ISAE Pierre Roux

Innocuous Double Rounding of Basic Arithmetic Operations

Double rounding occurs when a floating-point value is first rounded to an intermediate precision before being rounded to a final precision. The result of two such consecutive roundings can differ from the result obtained when directly rounding to the final precision. Double rounding practically happens, for instance, when implementing the IEEE754 binary32 format with an arithmetic unit performing operations only in the larger binary64 format, such as done in the PowerPC or x87 floating-point units. It belongs to the folklore in the floating-point arithmetic community that double rounding is innocuous for the basic arithmetic operations (addition, division, multiplication, and square root) as soon as the final precision is about twice larger than the intermediate one. This paper adresses the formal proof of this fact considering underflow cases and its extension to radices other than two.

INTRODUCTION

Floating-point numbers are commonly used to efficiently perform numerical computations, which are then performed with a bounded precision. That is, only a finite number of bits are kept after each arithmetic operation. Multiple choices are available for this precision, typical examples being 24 bits for the IEEE754 binary32 format and 53 for the binary64 format.

Double rounding occurs when a value is first rounded to an intermediate precision before being rounded to a final precision. The result of two such consecutive roundings can differ from the result obtained when directly rounding to the final precision. In radix 10, for instance, 1.495 could be rounded to 1.50 then to 2 if first rounding to a 3-digit precision then to one digit whereas a direct rounding to the nearest value with one digit would give 1. Double rounding practically happens, for instance, when implementing the IEEE754 binary32 [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF] format with an arithmetic unit only performing operations in the larger binary64 format, such as done in the PowerPC or x87 floating-point units.

It belongs to the folklore in the floating-point arithmetic community that double rounding is innocuous for the basic arithmetic operations (addition, subtraction, multiplication, division and square root) as soon as the final precision is about twice larger than the intermediate one. The IEEE754 binary32 and binary64 formats [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF] fulfill this condition. Figueroa [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] published pen-and-paper proofs of these results but only considering radix 2 and completely ignoring underflows. We try to give more general results in this paper. Moreover, such proofs tend to involve quite a number of rather subtle corner cases which make them particularly error prone. We therefore use Coq [START_REF] Bertot | Interactive theorem proving and program development : Coq'Art : the calculus of inductive constructions[END_REF][START_REF]The Coq proof assistant reference manual[END_REF] to ensure no such corner case has been missed. The impact of double rounding on some particular floating-point al-

• Pierre Roux gorithms such as the Veltkamp/Dekker's algorithms has already been studied using Coq [START_REF] Martin-Dorel | Some issues related to double rounding[END_REF], but its innocuousness, under some conditions, on basic arithmetic operations is only briefly mentioned.

More formally, given a floating-point format F, a rounding • 1 in this format and a second rounding • 2 in a larger-precision format, we want to ensure:

∀x, y ∈ F, • 1 (• 2 (x ⋄ y)) = • 1 (x ⋄ y)
under some conditions, for ⋄ ∈ {+, -, ×, /, √ }. That is, the second rounding • 2 is innocuous for basic arithmetic operations. This paper aims at studying under which conditions the previous holds and to formally prove such results using a proof assistant (Coq). It is worth noting that the results are highly dependent on the operation ⋄ and that they may not hold for operations other than {+, -, ×, /, √ }.

Since all the proofs presented in the remaining of the paper have been formally verified within Coq, we only present proof sketches. Although not all subcases are precisely demonstrated, enough is shown to give a good idea of what is going on. The case of directed roundings (toward -∞ or +∞ or roundings to zero or away) is rather simple: the above result holds if and only if • 1 and • 2 are rounding in the same direction. The remaining will therefore focus on the case where • 1 and • 2 are roundings to nearest (possibly with different tie-break rules). We can nevertheless notice that the results still hold (under possibly weaker hypotheses) if • 1 is a directed rounding and • 2 a rounding to nearest. The converse case (• 1 to nearest and • 2 directed) however usually requires slightly stronger hypothesis.

Finally, we do not deal with overflows since they are harmless as soon as any number which can be represented in the smaller precision format F can also be represented in the larger precision, which is a reasonable assumption on exponent ranges.

The remainder of this section introduces the floating-point formalisms used in our proofs. Then, Sections 2, 3, 4, and 5 illustrate our proofs about respectively the multiplication, the addition/subtraction, the square root and the division. For the sake of clarity, the proofs are presented on a formalism not modeling underflows, although our actual Coq proofs handle them and precise requirements on underflow will be given. Eventually, Section 6 summarizes the results and concludes.

All our Coq developments are part of the Flocq library [BM11] available1 at http://flocq.gforge.inria.fr/.

Floating-point Formats

We first formally define some floating-point formats used throughout the remaining of the paper. A generic format is first defined, then particular cases: a fixed precision format without underflow, a format with gradual underflows and one with abrupt underflows. All these formats are formally defined in the Coq library for floating-point arithmetic Flocq [START_REF] Boldo | Flocq: A Unified Library for Proving Floating-point Algorithms in Coq[END_REF].

For this purpose, we need a discrete logarithm.

• 3

Definition 1. Given β ∈ Z, β ≥ 2, we define the discrete logarithm ln β (x) for radix β of a real number x ∈ R \ {0} as the unique value e x in Z satisfying

β ex-1 ≤ |x| < β ex .
A generic format F ϕ is defined by a function ϕ : Z → Z giving, for all numbers sharing the same discrete logarithm, the precision they must be encoded with.

Definition 2. Given ϕ : Z → Z, a value x ∈ R is said to be in the generic format

F ϕ if x = 0 or if there is some m ∈ Z such that x = m β ϕ(ln β (x)) .
m is then called the mantissa of x and ϕ(ln β (x)) its canonical exponent. In the Flocq library, the proposition generic format β ϕ x means that x ∈ F ϕ . This generic format then allows us to define more concrete formats. Given some p ∈ Z, p ≥ 1, the format FLX p models precision p floating-point numbers without underflow.

Definition 3. Given p ∈ Z, p ≥ 1, the format FLX p is defined as F ϕ with ϕ : e → e -p (denoted FLX exp p in Flocq).

Although this format remains mostly theoretical since hardware floating-point numbers can underflow, it is still a good model of what happens with actual floatingpoint values when no underflow occurs.

Given p ∈ Z, p ≥ 1, and e min ∈ Z, the format FLT p,emin models precision p floating-point numbers with underflow handled by subnormals of exponent e min . Definition 4. Given p, e min ∈ Z, p ≥ 1, the format FLT p,emin is defined as F ϕ with ϕ : e → max(e -p, e min) (denoted FLT exp e min p in Flocq).

Remark 5. FLT 24,-149 with radix β = 2 corresponds to the IEEE754 binary32 format and FLT 53,-1074 to binary64 (neglecting overflows).

Finally, given p ∈ Z and e min ∈ Z, the format FTZ p,emin models precision p floating-point numbers with underflow handled by flushing either to zero or to the smallest normal number. Definition 6. Given p, e min ∈ Z, the format FTZ p,emin is defined as F ϕ with ϕ : e → e -p when e ≥ e min + p and e → e min + p -1 otherwise (denoted FTZ exp e min p in Flocq).

The ϕ functions defining FLX, FLT and FTZ formats are illustrated on Figure 1. It only remains to define roundings.

Definition 7. A rounding on a floating point format F is a function • : R → F monotone and equal to the identity on F, that is

∀x, y ∈ R, x ≤ y ⇒ •(x) ≤ •(y) ∀f ∈ F, •(f) = f.
This corresponds to the hypothesis Valid rnd rnd in Flocq while the rounding function • on F ϕ is denoted by round β ϕ rnd. Definition 8. A rounding to nearest is a rounding • that returns a nearest value in F:

∀x ∈ R, ∀f ∈ F, |x -•(x)| ≤ |x -f | .
They are of the form round β ϕ (Znearest) in Flocq.

Remark 9. In case x lies halfway between two consecutive values in F, •(x) is not uniquely defined as it can be any of these two consecutive values. This choice is called a tie-break rule. Since most of our proofs are valid regardless of the tie-break rule (i.e., for any rounding to nearest) we don't extend on this point.

MULTIPLICATION

Proofs for the addition/subtraction being rather involved, let us begin with the multiplication for which proofs are much simpler.

General Case

Figueroa [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] proved double rounding to be innocuous for the multiplication if it is performed with a precision at least twice as large. Although his proof only addressed radix 2, this holds for any radix.

Theorem 10. ([START_REF] Samuel | When is Double Rounding Innocuous?[END_REF], double round mult FLX in our Coq development) For p 1 , p 2 ∈ Z, if p 2 ≥ 2p 1 , then for • 1 and • 2 any roundings (for instance, toward -∞ or to nearest with any tie) respectively in FLX p1 and FLX p2 :

∀x, y ∈ FLX p1 , • 1 (• 2 (x × y)) = • 1 (x × y) .
This in particular applies to binary32/64 when no underflow occurs.

Remark 11. [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] This bound 2p 1 is optimal as shown by the following counterexample. With radix β = 2, for p 1 = 4, p 2 = 7, we have for x = y = 1.101 2

• 1 (• 2 (x × y)) = • 1 (• 2 (10.101001 2)) = • 1 (10.10100 2) = 10
.10 2 which differs from • 1 (10.101001 2) = 10.11 2 for • 1 and • 2 appropriate roundings to nearest (for instance, the common rounding to nearest with tie-break to even).

• 5

Proof. x and y having p 1 significand digits, x × y has at most 2p 1 ≤ p 2 digits hence

• 2 (x × y) = x × y.
The previous result still applies to binary32/64 even in case of underflow. Indeed, proofs for the FLX, FLT and FTZ formats (double round mult {FLX,FLT,FTZ} in our Coq development) are just corollaries of a single proof (double round mult) carried out on the generic format F ϕ . This general proof shows innocuity of double rounding of multiplication under the assumption ∀e x , e y ∈ Z, ϕ 2 (e x + e y) ≤ ϕ 1 (e x) + ϕ 1 (e y) ∧ ϕ 2 (e x + e y -1) ≤ ϕ 1 (e x) + ϕ 1 (e y), the main argument being the same than in the above proof.

Odd Radix

It is worth noting that a much better result can be obtained for odd radices β, since the hypothesis p 2 ≥ 2p 1 in Theorem 10 can be replaced with the weaker p 2 ≥ p 1 when β is odd. This nice result is, at least currently2 , certainly perfectly useless. We nevertheless chose to develop it for the sake of exhaustivity and considering it did not implied a huge overhead on our Coq development.

Theorem 12. (double round mult beta odd FLX) When β is odd, for p 1 , p 2 ∈ Z, if p 2 ≥ p 1 , then for • 1 and • 2 roundings to nearest, with any tie, respectively in

FLX p1 and FLX p2 ∀x, y ∈ FLX p1 , • 1 (• 2 (x × y)) = • 1 (x × y) .
To give an idea of the proof, we first need a few additional definitions and lemmas.

Definition 13. • ↓ ϕ denotes rounding towards -∞, i.e., • ↓ ϕ (x) is the largest floatingpoint value in F ϕ below x:

• ↓ ϕ : x ∈ R → max {f ∈ F ϕ | f ≤ x}. Definition 14. ulp ϕ (x) denotes the unit in last place of x in format F ϕ : ulp ϕ (x) := β ϕ(ln β (x)) .
Definition 15. midp ϕ (x) denotes the following value, called midpoint

midp ϕ (x) := • ↓ ϕ (x) + ulp ϕ (x)
2 as it lies halfway between two consecutive floating-point values around x.

Lemma 16. (double round lt mid further place) Given two floating-point formats F ϕ1 and F ϕ2 , two roundings to nearest, with any tie, • 1 and • 2 in these formats, for all

x ∈ R, if x > 0, ϕ 2 (ln β (x)) < ϕ 1 (ln β (x)), ϕ 1 (ln β (x)) ≤ ln β (x) and x < midp ϕ1 (x) - ulp ϕ2 (x) 2 then • 1 (• 2 (x)) = • 1 (x) . • Pierre Roux x • ↓ ϕ 1 (x) midp ϕ 1 (x) ulp ϕ 1 (x) 2 ulp ϕ 2 (x) 2 • 2 (x) Fig. 2: Illustration of Lemma 16. Since x is below midp ϕ 1 (x), • 1 (x) = • ↓ ϕ 1 (x) and since x is below midp ϕ 1 (x) -ulp ϕ 2 (x) /2 then • 2 (x) is also below midp ϕ 1 (x), implying • 1 (• 2 (x)) = • ↓ ϕ 1 (x). x 0 x 1 x 2 x 3 m ulp ϕ 1 (x 0) 2 ulp ϕ 2 (x 1) 2
Fig. 3: Illustration of Lemma 17. In radix β = 3, with ϕ 2 = ϕ 1 -1, x 0 and x 3 are consecutive values in Fϕ 1 while x 0 , x 1 , x 2 and x 3 are consecutive values in Fϕ 2 . The midpoint m in Fϕ 1 is also a midpoint in

Fϕ 2 : m = x 0 + ulp ϕ 1 (x 0) 2 = x 1 + ulp ϕ 2 (x 1) 2
. This property relies on β being odd.

This is illustrated on Figure 2.

Proof. Since ϕ 2 (ln β (x)) ≤ ϕ 1 (ln β (x)), we get • 2 (x)-• ↓ ϕ1 (x) = • 2 (x) -• ↓ ϕ1 (x) . Moreover, • 2 being a rounding to nearest, we get for all y ∈ R, |• 2 (y) -y| ≤ ulp ϕ 2 (y) 2
and the hypothesis x < midp ϕ1 (x)-

ulp ϕ 2 (x) 2 gives us x -• ↓ ϕ1 (x) < ulp ϕ 1 (x)-ulp ϕ 2 (x) 2 . Thus • 2 (x) -• ↓ ϕ1 (x) ≤ |• 2 (x) -x| + x -• ↓ ϕ1 (x) < ulp ϕ 1 (x) 2
.

• 1 being a rounding to nearest, • 1 (• 2 (x)) and • 1 (x) are then both equal to • ↓ ϕ1 (x). Contrary to the previous lemmas which were valid for any radix β, the following result shows a particularly interesting property of odd radices.

Lemma 17. (midpoint beta odd remains) When β is odd, for all ϕ 1 , ϕ 2 : Z → Z, for all x ∈ F ϕ1 , if ϕ 2 (ln β (x)) ≤ ϕ 1 (ln β (x)), then there exists an x ′ ∈ F ϕ2 such that x +

ulp ϕ 1 (x) 2 = x ′ + ulp ϕ 2 (x) 2
.

This result is illustrated on Figure 3. Intuitively, this means that, with odd radices, if a real number x +

ulp ϕ 1 (x) 2
is a midpoint for some precision, it is also a midpoint in any larger precision. This is proved by induction on ϕ 1 (ln β (x))ϕ 2 (ln β (x)) ∈ N and makes it possible to prove the following lemma.

Lemma 18. (neq midpoint beta odd) When β is odd, for all ϕ 1 , ϕ 2 : Z → Z, for all x ∈ R, if ϕ 2 (ln β (x)) ≤ ϕ 1 (ln β (x)) and x = midp ϕ1 (x) then • 1 (• 2 (x)) = • 1 (x)
for any rounding to nearest, with any tie, • 1 and • 2 respectively in F ϕ1 and F ϕ2 .

This means that with odd radices, double rounding is innocuous for all real values which are not midpoints.

• 7

Proof. Lemma 16 concludes when x < midp ϕ1 (x)-

ulp ϕ 2 (x) 2
. Let us then assume

midp ϕ1 (x) - ulp ϕ2 (x) 2 ≤ x < midp ϕ1 (x) .
From Lemma 17, there exist an x ′ ∈ F ϕ2 such that x ′ = midp ϕ1 (x) -

ulp ϕ 2 (x) 2 and x ′ ≤ x < x ′ + ulp ϕ2 (x) 2 hence • 2 (x) = x ′ . Since • ↓ ϕ1 (x) ≤ x ′ < midp ϕ1 (x), then • 1 (x ′) = • ↓ ϕ1 (x) = • 1 (x). The proof is similar for x > midp ϕ1 (x).
A last lemma is then needed to prove the theorem.

Lemma 19. (float neq midpoint beta odd) When β is odd, for all x ∈ R, ϕ : Z → Z, if there exist m, e ∈ Z such that x = mβ e , then x = midp ϕ (x)

Proof. If e ≥ ϕ(ln β (x)), then both x and • ↓ ϕ (x) are multiples of β ϕ(ln β (x)) whereas ulp ϕ (x) 2

is not. Otherwise, Lemma 17 allows us to conclude by a similar reasoning.

Proof (Theorem 12). Since x × y = (m x × m y) β ex+ey , with m x , m y and e x , e y the mantissas and exponents of x and y, Lemmas 18 and 19 make it possible to conclude.

ADDITION

General Case

Figueroa [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] proved double rounding to be innocuous for the addition if it is performed with a precision at least strictly twice as large. Although his proof only addressed radix 2, this holds for any radix.

Theorem 20. [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] (double round plus FLX) For p 1 , p 2 ∈ Z, if p 2 ≥ 2p 1 +1, then for • 1 and • 2 roundings to nearest, with any tie, respectively in FLX p1 and FLX p2 :

∀x, y ∈ FLX p1 , • 1 (• 2 (x + y)) = • 1 (x + y) .
This applies to IEEE754 binary32/64 when no underflow occurs. Remark 21. [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] This bound 2p 1 + 1 is optimal as shown by the following counterexample. With radix β = 2, for p 1 = 4, p 2 = 8, we have for x = 1.001 2 and y = 0.00001111 2

• 1 (• 2 (x + y)) = • 1 (• 2 (1.00101111 2)) = • 1 (1.0011000 2) = 1.010 2
which differs from • 1 (1.00101111 2) = 1.001 2 when • 1 and • 2 are roundings to nearest with tie-break to even.

We need the following lemma to prove the previous theorem.

Lemma 22. For all ϕ : Z → Z, x ∈ F ϕ , y ∈ R, if x > 0, y > 0 and ln β (y) ≤ ϕ(ln β (x)) -2, then 0 < (x + y) -• ↓ ϕ (x + y) < β ϕ(ln β (x))-2 .
• Pierre Roux

Proof. Since ln β (y) ≤ ϕ(ln β (x)) -2, we get y < ulp ϕ (x) = ulp ϕ (x + y), hence

• ↓ ϕ (x + y) = x, that is (x + y) -• ↓
ϕ (x + y) = y which implies the result. Proof (Theorem 20). We will only consider the case x > 0, y > 0 and y ≤ x, other cases being pretty similar or easy to deduce. Either ln β (y) ≥ ϕ 1 (ln β (x))-1 in which case x+y has at most 2p 1 +1 significand digits, which means that • 2 (x + y) = x + y, or ln β (y) ≤ ϕ 1 (ln β (x)) -2 in which case the result follows from Lemmas 16 and 22.

The previous result still applies to IEEE754 binary32/64 even in case of underflow (double round plus FLT), with a similar proof thanks to the generic format F ϕ . Indeed, proofs for formats with or without underflow are derived as immediate corollaries of a proof on the generic format.

Under the assumption β ≥ 3, the bound 2p 1 + 1 can be replaced by 2p 1 in Theorem 20. The proof is similar (double round plus beta ge 3 FLX).

Remark 23. This bound 2p 1 is optimal as shown by the following counterexample. With radix β = 10, for p 1 = 4, p 2 = 7, we have for x = 1.001 10 and y = 0.0004995 10

• 1 (• 2 (x + y)) = • 1 (• 2 (1.0014995 10)) = • 1 (1.001500 10) = 1.002 10
which differs from • 1 (1.0014995 10) = 1.001 10 when • 1 and • 2 are roundings to nearest with tie-break to even.

Finally, we can notice that the same results can be immediately deduced for the subtraction.

Odd Radix

As for the multiplication, a way better bound is obtained for odd radices.

Theorem 24. (double round plus beta odd FLX) When β is odd, for p 1 , p 2 ∈ Z, if p 2 ≥ p 1 , then for • 1 and • 2 roundings to nearest, with any tie, respectively in FLX p1 and FLX p2 :

∀x, y ∈ FLX p1 , • 1 (• 2 (x + y)) = • 1 (x + y) .
Proof. Denoting m x , m y and e x , e y the mantissas and exponents of x and y, x+y = mβ e with e = min(e x , e y) and m = m x β ex-min(ex,ey) +m y β ey-min(ex,ey) ∈ Z. Lemmas 18 and 19 make it possible to conclude.

SQUARE ROOT

General Case

Figueroa [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] proved double rounding to be innocuous for the square root if it is performed with a precision larger than twice the original precision plus two. Although his proof only addressed radix 2, this holds for any radix.

Theorem 25. [Fig95] (double round sqrt FLX) For p 1 , p 2 ∈ Z, if p 2 ≥ 2p 1 +2, then for • 1 and • 2 roundings to nearest respectively in FLX p1 and FLX p2 ∀x ∈ FLX p1 , • 1 • 2 √ x = • 1 √ x .
This applies to IEEE754 binary32/64 when no underflow occurs.

• 9

Remark 26. [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] This bound 2p 1 + 2 is optimal as shown by the following counterexample. With radix β = 2, for p 1 = 4, p 2 = 9, we have for x = 0.1111 2

• 1 • 2 √ x = • 1 (• 2 (0.1111011111 . . . 2)) = • 1 (0.111110000 2) = 1.000 2
which differs from • 1 (0.1111011111 . . . 2) = 0.1111 2 when • 1 and • 2 are roundings to nearest with tie-break to even.

Proof (Theorem 25). If √ x < midp ϕ1 (√ x)- ulp ϕ 2 (√ x)

2

, the result follows from Lemma 16. Similarly, the result holds when

√ x > midp ϕ1 (√ x) + ulp ϕ 2 (√ x)

2

. We will now show that x cannot lie between those two bounds. Let us first denote

u 1 := ulp ϕ1 (√ x), u 2 := ulp ϕ2 (√ x), a := • ↓ ϕ1 (√ x), b := u1-u2 2 and b ′ := u1+u2 2 . Then assuming a + b ≤ √ x ≤ a + b ′
we get

a 2 + u 1 a -u 2 a + b 2 ≤ x ≤ a 2 + u 1 a + u 2 a + b ′2 .
a 2 +u 1 a as well as x can be divided by u 2 1 . However -u 2 a+b 2 > 0 and u 2 a+b ′2 < u 2 1 which is absurd.

The previous result still applies to IEEE754 binary32/64 even in case of underflow (double round sqrt FLT).

Under the assumption β ≥ 4, the bound 2p 1 + 2 can be replaced by 2p 1 + 1 in Theorem 25. The proof is similar (double round sqrt beta ge 4 FLX).

Remark 27. This bound 2p 1 + 1 is optimal as shown by the following counterexample. With radix β = 10, for p 1 = 4, p 2 = 8, we have for x = 0.9999 10

• 1 • 2 √ x = • 1 (• 2 (0.999949998 . . . 10)) =
• 1 (0.99995000 10) = 1.000 10 which differs from • 1 (0.999949998 . . . 10) = 0.9999 10 when • 1 and • 2 are roundings to nearest with tie-break to even.

Odd Radix

As for the multiplication and addition, a way better bound is obtained for odd radices.

Theorem 28. (double round sqrt beta odd FLX) When β is odd, for p 1 , p 2 ∈ Z, if p 2 ≥ p 1 , then for • 1 and • 2 roundings to nearest respectively in FLX p1 and FLX p2 :

∀x ∈ FLX p1 , • 1 • 2 √ x = • 1 √ x .
Proof. According to Lemma 18, it is enough to prove that √ x = midp ϕ1 (√ x).

Assuming the contrary, we get

x = r 2 + ru + u 2 4
where r := • ↓ ϕ1 (√ x) and u := ulp ϕ1 (√ x). Then, when ϕ 1 (ln β (x)) ≥ 2ϕ 1 (ln β (√ x)),

we have x, r 2 and ru multiples of u 2 whereas u 2 4 is not. Otherwise, Lemma 17 makes it possible to conclude with a similar reasoning.

• Pierre Roux

DIVISION

Even Radix

Figueroa [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] proved double rounding to be innocuous for the division if it is performed with a precision at least twice as large. Although his proof only addressed radix 2, this holds for any even radix.

Theorem 29. [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] (double round div FLX) When β is even, for p 1 , p 2 ∈ Z, if p 2 ≥ 2p 1 , then for • 1 and • 2 roundings to nearest, with any tie, respectively in FLX p1 and FLX p2 :

∀x, y ∈ FLX p1 , y = 0 ⇒ • 1 (• 2 (x/y)) = • 1 (x/y) .
This applies to IEEE754 binary32/64 when no underflow occurs.

Remark 30. [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] This bound 2p 1 is optimal as shown by the following counterexample. With radix β = 2, for p 1 = 4, p 2 = 7, we have for x = 1.000 2 and y = 0.1111 2

• 1 (• 2 (x/y)) = • 1 (• 2 (1.000100010 . . . 2)) = • 1 (1.0001000 2) = 1.000 2
which differs from • 1 (1.000100010 . . . 2) = 1.001 2 when • 1 and • 2 are roundings to nearest with tie-break to even.

Proof. Denoting midp ϕ1 (x/y) with m and ulp ϕ 2 (x/y) 2

with u, from Lemma 16, the result holds when x/y < m -u and similarly when x/y > m + u. When m -u ≤ x/y < m, an argument similar to the one used in proof of Theorem 25 allows to conclude and similarly when m < x/y ≤ m + u. Finally, when x/y = m, since β is even, x/y ∈ F ϕ2 as soon as ϕ 2 (x/y) < ϕ 1 (x/y) which is implied by p 2 ≥ 2p 1 and p 1 ≥ 1.

The previous result still applies to IEEE754 binary32/64 even in case of underflow (double round div FLT).

Odd Radix

The result does not hold for odd radices.

Remark 31. The result does not hold for odd radices, even for arbitrarily large p 2 , as shown by the following counterexample. With radix β = 3, for p 1 = 4, p 2 ≥ 4, p 2 odd, for x = 2001 3 and y = 2 3

• 1 (• 2 (x/y)) = • 1 (• 2 (1000.111 . . . 3)) = • 1 (1000.1 . . . 1 3) = 1000 3
which differs from • 1 (1000.111 . . . 3) = 1001 3 when • 1 and • 2 are roundings to nearest with tie-break to even.

However, the result can be recovered by restricting the choice of tie-break rules to directed rules such as round to nearest with tie-break away.

Theorem 32. (double round div rna FLX) When β is odd, for p 1 , p 2 ∈ Z, if p 2 ≥ p 1 , then for • A 1 and • A 2 roundings to nearest with tie-break away, respectively in FLX p1 and FLX p2 :

∀x, y ∈ FLX p1 , y = 0 ⇒ • A 1 • A 2 (x/y) = • A 1 (x/y) .
• 11 Table I. Hypotheses under which double rounding is innocuous for the FLX format (β is the radix and p 1 and p 2 are the two precisions involved (c.f., Section 1 for formal definitions)). Division for odd radices is only valid with tie-break away. Proof. According to Lemma 18, the result holds when x/y is not a midpoint. It also holds when it is, since the directed tie-break rule ensures that midpoints are always rounded in the same direction.

β = 2 even β ≥ 4 odd β +, -p 2 ≥ 2p 1 + 1 p 2 ≥ 2p 1 p 2 ≥ p 1 × p 2 ≥ 2p 1 p 2 ≥ 2p 1 p 2 ≥ p 1 / p 2 ≥ 2p 1 p 2 ≥ 2p 1 p 2 ≥ p 1 √ p 2 ≥ 2p 1 + 2 p 2 ≥ 2p 1 + 1 p 2 ≥ p 1

CONCLUSION

Although all the results were illustrated throughout the paper on the FLX floatingpoint format (no underflows), they remain valid under mild conditions on the FLT (gradual underflow) and FTZ (abrupt underflow) formats with underflows. Indeed, all our Coq proofs are carried out at the level of F ϕ generic formats and results for the FLX, FLT and FTZ formats with or without underflows are just corollaries immediatly derived from the former. The precise hypotheses under which double rounding has been proved innocuous are summarized in Tables I, II and III.

Once the proofs, originally expressed in terms of bit patterns [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF], have been translated to the more algebraic form seen throughout the paper, Coq proofs appeared rather easy to perform. A key factor in this easyness was the high genericity of the definitions in the Flocq library [START_REF] Boldo | Flocq: A Unified Library for Proving Floating-point Algorithms in Coq[END_REF]. For instance, most of our proofs are done for any rounding to nearest, for any tie, by just using the definition of rounding to nearest available in Flocq. It should also be noticed that the library appeared pretty complete since no definition and only a few (13) lemmas were added to it.

All our Coq developments (6.9 kloc) are part of the Flocq library [START_REF] Boldo | Flocq: A Unified Library for Proving Floating-point Algorithms in Coq[END_REF] which is available 1 under an open source license at http://flocq.gforge.inria.fr/.

Thus, we have not only formally proved previously-known results on innocuousness of double rounding of basic arithmetic operations [START_REF] Samuel | When is Double Rounding Innocuous?[END_REF] but also extended them to radices other than two (such as radix 10 introduced in the last revision of the IEEE754 norm [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF]) and underflow cases (either gradual or abrupt). To the extent of author knowledge, although they belong to the folklore in the floatingpoint arithmetic community, no proof, neither pen and paper nor mechanical, can be found in the literature. In particular, it is now formally proved that double rounding of addition/subtraction, multiplication, division, and square root, is innocuous for IEEE754 binary32 format when using binary64 as intermediate precision. This could, for instance, be used in the verified C compiler Compcert [START_REF] Boldo | A Formally-Verified C Compiler Supporting Floating-Point Arithmetic[END_REF] to perform constant folding while cross compiling for a binary32 target on a binary64 host. This may also be of interest for some processors, such as the one using the POWER (ancestor of PowerPC) instruction set, which have binary64 arithmetic instructions but lack binary32 ones. The RAD6000, a radiation-hardened board used onboard various spacecrafts, belongs to this category.

Fig. 1 :

 1 Fig.1: Illustration of the functions ϕ defining the formats FLX, FLT and FTZ. The difference (eϕ(e)) between the diagonal (doted line) and the graph of ϕ is the size of the mantissa for numbers of magnitude e in format Fϕ (if non positive, numbers can only be encoded as 0). These functions are the same for normal numbers (e ≥ e min + p) and only differ for subnormal numbers. FLX doesn't model them while FLT has gradual underflow and FTZ abrupt underflow.

Table II .

 II Hypotheses under which double rounding is innocuous for the FLT format, in addition to hypotheses of Table I (e min1 and e min2 are the two minimal exponents involved). Division for odd radices is only valid with tie-break away.

	+, -× / √	β = 2 e min2 ≤ e min1 e min2 ≤ 2e min1 e min2 ≤ e min1 -p 1 -2 (e min2 ≤ e min1 -p 1 -2 ∨ 2e min2 ≤ e min1 -4p 1 -2)	even β ≥ 4 e min2 ≤ e min1 e min2 ≤ 2e min1 e min2 ≤ e min1 -p 1 -2 (e min2 < e min1 -p 1 ∨ 2e min2 ≤ e min1 -4p 1)	odd β e min2 ≤ e min1 e min2 ≤ e min1 e min2 ≤ e min1 e min2 ≤ e min1

Table III .

 III Hypotheses under which double rounding is innocuous for the FTZ format, in addition to hypotheses of TableI. Division for odd radices is only valid with tie-break away.

		even β	odd β
	+, -	e

min2 + p 2 ≤ e min1 + 1 e min2 + p 2 ≤ e min1 + p 1 × e min2 + p 2 ≤ 2e min1 + p 1 e min2 + p 2 ≤ e min1 + p 1 / e min2 + p 2 < e min1 e min2 + p 2 ≤ e min1 + p 1 √ 2 (e min2 + p 2) ≤ e min1 + p 1 ≤ 1 e min2 + p 2 ≤ e min1 + p 1

In files src/appli/Fappli double round.v and examples/Double round beta odd.v, starting with version

2.4.0 of Flocq.Journal of Formalized Reasoning Vol. ?, No. ?, Month Year.

Journal of Formalized Reasoning Vol. ?, No. ?, Month Year.

There have been a couple of computers using a radix

arithmetic, e.g., Setun built in Moscow in the 60s and Ternac developped in New York in the 70s.Journal of Formalized Reasoning Vol. ?, No. ?, Month Year.

ACKNOWLEDGMENTS

The author wants to deeply thank Sylvie Boldo and Guillaume Melquiond for their help for this work and the anonymous reviewers for their comments.