
HAL Id: hal-01091189
https://hal.science/hal-01091189v1

Submitted on 4 Dec 2014 (v1), last revised 26 Aug 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Proofs of Rounding Error Bounds
Pierre Roux

To cite this version:
Pierre Roux. Formal Proofs of Rounding Error Bounds: With application to an automatic positive
definiteness check. Journal of Automated Reasoning, 2015, pp.23. �10.1007/s10817-015-9339-z�. �hal-
01091189v1�

https://hal.science/hal-01091189v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Formal Proofs of Rounding Error Bounds

With application to an automatic positive definiteness check.

Pierre Roux

Received: date / Accepted: date

Abstract Floating-point arithmetic is a very efficient solution to perform computa-
tions in the real field. However, it induces rounding errors making results computed
in floating-point differ from what would be computed with reals. Although numerical
analysis gives tools to bound such differences, the proofs involved can be painful,
hence error prone. We thus investigate the ability of a proof assistant like Coq to
mechanically check such proofs. We demonstrate two different results involving ma-
trices, which are pervasive among numerical algorithms, and show that a large part
of the development effort can be shared between them.

Keywords floating-point arithmetic · rounding error · numerical analysis · proof
assistant · Coq · matrices · Cholesky decomposition

1 Introduction

Floating-point arithmetic is a very efficient solution to perform computations in the
real field R. Unfortunately, intermediate results of computations need to be rounded
to fit in the floating-point format used. Due to this rounding errors, final results of
computations differ from what would have been obtained by computing in the real
field R, although both results usually remain pretty close.

Fortunately, each rounding can only introduce a bounded error. By combining
these atomic errors, one can get a bound on the error affecting the final result. Numeri-
cal analysis [11] thus aims at bounding these differences between results of numerical
algorithms using floating-point or real arithmetic. Using such mathematical proper-
ties, rigorous results can be obtained despite the use of floating-point arithmetic [15],
ensuring that no disastrous rounding error can happen during the computation.

This work was done while the author was a visiting researcher at LRI, Inria Saclay – Île-de-France.

Pierre Roux
ISAE, ONERA
E-mail: pierre.roux@onera.fr

2 Pierre Roux

R := 0;
for j from 1 to n do

for i from 1 to j−1 do

Ri, j :=
(

Ai, j −∑
i−1
k=1 Rk,iRk, j

)

/Ri,i;
od

R j, j :=

√

M j, j −∑
j−1
k=1 Rk, j

2;
od

Fig. 1 Cholesky decomposition: from a matrix A � 0, computes R such that A = RT R.

More precisely, denoting f a function in the real field R and f̃ its actually com-
puted floating-point counterpart, we have f̃ (x) = f (x)+ e. The value e is called the
forward error and is expected to be negligible in front of f (x). When f̃ (x) = f (x+d),
d is called a backward error. This paper focuses on proofs of forward error bounds
b(x) such that |e| ≤ b(x).

Proofs of this kind of mathematical results are hard to automate when they involve
an arbitrary number of operations and are therefore mostly done by hand. However,
they can be particularly painful and repetitive which make them specially error prone.
That’s why we want to investigate the ability of a proof assistant, namely Coq [1,6],
to check them. Matrices being pervasive in numerical algorithms, we will particularly
focus on them.

Formal proofs of error bounds have already been performed with proof assistants
such as HOL [10] or Coq [3] or with automatic tools such as Gappa [7]. Yet, to the
extent of author’s knowledge, those work only address results with a fixed number
of basic arithmetic operations whereas algorithms with an arbitrary, parameterized,
number of operations are targeted in this paper.

The paper is organized as follows. The remainder of this section first introduces
our motivating example that will be used throughout the paper (Section 1.1), then
gives basic properties of floating-point arithmetic (Section 1.2) and eventually details
a simple proof about summations (Section 1.3). Section 2 then gives the detailed
specification of floating-point arithmetic used while Section 3 shows how error terms
can be combined. Section 4 eventually details proofs of numerical analysis results
involving matrices and Section 5 concludes.

1.1 Motivating Example: Cholesky Decomposition

We will use as motivating example throughout this paper a Cholesky decomposi-
tion which is a typical example of numerical algorithm involving matrices. Checking
positive definiteness of matrices is one common use of Cholesky decomposition. A
matrix A ∈ R

n×n is said positive semi-definite A � 0 when, for all x ∈ R
n, xT Ax ≥ 0.

To prove that a scalar a ∈ R is non negative, one can exhibit some r ∈ R such
that a = r2 (typically r =

√
a). Similarly, one can prove that a matrix A ∈ R

n×n is
positive semi-definite by exposing a matrix R such that A = RT R (for xT (RT R)x =
(Rx)T (Rx) = ‖Rx‖2

2 ≥ 0 for all x ∈R
n). The Cholesky decomposition is an algorithm

Formal Proofs of Rounding Error Bounds 3

that compute such a matrix R (c.f., Figure 1). It is interesting to notice that the actual
value of r or R doesn’t matter. It is enough to prove it exists. Indeed, if the Cholesky
decomposition of A runs to completion, without ever attempting to take the square
root of a negative value or perform a division by zero, hence produce a R, this proves
A � 0.

This would work perfectly if the algorithm were run using real arithmetic. How-
ever, performing it with floating-point arithmetic, it could run to completion while
A 6� 0, due to rounding errors. But rounding errors remain bounded, so that there ex-
ists a c ∈ R such that, if the floating-point Cholesky decomposition of A succeeds,
then A+ cId � 0. The successful floating-point Cholesky decomposition of A− cId

eventually proves that A � 0. Moreover, such a constant c can be easily computed
from simple characteristics of A and the floating-point arithmetic format used. The
goal of this paper will be to prove this.

1.2 Definitions and Basic Properties

Definition 1.1 F⊂R denotes the set of floating point values, round : R→ F a round-
ing function (toward +∞ or to nearest for instance) and fl(e) ∈ F the floating point
evaluation of expression e from left to right1.

Example 1.2 Assuming 1, 2 and 3 are floating-point values, fl(1+2+3) denotes the
value round(round(1+2)+3).

Definition 1.3 eps∈R and eta∈R are constants, depending from the floating-point
format used, such that for all x ∈ R, round(x) ∈ F satisfies either |x− round(x)| ≤
eps |x| or |x− round(x)| ≤ eta.

Example 1.4 For the IEEE754 [12] binary642 format with round a rounding to near-
est, we have eps= 2−53 (≃ 10−16) and eta= 2−1075 (≃ 10−323).

These constants allow to bound the rounding errors of the basic arithmetic oper-
ations.

Property 1.5 For all x,y ∈ F

∃δ ∈ R, |δ | ≤ eps∧fl(x⋄ y) = (1+δ)(x⋄ y), for ⋄ ∈ {+,−}
∃δ ,η ∈ R, |δ | ≤ eps∧|η | ≤ eta∧fl(x⋄ y) = (1+δ)(x⋄ y)+η , for ⋄ ∈ {×,/}
∃δ ∈ R, |δ | ≤ eps∧fl

(√
x
)

= (1+δ)
√

x.

1.3 Simple Example: the Sum

The previous bounds on rounding errors of basic operations can be combined to get
bounds on the error of larger expressions, as for instance a summation in the following
classic result [11,15].

1 Order of evaluation matters since floating point operations are not associative.
2 Usual implementation of the type ❞♦✉❜❧❡ in C.

4 Pierre Roux

Theorem 1.6 For all x ∈ F
n

∣

∣

∣

∣

∣

fl

(

n

∑
i=1

xi

)

−
n

∑
i=1

xi

∣

∣

∣

∣

∣

≤ γn−1

n

∑
i=1

|xi|

where γn−1 := (n−1)eps
1−(n−1)eps .

Proof We have by direct application of Property 1.5

fl

(

n

∑
i=1

xi

)

= fl

(

fl

(

n−1

∑
i=1

xi

)

+ xn

)

= (1+δn)

(

fl

(

n−1

∑
i=1

xi

)

+ xn

)

for some δn ∈ R, |δn| ≤ eps. Then

fl

(

n

∑
i=1

xi

)

= (1+δn)

(

(1+δn−1)

(

fl

(

n−2

∑
i=1

xi

)

+ xn−1

)

+ xn

)

for some δn−1 ∈ R, |δn−1| ≤ eps. By an immediate induction

fl

(

n

∑
i=1

xi

)

=

(

n

∏
j=2

(1+δ j)

)

x1 +
n

∑
i=2

(

n

∏
j=i

(1+δ j)

)

xi (1)

for some δ j ∈ R,
∣

∣δ j

∣

∣ ≤ eps. Then [11, Lemma 3.1], for all i ∈ J2,nK, there exist

θi ∈ R such that |θi| ≤ γn−i+1 := (n−i+1)eps
1−(n−i+1)eps and ∏

n
j=i(1+δ j) = 1+θi, hence

fl

(

n

∑
i=1

xi

)

= (1+θ2)x1 +
n

∑
i=2

(1+θi)xi =
n

∑
i=1

xi +

(

θ2x1 +
n

∑
i=2

θixi

)

. (2)

Finally, since for all i ∈ J2,nK, n− i+ 1 ≤ n− 1 and k 7→ γk is monotone, we have
|θi| ≤ γn−i+1 ≤ γn−1, and there exists θ ∈ R such that |θ | ≤ γn−1 and

fl

(

n

∑
i=1

xi

)

=
n

∑
i=1

xi +θ
n

∑
i=1

|xi| (3)

which enables to conclude.

2 Specification of Floating-Point Arithmetic

As seen in Property 1.5 and Theorem 1.6, both definitions and proofs make intensive
use of real numbers with a bounded absolute value. To ease the manipulation of these
error terms, we use a dependent record ❜♦✉♥❞❡❞ ❜ packing a real number with a
proof that its absolute value is less than a non-negative real number ❜:

❘❡❝♦r❞ ❜♦✉♥❞❡❞ ✭❜ ✿ R✮ ✿❂

④ ❜♦✉♥❞❡❞❴✈❛❧ ✿❃ R❀ ❜♦✉♥❞❡❞❴♣r♦♣ ✿ |❜♦✉♥❞❡❞❴✈❛❧| ≤ ❜ ⑥✳

Formal Proofs of Rounding Error Bounds 5

Since the set of floating-point values F is a subset of R, we will similarly define
floating point values as a value in R along with a proof that it lies in F:

❘❡❝♦r❞ ❋❢ ❢♦r♠❛t ✿❂

④ ❋❴✈❛❧ ✿❃ R❀ ❋❴♣r♦♣ ✿ ❢♦r♠❛t ❋❴✈❛❧ ⑥✳

where ❢♦r♠❛t is a predicate over R identifying real numbers that are in F.

The floating-point arithmetic specification is then given by the following large
record which will be used as parameter of all our subsequent developments.

❘❡❝♦r❞ ❋❧♦❛t❴s♣❡❝ ✿❂ ④

✭✯✯ ❢♦r♠❛t ① means that ① ∈ R is a floating-point value ✯✮
❢♦r♠❛t ✿ R → Pr♦♣❀

✭✯✯ The type of floating-point values (coercible to R). ✯✮
❋ ✿❂ ❋❢ ❢♦r♠❛t❀

✭✯✯ 0 and 1 must be floating-point numbers. ✯✮
❢♦r♠❛t✵ ✿ ❢♦r♠❛t ✵❀ ❢♦r♠❛t✶ ✿ ❢♦r♠❛t ✶❀

✭✯✯ Bound on the relative error (normalized numbers, no underflow). ✯✮
❡♣s ✿ R❀ ❡♣s❴♣♦s ✿ 0 ≤ eps❀ ❡♣s❴❧t❴✶ ✿ eps< 1❀
✭✯✯ Bound on the absolute error (denormalized, when underflow occurs). ✯✮
❡t❛ ✿ R❀ ❡t❛❴♣♦s ✿ 0 < eta❀

✭✯✯ Some rounding. ✯✮
❢r♥❞ ✿ R→ F❀ ❢r♥❞❴s♣❡❝ ✿ ∀① ✿ R✱

∃❞ ✿ ❜♦✉♥❞❡❞ ❡♣s✱ ∃❡ ✿ ❜♦✉♥❞❡❞ ❡t❛✱ ❢r♥❞ ① ❂ ✭1+❞✮①+❡❀
✭✯✯ Addition. ✯✮
❢♣❧✉s ✿ F→ F→ F❀ ❢♣❧✉s❴s♣❡❝ ✿ ∀① ② ✿ F✱

∃❞ ✿ ❜♦✉♥❞❡❞ ❡♣s✱ ❢♣❧✉s ① ② ❂ ✭1+❞✮✭①+②✮❀
✭✯✯ Opposite. ✯✮
❢♦♣♣ ✿ F→ F❀ ❢♦♣♣❴s♣❡❝ ✿ ∀① ✿ F✱ ❢♦♣♣ ① ❂ −①❀
✭✯✯ Subtraction. ✯✮
❢♠✐♥✉s ✿ F→ F→ F❀ ❢♠✐♥✉s❴s♣❡❝ ✿ ∀① ② ✿ F✱

❢♠✐♥✉s ① ② ❂ ❢♣❧✉s ① ✭❢♦♣♣ ②✮❀

❢♠✐♥✉s❴s♣❡❝✷ ✿ ∀① ② ✿ F✱ 0 ≤ y → ❢♠✐♥✉s ① ② ≤ ①❀

✭✯✯ Multiplication. ✯✮
❢♠✉❧t ✿ F→ F→ F❀ ❢♠✉❧t❴s♣❡❝ ✿ ∀① ② ✿ F✱

∃❞ ✿ ❜♦✉♥❞❡❞ ❡♣s✱ ∃❡ ✿ ❜♦✉♥❞❡❞ ❡t❛✱ ❢♠✉❧t ① ② ❂ ✭1+❞✮✭①×②✮+❡❀
❢♠✉❧t❴s♣❡❝✷ ✿ ∀① ✿ F✱ 0 ≤ ❢♠✉❧t ① ①❀

✭✯✯ Division. ✯✮
❢❞✐✈ ✿ F→ F→ F❀ ❢❞✐✈❴s♣❡❝ ✿ ∀① ② ✿ F✱ ② 6= 0 →
∃❞ ✿ ❜♦✉♥❞❡❞ ❡♣s✱ ∃❡ ✿ ❜♦✉♥❞❡❞ ❡t❛✱ ❢❞✐✈ ① ② ❂ ✭1+❞✮✭①/②✮+❡❀
✭✯✯ Square root. ✯✮
❢sqrt ✿ F→ F❀ ❢sqrt❴s♣❡❝ ✿ ∀① ② ✿ F✱ 0 ≤ ①→
∃❞ ✿ ❜♦✉♥❞❡❞ ❡♣s✱ ❢sqrt ① ❂ ✭1+❞✮

√
x❀

❢sqrt❴s♣❡❝✷ ✿ ∀① ✿ F✱ 0 < ❢sqrt ① → 0 < ①❀

⑥✳

6 Pierre Roux

Having performed our proofs with a proof assistant, we are guaranteed that the
above record contains all the hypotheses about floating-point arithmetic used in these
proofs. It is interesting to notice that this specification of floating-point arithmetic
is really broad. In particular, it encompasses floating-point formats with gradual or
abrupt underflow and any rounding mode. Fixed-point arithmetic can even be handled
by just setting ❡♣s to 0, i.e., no relative, only absolute error occur. However, most of
our developments are carried on with floating-point arithmetic in mind and the proved
bounds might be pretty poor in a fixed-point arithmetic setting.

It is common practice in numerical analysis to ignore underflows [11]. Although
this gives good indications on the numerical behavior of algorithms, underflows can
appear with any practical implementation of floating-point arithmetic, potentially
breaking such results. In our development, they are taken into account, thanks to
the ❡t❛ constant.

In our Coq development, the above specification of floating-point arithmetic is
proven to hold for the floating point format with gradual underflow and any rounding
to nearest modeled in the Flocq library [4] with parameters corresponding to the bi-
nary64 format2 (albeit without NaNs nor overflows). Other formats such as binary323

could be obtained by just modifying two constants defining size of the mantissa and
minimal exponent.

In contrary to underflows, not handling NaNs and overflows does not constitute
an actual issue. In fact, results considering those special values can easily be derived
from results in our model with only finite values.

3 Combining Error Terms

3.1 Bounded Error Terms

Values of the type ❜♦✉♥❞❡❞ defined at beginning of Section 2 are coercible to R and
we developed a few helpful lemmas about them. The two following lemmas can be
used to create such values.

Lemma 3.1 (❜♦✉♥❞❡❞❴❧❡❴✶) ∀x,y ∈ R, |x| ≤ y ⇒∃b : bounded 1, x = by

Lemma 3.2 (❜♦✉♥❞❡❞❴s❝❛❧❡) ∀b,b′ ∈R,r : bounded b,0< b′⇒∃r′ : bounded b′, r =
r′ b

b′

It is often needed to say that a value of type bounded b is also of type bounded b′ for
any b′ ≥ b (for instance, in proof of Theorem 1.6, to state that the θi : bounded γn−i+1

are all of type bounded γn−1):

Lemma 3.3 (❜♦✉♥❞❡❞❴✇✐❞❡♥) ∀b,b′ ∈R,∀x : bounded b,b≤ b′⇒∃x′ : bounded b′, x=
x′

It is also common to get bounds of the form xe with x : bounded b and e a complicated
expression we want to replace by a simpler expression e′ ≥ e:

3 Usual implementation of type ❢❧♦❛t in C.

Formal Proofs of Rounding Error Bounds 7

Lemma 3.4 (❜♦✉♥❞❡❞❴❧❛r❣❡r❴❢❛❝t♦r) ∀b,r1,r2 ∈R,∀x : bounded b, |r1| ≤ |r2|⇒
∃x′ : bounded b, xr1 = x′ r2

Error terms are compatible with basic arithmetic operations:

Lemma 3.5

∀b : R,∀x : bounded b,∃x′ : bounded b, x′ =−x

∀b1,b2 : R,∀x1 : bounded b1,∀x2 : bounded b2,∃x′ : bounded (b1 +b2), x′ = x1 + x2

∀b1,b2 : R,∀x1 : bounded b1,∀x2 : bounded b2,∃x′ : bounded (b1 b2), x′ = x1 x2

Finally, probably the most important lemma about error terms allows to factor them
and was exemplified between (2) and (3):

Lemma 3.6 (❜♦✉♥❞❡❞❴❞✐str❧, ❜✐❣❴❜♦✉♥❞❡❞❴❞✐str❧)

∀b,r1,r2 ∈ R,∀x1,x2 : bounded b,∃x′ : bounded b, x1 r1 + x2 r2 = x′ (|r1|+ |r2|)

∀b,∈ R,∀k : N,∀r ∈ R
k,∀x : (bounded b)k,∃x′ : bounded b, ∑

i

xi ri = x′
(

∑
i

|ri|
)

It is worth noting that this last property involves tuples (r and x) and sums of an
arbitrary number of terms (∑i rixi for instance). Those are efficiently handled thanks
to the ❜✐❣♦♣ operator from the SSReflect library [2].

3.2 Accumulating Relative Errors

As already seen, for instance in the proof of Theorem 1.6 (between (1) and (2)), error
terms of the form (1+ δ1) . . .(1+ δn), with |δi| ≤ eps, easily occur when relative
errors accumulate. The terms γk := keps

1−keps
nicely enable to compact them into 1+θn,

|θn| ≤ γn as will be exposed in this section.
Most of the following lemmas require hypothesis of the form keps< 1 for vari-

ous values of k. In our Coq code, a bunch of small lemmas4 allow to easily manipulate
theses hypothesis so that they do not constitute an annoying burden in practice. First,
a few very basic properties of the γk are proved. Namely, that they are non nega-
tive (provided keps < 1), strictly less than 1 (provided 2keps < 1) and constitute a
monotone sequence: for all k ≤ k′, γk ≤ γk′ (provided k′ eps< 1).

We then get some more interesting properties.

Lemma 3.7 [11, Lemma 3.3]. For all k,k′ ∈ N

k ≤ k′ ⇒ 2k′ eps< 1 ⇒ γk γk′ ≤ γk

(k k′)eps< 1 ⇒ k γk′ ≤ γk k′

(k+ k′)eps< 1 ⇒ γk + γk′ + γk γk′ ≤ γk+k′

(k+ k′)eps< 1 ⇒ γk + γk′ ≤ γk+k′

(k+1)eps< 1 ⇒ γk +eps≤ γk+1

4 For instance: (k+1)eps< 1 ⇒ keps< 1.

8 Pierre Roux

Allowing to prove properties about the θk : bounded γk.

Lemma 3.8 [11, Lemma 3.3]. For all k,k′ ∈N, for all θk : bounded γk, θk′ : bounded γk′

and δ : bounded eps

2(k+ k′)eps< 1 ⇒
∃θk+k′ : bounded γk+k′ , (1+θk)(1+θk′) = 1+θk+k′

2(k+1)eps< 1 ⇒
∃θk+1 : bounded γk+1, (1+θk)(1+δ) = 1+θk+1

k′ ≤ k ⇒ 2(k+ k′)eps< 1 ⇒
∃θk+k′ : bounded γk+k′ , (1+θk)/(1+θk′) = 1+θk+k′

2(k+2k′)eps< 1 ⇒
∃θk+2k′ : bounded γk+2k′ , (1+θk)/(1+θk′) = 1+θk+2k′

For a set of values dk : bounded eps, we also define φi, j,d := ∏
j−1
k=i (1+ dk) which

satisfy the following properties:

Lemma 3.9 For all i, j,n ∈ N, d : (bounded eps)n

2(j− i)eps< 1 ⇒∃θ j−i : bounded (j− i), φi, j,d = 1+θ j−i

(j− i)eps< 1 ⇒∃θ j−i : bounded (j− i),
1

φi, j,d
= 1+θ j−i

It is interesting to notice about the division [11, §3.4] that, although (according to
Lemma 3.8) (1+ θk)/(1+ θk′) = 1+ θk+k′ only holds for k′ ≤ k, according to the
above lemma φ0,k,d/φ0,k′,d′ = 1+θk+k′ even when k′ > k.

The notations δ and θk, with |δ | ≤ eps and |θk| ≤ γk, used in the above lemmas
are particularly convenient and popular to carry proofs about error bounds. In fact,
like the Landau big O notation, they greatly simplify proofs by enabling the use of
simple equalities5 instead of a bunch of inequalities, or limits. However, it is easy to
misuse them or forgot hypotheses, such as k′ ≤ k in Lemma 3.8. The use of a proof
assistant ensures that this does not happen.

3.3 First Applications

Thanks to all the above lemmas, the Theorem 1.6, bounding the rounding error of
a sum, is easily proven (c.f., ❢s✉♠❴❧✷r❴❡rr❴❛❜s in our Coq development). Similar
results are also proved for the dotproduct of two vectors of floating point values.

Lemma 3.10 (❢❞♦t♣r♦❞❴❧✷r❴❡rr❴❛❜s) For all n ∈N and a,b ∈ F
n, if 2keps< 1,

then
∣

∣

∣

∣

∣

fl

(

n

∑
i=1

ai bi

)

−
n

∑
i=1

ai bi

∣

∣

∣

∣

∣

≤ γn

(

n

∑
i=1

|ai bi|
)

+2neta.

5 See for instance the proof of Theorem 1.6, page 4.

Formal Proofs of Rounding Error Bounds 9

Another example, in case the first operand a is constituted of real numbers, which
have to be rounded to floating-point values prior to computation of the dotproduct:

Lemma 3.11 (❢❞♦t♣r♦❞❴❧✷r❴❢str❴❡rr) For all n∈N, a∈R
n and b∈F

n, if 2(k+
1)eps< 1, then

∣

∣

∣

∣

∣

fl

(

n

∑
i=1

ai bi

)

−
n

∑
i=1

ai bi

∣

∣

∣

∣

∣

≤ γn+1

(

n

∑
i=1

|ai bi|
)

+2

(

n+
n

∑
i=1

|bi|
)

eta.

Due to the presence of existential quantificators in most intermediate lemmas,
proof style in the Coq proof assistant heavily rely on forward proving. This does not
appear to add much burden to the proof writing process, as long as proofs are well
structured into lemmas of reasonable size6. Otherwise, one can first provide some
dummy term and later step back to replace it by the, then more obvious, adequate
term. Using the ❡✈❛r mechanism of Coq might also be a solution, as done with “big
enough numbers” for ε,η proofs about limits [5]. However, it is probably not worth
translating the latter in our setting since this would be rather complicated to solve
what is not an actual problem.

4 Errors on Matrix Operations

4.1 Real Numbers Matrices

As stated in the introduction (Section 1.1), we intend to prove numerical analysis
results on algorithms involving matrices. In our Coq development, we borrow ma-
trix algebra to the SSReflect library [9]. But we also need some results which are
specific to matrices of real numbers. We therefore introduce some basic definitions
and lemmas about pointwise orders and absolute values, dotproducts and quadratic
norms.

First, the pointwise extensions of the order ≤ and < as well as the absolute value
|.| are defined and a bunch of lemmas are proved about them. Most of these lemmas
are just lifting of the existing results on the real field R: reflexivity and transitivity
of the order ≤, compatibility of this order with matrix addition or scaling, triangular
inequality of the absolute value (∀A,B ∈ R

n×m, |A+B| ≤ |A|+ |B|),. . .
In order to deal with quadratic norms, we first define positive (semi-)definite ma-

trices. A matrix P ∈ R
n×n is said positive semi-definite, written P � 0, when for all

x ∈ R
n, xT Px ≥ 0 and it is said positive definite, written P ≻ 0, when for all x 6= 0,

xT Px > 0. Thus for a symmetric (PT = P) positive definite matrix P, we define the
dotproduct of two vectors x,y ∈ R

n as xT Py and the quadratic norm ‖x‖P as
√

xT Px.
The dotproduct is then proven to actually be a dotproduct (bilinear, symmetric, defi-
nite and non negative). It follows that the quadratic norm is definite non negative and
satisfies the scaling property (‖λx‖P = |λ |‖x‖P) which eventually enables to prove
two usual inequalities: the Cauchy-Schwartz inequality:

∀x,y ∈ R
n,
∣

∣xT Py
∣

∣≤ ‖x‖P ‖y‖P

6 Which is just good programming practice.

10 Pierre Roux

and the triangular inequality:

∀x,y ∈ R
n, ‖x+ y‖P ≤ ‖x‖P +‖y‖P.

In the particular case when P := Id, the quadratic norm will be written ‖.‖2 and a few
additional properties are proved: ∀x,y ∈ R

n,∀c ∈ R,

|x| ≤ |y| ⇒ ‖x‖2 ≤ ‖y‖2

‖|x|‖2 = ‖x‖2
∥

∥[c . . .c]T
∥

∥

2 =
√

n |c|
‖x‖1 ≤

√
n‖x‖2

where ‖x‖1 := ∑i |xi|.
We eventually needed 101 lemmas. Thanks to the nice SSReflect matrices [9],

they are proved using only 426 lines of tactics (hence an average of 4.2 lines of tactic
per lemma, the longest proof being the Cauchy-Schwartz inequality with 40 lines of
tactic).

4.2 Main Application: Cholesky Decomposition

As explained in Section 1.1, given a matrix M we want to check its positive definite-
ness, that is to prove M ≻ 0. This will be done by proving that there exists a constant
c ∈ R such that when the Cholesky decomposition (c.f., Figure 1) of M − cId, per-
formed with floating-point arithmetic, runs to completion without error (square root
of negative value or division by zero), then M ≻ 0. We follow the proof in [14]7.

The first lemmas proved deal with the two “basic blocks” of the Cholesky decom-
position: the assignments performed in the inner then the outer loop (c.f., Figure 1,
page 2). The two following lemmas are proved with tools similar to the one required
for Lemmas 3.10 and 3.11 about floating-point sums and dotproducts.

Lemma 4.1 ([14, Lemma 2.1]) For all n ∈N, a,b ∈ F
n, c,d ∈ F, if d 6= 0 and 2(n+

1)eps< 1, then

∣

∣

∣

∣

∣

c−∑
i

aibi −d ỹ

∣

∣

∣

∣

∣

≤ γn+1

(

∑
i

|aibi|+ |d ỹ|
)

+2eta(k+1+ |d|) .

where ỹ := fl(c−∑i aibi).

Lemma 4.2 ([14, Lemma 2.2]) For all n ∈ N, a ∈ F
n, c ∈ F, if 2(n+2)eps< 1 and

fl
(

c−∑i a2
i

)

≥ 0, then

∣

∣

∣

∣

∣

c−∑
i

a2
i − ỹ2

∣

∣

∣

∣

∣

< γn+2

(

∑
i

a2
i + ỹ2

)

+2eta(k+1) .

7 Actually, part of it. We only consider matrices of real numbers whereas [14] also handles complex
numbers. [14] also offers improved bounds for sparse matrices and a non-positive-definiteness check.

Formal Proofs of Rounding Error Bounds 11

and

ỹ2 +∑
i

a2
i ≤

c+2etak

1− γn+2

where ỹ := fl

(

√

c−∑i a2
i

)

.

Then, given two matrices A, R̃ ∈ F
n×n the proposition cholesky_spec A R̃ ex-

presses that R̃ is the floating-point Cholesky factor of A and is defined as follows

∀i, j ∈ J1,nK, i < j ⇒ R̃i, j = fl

(

Ai, j −∑k R̃k,iR̃k, j

R̃i,i

)

∧∀ j ∈ J1,nK, R̃ j, j = fl

(

√

A j, j −∑
k

R̃2
k, j

)

.

Then, the proposition cholesky_successA R̃ states that the floating-point Cholesky
decomposition of A runs to completion without error (and returns R̃):

cholesky_spec A R̃∧∀i ∈ J1,nK, R̃i,i > 0.

With this specification of the floating-point Cholesky decomposition, the follow-
ing main theorem can be proved about it.

Theorem 4.3 ([14, Theorem 2.3]) For all n ∈N (n ≥ 1), for all A, R̃ ∈ F
n×n, m ∈R,

if 2(n+2)eps< 1, AT = A, for all i, Ai,i ≤ m and cholesky_success A ~R, then

∀x ∈ R
n,x 6= 0 ⇒−|x|T ∆A |x|< xT Ax

where ∆Ai, j :=αi, j di d j+4eta(n+2+m) with αi, j := γmin(i, j)+2 and di :=
√

Ai,i+2ieta

1−αi,i
.

This theorem is proved thanks to the above Lemmas 4.1 and 4.2 and the lemmas
about matrices of real numbers described in Section 4.1. It is pretty useless by itself
but the following corollary looks closer from what we are looking for.

Corollary 4.4 ([14, Corollary 2.4]) For all n ∈N (n ≥ 1), for all A, Ã ∈ F
n×n, m,c ∈

R, if 2(n+2)eps< 1, AT = A and for all i, 0 ≤ Ai,i ≤ m and

∀x ∈ R
n,‖x‖2 = 1 ⇒ |x|T ∆A |x| ≤ c

and ÃT = Ã and

∀i, j ∈ J1,nK, i < j ⇒ Ãi, j = Ai, j

∀i ∈ J1,nK, Ãi,i ≤ Ai,i − c

then, if there exists R̃ ∈ F
n×n such that cholesky_success ~A ~R, we have

A ≻ 0.

12 Pierre Roux

Finally, it is proved that any value larger than

γ2n+2

2
tr(A)+4eta(n+1)(2(n+2)+m)

will work as constant c in the above corollary as long as 4(n+ 2)eps < 1. Thus,
an appropriate constant c can easily be computed, for instance with floating-point
arithmetic with rounding toward +∞. Then Ã is computed by subtracting cId to A

and the floating point Cholesky decomposition is performed. If it runs to completion
without error, this rigorously proves that A ≻ 0. This automatic positive definiteness
check is efficient as it is performed with O(n3) floating-point operations for a matrix
A of size n×n.

Thanks to the previous corollary, positive definiteness check can be performed
on matrices A of floating-point values (A ∈ F

n×n). However, if the matrix X̃ we want
to check has coefficients in the real field (X̃ ∈ R

n×n), we first have to round them to
floating-point values in F and we will end up checking some matrix A ∈ F

n×n such
that

∣

∣X̃ −A
∣

∣

i, j
≤ Ri, j := eps |A|i, j + eta. Such interval matrices are easily handled

thanks to the following corollary.

Corollary 4.5 ([14, Corollary 2.7]) For all n ∈ N (n ≥ 1), for all A, Ã ∈ F
n×n, R ∈

R
n×n, m,c,r ∈ R, if 2(n+2)eps< 1, AT = A, R ≥ 0 and for all i, 0 ≤ Ai,i ≤ m and

∀x ∈ R
n,‖x‖2 = 1 ⇒ |x|T ∆A |x| ≤ c

and

∀x ∈ R
n,‖x‖2 = 1 ⇒ |x|T R |x| ≤ r

and ÃT = Ã and

∀i, j ∈ J1,nK, i < j ⇒ Ãi, j = Ai, j

∀i ∈ J1,nK, Ãi,i ≤ Ai,i − c− r

then, if there exists R̃ ∈ F
n×n such that cholesky_success ~A ~R, we have

∀X̃ ∈ R
n×n, X̃T = X̃ ⇒

∣

∣X̃ −A
∣

∣≤ R ⇒ X̃ ≻ 0.

Since n max
{

Ri, j

∣

∣ i, j ∈ J1,nK
}

is a suitable value for r, this gives an effective crite-
rion for positive definiteness of a matrix X̃ with coefficients in the real field R.

The whole Coq development eventually counts 4.3 kloc. Among them, 0.4 are
devoted to the specification of floating-point arithmetic (described in Section 2), 0.3
to bounded error terms (Section 3.1), 0.7 to the γk terms and their properties (Sec-
tion 3.2), 0.4 to basic lemmas about sums and dotproducts (Sections 1.3 and 3.3) and
0.9 to matrices of real numbers (Section 4). Finally, the main theorem and corollaries
(this section) take 1.3 kloc and the remainder (0.3 kloc) is constituted of miscella-
neous lemmas. This appears particularly reasonable, considering the original result is
a far from trivial 6 pages long paper proof [14].

Formal Proofs of Rounding Error Bounds 13

x := 0;
while true do

u ✿❂ ❄✭−1, 1✮; // random value in R between −1 and 1
x ✿❂ Ax+Bu;

od

Fig. 2 A typical linear controller.

4.3 Another Application: Impact of Rounding Errors on Ellipsoidal Invariants

To assert the reusability of our developments for numerical analysis results involving
matrices, we targeted another similar property. We will see that three quarters of the
previous development can be directly reused.

Figure 2 displays the code of a typical linear controller. Quadratic Lyapunov
functions [8,13] constitute a nice way to prove the stability of such controllers, i.e.,
that x remains bounded. An invariant ellipsoid ε :=

{

x ∈ R
n
∣

∣ xT Px ≤ λ
}

, for some
P ∈ R

n×n and λ ∈ R, is then exhibited such that, for all x ∈ ε and all u ∈ R
p, if

‖u‖∞ ≤ 1, then Ax+Bu ∈ ε . We thus get the property

∀x ∈ R
n,∀u ∈ R

p,xT Px ≤ λ ⇒‖u‖∞ ≤ 1 ⇒ (Ax+Bu)T P(Ax+Bu)≤ λ .

In practice, there will be some margin and we will get the property

∀x ∈ R
n,∀u ∈ R

p,xT Px ≤ λ ⇒‖u‖∞ ≤ 1 ⇒ (Ax+Bu)T P(Ax+Bu)≤ λ ′. (4)

for some λ ′ ≤ λ . However, in an actual implementation, Ax+Bu can be computed
using floating-point arithmetic and the property we ultimately want to prove becomes

∀x ∈ R
n,∀u ∈ R

p,xT Px ≤ λ ⇒‖u‖∞ ≤ 1 ⇒ fl(Ax+Bu)T
Pfl(Ax+Bu)≤ λ . (5)

The following theorem gives sufficient conditions for (4) to imply (5). In particu-
lar it characterizes how far λ ′ must be from λ .

Theorem 4.6 For all n, p ∈ N, A,P ∈ R
n×n, B ∈ R

n×p, s,s′,λ ,λ ′ ∈ R, if 2(n+ p+
1)eps< 1, PT = P, P ≻ 0, sP− Id � 0, s′ Id −P � 0, then for all x ∈ R

n, u ∈ R
p if

xT Px ≤ λ , ‖u‖∞ ≤ 1 and (Ax+Bu)T P(Ax+Bu)≤ λ ′

then

fl(Ax+Bu)T
Pfl(Ax+Bu)≤

(√
λ ′+

√
λa+b

)2

where a := γn+p+1
√

ss′
√

n‖A‖F +2
√

ss′n
√

neta and b := γn+p+1
√

s′
√

p‖B‖F +2
√

s′(n+
2p)

√
neta where ‖M‖F denotes the Frobenius norm of the matrix M (i.e., ‖M‖F :=

√

∑i, j M2
i, j).

Among the 3.7 kloc needed to prove this theorem, 2.8 are shared with the develop-
ment performed for the previous Section 4.2. Again, 0.9 kloc of Coq is a reasonably
small amount of code fro translating such a non trivial 4 pages long paper proof.

14 Pierre Roux

5 Conclusion

We formally proved, using the proof assistant Coq [1,6], two results bounding round-
ing errors of numerical computations and involving matrices and common numerical
analysis tools [11]. Our Coq development is available at ❤tt♣✿✴✴❝❛✈❛❧❡✳❡♥s❡❡✐❤t✳
❢r✴❢♦r♠❛❧❜♦✉♥❞s✷✵✶✹✴. It indicates that performing such proofs within proof as-
sistants is tractable and that a large part of the proof effort could be reused for similar
results. Our floating-point specification is based on the Flocq library of floating-point
arithmetic for Coq [4]. It thus involves a constructive definition of floating-point arith-
metic, without axioms.

The fact that we were able to translate, far from trivial, multiple pages paper
proofs in about 1 kloc of Coq is a very encouraging achievement. It is also worth
noting that performing mechanically checked proofs gave the opportunity to fix a
few small mistakes in the proofs, thus asserting the interest of formalized proofs.

We eventually hope that a large part of our code can be reused in future develop-
ments, for instance about numerical integration of ODEs.

Acknowledgements The author wants to express its deepest thanks to Sylvie Boldo and Guillaume
Melquiond as well as to Érik Martin-Dorel and Pierre-Marie Pédrot for their help regarding this work.

References

1. Yves Bertot, Pierre Castéran, Gérard Huet, and Christine Paulin-Mohring. Interactive theorem proving

and program development : Coq’Art : the calculus of inductive constructions. Texts in theoretical
computer science. Springer, Berlin, New York, 2004. Données complémentaires http://coq.inria.fr.

2. Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical big operators. In Ot-
mane Aït Mohamed, César A. Muñoz, and Sofiène Tahar, editors, TPHOLs, volume 5170 of Lecture

Notes in Computer Science, pages 86–101. Springer, 2008.
3. Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume Melquiond,

and Pierre Weis. Formal proof of a wave equation resolution scheme: The method error. In Matt
Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem Proving, First International Con-

ference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172 of Lecture Notes in

Computer Science, pages 147–162. Springer, 2010.
4. Sylvie Boldo and Guillaume Melquiond. Flocq: A Unified Library for Proving Floating-point Algo-

rithms in Coq. In Proceedings of the 20th IEEE Symposium on Computer Arithmetic, pages 243–252,
Tübingen, Germany, July 2011.

5. Cyril Cohen. Construction of real algebraic numbers in coq. In Lennart Beringer and Amy P. Felty,
editors, ITP, volume 7406 of Lecture Notes in Computer Science, pages 67–82. Springer, 2012.

6. The Coq development team. The Coq proof assistant reference manual, 2012. Version 8.4.
7. Florent de Dinechin, Christoph Quirin Lauter, and Guillaume Melquiond. Assisted verification of ele-

mentary functions using gappa. In Hisham Haddad, editor, Proceedings of the 2006 ACM Symposium

on Applied Computing (SAC), Dijon, France, April 23-27, 2006, pages 1318–1322. ACM, 2006.
8. Éric Féron. From control systems to control software. Control Systems, IEEE, 30(6):50 –71, Decem-

ber 2010.
9. Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflection Extension for the

Coq system. Research Report RR-6455, INRIA, 2008.
10. John Harrison. Floating point verification in HOL. In E. Thomas Schubert, Phillip J. Windley, and

Jim Alves-Foss, editors, Higher Order Logic Theorem Proving and Its Applications, 8th International

Workshop, Aspen Grove, UT, USA, September 11-14, 1995, Proceedings, volume 971 of Lecture Notes

in Computer Science, pages 186–199. Springer, 1995.
11. Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 1996.

http://cavale.enseeiht.fr/formalbounds2014/
http://cavale.enseeiht.fr/formalbounds2014/

Formal Proofs of Rounding Error Bounds 15

12. IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008,
2008.

13. Aleksandr Mikhailovich Lyapunov. Problème général de la stabilité du mouvement. Annals of Math-

ematics Studies, 17, 1947.
14. Siegfried M. Rump. Verification of positive definiteness. BIT Numerical Mathematics, 46:433–452,

2006.
15. Siegfried M. Rump. Verification methods: Rigorous results using floating-point arithmetic. Acta

Numerica, 19:287–449, May 2010.

	Introduction
	Specification of Floating-Point Arithmetic
	Combining Error Terms
	Errors on Matrix Operations
	Conclusion

