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a b s t r a c t

Enterprises are focusing more and more on knowledge issues for global product development. This paper

describes knowledge evolution processes in product development activities and proposes a knowledge

evaluation method in product lifecycle design. The paper also theoretically analyzes the evaluation model

and illustrates how knowledge values can be assessed by case study. The case study shows how knowl-

edge values calculated by the model can provide suggestions about which knowledge to choose and what

to do next. The knowledge evaluation model serves as a useful tool for managing knowledge in product

lifecycle design and support.

1. Introduction

The current commercial environment necessitates that enter-

prise to adapt to the requirement of more innovation, fewer errors,

less time-to-market, lower manufacturing cost, better operational

performance and better cooperation among partners [4]. In such

situations, more and more enterprises consider their production

processes as knowledge management (KM) processes, and they

are paying attention to the crucial competence: knowledge

[25,32,21]. Meanwhile, the whole lifecycle plays an important role

in production activities. So product lifecycle management (PLM),

from the initial conception to the end of life, is a strategic approach

in production management [26].

A variety of intelligent solutions have been proposed in knowl-

edge management concerning product development. Karacapilidis

[19]proposed a computerized knowledge management system for

the collaborative development of a manufacturing strategy. Their

system supports collaborative strategy development by integrating

a domain-specific modeling formalism based on the resource view

of the firm, an associated structured dialogue scheme, an argumen-

tation-enabling mechanism, and an efficient algorithm for the

evaluation of alternatives. He et al. [16] proposed a unified product

structure management model to integrate product structure infor-

mation and enterprise business processes and to ensure people of

various disciplines can access product information throughout the

entire product lifecycle. Hung et al. [18] have developed a novel

framework supported by a knowledge-based database to support

product design planning, considering quality function deployment

and design structure matrix. Chen [12] has presented a five-step

approach using knowledge integration and sharing mechanism

for collaborative modeling product design and process develop-

ment. It can satisfy participants’ demands for product knowledge,

increase product development capability, reduce product develop-

ment cycle time and cost, and ultimately increase product market-

ability. Gunendran and Young [15] have conducted surveys on how

to organize manufacturing best practice knowledge in product

development, and they have explored a system design tool to

model the relationship between knowledge and product informa-

tion so as to reuse system design models. Chang et al. [9] have

studied organizational knowledge structure in the context of new

product development (NPD) and illustrated that one must possess

enough working experience within product development process

to have the skills to accomplish cross-functional knowledge con-

version. Al-Ashaab et al. [2] have implemented the knowledge-

based environment framework KBE-ProVal (Knowledge-Based

Environment to Support Product Design Validation) to support

product design validation. Akasaka et al. [1] have extend product

design to Product-Service-System (PSS) and proposed a knowl-

edge-based PSS design support method.

Those results show that when production is tightly linked with

knowledge, product development solutions do not focus just on the
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‘‘product’’ but extend to knowledge management. As a result, prod-

uct designers should not only combine enterprise business pro-

cesses with product development processes but also integrate all

functional elements which could be identified, especially knowl-

edge. Effective models are expected to be a unified platform for

creation, sharing and application of knowledge that is related to

product and production activities [23]. In other words, product

design should consider all knowledge in all stages of a product life-

cycle processed by all participants, linking to enterprise lifecycle

management, technology lifecycle management and associated to

a global knowledge lifecycle management.

However, knowledge evaluation is a topic within KM that is not

well studied especiallywhen integratedwith product development.

Evaluation is crucial for knowledge management in both research

and practice, however, the intangibility of knowledge make

evaluation very complex. Only by developing a standardized and

quantitative approach can we establish a method of knowledge

evaluation that can be applied in practice. Xu and Bernard [32] have

proposed a basic knowledge quantification approach which evalu-

ates how knowledge can make changes in product state evolution.

Based on the idea and approach, this paper addresses the problem

of knowledge evaluation for further application, discusses how

knowledge can improve product lifecycle design process, validate

the efficiency of knowledge evaluation process, determine the

optimized sequence of in knowledge acquisition, and provide

enterprises with a global view on product design.

2. Knowledge evaluation modeling

2.1. Product development process description

In a product development process, a product may be considered

to start from its initial state and arrive to a required state (final

state), and a task T is supposed to be accomplished to realize this

product evolution from that initial state P0 to the final state Pn.

For example, to produce a car (product), here is one step of the

product development process: the car is to change from version

1.0 (initial state) to version 2.0 (final state), and a task T can bridge

the gap between these two product states.

T is the total task which may include several sub-tasks (ti) and

sub-sub-tasks (tij), for example:

� The first sub-task t1: increment of the wheel number: 4? 8

� The second sub-task t2: to meet a higher standard of environ-

ment protection: Standard 1.0? Standard 2.0

� The sub-sub-tasks of t2 are:

– The first sub-sub-task t21: utilization of another type of power

mode: petrol power? hybrid power of petrol and electricity

– The second sub-sub-task t22: realization of a better equip-

ment for emissions

� Etc.

Consequently, the product development process can be

described by a series of state changes. Given an initial state P0,

the product development process can be characterized by a

sequence of product states « P0 ? P1 ? P2 ? � � �? Pn », where:

� P1: The product state when t1 is accomplished.

� P2: The product state when t2 is accomplished.

� P3, P4, etc.

� The final state Pn: all the sub-tasks are accomplished, in other

words, the entire task T is accomplished.

Formally, task T can be characterized by a directed graph,

defined as follow.

Definition 1. Task T is represented by a weighted directed graph

G(T) = (H, A,X), where:

� H is a set of tasks, whose elements are the task T, the non-atom

tasks tm and the atom-tasks atn, i.e., H = {hi} = {T, t1, t2, . . ., tm,

at1, at2, . . ., atn};

� A is a set of directed arcs apq, i.e. hp and hq are linked by apq, from

hp to hq;

� X is a set of weights xpq which are assigned to each arc apq.

In particular, the sub-tasks which do not have successors are

named atom-tasks, noted as ati.

A product development chain is illustrated by Fig. 1.

The task T is characterized by a graph, not a tree. In fact, there

may be several sub-tasks which are not independent and they

may have one or several sub-tasks in common. Characterization of

knowledge K is based on the approach from Xu and Bernard [31].

The approach considers both the static features and dynamic

changes of knowledge. For the static features of knowledge, a vector

is used to help characterizing different aspects of knowledge such as

quantity, granularity, compatibility and maturity. Such character-

ization mainly helps in dealing with explicit knowledge, for exam-

ple, design knowledge organization, knowledge acquisition and

storage. For the dynamic issues concerning knowledge evolution,

the concept of knowledge state is applied. It describes the knowl-

edge activitieswith state sequences. This is especially useful for pro-

cessing product designers’ knowledge, both explicit and tacit.

2.2. Knowledge value for product development

Supposing that knowledge K is necessary to accomplish the task

T and a knowledge fragment ki is needed to accomplish sub-task ti,

thus, ki is the solution for the sub-task ti, and knowledge K can be

considered as a set of solutions which together can accomplish the

task T. A knowledge fragment ki can be a person, a book, a plan or

any type of solutions provided.

Given this model, some questions may be: What knowledge K

can accomplish the task T completely? If knowledge K can only

solve a part of the task T, which part is solved? What knowledge

fragments ki have to be added in order to solve the remaining

parts? How to choose the knowledge fragments ki to accomplish

the unsolved sub-tasks?

In order to answer these questions, some hypotheses are

presented:

Hypothesis 1. The atom-tasks are noted as ati, and all atom-tasks

correspond to an explicit answer ‘‘yes’’ or ‘‘no’’ which shows

whether it can be solved or not. In other words, the atom-tasks

cannot be solved partially.
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Hypothesis 2. The principles of task decomposition are as follows.

If the task T is decomposed into T1, T2, . . ., Tn, we have:

(a) T # (T1 [ T2 [ . . . [ Tn) (the combination of the sub-tasks

should cover the original task T)

(b) T: � T i (any sub-task Ti cannot cover the original task T)

(c) The task T is decomposed with weights, noted as: T: x1T1 +

x2T2 + � � � +xnTn, and
Pn

i¼1xi ¼ 1 (the weights indicate the

importance of the sub-tasks to the original task, for example,

if the design of a car of version 2.0 focuses more on speed

improvement, then the sub-task of speed improvement will

have a higher weight than the sub-task of cost diminution)

The value of knowledge Ki to the task Ti is noted as V(Ti, Ki). This

notation indicates that knowledge is always in context, in other

words, knowledge evaluation is linked with specific tasks. Knowl-

edge value thus varies according to different tasks. For example,

given a same knowledge fragment ‘‘to adjust the height of a chair’’,

it could have a high value to the task ‘‘to consider the ergonomics’’

and have a low value to the task ‘‘to control the cost’’. The value of

knowledge K to the atom-task ati is defined as follows.

Definition 2.

Vðati;KÞ ¼
1; ati can be solved by K

0; ati cannot be solved by K

�

Based on the two hypotheses and Definition 2, knowledge value can

be measured by the procedure as follow.

Procedure for knowledge value measurement:

� Step 1: The value of knowledge K for the atom-tasks is obtained

according to Definition 2.

� Step 2: For any hi e H, find all the (hi, hj) and their associate xij,

then:

Vðhi;KÞ ¼
X

j

xij � Vðhj;KÞ

From Step 1 we can obtain all the V(ati, K) and from Step 2 we

can obtain V(T, K). When V(T, K)– 1, there are one or several

sub-tasks which are not accomplished, so additional knowledge

is necessary to make V(T, K) = 1. During this process of knowledge

addition, both explicit knowledge and tacit knowledge might be

needed. Usually, explicit knowledge comes from databases, publi-

cations, rules, etc. and tacit knowledge comes from experience,

expertise, wisdom, judgment, etc.

If Ki can solve ati and ati is linked to T by a sequence of arcs with

weights of x1, x2, . . ., xm, then VðT;K iÞ ¼
Qm

u¼1xu � Vðati;K iÞ ¼
xati � Vðati;K iÞ.

Consequently, a knowledge integrated product development

system can be modeled as follows.

Definition 3. A knowledge integrated product development sys-

tem is a quintuplet <P ;K , H, X, V>:

� P is the set of all possible product states, including the initial

state P0 and the final state Pn;

� K is the set of all possible knowledge, K = {K0, K1, . . ., Kn};

� H is the set of all possible tasks, including the atom-tasks ati, the

non-atom-tasks ti and the total task T;

� X is the set of weights which are assigned during task

decomposition;

� V is a function, and V(Ti, Kj) means the knowledge value.

If another knowledge K 0
0 is also available, VðT;K 0

0Þ can be

calculated and compared with V(T, K0). The knowledge that has a

higher value is usually chosen. As collaborative networks is

regarded as a critical success factor to achieve product innovation

[24], it is always useful to choose the most valuable knowledge to

be exchanged and shared.

2.3. Model characteristics

Based on the definitions above, this section will propose and

demonstrate several useful and important model characteristics.

Definition 4. Given <P ;K , H, X, V>, "K1, K2 e K , K1 can solve a set

of tasks X # H, K2 can solve a set of task Y # H, if:

X#Y#H ! VðT;K1Þ 6 VðT;K2Þ

then V is monotonic.

Definition 5. Given <P ;K , H, X, V>, "X, Y # H, "K e K , if:

VðX [ Y;KÞ 6 VðX;KÞ þ VðY ;KÞ

then V is additive.

Note: X [ Y is the union of the two tasks.

Theorem 1. Knowledge value is monotonic.

Proof. Given <P ;K , H, X, V>, "K1, K2 e K , K1 can solve a set of tasks

X # H, K2 can solve a set of tasks Y # H. Suppose that X = {x1, x2,

. . ., xp} and Y = {y1, y2, . . ., yq}, where x1, x2, . . ., xp, y1, y2, . . ., yq are

the atom-tasks.

From X # Y # H

We have: :$xi R {y1, y2, . . ., yq}, $yj R {x1, x2, . . ., xp},

i e {1, 2, . . ., p}, j e {1, 2, . . ., q}

Suppose that yai 2 fx1; x2; . . . ; xpg, ybi R fx1; x2; . . . ; xpg,
ai, bi e {1, 2, . . ., q}

Then fya1 ; ya2 ; . . . ; yapg ¼ fx1; x2; . . . ; xpg
Suppose that xi is linked to T by the sequence of ax

1, a
x
2; . . ., a

x
mi
, yj

is linked to T by the sequence of ay
1, a

y
2; . . ., a

y
mj

VðT;K1Þ ¼
X

p

i¼1

Y

mi

u¼1

x
x
u � Vðxi;K1Þ ¼

X

p

i¼1

Y

mi

u¼1

x
x
u

VðT;K2Þ ¼
X

q

j¼1

Y

mj

u¼1

x
y
uVðyj;K2Þ

¼ PQ

x
y
uVðyai ;K2Þ þ

PQ

x
y
uVðybi ;K2Þ

¼ PQ

x
x
uVðxi;K2Þ þ

PQ

x
y
uVðybi ;K2Þ

¼ PQ

x
x
u þ

PQ

x
y
uVðybi ;K2Þ

¼ VðT;K1Þ þ
PQ

x
y
uVðybi ;K2Þ

*
PQ

x
y
uVðybi ;K2Þ P 0

*VðT;K1Þ 6 VðT;K2Þ

As a result, it is concluded that V is monotonic. h

Theorem 1 indicates that if the value of knowledge K to the task

T is V, then its value to any sub-task of T is not lower than V. This

guarantees that the knowledge value is always increasing, or at

least remaining the same, when the tasks that it can solve increase,

in other words, knowledge value does not decrease during the for-

ward process of product development.

Theorem 2. Knowledge value is additive.

Proof. Given a <P ;K , H, X, V>, "X, Y # H, similar to the proof pro-

cess of Theorem 1, X is replaced by {x1, x2, . . ., xp} and Y is replaced

by {y1, y2, . . ., yq}.



(1) If X and Y do not have atom-tasks in common, so:

VðX [ Y ;KÞ ¼
X

p

i¼1

Y

x
x
uVðxi;KÞ þ

X

q

j¼1

Y

x
y
uVðyj;KÞ

¼ VðX;KÞ þ VðY;KÞ

(2) If X and Y have atom-tasks in common, and suppose that {c1-
, c2, . . ., cm} are the atom-tasks in common, so:

VðX[Y;KÞ¼
X

p

i¼1

Q

x
x
uVðxi;KÞþ

X

q

j¼1

Q

x
y
uVðyj;KÞ

�
X

m

k¼1

Q

x
c
uVðck;KÞ¼VðX;KÞþVðY ;KÞ�

P

Vðck;KÞ

*
P

Vðck;KÞP0

*VðX[Y ;KÞ6VðX;KÞþVðY ;KÞ

As result, it is concluded that V is additive. h

Theorem 2 indicates that if one task T is decomposed into

several sub-tasks {t1, t2, . . ., tn}, then VðT;KÞ 6 Pn
i¼1Vðti;KÞ, in other

words, if knowledge K can accomplish all sub-tasks of the task T, it

can accomplish this task T.

The conclusion of Theorem 1 and 2 can be easily tested in real

life examples. As a simple test, we have assigned a task of designing

a chair for office use to a set of 9 students. The students are divided

into 3 groups to design 3 different aspects of the chair — form, color

and material, and the three tasks are named task F, task C and task

M. Their design results, which are regarded as representation of

their design knowledge (k1, k2 and k3), are quantified according to

the proposed method. By integrating the design results of Group

1 and Group 2, we get a new design result representing their com-

bined knowledge k4. In the test, we have V(F, k1) = 0.7, V(C, k2) = 0.8,

V(T, k1) = 0.5, V(T, k2) = 0.3, V(T, k3) = 0.4, V(T, k4) = 0.7, V(F, k4) = 0.7,

V(C, k4) = 0.8, V(F [ C, k4) = 0.95. So we have VðT; k1Þ 6 VðT; k4Þ
which matches the conclusion of Theorem 1 and VðF [ C; k4Þ
6 VðF; k4Þ þ VðC; k4Þ which matches the conclusion of Theorem 2.

Theorem 1 and Theorem 2 guarantee the efficiency of the pro-

posed knowledge evaluation process. By proving that ‘‘knowledge

value is monotonic’’, we may conclude that knowledge value does

not decrease during the forward process of product development,

in other words, negative knowledge (knowledge that may damage

the accomplished tasks) can be detected. By proving that ‘‘knowl-

edge value is additive’’, we may conclude that when all sub-tasks

are accomplished, the task T is accomplished. Without Theorem 2,

it may happen that the task T is not solved even all sub-tasks are

accomplished.

3. Knowledge evaluation in product design support

During product lifecycle design, both tacit and explicit knowl-

edge may be required to accomplish the tasks ati, so these two

kinds of knowledge can add value to the knowledge of design K

and thus make knowledge evolution [5].

Here are the main steps to take during the procedure of knowl-

edge evaluation in supporting product design.

1. To decompose of the product development process into simpler

processes, in other words, to realize the decomposition of the

task T into atom-tasks ati.

2. To evaluate the value of the existing knowledge using the eval-

uation model introduced in the previous section.

3. If not all the atom-tasks are solved, find out which ati should be

solved next.

4. To add appropriate knowledge, explicit and/or tacit, to accom-

plish ati.

5. Repeat Step 3 and Step 4 until all atom-tasks are solved.

In a general point of view, Fig. 2 illustrates the process of knowl-

edge evolution and product development with a double-helix

structure. During this process, knowledge and product add values

to each other mutually at every reaction point.

Xu and Bernard [32] have described the « reaction point » in

detail, c.f. Fig. 3. Knowledge is regarded as the interaction between

designers and products which results in the change of product

states. In our context, it means that knowledge I can solve ati.

Meanwhile, by adding knowledge I, K-state I changes to K-state

II. In the case for a product designer, experience could be regarded

as tacit knowledge which could make his/her K-state change, c.f.

Fig. 4, which illustrates the mutual effect of production develop-

ment and knowledge evolution.

The case given in the following section illustrates how knowl-

edge evaluation can serve in product lifecycle design and support.

4. Case study

How to apply the knowledge quantification approach in real life

cases is crucial to show its usefulness, and this section illustrates

how the proposed knowledge evaluation method is applied.

This paper has chosen a case of chair design, which is a part

extracted from the product lifecycle of a chair. The knowledge

evaluation model is implemented on the phase of design as it is

a key phase where major decisions are made concerning knowl-

edge. In this example, the task « design a chair » should be accom-

plished in order to make the product (chair) evolves in the

development process. Fig. 5 illustrates how the task is decom-

posed. Although the decomposition is not complete, for example,

several tasks such as market study, packaging and logistics matters

and particular optimization, are neglected, it can serve as a

demonstration.
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Fig. 2. The structure of the interaction process between knowledge and product.
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Based on the criteria obtained from experience in product

design, the principle task « design a chair » is decomposed into four

sub-tasks.

The weights xi are given by the experts of different roles who

have different points of view in design activities. Table 1 shows

the weights given to each sub-task by experts of different roles.

To determine a weight, we have taken into account the results

given by a group of experts for each given role. How to improve

the results of collecting and analyzing the weight values given by

different people is another complicated topic, which needs further

research on statistical techniques, human behaviors, etc., and in

this paper, we simply take the average of the weights proposed

by all the experts assigned in each group as the weight value.

The following sections will analyze the different sub-tasks in

details.

4.1. Details of Task A

Fig. 6 shows the decomposition of the task « To consider the

comfort and the aesthetics issues ».

Here are some illustrations of Fig. 6.

� « Perception test » and « To consider the psychological comfort

issues » can be solved by questionnaire surveys.

� « Ergonomic studies » mainly focus on examining the degree of

fatigue of different parts of the body (muscle, bone, joint, etc.) of

a person who sits in the chair for a period of time or by

simulations.

� « Tests of the material attributes » may include the thermal con-

ductivity (in winter, people do not like to sit in a chair with a

surface of iron, because its too cold), the sensation of the mate-

rial (for example, smooth or rough, soft or hard), etc.

� « To consider the aesthetics of the chair » considers the intrinsic

beauty of the chair, which depends on the cultural and social

context. In other words, for a same chair, it may vary from beau-

tiful to disgusting due to different tastes of people from differ-

ent countries or groups.

� « To consider the adaptiveness in the context of use » considers

whether the chair matches the environment of use. For exam-

ple, in a fast-food restaurant, sofas are not suitable to the envi-

ronment although they are very beautiful.

4.2. Details of Task B

Fig. 7 illustrates the decomposition of the task « To consider the

dimensional and mechanical design issues ».

Here are some illustrations to Fig. 7.

� The architectural design is considered before the design in

details.

� For the assignments of thevaluesof theweightsxB1andxB2, they

depend on whether the designer take optimization into account.

Table 2 shows two examples in determining xB1 and xB2. In an

Designer

Experience

P1-state

I

P1-state

II

K-state

I

P2-state

I

P2-state

II

K-state

II

Fig. 4. Mutual effect of product development and knowledge evolution.
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Fig. 5. Decomposition of the task « design a chair ».

Table 1

The values of weights (in percentage).

Experts of different roles xA Comfort/aesthetics xB Dimension/mechanics xC Costs xD End of life

Client 50 10 30 10

Designer 10 50 30 10

Manufacturer 0 30 50 20

Seller 30 10 40 20

Transporter 0 60 30 10

Recycler 0 0 30 70
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extreme situation, when a designer assignsxB1 = 100%, it means

the designer will simply look for a solution in a database of

archived designs.

� The tasks « To consider the mechanical holding issues » and « To

consider the stability » have a same sub-task « To consider the

positions of gravity centers ». Such situation that several tasks

may have a same sub-task in common is acceptable according

to Definition 1 which defined the Task T as a graph.

� Here are two weights which have the value « 100% ». They mean

that the tasks linked by an arrow of a weight of « 100% » are

« equal ». In this case, when people have accomplished « to

define a skeleton », they have accomplished the « architectural

design » at the same time.

4.3. Details of Task C

Fig. 8 illustrates the decomposition of the task « To consider the

cost issues ».

Here are some illustrations to Fig. 8:

� To determine the values of the weightsxC1 andxC2, the context

of design should be considered, in other words, they depend on

the amount of production of the chairs provided by customers.

Table 3 gives two examples. In the condition that the chair is

designed to be produced in large quantities, the cost of materi-

als has a weight of greater importance. When it is a case of cus-

tom design, the weight of materials is lower. The client is

willing to pay the extra cost for differentiation even if the mate-

rials used are more expensive.

� If several tasks have the relations of inclusion, an arrow with a

weight of ‘‘100%’’ is used. Design optimizations are often made

retrospectively by taking into account new knowledge (Chenou-

ard, 2007)

� Why the arrow from the task ‘‘Single-criterion optimization’’ to

the task ‘‘Multi-criteria optimization’’ has a weight of ‘‘100%’’?

Obviously, when people can perform the task of ‘‘Multi-criteria

optimization’’, they are able to accomplish the task of ‘‘Single-

criterion optimization’’. In other words, these two tasks have a

containment relationship. In case when two tasks have a con-

tainment relationship, an arrow of a weight of ‘‘100%’’ is used.

Optimizations of the design are often made retrospectively, tak-

ing new knowledge into account, [14].

4.4. Details of Task D

Fig. 9 illustrates the decomposition of the task « To consider the

product end-of-life issues ».

Here are some illustrations to Fig. 9:

� Management of product end-of-life and recycling are critical

issues in environment treatment for manufacturing enterprises

so they should be considered in product lifecycle design [29,7].

The task « To consider the recycling issues» needs knowledge

about the possibilities of recycling the materials used.

� The number of materials to be considered is not limited to

three, and it may differ from case to case. In other words, this

number depends on how many principal types of materials

are used to build the chair.

� The three weights xD11, xD12 and xD13 are determined by sev-

eral factors of the chair, for example

– The proportion of each material used

– The cost of each material used

To consider the 

positions of 

gravity centers 
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Table 2

The values of the weights xB1 and xB2.

xB1 (%) xB2 (%)

If the designer pays special attention in optimization issues during the design process 30 70

If the designer does not spend too much time in searching for optimization solutions for Task B 50 50
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We propose a formula to calculate the weight xD1i:

xD1i ¼
weighti
WEIGHT

þ pricei
PRICE

� �

3

In this formula, weighti and pricei are the weight and the price

per weight unit of Material i; WEIGHT and PRICE are the total

weight and total price of the chair.

� The task « To consider the disassembly issues » evaluate

whether the designed chair can be disassembled. The easy dis-

assembly of a product will facilitate the recycling of material

used and the reuse of different parts of the chair.

� The task « To consider the interface issues » mainly considers

the reuse issues of different parts of the chair. For example, if

a chair has a leg broken, instead of throwing it away and replac-

ing it by a new one, people can simply substitute the broken leg.

But in order to realize the substitution of the broken leg, the

interface between the leg and the body of the chair should be

well designed. In such cases, the design of the interface should

be given special attention.

4.5. Test on a specific case

In product lifecycle design, various sub-tasks are often not totally

independent, in other words, they may be linked to a same task. For

example, the task ‘‘ergonomic studies’’ may affect the task ‘‘architec-

tural design’’, because a very ‘‘beautiful’’ chair may not be comfort-

able. How to solve this type of problem? The solution lies in adding

a constraint of the two weights, for example, xA1121 +xB1 = 0.8,

and this will serve to balance the different requirements and prefer-

ences. For example, according to customers’ requirements, in case

designers should pay more attention to ‘‘ergonomic studies’’, we

can increase the weight of this task from 0.3 to 0.6, and the weight

of the other task ‘‘architectural design’’ has to be reduced from 0.5

to 0.2. Therefore, when determining the weights, experts must con-

sider the probable mutual affects among tasks.

Based on the study above, we are addressing the following spe-

cific case.

In order to solve the problem of ‘‘design a chair’’, people need

knowledge. In this case, knowledge is represented in the form of

‘‘design solutions’’. Suppose we have obtained several solutions,

so we must choose a solution that is more valuable, that is to

say, the knowledge which is most valuable. In the next step, we

have to evolve the chosen knowledge so that it reaches to the final

state, i.e. the state that it can solve the task of ‘‘design a chair’’

completely.

� Knowledge K1: the chair is described by Fig. 10, and the addi-

tional content of K1 are as follows.

– The chair is composed of three parts;

– The materials used are wood, leather and cotton.

� Knowledge K2: the chair is described by Fig. 11, and the addi-

tional contents of K2 are as follows:

– The chair is made of only one piece;

– The material used is the thermoplastic polytetrafluoroethyl-

ene (acronym PTFE)

To evaluate the knowledge which corresponds to each type of

chair, decision makers must determine the weights of Table 4

and complete the table of atom-tasks (Table 5).

The calculations of the knowledge values are performed using

the evaluation model of knowledge introduced in Section 2. ‘‘
p
’’

in Table 5 means the knowledge can solve the corresponding

atom-task. The results of knowledge values are as follows.

� V(T, K1) = 73.45%

� V(T, K2) = 68.84%

Consequentially, K1 is chosen as it has a higher value.

Based on K1, we will evolve the knowledge to a new state so

that it can solve the task T completely.

By comparing values of different knowledge, the proposedmodel

allows us to know which tasks should be accomplished next. In

order to accomplished the task T, sub-tasks can be solved in

different orders, so different knowledge are required in different

sequence. As knowledge value is context related, knowledge is eval-

uated differently in different product development stages, and peo-

ple are suggested to choose the optimized sequence of knowledge

acquisition according to knowledge value and knowledge cost

(knowledge cost is beyond discussion of this paper, so is supposed

to be constant).

Table 3

The values of the weights xC1 and xC2.

xC1 (%) xC2 (%)

If the chair is designed to be produced in large quantities 80 20

If the chair need a custom design with a small amount of production expectation 20 80
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For K1, according to V(ati, K1), the sequence of tasks to be accom-

plished is:

atB222 ! atD3 ! atC122 ! atC121 ! atD12 ! atA22 ! atC21 ! atC22

! atC23 ! atC24 ! atD13

This sequence of problem solving serves as a suggestion, not a

requirement.

As V(atB222, K1) is the biggest of all unsolved V(ati, K1), we begin

by looking for knowledge that can solve atB222. In order that K1

arrives to a state that it can accomplish the task ‘‘To consider the

calculation of swinging moments’’, an additional knowledge kB222
should be introduced. kB222 is likely to be a tacit knowledge that

comes from the designer’s experience. After this process, K1 is

improved, c.f. Fig. 12.

Take another task atA22 as example. In order to make K1 arrive to

a state that it can accomplish the task ‘‘To consider the adaptive-

ness in the context of use’’, an additional knowledge kA22 should

be introduced. kA22 is likely to an explicit knowledge, which is

characterized by a series of responses to the questions ‘‘who will

use the chair’’, ‘‘where the chair will be used’’, etc.

Every time that K1 reaches a state that can solve one more task,

its value increases.

When knowledge reaches its final state, its value may not

always be 100%, but it is not critical if people are already satisfied

Fig. 11. The chair described by K2.

Table 4

Values of the weights.

xA xA1 xA2 xA11 xA12 xA21 xA22 xA111 xA112 xA1121 xA1122

(1) The values of the weights of Task A

10% 70% 30% 80% 20% 60% 40% 30% 70% 50% 50%

xB xB1 xB2 xB21 xB22 xB211 xB212 xB221 xB222 xB2111 xB2112

(2) The values of the weights of Task B

50% 30% 70% 50% 50% 70% 30% 50% 50% 50% 50%

xC xC1 xC2 xC11 xC12 xC21 xC22 xC23 xC24 xC121 xC122

(3) The values of the weights of Task C

10% 60% 40% 50% 50% 25% 25% 25% 25% 50% 50%

xD xD1 xD2 xD3 xD11 xD12 xD13

(4) The values of the weights of Task D

30% 30% 50% 20% 60% 30% 10%

Table 5

The list of atom-tasks.

Descriptions K1 K2

atA111 Perception test for the comfort issues
p p

atA1121 Ergonomic studies
p p

atA1122 Tests of the material attributes for the comfort issues
p

atA12 To consider the psychological comfort issues
p p

atA21 To consider the aesthetics of the chair
p p

atA22 To consider the adaptiveness in the context of use

atB1 To define a skeleton
p p

atB2111 To consider the geometry issues
p p

atB2112 To consider the material attributes for the structure issues
p p

atB212 To consider the positions of gravity centers
p p

atB222 To consider the calculation of swinging moments
p

atC11 To calculate the costs of materials without considering optimization
p p

atC121 To calculate the costs of materials considering single-criterion optimization

atC122 To calculate the costs of materials considering multi-criteria optimization

atC21 To know the number of workers in the realization activities

atC22 To estimate the working time of each worker

atC23 To determine the salary of each worker

atC24 To evaluate the costs for collaboration

atD1 To consider the recycling issues Material 1
p p

Material 2
p

Material 3
p

atD2 To consider the disassembly issues
p

atD3 To consider the interface issues



with its current value. In the given example, if we do not have to

accomplish the task of ‘‘To calculate the cost of labor’’, knowledge

can remain in a state that its value is not 100%. In such cases, peo-

ple have to take some risks when they are going to the next stage of

the product lifecycle.

5. Discussions

Compared to existing approaches existed, the quantitative mea-

surement method proposed by this paper is the most distinguished

feature. Table 6 shows the comparison among some existing

methods.

Based on the comparison of existed methods shown in Table 6,

we have implemented several tests to compare our approach using

quantitative measurement method (Method 1) with approaches

mainly based on questionnaire (Method 2 from Karacapilidis [19])

and designer experience (Method 3 from Hung et al. [18]). Test 1

is to design a T-shirt for our student football team, Test 2 is to

design a cover of the admission brochure for 2014 autumn semes-

ter, Test 3 is to design a solution for business process reengineering

(BPR) in medical care. We have selected 27 students, who are

designers in the tests, and they are grouped randomly. Each group

has 3members, and the 9 groups are assigned to 9 cases (3 tests � 3

methods). The design results are evaluated by a group of 3 experts

by scoring from 1 to 9. Table 7 shows the results of the tests.

In this set of tests, we simply invite several experts to give

scores in order to evaluate the quality of results, because we do

not have a quantification scoring system to judge the design results

which greatly depend on human preference. Our quantification

model can be used to choose the most valuable knowledge during

the design process, but not applied in the judgment process when

comparing different results from different methods. We may infer

from the comparison results that in Test 3, Method 1 shows its

advantage better. This is because BPR design relies more on engi-

neering methods than artistic innovation, and in such case, the

quantification method can better show its advantage.

In order to make further study, we have extended Test 1 to a

competition of T-shirt pattern design on the theme of graduation,

and then compare the results of our knowledge evaluation method

and subjective judgments from 110 experts and students, and each

participant can vote for at most 2 candidate design solutions. In all,

we have 171 votes. Table 8 shows the results of knowledge value

obtained by the evaluation method and the subjective judgments.

The results indicate that values obtained from the proposed

method basically meet people’s subjective judgments in real life,

which represents a rational link between ‘‘how much the knowl-

edge value is’’, which is calculated from the knowledge evaluation

method, and ‘‘how useful the knowledge is’’ in people’s mind.

The proposed approach mainly operates with formal modeling

of knowledge and deals with engineering modeling (requirements)

and engineering preferences (decision making). In case of prefer-

ences, utility function is often considered as well. Utility can be

regarded as the usefulness of a product in response to the expecta-

tions of the customers. It is the measure of how a product can meet

the customers’ requirements and is the sum of the individual per-

formance characteristics of a particular product. In product design

process, designers are assumed to have in mind a utility function

that he/she maximizes to make the selection in multi-attribute

decision making. For more complex cases, Maddulapalli et al. [22]

have presented an algorithm for calculating the ‘‘robustness index’’

in case where decision makers give estimates of the end users’

needs preferences. The algorithm is applicable to cases where prod-

uct designers do not have enough information about the precise

end users’ preferences or decision makers’ value function is impli-

cit. In the case where customer involvement is considered in prod-

uct lifecycle design and support, Chen and Yan [10] have proposed a

customer utility prediction system, which comprises design knowl-

edge acquisitionmodule and customer utility evaluationmodule. In

the former module, design options can be generated from a design

knowledge hierarchy, and customer-sensitive design criteria are

solicited from customer requirements. In the later module, a mea-

surement for customer desirability called customer utility index

is introduced, and it is proved to be useful to represent multicul-

tural customer preference towards various design options. Karande

et al. [20] have proposed an approach based on utility concept and

desirability function to help designer make the right choices for

particular engineering applications. To better combine utility issue

with our approach, future research may aim at improving our

Fig. 12. Knowledge evolution: K1 ? K 0
1.

Table 6

Comparison of different methods.

Method

proposed by

Basic content Evaluation Effectiveness

Karacapilidis

[19]

A web-based knowledge management system

for assisting the manufacturing strategy

process

Based on questionnaire testing

user’s perceived usefulness and

the perceived ease of use

Aiding a team of managers to reach a decision

Hung et al.

[18]

A framework which integrates quality function

deployment and design structure matrix to

support product design planning

Based on many years of

experience of working in industry

Providing a spectrum perspective for an early new product

design project from needs analysis to design plan

Chen [12] An architecture for integrating knowledge

management systems and business process

management systems

No quantitative evaluation Process designers can use existing process templates and

execution results stored in a process repository when design or

redesign processes; Process/activity performers can be provided

with the right knowledge at the right time

Our method Effects between knowledge and product are

analyzed, and knowledge values are assessed

Based on a theoretically proved

model

Assisting designers to decide which knowledge to choose and

what problem to solve next

Table 7

Tests results.

Average score Method 1 Method 2 Method 3

Test 1 8.3 7.3 8

Test 2 8.3 8.3 8

Test 3 9 8 7.7



model by taking into accounts not only engineering requirements

but also personalized preferences characterized by utility function.

Possible correlation of utility function based on various criteria is

worth being studied as well.

Multi-Disciplinary Design is also an advanced area of applica-

tion for the approach proposed in the paper. It is a very challenging

problem because it includes both the complexity of design and the

intrinsic complexity of multi-disciplinarity, where unpredictable

coupling of design parameters usually happens [28]. For many

complex products, such as electromechanical complies and

e-Business systems, the demands posed on the performance are

quite exhaustive, and these demands from different disciplines

(mechanics, networks, systems engineering, marketing, manage-

ment, etc.) have to be integrated together in close harmony. In such

situations, design issues often require more than one simple

optimization of a number of parameters [13]. Chen et al. [11] have

Table 8

Results of the T-shirt pattern design competition.

Number of vote for the candidate Value obtained from the proposed method

48 (48/171 � 28.1%) Rank: 1 0.80 Rank: 1

24 (24/171 � 14.0%) Rank: 5 0.60 Rank: 5

29 (29/171 � 17.0%) Rank: 4 0.65 Rank: 4

32 (32/171 � 18.7%) Rank: 3 0.75 Rank: 2

38 (38/171 � 22.2%) Rank: 2 0.75 Rank: 2



proposed a knowledge-based framework for conceptual design of

multi-disciplinary systems. Through reusing and synthesizing

known principle solutions in various disciplines together, it can

help designers who are lack of sufficient multi-disciplinary knowl-

edge. When applying the approach introduced in this paper,

knowledge from different disciplines can be evaluated and com-

pared though a domain-independent method, which may reduce

the complexity when designers determine the optimized solution.

In real life application, effective software is more and more used

to help designers make better-informed decisions in the complex

and iterative process in product lifecycle design and support. The

computer-based intelligent assistants are quite useful to simulta-

neous and collaborative design processes which depend on effec-

tive transfer of knowledge between persons/teams. These tools

are useful to study the traceability of product design and foresee

future developments [8]. Design rationale can be effectively re-used

across design generations [17]. Tang et al. [27] have introduced a

rationale-based architecture model (AREL) to capture design ratio-

nale and help people understand architecture design. The AREL

model, constructed by UML, uses motivational reasons and design

rationale, which is comprised of qualitative rationale, quantitative

rationale and alternative design options. For industrial practice,

Bracewell et al. [6] have developed a simple and unobtrusive soft-

ware tool, Design Rationale editor (DRed), which allows engineer-

ing designers to record their rationale as the design proceeds. It is

implemented in a multinational aerospace company and allows

the issues addressed, options considered, associated pro and con

arguments, etc., to be captured. Possible integration of the proposed

approach of this paper with software used in real-life design will be

quite meaningful. The quantification model may help designers

choose the most valuable knowledge from the knowledge base

(or the knowledge network if various stakeholders are involved

in) and explore the push service and prompt function of the existed

software. By calculating the most (or the top-N) valuable knowl-

edge in the current state, the system could remind the designer

which knowledge he/she may need, and this will help product

design, development and innovation.

6. Conclusions

Knowledge evaluation is a key issue in knowledge management.

This paper has presented a novel knowledge evaluation model for

product lifecycle design. The quantitative approach set a measur-

able standard to determine which a ‘‘better’’ design is. Although

product design has its subjective aspect, an objective standard

can help designers evaluate their design plans at an early stage.

The model integrates the process of knowledge evolution and

product development, and the mutual effects between knowledge

and product are analyzed. Based on the theoretical definitions and

models, this paper illustrates how knowledge value can be

assessed by studying a specific case. In the applications of product

lifecycle design, knowledge values calculated by the model can

serve as important factors in a decision making system that deci-

des which knowledge to choose and what to do next. Moreover,

as there is lack of unified standard of knowledge evaluation in

product design process, which brings a barrier to communications

among different design platforms, this paper has addressed this

problem and set an evaluation framework that can be widely used

in product design activities. The model could serve as a base to

describe the knowledge related activities and could be a useful tool

for managing knowledge in product lifecycle design and support.

One limitation of the model is that it mainly deals with single-

loop learning [3] and thus is lack of double-loop learning and inno-

vation. Innovation issues are not much discussed either, although

the role of innovation is stressed in successful enterprises and

knowledge creation is positioned at the core of it [30]. As

knowledge is often described as a coherent web of claims and

statements, the problem of ‘‘knowledge fragments dependencies’’

is often discussed, because one specific idea (regarded as a knowl-

edge fragment) may easily stimulate another idea (regarded as

another knowledge fragment). This topic is related to innovation,

which is not much discussed in this paper, and it could be a very

interesting and valuable research in the next step. Interesting per-

spectives may also include deeper analysis about the optimization

issues of weights, dynamic product development processes, paral-

lel and distributed product development systems, etc. Imple-

mented in a decision support system (DSS) and integration with

existing product design tool such as Rhinoceros and AutoCAD also

need further research and collaboration.
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