are proved with tools similar to the one required for Lemmas 3.10 and 3.11 about floating-point sums and dotproducts.

Lemma 4.1 ([13, Lemma 2.1], lemma_2_1) For all n ∈ N, a, b ∈ F n , c, d ∈ F, if d = 0 and 2(n + 1)eps < 1, then c -∑ i a i b i -d ỹ ≤ γ n+1 ∑ i |a i b i | + |d ỹ| + 2eta (k + 1 + |d|) .
where

ỹ := fl c-∑ i a i b i d . Lemma 4.2 ([13, Lemma 2.2], lemma_2_2_{1,2}) For all n ∈ N, a ∈ F n , c ∈ F, if 2(n + 2)eps < 1 and fl c -∑ i a 2 i ≥ 0, then c -∑ i a 2 i -ỹ2 < γ n+2 ∑ i a 2 i + ỹ2 + 2eta (k + 1) . and ỹ2 + ∑ i a 2 i ≤ c + 2eta k 1 -γ n+2
where ỹ := fl c -∑ i a 2 i .

Then, given two matrices A, R ∈ F n×n the proposition cholesky_spec A R expresses that R is the floating-point Cholesky factor of A and is defined as follows

∀i, j ∈ 1, n , i < j ⇒ Ri, j = fl A i, j -∑ i-1 k=1 Rk,i Rk, j Ri,i ∧ ∀ j ∈ 1, n , R j, j = fl A j, j -∑ j-1 k=1 R2 k, j . (4)
It is proved that, from a matrix A, the algorithm presented in Figure 1, page 3 computes a matrix R satisfying cholesky_spec A R (c.f., file cholesky_prog.v).

Eventually, the proposition cholesky_success A R states that the floating-point Cholesky decomposition of A runs to completion without error (and returns R):

cholesky_spec A R ∧ ∀i ∈ 1, n , Ri,i > 0.
The constraint Ri,i > 0 obviously prevents divisions by zero. The way it prevents taking square roots of negative values is a bit more subtle. According to the specification of fl √ . (c.f., fsqrt_spec, page 9), fl(

√ x) = (1 + d) √
x and √ x is defined as 0 for all x ≤ 0 in the Coq standard library for reals. Thus, fl(√ x) > 0 guarantees that x > 0. With this specification of the floating-point Cholesky decomposition, the following main theorem can be proved about it.

Theorem 4.3 ([13, Theorem 2.3]) For all n ∈ N (n ≥ 1), for all A, R ∈ F n×n , m ∈ R, if 2(n + 2)eps < 1, A T = A, for all i, A i,i ≤ m and cholesky_success A R, then ∀x ∈ R n , x = 0 ⇒ -|x| T ∆ A |x| < x T A x
where ∆ Ai, j := α i, j d i d j +4eta (n + 2 + m) with α i, j := γ min(i, j)+2 and d i :

= A i,i +2i eta 1-α i,i .
This theorem is proved thanks to the above Lemmas 4.1 and 4.2 and the lemmas about matrices of real numbers described in Section 4.1.

Here is an idea of the kind of tiny mistakes that can be hard to spot in pen and paper proofs and may only be unveiled when trying to mechanically check them. In the original paper [START_REF] Rump | Verification of positive definiteness[END_REF], the proof accidentally made the assumption that Ri,i ≤ A i,i

where Ri,i := fl A i,i -∑ R 2 k, j . This may be slightly false since

√

x can be larger than x ∈ (0, 1) but this was completely overlooked by the author of this paper 12 when first checking the proof by hand. Although very minor, the issue only appeared when translating the proof in Coq (and was easily fixed since √ x ≤ x + 1). The previous theorem is pretty useless by itself but the following corollary looks closer from what we are looking for.

Corollary 4.4 ([13, Corollary 2.4]) For all n ∈ N (n ≥ 1), for all A, à ∈ F n×n , c ∈ R, if 2(n + 2)eps < 1, A T = A and for all i, 0 ≤ A i,i and ∀x ∈ R n , x 2 = 1 ⇒ |x| T ∆ A |x| ≤ c and ÃT = à and ∀i, j ∈ 1, n , i < j ⇒ Ãi, j = A i, j ∀i ∈ 1, n , Ãi,i ≤ A i,i -c then, if there exists R ∈ F n×n such that cholesky_success à R, we have A 0. Proof (sketch) By definition of Ã, for any x ∈ R n , if x = 1, then x T A x ≥ x T à x + c.
From the theorem, we get

x T Ã x > -|x| T ∆ Ã |x|. Since ∆ Ã ≤ ∆ A (elementwise inequal- ity, c.f., Delta_At_le_Delta_A in the code), x T A x > -|x| T ∆ A |x| + c ≥ 0.
Finally, it is proved that any value larger than

γ 2n+2 2 tr(A) + 4eta(n + 1) 2 (n + 2) + max i A i,i (5)
will work as constant c in the above corollary as long as 4(n + 2)eps < 1. Thus, an appropriate constant c can easily be computed, for instance by over-approximating [START_REF] Cohen | Construction of real algebraic numbers in coq[END_REF] with floating-point arithmetic with rounding toward +∞. Then à is computed by subtracting c I to A and the floating point Cholesky decomposition is performed. If it runs to completion without error, this rigorously proves that A 0. This automatic positive definiteness check is efficient as it is performed with O(n 3) floating-point operations for a matrix A of size n × n.

The bound 4(n + 2)eps < 1 is not a practical issue since it only implies n < 1 4eps -2 which is huge for practical values of eps. For instance, for the binary64 format, eps = 2 -53 which leads to the constraint n < 2 51 -2 (10 15). In practice, eta being very small compared to eps (eps = 2 -53 and eta = 2 -1075 for the binary64 format), the second term of the bound (5) is negligible with respect to the first term γ 2n+2 2 tr(A). This means that, when the diagonal coefficients of the matrix A are of order of magnitude 13 1, the bound (5) is mostly n 2 eps.

Thanks to the previous corollary, positive definiteness check can be performed on matrices A of floating-point values (A ∈ F n×n). However, if the matrix X we want to check has coefficients in the real field (X ∈ R n×n), we first have to round them to floating-point values in F and we will end up checking some matrix A ∈ F n×n such that |X -A| i, j ≤ R i, j := eps |A| i, j + eta. Such interval matrices are easily handled thanks to the following corollary.

(n ≥ 1), for all A, à ∈ F n×n , R ∈ R n×n , c, r ∈ R, if 2(n + 2)eps < 1, A T = A, R ≥ 0 and for all i, 0 ≤ A i,i and ∀x ∈ R n , x 2 = 1 ⇒ |x| T ∆ A |x| ≤ c and ∀x ∈ R n , x 2 = 1 ⇒ |x| T R |x| ≤ r and ÃT = à and ∀i, j ∈ 1, n , i < j ⇒ Ãi, j = A i, j ∀i ∈ 1, n , Ãi,i ≤ A i,i -c -r then, if there exists R ∈ F n×n such that cholesky_success à R, we have ∀X ∈ R n×n , X T = X ⇒ |X -A| ≤ R ⇒ X 0.
Since n max R i, j i, j ∈ 1, n is a suitable value for r, this gives an effective criterion for positive definiteness of a matrix X with coefficients in the real field R.

The whole Coq development eventually counts 3.8 kloc. Among them, 0.4 are devoted to the specification of floating-point arithmetic (described in Section 2), 0.2 to bounded error terms (Section 3.1), 0.6 to the γ n terms and their properties (Section 3.2), 0.4 to basic lemmas about sums and dotproducts (Sections 1.4 and 3.3) and 0.8 to matrices of real numbers (Section 4). Finally, the main theorem and corollaries (this section) take 1.2 kloc, and the remainder (0.2 kloc) is constituted of miscellaneous lemmas. This appears particularly reasonable, considering the original result is a far from trivial 6 page long paper proof [START_REF] Rump | Verification of positive definiteness[END_REF].

Another Application: Impact of Rounding Errors on Ellipsoidal Invariants

To assert the reusability of our developments for numerical analysis results involving matrices, we targeted another property. We will see that three quarters of the previous development can be directly reused.

As introduced in Section 1.2, we are given an invariant "x T P x ≤ λ " for the program of Figure 2 executed with real arithmetic and we want to prove, under some 4 For any x in the ellipsoid ε 1 of radius λ and assuming that Ax + Bu is then in a smaller ellipsoid ε 2 of same shape and radius λ < λ , it can be proved that fl(Ax + Bu) is in a slightly larger ellipsoid ε 3 of radius λ > λ . The value of λ depends on λ , λ , A, B, P and the floating-point format. If λ ≤ λ , this then proves that fl(Ax + Bu) remains in the original ellipsoid of radius λ . The figure is not to scale, the difference between λ and λ being usually orders of magnitude smaller than with λ . It is also worth noting that it is enough to prove the inclusion {fl(Ax

x ∈ ε 1 = x x T P x ≤ λ fl(Ax + Bu) ∈ ε 3 = x x T P x ≤ λ Ax + Bu ∈ ε 2 = x x T P x ≤ λ ∧ ⇓ Fig.
+ Bu) | x ∈ ε 1 } ⊆ ε 3 , set equality does not hold.
conditions, that it is also an invariant for the same program executed with floatingpoint arithmetic.

Here is the basic idea. The fact that the invariant is inductive for real arithmetic can be expressed as the following property

∀x ∈ R n , ∀u ∈ R p , x T P x ≤ λ ⇒ u ∞ ≤ 1 ⇒ (A x + B u) T P (A x + B u) ≤ λ .
But in practice, there will be some margin and we will be given the property

∀x ∈ R n , ∀u ∈ R p , x T P x ≤ λ ⇒ u ∞ ≤ 1 ⇒ (A x + B u) T P (A x + B u) ≤ λ .
for some λ < λ . That is if x is in the ellipsoid x x T P x ≤ λ , then Ax + Bu is in the smaller ellipsoid x x T P x ≤ λ . Computed with floating-point arithmetic, fl(A x + B u) will be equal to Ax + Bu plus a small rounding error and will then lie in a slightly larger ellipsoid x x T P x ≤ λ with λ > λ . If λ ≤ λ , then

∀x ∈ R n , ∀u ∈ R p , x T P x ≤ λ ⇒ u ∞ ≤ 1 ⇒ fl(A x + B u) T P fl(A x + B u) ≤ λ ,
which means that the invariant is also inductive for floating-point arithmetic. This is illustrated on Figure 4.

The following theorem shows that λ ≤

√ λ + √ λ a + b 2
with a and b very small constants depending on A, B, P and the floating-point format used. That is λ is only slightly larger than λ (and then hopefully less than λ).

Theorem 4.6 (ellipsoid_error) For all n, p ∈ N, A, P ∈ R n×n , B ∈ R n×p , s, s , λ , λ ∈ R, if 2(n + p + 1)eps < 1, P T = P, P 0, s P -I 0, s I -P 0, then for all x ∈ F n , u ∈ F p if x T P x ≤ λ , u ∞ ≤ 1 and

(A x + B u) T P (A x + B u) ≤ λ then fl(A x + B u) T P fl(A x + B u) ≤ √ λ + √ λ a + b 2 where a := γ n+p+1 √ ss √ n A F + 2 √ ss n √ n eta and b := γ n+p+1 √ s √ p B F + 2 √ s (n + 2p) √ n eta
where M F denotes the Frobenius norm of the matrix M (i.e., M F := ∑ i, j M 2 i, j).

The value ss is an upper bound on the condition number 14 of the matrix P. Intuitively, if ss is close from 1, the ellipsoid x x T P x ≤ 1 is close from a sphere. On the contrary, when the ellipsoid is much larger in some directions than other, ss has to take larger values. Thus, the previous theorem gives better (i.e., smaller) bounds when the ellipsoid x x T P x ≤ 1 is close from a sphere rather than very thin along some axes and very large along others.

For typical values (n ≤ 10, p ≤ 10, coefficients of A and B of order of magnitude 1, ss ≤ 10 4 , s ≤ λ and eta eps 10 -16 for binary64),

√ λ a + b ≤ 10 -10
√ λ which is very small with respect to a typical relative difference of 10 -4 between λ and λ [START_REF] Roux | Computing quadratic invariants with min-and max-policy iterations: A practical comparison[END_REF]. Thus λ ≤ λ always holds in practical cases.

Here are the main lines of the proof. fl(Ax + Bu) being defined as fl [A B][x T u T] T (recall that fl(expr) means expr computed from left to right), for all i, fl(Ax + Bu) i is a dotproduct and Lemma 3.11 gives for all i, fl(Ax + Bu) i = (Ax + Bu) i + e with |e| ≤ b(x, u) (c.f., Lemma 3.11 for the details of b). We now have to bound x and u. u ∞ ≤ 1 is an hypothesis. Then, the hypothesis s P -I 0 and x T P x ≤ λ allow to prove x ∞ ≤ √ sλ (lemma_2 in ellipsoid_error.v, proved using the lemmas on matrices of Section 4.1). These are the main ingredients of the following lemma which gives a bound on e only depending on λ and characteristics of A, B, P and the floating-point format.

Lemma 4.7 (lemma_3 in ellipsoid_error.v) For all n, p ∈ N, A, P ∈ R n×n , B ∈ R n×p , s, λ ∈ R, if 2(n + p + 1)eps < 1, P 0, s P -I 0, then for all x ∈ F n , u ∈ F p if

x T P x ≤ λ and u ∞ ≤ 1 then there exists d : (bounded 1) n such that

fl(A x + B u) = Ax + Bu + diag(d) √ sλ (γ n+p+1 c A + 2 n c eta) + γ n+p+1 c B + 2(n + 2p)c eta
where c A := ∑ j A 0, j , . . . , ∑ j A n-1, j T , c B := ∑ j A 0, j , . . . , ∑ j A n-1, j T and c eta := [eta, . . . , eta] T .

From the hypothesis s I -P 0 of Theorem 4.6, we get for all v ∈ R n , diag(d) v P ≤ √ s v 2 (lemma_4) and the proof of the theorem finally follows thanks to matrix manipulations and lemmas of Section 4.1.

Among the 3.1 kloc needed to prove this theorem, 2.3 are shared with the development performed for the previous Section 4.2. Again, 0.8 kloc of Coq is a reasonably small amount of code for translating such a non trivial 4 page long paper proof.

Considering Potential Overflows

Until now, the possibility of overflows has been ignored. This section shows how previous results can be extended taking them into account. The basic idea is to use the fact that, as long as no overflow occurs, results are the same than in the previous model without overflows. An extension to overflows of the floating-point model of Section 2 is first given before demonstrating its use on our examples.

Specification of Floating-Point Arithmetic with Overflows

To the normalized and denormalized numbers already considered, the IEEE754 standard adds special values -∞ and +∞ to handle overflows and NaN (Not a Number) to handle undefined operations (for instance 0/ 0). The new following specification handles these additional values by basically stating that when the result of an operation is not one of them, then the operation behaves as already defined in Section 2. fiplus_spec_fl x y : finite (fiplus x y) → finite x; fiplus_spec_fr x y : finite (fiplus x y) → finite y; fiplus_spec_f x y : finite x → finite y → |fplus (FI2F x) (FI2F y)| < m → finite (fiplus x y); Multiplication and square root are very similar. Only the division slightly differs because f / ± ∞ = 0 for any finite f . They are all ommited fro brevity. }.

It is worth noting that in Section 2, for x, y ∈ F, fl(x + y) was defined as •(x + y), using the addition + over R. This was made possible by the fact that F was a subset of R. This is no longer the case as ±∞ and NaN are not in R.

Another interesting subtlety to notice is that, if finite is satisfied by the largest representable float, the rounding of overflowing values forces the use of rounding to nearest. For instance, with rounding toward 0, an overflowing sum x + y will result in the largest representable float (rather than +∞ in rounding to nearest) and if it satisfies finite, this would violate fiplus_spec.

In our Coq development, the above specification is proved to hold for the bit-level model of binary64 in the Flocq library [START_REF] Boldo | Flocq: A Unified Library for Proving Floating-point Algorithms in Coq[END_REF] (c.f., record binary64_infnan) with the binary64 of Section 2 as underlying model fis.

Example: Cholesky Decomposition

This section proves that the absence of overflow during the execution of the Cholesky decomposition can be tested at runtime by simply checking that the diagonal coefficients of the computed matrix R are finite (i.e., neither ±∞ nor NaN), in addition of the usual positivity check.

The specification cholesky_spec_infnan of the Cholesky decomposition is the same as (4), page 14, with the arithmetic operations replaced by the one of the new specification above. cholesky_success_infnan is then defined as

cholesky_spec_infnan A R ∧ ∀i ∈ 1, n , FI2F Ri,i > 0.
It is worth noting that FI2F Ri,i > 0 implicitly states that Ri,i is finite. This enables to prove the following lemma Lemma 5.1 (cholesky_success_infnan_cholesky_success) For A, R ∈ FI n×n , if cholesky_success_infnan A R, then cholesky_success (MFI2F A) (MFI2F R) with MFI2F M the matrix with coefficients FI2F M i, j .

Thus, if the other hypothesis of Corollary 4.4 hold, MFI2F A 0 (i.e., A 0 if all element of A are finite).

Example: Ellipsoidal Invariants

In Section 4.3, it was proved that a loop invariant x T P x ≤ λ for the program of Figure 2 executed with real arithmetic still holds with floating-point arithmetic under some conditions. Among these conditions, the positive definiteness P 0 of the matrix P, ensures that the set x x T P x ≤ λ is bounded. Thus, x ∞ is bounded and if this bound is small enough, no overflow can occur.

This will be proved using the following lemma where flo(.) is the equivalent of fl(.) using the operation with overflow defined in Section 5.1. This result is not surprising, it basically states that if all a i and b i are less than m n , then no overflow happens during the computation of ∑ a i b i (since all a i b i are less than m n and the sum is then less than m, the factor 2 and the eta in the definition of m being only here to accomodate rounding errors (c.f., Lemma 3.11, page 12)).

According to Section 4.3, x ∞ ≤ √ sλ when sP -I 0. Thus, no overflow can happen when √ sλ < m . This is proved in the next theorem.

Theorem 5.3 (fiAxBu_bounded) For all n, p ∈ N, A, P ∈ R n×n , B ∈ R n×p , s, λ ∈ R, if 2(n + p + 1)eps < 1, 2(n + p + 1)eta < 1, m > 1, P 0, s P -I 0, √ sλ < m and for all i, j, A i, j < m and B i, j < m , then for all x ∈ F n , u ∈ F p if for all i, finite x i , finite u i ,

x T P x ≤ λ , and u ∞ ≤ 1 Compared to Theorem 4.6, there are only a few additional hypothesis which are easily satisfied in practical cases:

-2(n + p + 1)eta < 1: for any reasonable floating-point format, the error eta for denormalized numbers is much smaller than eps for normalized numbers. This hypothesis is then subsumed by the previous 2(n + p + 1)eps < 1. m > 1: m is usually very large, for instance for the binary64 format, m = 2 1024 , which means that m ≥ 10 146 since n + p is bounded by 2(n + p + 1)eps < 1. -√ sλ < m : again, m is large enough for this hypothesis to be satisfied in any practical case (typical values of √ sλ being less than 1000). -A i, j < m and B i, j < m : again easily satisfied (controllers are usually designed so that the coefficients of the matrices A and B remain somewhat close of order of magnitude 1, i.e., much smaller than m).

This section demonstrated our initial claim that overflows can be ignored in a first approach, since it is then possible to extend the results by either testing at runtime the absence of overflows or statically proving their absence.

The Coq development for this extension to overflows counts 1.1 kloc. Among them, 0.1 are devoted to the specification described in Section 5.1, 0.3 to prove that the bit-level model of binary64 from the Flocq library satisfy it, 0.2 to the Cholesky decomposition example and 0.5 to the ellipsoidal invariants.

Conclusion

We formally proved, using the proof assistant Coq [START_REF] Bertot | Interactive theorem proving and program development : Coq'Art : the calculus of inductive constructions[END_REF][START_REF]The Coq proof assistant reference manual[END_REF], two results bounding rounding errors of numerical computations and involving matrices and common numerical analysis tools [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]. Our Coq development is available at http://cavale.enseeiht. fr/formalbounds2014/. It indicates that performing such proofs within proof assistants is tractable and that a large part of the proof effort could be reused for similar results. Our development is based on a broad high-level floating-point specification and we have proved that this specification is satisfied by the model of the binary64 format from the Flocq library of floating-point arithmetic for Coq [START_REF] Boldo | Flocq: A Unified Library for Proving Floating-point Algorithms in Coq[END_REF].

The fact that we were able to translate, far from trivial, multiple pages paper proofs in about 1 kloc of Coq is a very encouraging achievement. It is also worth noting that performing mechanically checked proofs gave the opportunity to fix a few small mistakes in the proofs, thus asserting the interest of formalized proofs.

We eventually hope that a large part of our code can be reused in future developments, for instance about numerical integration of ODEs.

It would also be interesting to study a recent work offering sharper bounds [START_REF] Rump | Improved backward error bounds for lu and cholesky factorizations[END_REF].

2 2 .

 2 That is A + c I 0. The successful floating-point Cholesky decomposition of Ac I eventually proves that (Ac I) + c I = A 0. Moreover, such a constant c can be easily computed from simple characteristics of A and the floatingpoint arithmetic format used 1 .

Definition 1 . 1 FExample 1 . 2

 1112 ⊂ R denotes the set of floating point values, • : R → F a rounding function (toward +∞ or to nearest for instance) and fl(e) ∈ F the floating point evaluation of expression e from left to right 3 . Assuming 1, 2 and 3 are floating-point values, fl(1

5

 Usual implementation of the type double in C.

 Record Float_spec := { (** format x means that x ∈ R is a floating-point value *) format : R → Prop; (** The type of floating-point values (coercible to R). *) F := Ff format; (** 0 and 1 must be floating-point numbers. *) format0 : format 0; format1 : format 1; (** The opposite of a floating point number is a floating point number. *) format_opp x : format x -> format (-x); (** Bound on the relative error (normalized numbers, no underflow). *) eps : R; eps_pos : 0 ≤ eps; eps_lt_1 : eps < 1; (** Bound on the absolute error (denormalized, when underflow occurs). *) eta : R; eta_pos : 0 < eta; (** Some rounding. *) frnd : R → F; frnd_spec x : ∃ (d : bounded eps) (e : bounded eta), frnd x = (1+d)x+e :> R; (** Addition. *) fplus (x y : F) : F := frnd (x+y); fplus_spec x y : ∃ d : bounded eps, fplus x y = (1+d)(x+y) :> R; fplus_spec2 (x y : F) : y ≤ 0 → fplus x y ≤ x; (** Multiplication. *) fmult (x y : F) : F := frnd (x×y); fmult_spec (x y : F) := frnd_spec (x×y); fmult_spec2 x : 0 ≤ fmult x x; (** Square root. *) fsqrt (x : F) : F := frnd √ x; fsqrt_spec x : ∃ d : bounded eps, fsqrt x = (1+d) √ x :> R; }.

Lemma 3 .

 3 3 (widen_bounded) ∀r, r ∈ R, ∀b : bounded r, r ≤ r ⇒ ∃b : bounded r , b = b It is also common to get bounds of the form b e with b : bounded r and e a complicated expression we want to replace by a simpler expression e ≥ e: Lemma 3.4 (bounded_larger_factor) ∀r, r 1 , r 2 ∈ R, ∀b : bounded r, |r 1 | ≤ |r 2 | ⇒ ∃b : bounded r, b r 1 = b r 2 Error terms are compatible with basic arithmetic operations: Lemma 3.5 (bounded_opp, bounded_plus, bounded_mult) ∀r : R, ∀b : bounded r, ∃b : bounded r, b = -b ∀r 1 , r 2 : R, ∀b 1 : bounded r 1 , ∀b 2 : bounded r 2 , ∃b : bounded (r 1 + r 2), b = b 1 + b 2 ∀r 1 , r 2 : R, ∀b 1 : bounded r 1 , ∀b 2 : bounded r 2 , ∃b : bounded (r 1 r 2), b = b 1 b 2

Corollary 4 . 5 (

 45 [START_REF] Rump | Verification of positive definiteness[END_REF] Corollary 2.7]) For all n ∈ N

 Record Float_infnan_spec := { (** Type of floating-point values (either finite, infinite or NaN). *) FI : Set; FI0 : FI; (** finite f means that the floating-point number f is finite. *) finite : FI → Prop; finite0 : finite FI0; (** Underlying unbounded floating-point format. FI and F fis match when finite holds. *) fis : Float_spec; (** Any float less than m (in absolute value) will be finite (typically, m can be the smallest non representable positive float). *) m : R; m_ge_2 : 2 <= m; (** Associates the corresponding value in F fis for finite values or 0 for infinities and NaN. *) FI2F : FI → F fis; FI2F_spec x : (FI2F x = 0 :> R) → finite x; FI2F0 : FI2F (FI0) = F0 fis :> R; (** Some rounding. *) firnd : R -> FI; firnd_spec x : finite (firnd x) → FI2F (firnd x) = frnd fis x :> R; firnd_spec_f x : |frnd fis x| < m → finite (firnd x); (** Opposite *) fiopp : FI → FI; fiopp_spec x : finite (fiopp x) → FI2F (fiopp x) = fopp (FI2F x) :> R; fiopp_spec_f1 x : finite (fiopp x) → finite x; fiopp_spec_f x : finite x → finite (fiopp x); (** Addition *) fiplus : FI → FI → FI; fiplus_spec x y : finite (fiplus x y) → FI2F (fiplus x y) = fplus (FI2F x) (FI2F y) :> R;

Lemma 5 .

 5 2 (fdotprod_l2r_fstr_bounded) For all n ∈ N, a ∈ R n and b ∈ FI n , if 2(n + 1)eps < 1, 2(n + 1)eta < 1 and ∀i, |a i | < m ∧ finite b i ∧ |b i | < m with m := m 2(n+1)etaeta, then finite flo FI2F b i) .

 then finite (flo(Ax + Bu)) ∧ MFI2F (flo(Ax + Bu)) = fl(Ax + Bu) where m := m 2(n+p+1)etaeta.

 • is a rounding to nearest). Otherwise, a denormalized number has to be used, and only |x -•(x)| ≤ β e min can be guaranteed (or β e min /2 if • is a rounding to nearest). Definition 1.3 eps ∈ R and eta ∈ R are constants, depending on the floating-point format used, such that for all x ∈ R, •(x) ∈ F satisfies either |x -•(x)| ≤ eps |x| or |x -•(x)| ≤ eta.

	Example 1.4 For the IEEE754 [11] binary64 5 format with • a rounding to nearest,
	we have eps = 2 -53

Order of evaluation matters since floating point operations are not associative.

They will be taken into account later (c.f., Section

5).

Moreover, this choice improves modularity of the Coq code by sharing lemmas with other results.

See for instance the proof of Theorem 1.8, page 6.

Actually, part of it. We only consider matrices of real numbers whereas[START_REF] Rump | Verification of positive definiteness[END_REF] also handles complex numbers.[START_REF] Rump | Verification of positive definiteness[END_REF] also offers improved bounds for sparse matrices and a non-positive-definiteness check.

As well as the author and reviewers of the original paper.

A preprocessing can fit all diagonal coefficients in the interval [0.25, 1]. Indeed, A 0 when A := D T A D 0 for any non-singular matrix D. By choosing D = diag(d 0 , . . . , d n-1), we have A i, j = d i d j A i, j . By choosing the d i as powers of 2, these multiplications are exact in floating point arithmetic (if no underflow (nor overflow) occurs) and we can guarantee A i,i ∈ [0, 25, 1] [13].

More precisely, s I -P 0 implies that s is an upper bound of all eigenvalues of P and s P -I 0 implies that[START_REF] Bertot | Interactive theorem proving and program development : Coq'Art : the calculus of inductive constructions[END_REF] s is a lower bound of these eigenvalues.

Acknowledgements

The author wants to express its deepest thanks to Sylvie Boldo and Guillaume Melquiond as well as to Érik Martin-Dorel and Pierre-Marie Pédrot for their help regarding this work.