
HAL Id: hal-01091105
https://hal.science/hal-01091105v2

Submitted on 12 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Adding Pebbles to Weighted Automata: Easy
Specification & Efficient Evaluation

Paul Gastin, Benjamin Monmege

To cite this version:
Paul Gastin, Benjamin Monmege. Adding Pebbles to Weighted Automata: Easy Specification &
Efficient Evaluation. Theoretical Computer Science, 2014, 534, �10.1016/j.tcs.2014.02.034�. �hal-
01091105v2�

https://hal.science/hal-01091105v2
https://hal.archives-ouvertes.fr

Adding Pebbles to Weighted Automata
Easy Specification & Efficient Evaluation?

Paul Gastin and Benjamin Monmege

LSV, ENS Cachan, CNRS, Inria, France
firstname.lastname@lsv.ens-cachan.fr

Abstract. We extend weighted automata and weighted rational expres-
sions with 2-way moves and (reusable) pebbles. We show with examples
from natural language modeling and quantitative model-checking that
weighted expressions and automata with pebbles are more expressive
and allow much more natural and intuitive specifications than classical
ones. We extend Kleene-Schützenberger theorem showing that weighted
expressions and automata with pebbles have the same expressive power.
We focus on an efficient translation from expressions to automata. We
also prove that the evaluation problem for weighted automata can be
done very efficiently if the number of (reusable) pebbles is low.

1 Introduction

Regular expressions have always been used to specify patterns. Popular because
they propose a concise and intuitive way of denoting such patterns, they have
also a long history in the formal language community. A seminal result, known
as Kleene’s theorem, establishes that the (denotational) regular expressions have
the same expressive power as the (operational) finite state automata. Efficient
translation algorithms of regular expressions into finite automata are crucial
since expressions are convenient to denote patterns and automata are amenable
to efficient algorithms. Regular expressions and finite automata have been ex-
tended in several directions, e.g., tree (walking) automata, (regular) XPath, etc.

Nowadays, quantitative models and analysis are intensively studied, result-
ing in a revision of the foundation of computer science where classical yes/no
answers are replaced by quantities such as probability, energy consumption, re-
liability, cost, etc. In the 60s, Schützenberger provided a generic way of turning
qualitative into quantitative systems, starting the theory of weighted automata
[32] (see [18,16,3] for recent books on this theory). Indeed, probabilistic au-
tomata and word transducers appear as instances of that framework, which
found its way into numerous application areas such as natural language pro-
cessing, speech recognition or digital image compression. Schützenberger proved
the equivalence between weighted automata and weighted regular expressions,
extending Kleene’s theorem. Various translation algorithms can be extended
from the Boolean framework to the weighted case, see [28,30] for surveys about

?
Supported by LIA INFORMEL.

these methods, and [23] which obtains Schützenberger’s theorem as a corollary
of Kleene’s theorem.

In Sections 4 and 5, we extend weighted expressions and automata with 2-
way moves and pebbles. There are several motivations for these extensions. First,
as shown in Section 2 for applications in natural language processing and quan-
titative model-checking, 2-way moves and pebbles allow more natural and more
concise descriptions of the quantitative expressions we need to evaluate. Second,
in the weighted case, 2-way and pebbles do increase the expressive power as
already observed in [8] in relation with weighted logics or in [27] in the prob-
abilistic setting. This is indeed in contrast with the Boolean case where 2-way
and pebbles do not add expressive power over words (see, e.g., [20]) even though
they allow more succinct descriptions (see, e.g., [4]). Our work is also inspired by
pebble tree-walking automata and in particular their links with powerful logics,
XPath formalisms and caterpillar expressions on trees [17,10,6,31,5].

In Sections 6 and 7, we generalize Kleene and Schützenberger theorems to
weighted expressions and automata with 2-way moves and pebbles. We establish
their expressive power equivalence by providing effective translations in both
directions. Showing how to transform an operational automaton into an equiv-
alent denotational expression is indeed very interesting from a theoretical point
of view, but is less useful in practice. On the other hand, we need highly ef-
ficient translations from the convenient denotational formalism of expressions
to operational automata which, as stated above, are amenable to efficient al-
gorithms. Efficiency is measured both with respect to the size of the resulting
automaton, and the space and time complexities of the translation. We show
that, Glushkov’s [21] or Berry-Sethi [2] translations, which are among the best
ones in the Boolean case, can be extended to weighted expressions with 2-may
moves and pebbles. The constructions for the rational operations (sum, product,
star) can be adapted easily to cope with 2-way moves, even though the correct-
ness proofs are more involved and require new theoretical grounds such as series
over a partial monoid as explained in Section 4.1. The main novelty in Sections 6
and 7 is indeed the treatment of pebbles in the translations between expressions
and automata.

To complete the picture, we study in Section 8 the evaluation problem of a
weighted automaton with 2-way moves and reusable pebbles over a given word.
The algorithm is polynomial in the size of the word, where the degree is 1 plus
the number of reusable pebbles. We can even decrease the degree by 1 for strongly
layered automata. This applies when we only have one reusable pebble, and we
obtain an algorithm which is linear in the size of the input word. This is in
particular the case for automata derived from weighted LTL.

The paper includes intuitive explanations and examples for a better under-
standing of weighted expressions with 2-way moves and pebbles, and of the
translations between automata and expressions. An extended abstract of this
work appeared in [19].

2

2 Motivations

We give in this section two motivating examples for studying weighted expres-
sions and automata with 2-way moves and pebbles.

2.1 Language modeling

Since decades, weighted automata have been extensively used in Natural Lan-
guage Processing (see [22]), in particular for automatic translation, speech recog-
nition or transliteration. All these tasks have in common to split the problem
into independent parts, certain directly related to the specific task and others
related to the knowledge of the current language. For example, in the trans-
lation task from French sentences to English sentences, one splits the problem
into first knowing translation of single words and then modeling English sen-
tences (knowledge which is independent from the translation task). The second
part, namely to know whether a sequence of words is a good English sentence,
is known as language modeling. Often this knowledge is learned from a large
corpus of English texts, and stored into a formal model, e.g., a weighted finite
state automaton representing the probability distribution P of well-formed En-
glish sentences. The translation task is then resolved by first generating several
English sentences from the original French one (due to ambiguity of the word-
by-word translation task), and then choosing among this set of sentences the
ones with highest probability.

One broadly used language model is the n-gram model, where the probability
of a word in a sentence depends only on the previous n− 1 words: for example
in a 1-gram model, only the individual word frequencies are relevant to generate
well-formed English sentences, whereas in a 2-gram model, the probability of
a word depends on the very same frequency distribution and also the previous
word. To formally describe these models, and further study them, let us define
them using regular expressions. Let D denote the dictionary of words in the
language. Suppose we are given the conditional probability distributions P(un |
u1, . . . , un−1) in the n-gram model (with ui ∈ D for all i). The probability of
a sentence (ui)1≤i≤m ∈ Dm can be given by the following weighted regular
expression in a 1-gram model and a 3-gram model:

E1 =
(∑
u∈D

uP(u)
)∗

E3 =→→
(∑
u,v,w∈D

←←uvwP(w | u, v)
)∗

where symbols → and ← denote a right or left move, respectively, no matter
what word it is reading. Expression E1 is a classical weighted regular expression
where the Kleene star iterates the computation of the inner expression, which
here computes the probability of the current word u. Expression E3 has the
opportunity to move forward and backward: this allows to easily recover the
context whereas a 1-way automaton would have to store the context in its states.
Notice that expression E3 is quite readable and intuitive. One could write an
equivalent 1-way expression, but imagine how intricate it would be since positions

3

would have to encode the context, i.e., the last two words. This is an important
motivation for studying 2-way expressions and automata.

Actually, expression E3 is not small since the sum hides the very big set
D3: for a dictionary of size 1 million, this seems already unpracticable. But in
practice, a much smaller expression could be sufficient. First, for many words,
the frequency distribution of the word w is a sufficiently good approximation of
the conditional probability P(w | u, v). Let us denote D0 this set of words. For
instance, the probability of observing the word the may not really depend on
the previous words. Then, let D1 be the set of words (disjoint from D0) such
that only the previous word is necessary to describe the probability. Finally, let
D2 be the rest of the dictionary. Now, we may replace expression E3 by the
following expression, whose size is much smaller if D0 and D1 contain enough
words:(∑

w∈D0

wP(w) +
∑

w∈D1,v∈D
←vwP(w | v) +

∑
w∈D2,u,v∈D

←←uvwP(w | u, v)
)∗

To motivate the introduction of pebbles, let us add internationalization,
which means that the user has the ability to write/speak alternately in two
or more languages, e.g., English and French. All tasks such as automatic trans-
lation or speech recognition are now more complex since there is no a priori
knowledge of the current language of the speaker. Again, splitting the problem
into independent parts, we have to know the probability distributions PL for
every involved language L, and, assuming a current language L, we should be
able to solve the language processing task with a procedure TaskL. Then, before
processing the next word, we start a computation which re-reads the current
prefix of the text in order to compute using PL the probability that the current
language L is still valid. The next word is then processed with the current or
the alternate language (see Figure 1). In order to compute the probability that
the current language is still valid, we mark the current position with a pebble
(↓x) and read the current prefix of the text with the automaton modeling the
current language. Then we return to the marked position and lift the pebble (↑)
in order to resume the top level computation. Details of these constructs will be
developed in Section 5.

2.2 Weighted Linear Temporal Logic

Whereas weighted automata and weighted expressions have been extensively
studied, logical formalisms adapted to the weighted case still need deeper under-
standing. This is especially true for weighted linear temporal logics [24], whereas
weighted branching temporal logics have received more attention [13,12,26,7].

We would like to illustrate that using pebbles in weighted expressions or
automata is a natural and powerful way to deal with nesting in LTL formulas.
Temporal logics implicitely use a free variable to denote the position where the
formula has to be evaluated. We will mark this position with a pebble, say x, in
expressions Eϕ(x) or automata Aϕ(x) associated with an LTL formula ϕ.

4

English? French?

OK KO OK KOTaskEn TaskFr

↓
x

↓
x↑ ↑ ↑ ↑

→

→ → →

Fig. 1. Pebble automaton for the multi-language modeling task.

For this motivating example, we only consider finite words and the proba-
bilistic setting. Given an LTL formula ϕ, a word u ∈ A+ and a position i in
u, the aim is to compute the probability P(ϕ, u, i) that ϕ holds on position i.
Hence, the expression Eϕ(x) and the automaton Aϕ(x) associated with ϕ should
compute this probability if pebble x marks position i of u.

For instance, the formula Gϕ (globally ϕ) means that ϕ should always hold
in the future of the current position. Hence, P(G(1

3a∨
3
4b), aba, 0) = 1

3 ·
3
4 ·

1
3 and

P(G(1
3a ∨

3
4b), aabb, 2) = 9

16 . More generally, P(Gϕ, u, i) =
∏
j≥i P(ϕ, u, j). As-

sume that we have already constructed an automaton Aϕ(y) with 2 designated
terminal states {ttϕ, ffϕ}, such that runs ending in ttϕ computes the proba-
bility that ϕ holds and those ending in ffϕ computes the probability that ¬ϕ
holds. Then, the automaton for Gϕ with the same property on terminal states
ttGϕ and ffGϕ is depicted below:

AGϕ = ttGϕ

ffGϕ

ttϕ

ffϕ

Aϕ(y)

→

x?

¬⊳?↓
y

⊳?↑

→

⊳?

⊳?↑

→

We can also give expressions for Gϕ and ¬Gϕ:

EGϕ(x) = .?→∗x?
(
(y!Eϕ(y))→

)∗
/?

E¬Gϕ(x) = .?→∗x?
(
(y!Eϕ(y))→

)∗
(y!E¬ϕ(y))→∗/? .

The expression EGϕ(x) starts at the beginning of the word (.?), moves right
(→∗) until it sees the marked position (x?). Then, it iterates the computation of
ϕ with the current position marked with y (y!Eϕ(y)), moving right (→) between
two computations. The iteration stops at the end of the word (/?). The expression
for ¬Gϕ starts similarly, but it may exit the iteration at any point, computing
the probability that ϕ does not hold (y!E¬ϕ(y)).

5

The dual formula Fϕ (Finally ϕ) states that ϕ should eventually hold in
the future of the current position. The semantics is obtained inductively with
P(Fϕ, u, i) = P(ϕ, u, i)+P(¬ϕ, u, i)×P(Fϕ, u, i+1): either ϕ holds immediately
(P(ϕ, u, i)) or (+) it does not (P(¬ϕ, u, i)) and (×) it should be satisfied later
(P(Fϕ, u, i+ 1)). For instance, P(F(1

3a), abba, 0) = 1
3 + 2

3 (0 + 2
3 (0 + 2

3 ·
1
3)). The

following dualities hold: Fϕ = ¬G¬ϕ and ¬Fϕ = G¬ϕ. Hence, we have

EFϕ(x) = .?→∗x?
(
(y!E¬ϕ(y))→

)∗
(y!Eϕ(y))→∗/?

E¬ Fϕ(x) = .?→∗x?
(
(y!E¬ϕ(y))→

)∗
/? .

The automaton AFϕ(x) is obtained from AGϕ(x) by switching the terminal
states:

AFϕ = ffFϕ

ttFϕ

ffϕ

ttϕ

Aϕ(y)

→

x?

¬⊳?↓
y

⊳?↑

→

⊳?

⊳?↑

→

Using 2-way moves, it is not difficult to extend these constructions to cope
with LTL including both future and past modalities.

3 Preliminaries

Words. The set of nonempty words over a finite alphabet A is denoted A+. We
write u = u0 · · ·un−1 ∈ A+ a nonempty word of length |u| = n ≥ 1 with ui ∈ A
for 0 ≤ i < |u|. The set of positions of u is pos(u) = {0, 1, . . . , |u|}. In particular,
we include |u| in pos(u) even though the last letter is on position |u| − 1.

Semirings. A semiring is a set S equipped with two binary internal operations
denoted + and ×, and two neutral elements 0 and 1 such that (S,+, 0) is a
commutative monoid, (S,×, 1) is a monoid, × distributes over + and 0 × s =
s × 0 = 0 for every s ∈ S. If the monoid (S,×, 1) is commutative, the semiring
itself is called commutative. See [15,28] for more discussions about semirings,
especially complete and continuous ones, as we describe now.

A semiring S is complete if every family (si)i∈I of elements of S over an
arbitrary indexed set I is summable to some element in S denoted

∑
i∈I si and

called sum of the family, such that the following conditions are satisfied:

–
∑
i∈∅ si = 0,

∑
i∈{1} si = s1 and

∑
i∈{1,2} si = s1 + s2;

– if I =
⋃
j∈J Ij is a partition,

∑
j∈J

(∑
i∈Ij si

)
=
∑
i∈I si;

–
(∑

i∈I si
)
×
(∑

j∈J tj
)

=
∑

(i,j)∈I×J(si × tj).

6

Intuitively, this means that it is possible to define infinite sums that extends the
binary addition and satisfies infinite versions of associativity and distributivity.

In a complete semiring, for every s ∈ S, the element s∗ =
∑
i∈N s

i exists
(where si is defined recursively by s0 = 1 and si+1 = si × s). Here are some
examples of complete semirings.

– The Boolean semiring ({0, 1},∨,∧, 0, 1) with
∑

defined as an infinite dis-
junction.

– (R≥0 ∪{∞},+,×, 0, 1) with
∑

defined as usual for positive (not necessarily
convergent) series: in particular, s∗ = ∞ if s ≥ 1 and s∗ = 1/(1 − s) if
0 ≤ s < 1.

– (N ∪ {∞},+,×, 0, 1) as a complete subsemiring of the previous one.
– (R∪ {−∞},min,+,−∞, 0) with

∑
= inf and (R∪ {∞},max,+,∞, 0) with∑

= sup.
– Complete lattices such as ([0, 1],min,max, 0, 1).
– The semiring of languages over an alphabet A: (2A

∗
,∪,+, ∅, {ε}) with

∑
defined as (infinite) union.

In this paper, we consider continuous semirings which are complete semirings
in which infinite sums can be approximated by finite partial sums. Formally, a
complete semiring S is continuous if the relation ≤ defined over S by a ≤ b if
b = a + c for some c ∈ S is an order relation; and for every family (si)i∈I in S,
the sum

∑
i∈I si is the least upper bound of the finite sums

∑
i∈J si for J ⊆ I

finite. All the above complete semirings are also continuous.

Series and polynomials Let Z be a set. A series f over Z is a map f : Z → S.
We denote by S〈〈Z〉〉 the set of series over Z with coefficients in S. The support
of a series f ∈ S〈〈Z〉〉 is the set {z ∈ Z | f(z) 6= 0}. A series with a finite support
is called a polynomial. We denote by S〈Z〉 the set of polynomials over Z with
coefficients in S.

We can lift addition from S to S〈〈Z〉〉 pointwise by (f + g)(z) = f(z) + g(z)
for all z ∈ Z. Then, (S〈〈Z〉〉,+, 0) is a commutative monoid where 0 is the series
mapping every element z ∈ Z to 0. If Z is equipped with a structure of monoid
and the semiring S is complete, we can also define the (Cauchy) product of two
series by (f×g)(z) =

∑
z=xy f(x)g(y) for all z ∈ Z. This sum may be infinite, but

is well-defined since the semiring is complete. The Cauchy product is associative
and admits as unit the characteristic function (denoted 1) of the neutral element
of Z. Hence, (S〈〈Z〉〉,+,×, 0, 1) is a semiring. When S is continuous, we can also
lift infinite sums pointwise to S〈〈Z〉〉 which becomes a continuous semiring.

4 Weighted Expressions with pebbles

The syntax of our weighted expressions is carefully chosen so that an effi-
cient translation to weighted automata can be obtained, essentially based on
Glushkov’s construction as we will see in Section 7. Formally, for a (continuous)

7

semiring S, an alphabet A and a set Peb of pebbles, the syntax is given by the
grammar:

E ::= s | ϕ | → | ← | x!E | E + E | E · E | E+

ϕ ::= a? | .? | /? | x? | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

with s ∈ S, a ∈ A, x ∈ Peb. We denote by Test the set of test formulas ϕ defined
by the second line of the grammar above. For instance, one can check with .?
and /? whether we are at the beginning or at the end of the word. This is indeed
useful since we have 2-way expressions. We denote by pebWE the set of weighted
expressions with pebbles. Below, we give the intuitive meaning of our weighted
expressions. We start without pebbles (i.e., without x!E). Then, we introduce
pebbles. The formal semantics is given in Table 1.

Notice that from the irreflexive iteration E+ =
∑
n>0E

n, we get also the
classical Kleene star: E∗

def
= 1 + E+. Indeed, we also have E+ = E · E∗ but if

we apply Glushkov’s construction (blindly) to E ·E∗ we get an automaton with
twice the number of states needed for E+. This is basically why we prefer to
have E+ as a primary construct.

We have chosen to distinguish between checking the current position with
some test ϕ and moving to the right or left position with → and ←. This is
in the spirit of XPath in trees. This allows to write concise expressions, e.g.,
E = →+a?←+b?→+c?←+d?→+ to describe patterns consisting of an a having
in its past a b, having in its future a c, having in its past a d. In the Boolean
semantics, this expression defines words having this pattern. In the semiring
N of natural numbers, the expression counts the number of occurrences of the
pattern, e.g., [[E]](cabcdbadcbab) = 8. Indeed we may write an equivalent 1-way
expression for this pattern but it would be less concise and harder to decipher
(see e.g., [4] for succinctness results in the Boolean case).

Let u = u0u1 · · ·u|u|−1 ∈ A+. A test ϕ will be evaluated at a position i ∈
pos(u): .? holds if i = 0, /? holds if i = |u| and a? holds if i < |u| and ui = a.

With the 2-way mechanism, a sub-expression such as a?←+b?→+c?←+d?
may start from position i, end in position j and still visit the whole word. In
order to inductively define the semantics of expressions, we assign to triples
(u, i, j) a value [[E]](u, i, j) ∈ S.

It is also convenient to check-and-move so we introduce the macros a
def
= a?→

and a
def
= a?←. Then, we can write→∗ blue←+ .?→∗ black→∗ to define words

having both blue and black as subwords. This allows to write classical (1-way)
regular expressions such as (ab)+aa. In order to get the classical semantics for
usual 1-way expressions, the evaluation of an expression on a whole word is
defined as [[E]](u) = [[E]](u, 0, |u|). For instance, [[a]](a) = [[a?→]](a, 0, 1) = 1,
[[→∗a→∗]](baaba) = [[→∗a?→→∗]](baaba, 0, 5) = 3, and [[(2→)+]](u) = 2|u|.

Our 2-way expressions are uncomparable with expressions over the free group.
Indeed, the expression aab always evaluates to 0 in our setting, whereas over the
free group it would evaluate to 1 on b = aab.

8

Notice that with the 2-way mechanism we may write E = E1 /?←∗ .?E2

to compute the product (intersection in the boolean semantics) of the values
computed by E1 and E2: [[E]](u) = [[E1]](u)× [[E2]](u).

The 2-way mechanism together with iteration gives rise to infinite sums. This
may be useful for probabilistic systems. For instance, in the continuous semiring
(R∞≥0,+,×, 0, 1), consider the expression E = (¬/?(s→+(1−s)¬.?←))∗ /? with

0 < s < 1 some probability. Expression E describes a random walk1 and it will
be used again in Section 5. Let F = ¬/?(s→+ (1− s)¬.?←) so that E = F ∗ /?.
Let u be a word of length m ≥ 2. We can easily see that for all i, j ∈ pos(u)
and all n > |j − i|, the expression Fn computes a positive value on (u, i, j).
Therefore, the expression F ∗ computes an infinite sum on (u, i, j). In the present
case (0 < s < 1), the series

∑
n≥0[[Fn]](u, i, j) converges and [[F ∗]](u, i, j) ∈ R≥0.

On the other hand, for the expression G = ¬/?→ + ¬.?←, we can check that
the series

∑
n≥0[[Gn]](u, i, j) diverges and we get [[G∗]](u, i, j) = ∞. Since we

are considering complete semirings, infinite sums exist and the semantics of an
iteration E∗ or E+ is always well-defined.

We explain now the pebble mechanism used in our expressions. The construct
x!E marks with x the current position in u and evaluates E on the marked word,
from beginning to end. Indeed, we can use x? in E to test whether the current
position is marked. For instance, consider

E =→+ a?x!
(

(¬x?→)∗ b? (¬x?→)+ c?←+ d?→+
)
→∗

which is a variant of our first example. Here the pattern consists of an a for
which the corresponding prefix contains a b, having in its future a c, having in
its past a d. In particular, the c must be on the left of the current a which is
marked with x. Hence, we get [[E]](cabcdbadcbab) = 4.

As another example, on a word u, the expression (x!((2→)+)→)+ computes

2|u|
2

over the natural semiring2. Actually, the pebble is not tested in this expres-
sion: it is only used to restart the computation |u| times.

We give now the formal semantics of tests and of pebWE. For each word
u ∈ A+, valuation σ : Peb → pos(u) and position i ∈ pos(u), the semantics
u, σ, i |= ϕ of tests is defined inductively. The Boolean connectives are as usual.
For the atoms, .? holds if i = 0, /? holds if i = |u|, a? holds if i < |u| and ui = a
and x? holds if σ(x) = i < |u| (the last position |u| cannot be marked).

A marked word is a tuple (u, σ, i, j) where u ∈ A+ is a word, σ : Peb→ pos(u)
is a valuation and i, j ∈ pos(u) are positions. We denote by Mk(A+) the set of
marked words (we will see below that it forms a partial monoid).

1 With α = 1−s
s

, one can show that [[E]](u, 0, |u|) = 1

1+α+...+α|u|
.

2 This function cannot be computed without pebble by a classical 1-way weighted
expression. We can see this using Schützenberger’s theorem since weighted automata
only compute values in 2O(|u|).

9

[[s]](u, σ, i, j) =

{
s if j = i

0 otherwise
[[ϕ]](u, σ, i, j) =

{
1 if j = i ∧ u, σ, i |= ϕ

0 otherwise

[[→]](u, σ, i, j) =

{
1 if j = i+ 1

0 otherwise
[[←]](u, σ, i, j) =

{
1 if j = i− 1

0 otherwise

[[x!E]](u, σ, i, j) =

{
[[E]](u, σ[x 7→ i], 0, |u|) if j = i < |u|
0 otherwise

[[E + F]](u, σ, i, j) = [[E]](u, σ, i, j) + [[F]](u, σ, i, j)

[[E · F]](u, σ, i, j) =
∑

k∈pos(u)

[[E]](u, σ, i, k)× [[F]](u, σ, k, j)

[[E+]](u, σ, i, j) =
∑
n>0

[[En]](u, σ, i, j)

Table 1. Semantics of weighted expressions

The semantics3 of a pebWE E is a map [[E]] : Mk(A+) → S, i.e., a series
over marked words: [[E]] ∈ S〈〈Mk(A+)〉〉. It is is defined in Table 1. Note that,
since we are considering complete semirings, the infinite sum in the semantics
of E+ is always well-defined. If the expression has no free pebbles then we omit
the valuation and simply write [[E]](u, i, j). For whole words we let [[E]](u, σ) =
[[E]](u, σ, 0, |u|) and [[E]](u) = [[E]](u, 0, |u|) as explained above.

Notice that for tests ϕ1 and ϕ2, the expressions ϕ1 ∧ ϕ2 and ϕ1 · ϕ2 are
equivalent, but ϕ1∨ϕ2 and ϕ1 +ϕ2 are not equivalent in general. One can check
that ϕ1 + ¬ϕ1 · ϕ2 is equivalent to the disjunction ϕ1 ∨ ϕ2. Hence, conjunctions
and disjunctions in tests are not necessary for the expressive power of pebWE
and they could have been defined as macros.

Similar to the star-height of an expression, we define the pebble-depth:

pebd(s) = pebd(ϕ) = pebd(←) = pebd(→) = 0

pebd(E + F) = pebd(E · F) = max(pebd(E),pebd(F))

pebd(E+) = pebd(E) pebd(x!E) = 1 + pebd(E) .

4.1 Series over a partial monoid

We show in this subsection that the set of marked words can be endowed with
a partial monoid structure which allows to define a Cauchy product on series in
S〈〈Mk(A+)〉〉. Since the sums can be lifted pointwise from S to series over S, we
show that S〈〈Mk(A+)〉〉 is actually a continuous semiring. Indeed, the semantics
defined for sum, product and iteration of pebWE in Table 1 corresponds to sum,

3 We may also define the semantics [[E]]V of an expression E using valuations over a
subset V ⊆ Peb, provided it contains the free pebbles of E.

10

Cauchy product and star in the continuous semiring S〈〈Mk(A+)〉〉. This more
formal view of the semantics of pebWE is especially useful for proofs, but since
proofs are omitted in this paper this section may be skipped in a first reading.

Pebble weighted expressions and pebble weighted automata introduce two
new difficulties. The first one comes from the 2-way navigation mechanism which
prevents the computation of the behavior of an expression (or an automaton)
using the concatenation of words in the underlying monoid, here the free monoid
A+. The second one comes indeed from pebbles which allow to restart the com-
putation. To address both problems, we had to fix the word when defining the
semantics and we no more use the monoid structure of A+. Here, we define a
partial monoid structure on the marked words and show how this allows us to
reuse existing results from the classical theory of rational series.

A partial monoid is a triple (Z, ·, Y) where Z is the set of elements, · : Z2 → Z
is a partially defined associative concatenation4 and Y ⊆ Z is a set of partial
units satisfying:

∀x, z ∈ Z ∀y ∈ Y x · y = z =⇒ x = z

∀x, z ∈ Z ∀y ∈ Y y · x = z =⇒ x = z

∀z ∈ Z ∃!y ∈ Y y · z = z

∀z ∈ Z ∃!y ∈ Y z · y = z .

Indeed, a classical monoid is a partial monoid with the concatenation being
totally defined and with the set of partial units being the singleton set consisting
of the (real) unit.

We are especially interested in the partial monoid (Mk(A+), ·,Unit(A+)) of
marked words over A+ where

Mk(A+) = {(u, σ, i, j) | u ∈ A+, σ : Peb→ pos(u), i, j ∈ pos(u)}
Unit(A+) = {(u, σ, i, i) | u ∈ A+, σ : Peb→ pos(u), i ∈ pos(u)}

and the partial concatenation is defined for all u ∈ A+, σ : Peb → pos(u) and
i, j, k ∈ pos(u) by (u, σ, i, k) · (u, σ, k, j) = (u, σ, i, j) and it is undefined in all
other cases. We can see that this partial concatenation is associative and that
the above requirements for partial units are satisfied.

Note that a partial monoid needs not be graded and in particular, the partial
monoid of marked words defined above is not graded. Hence, we cannot apply
directly the theory of rational series over graded monoids as developped e.g. in
[29]. Instead, we will use the theory of rational series over a continuous semi-
ring S (see e.g., [28, III.5]). We first show that, even if the monoid Z, and more
specifically Mk(A+), is only partial, we can define (infinite) sums and (Cauchy)
product on series over Z so that S〈〈Z〉〉 forms a continuous semiring.

Let S be a continuous semiring and (Z, ·, Y) be a partial monoid. As described
in Section 3, infinite sums may be lifted from S to series in S〈〈Z〉〉. We may also

4 for all x, y, z ∈ Z, (x · y) · z is defined iff x · (y · z) is defined, and in this case
(x · y) · z = x · (y · z)

11

define the Cauchy product as usual. Note that, even though the concatenation
in Z may be partially defined, the Cauchy product in S〈〈Z〉〉 is always defined
for f, g ∈ S〈〈Z〉〉 and z ∈ Z by (f × g)(z) =

∑
x,y∈Z,z=x·y f(x) × g(y). The sum

ranges over all pairs (x, y) for which the concatenation is defined and such that
x · y = z. The sum may be finite or infinite but it is nonempty considering the
left and right partial units of z. Finally, we let 1Y be the characteristic function
of the set Y of partial units of Z and we can easily check that it is a unit for the
Cauchy product:

(f × 1Y)(z) =
∑
x,y∈Z
z=x·y

f(x)1Y (y) =
∑

x∈Z,y∈Y
z=x·y

f(x) =
∑
y∈Y
z=z·y

f(z) = f(z) .

Mimicking the proof for classical monoids, we can show the following.

Proposition 1. If S is a continuous semiring and (Z, ·, Y) is a partial monoid
then the series S〈〈Z〉〉 forms a continuous semiring (S〈〈Z〉〉,+,×, 0, 1Y).

This allows to apply the theory of rational series over continuous semirings
(see e.g., [28, III.5]). In particular, a star operation may be defined.

We can check that the semantics of pebWE in the continuous semiring
S〈〈Mk(A+)〉〉 as defined in Table 1 satisfies

[[E + F]] = [[E]] + [[F]] [[E∗]] = [[E]]∗

[[E · F]] = [[E]]× [[F]] [[E+]] = [[E]]+ .
(1)

5 Weighted Automata with Pebbles

We fix a finite set Peb of pebbles and a (continuous) semiring S. We denote by
Move = {←,→, ↑} ∪ {↓x | x ∈ Peb} the set of possible moves of an automaton.

A pebble weighted automaton (pebWA) is a tuple A = (Q,A, I,M, T) with Q
a finite set of states, A a finite alphabet, I ∈ SQ a row vector assigning an initial
weight to each state, T ∈ S〈Test〉Q a column vector assigning to each state a
polynomial over tests, and M ∈ (S〈Test〉〈Move〉)Q×Q the transition matrix.

We explain first the semantics of a pebWA on the automaton A1 represented
in Figure 2 with its matrix representation on the right.

Intuitively, we enter state 1 with weight 5. We can loop on state 1 if the
current letter is either an a or a b, in which case we move right in the word. The
weight of this loop is 2 or 3 depending on the current letter. If A1 reads letter
c while being in state 1, then it drops pebble x and restarts at the beginning of
the word in state 2. There, it moves right in the word, either staying in state 2
with weight 1 (provided the current position does not carry the pebble), or going
to state 3 with weight 7. Once we reach state 3, we must lift the pebble and go
to state 4. Then, we move right coming back to state 1.

An accepting run of A1 must start in state 1 and end in state 1. The weight of
a run is the product of the weights of its transitions. Over the natural semiring
(N∞,+,×, 0, 1), each accepting run of A1 has weight 5 × 2|u|a × 3|u|b × 7|u|c .

12

1
⊳?

5

2 3

4

(2a? + 3b?)→

c? ↓
x

¬x?→

7→

↑

→

I =
(

5 0 0 0
)

M =

(2a? + 3b?)→ c? ↓x 0 0

0 ¬x?→ 7→ 0
0 0 0 ↑
→ 0 0 0

T =

/?
0
0
0

Fig. 2. A pebWA and its matrix representation.

A2 =

s¬⊳?→

(1− s) (¬⊲? ∧ ¬⊳?)←

⊳?
0 1 2 n− 2 n− 1 n

s

1− s

s

1− s

. . .
s

1− s

s

Fig. 3. Markov Chain obtained by synchronizing A2 with a word of length n

The non-deterministic choice in state 2 induces several runs. The semantics of
the automaton is as usual the sum of the weights of all accepting runs. In our
example,

[[A1]](u) = 5× 2|u|a × 3|u|b × 7|u|c ×
∏

i∈pos(u)
ui=c

(i+ 1) .

Consider also the 2-way automaton A2 over the semiring (R∞≥0,+,×, 0, 1),
with 0 < s < 1. The matrix M of A2 admits as unique coefficient the polynomial
s¬/?→+(1−s) (¬.?∧¬/?)←, which, for clarity, we preferred to draw with two
loops in Figure 3. This is a compact and elegant way of representing a Markov
chain describing a random walk, see Figure 3. The same example was described
with a pebWE in Section 4.

Remark 2. Notice that 2-way weighted expressions/automata are strictly more
expressive than their 1-way versions (where left moves are disabled). The au-
tomaton A2 above for the random walk yields a counter-example. In fact, for
s = 1

2 , the expression/automaton associates to a word u of length n the value
1

n+1 . This is not achievable by a 1-way weighted automaton over the semiring
(R∞≥0,+,×, 0, 1) with weights in Q. Intuitively, this is a consequence of the fact
that the semantics of such an automaton is of the form a

bc with a, b ∈ Z, b 6= 0
and c ∈ N: here b can be defined as the least common denominator of the weights
appearing over transitions of the automaton. Hence, taking a word u of length
p + 1 with p a prime number greater than b is sufficient to prove that such a

13

1-way weighted automaton cannot map word u to weight 1
p . Notice that this

result strongly relies on the fact that we are dealing with infinite sums (because
of the Kleene star, or the infinite number of runs). Indeed, it was shown in [8]
that 2-way WA are not more expressive than 1-way WA when the semantics is
restricted to non-looping runs.

As for expressions, we allow macros in M and T : for a ∈ A, we use a
def
= a? ·→

and a
def
= a? · ←, for d ∈ Move, we write d instead of tt? · d. For instance, the

label of the loop on state 1 of A1 could be written 2a+ 3b.

For each p, q ∈ Q and d ∈ Move, we denote by Md
p,q ∈ S〈Test〉 the coefficient

of move d in Mp,q. For instance, M
↓x
1,2 = c? in A1. We collect these coefficients

in matrices Md = (Md
p,q) ∈ (S〈Test〉)Q×Q.

We turn now to the formal definition of the semantics of pebWA. A config-
uration of A is a tuple (u, σ, q, i, π) with u ∈ A+ a word, σ : Peb → pos(u)
a valuation, q ∈ Q the current state, i ∈ pos(u) the current position, and
π ∈ (Peb × pos(u))∗ the stack of pebbles currently dropped. Since pebbles are
reusable, the stack of pebbles may contain several occurrences of the same peb-
ble dropped on different positions. In this case, only the last occurrence of each
pebble is still visible for the automaton, older occurrences being hidden. This
mechanism mimics the ability in pebWE to reuse the same pebble x in nested
expressions x!E. We extract the visible pebbles from the stack π of dropped peb-
bles and the underlying valuation σ, hence defining a valuation σπ by induction
over π by σε = σ and σπ(x,i) = σπ[x 7→ i].

We define the semantics of pebWA in terms of a weighted transition system
TS(A) whose locations are the configurations of the automaton. The weight of
(u, σ, p, i, π) ; (u, σ, q, j, π′) is defined by

[[M→p,q]](u, σπ, i, i) if j = i+ 1 and π′ = π (S1)

[[M←p,q]](u, σπ, i, i) if j = i− 1 and π′ = π (S2)

[[M↓xp,q]](u, σπ, i, i) if j = 0, i < |u| and π′ = π(x, i) (S3)

[[M↑p,q]](u, σπ, i, i) if π = π′(y, j) for some y ∈ Peb (S4)

where [[Md
p,q]] is the semantics of Md

p,q ∈ S〈Test〉, seen as a pebWE. Note from
(S3) that a pebble cannot be dropped on position |u| in agreement with the
convention adopted for weighted expressions.

The set of transitions of TS(A) consists of those (u, σ, p, i, π) ; (u, σ, q, j, π′)
with a non-zero weight: hence TS(A) is a disjoint union of transition systems
depending on the pair (u, σ) considered. A run of A is a path ρ in TS(A). Its
weight is the product of the weights of its transitions from left to right.

Given a marked word (u, σ, i, j) ∈ Mk(A+) and two states p, q ∈ Q, we
define [[Ap,q]](u, σ, i, j) =

∑
ρ weight(ρ) where the sum ranges over all runs ρ

from configuration (u, σ, p, i, ε) to configuration (u, σ, q, j, ε). This sum could be
infinite, but is well defined since the semiring is complete. The semantics of A

14

also use the initial and terminal weights:

[[A]](u, σ, i, j) =
∑
p,q∈Q

Ip × [[Ap,q]](u, σ, i, j)× [[Tq]](u, σ, j, j) .

When reading the whole word, we simply write [[A]](u, σ) for [[A]](u, σ, 0, |u|).
Note that we can compute the set of free pebbles of an automaton, i.e., the set
of pebbles x that may be tested with x? before being dropped with ↓x. If the
automaton has no free pebble, then the underlying valuation σ is not necessary
and we simply write [[A]](u) for the semantics.

Layered automata. As observed in automaton A1, it is handy, if possible, to
visualize a pebWA in terms of layers, where each layer contains subruns where
no pebble is dropped or lifted. We will require in the following that there are a
finite number of such layers: intuitively, this means that the depth of the current
stack of pebbles is bounded by a fixed parameter K. Remark however that the
stack may contain several occurrences of the same pebble. Also, due to the 2-way
mechanism, runs may still be of unbounded size. More formally, we assume given
a function ` : Q → {0, . . . ,K} mapping each state to its layer. The top layer is
K so `(q) is the number of pebbles that can still be dropped on top of the stack.
We want to start and end the computation at the top layer so we suppose that
for all q ∈ Q, if Iq 6= 0 or Tq 6= 0 then `(q) = K. To maintain syntactically
the condition along every possible run, we also suppose for all p, q ∈ Q that if
M←p,q 6= 0 or M→p,q 6= 0 then `(q) = `(p); if M↑p,q 6= 0 then `(q) = `(p) + 1; and

for all x ∈ Peb, if M
↓x
p,q 6= 0 then `(q) = `(p) − 1. An automaton A verifying

these conditions will be called K-layered in the following. If we order states by
decreasing layers, a 2-layered automaton A = (Q,A, I,M, T) is thus of the form

I =
(
I(2) 0 0

)
, M =

N (2) D(2) 0

L(1) N (1) D(1)

0 L(0) N (0)

 , T =

T (2)

0

0

 (2)

where entries in N (i) are in S〈Test〉〈{←,→}〉, entries in L(i) are in S〈Test〉〈{↑}〉,
and entries in D(i) are in S〈Test〉〈{↓x | x ∈ Peb}〉. The entries of I(2) and T (2)

are as usual in S and S〈Test〉 respectively.

6 From Automata to Expressions

In this section, we prove that everyK-layered pebble weighted automaton admits
an equivalent pebble weighted expression. We first show that, for 2-way weighted
automata (or 0-layered pebWA), we can use the classical constructions, e.g., the
state elimination method of Brzozowski and McCluskey [11], the procedure of
McNaughton and Yamada [25] or the recursive algorithm [14]. We refer to the

15

↓
x

2→
2→

⊳? ↑

→

↓
x

(2→)+
⊳? ↑

→

x!(2→)+

→

Fig. 4. A pebWA and two equivalent generalized pebWA.

survey of Sakarovitch [30, Section 6.2] where these methods are presented and
compared for 1-way weighted automata.

In the state elimination method, states are progressively suppressed and tran-
sitions are labeled with (weighted) rational expressions. To deal with pebbles,
we will also eliminate the lower layers and subsume their computations with
expressions of the form x!E. Therefore, it is convenient to consider automata
allowing pebWE in the labels of transitions.

We first introduce these generalized pebWA. Then, we show how to compute
pebWE equivalent to the behaviors of 0-layered generalized pebWA. Finally, we
explain how to deal with drop and lift moves of K-layered automata.

6.1 Generalized Pebble Automata

We start with an example presented in Figure 4. The loop of the left automa-
ton gives rise to the iteration (2→)+ on the middle automaton. Moreover, the
drop/lift process has even been replaced with the x!− feature of pebWE in the
right automaton. This gives already the intuition of the construction of a pebWE
equivalent to a pebWA. Note that the right automaton has a single layer whereas
the left and middle ones have 2 layers.

Formally, a generalized pebWA (GpebWA) is a tuple A = (Q,A, I,M, T)
with I ∈ SQ, M ∈ (pebWE + S〈Test〉〈{↑} ∪ {↓x | x ∈ Peb}〉)Q×Q and T ∈
S〈Test〉Q. Intuitively, the entries M←p,q ·←+M→p,q ·→ have been extended to arbi-

trary pebWE MpebWE
p,q . The semantics of pebWA is easily extended to GpebWA.

In fact, we only have to replace (S1-S2) by (G1-2) below:

[[MpebWE
p,q]](u, σπ, i, j) if π′ = π . (G1-2)

The definition of K-layered automata can easily be extended to GpebWA. Lay-
ered automata are still of the form given in (2), the only difference being that
the entries of matrices N (i) are now pebWE instead of simple polynomials in
S〈Test〉〈{←,→}〉. It is clear from the definition that every (K-layered) pebWA
can be seen as a (K-layered) GpebWA.

6.2 Automata to expressions: 0-layered generalized pebWA

We deal in this section with GpebWA A = (Q,A, I,M, T) with no drop or lift
transitions, i.e., 0-layered GpebWA where the entries of the transition matrix
are all pebWE: M ∈ pebWEQ×Q.

16

We first relate the semantics of the automaton with the star of the semantic
matrix [[M]]. For each p, q ∈ Q, the entry Mp,q is a pebWE and its semantics
[[Mp,q]] ∈ S〈〈Mk(A+)〉〉 is a series over marked words. Hence, the semantic matrix
[[M]] = ([[Mp,q]])(p,q)∈Q2 ∈ S〈〈Mk(A+)〉〉Q×Q.

Recall that K = S〈〈Mk(A+)〉〉 is a continuous semiring by Proposition 1. For
each finite set Q, the semiring of matrices KQ×Q is also continuous. Hence, given
a matrix H in KQ×Q, the star matrix H∗ =

∑
n≥0H

n ∈ KQ×Q is well-defined.
Applying this to H = [[M]] we can generalize the classical relation between the
semantics of a 1-way WA and the star of a matrix of series.

Theorem 3. Let A = (Q,A, I,M, T) be a 0-layered GpebWA. For all states
p, q ∈ Q, we have [[Ap,q]] = ([[M]]∗)p,q, i.e., [[Ap,q]](u, σ, i, j) = ([[M]]∗)p,q(u, σ, i, j)
for all marked words (u, σ, i, j) ∈ Mk(A+).

Proof. We show by induction on n ≥ 0 that for every (u, σ, i, j) ∈ Mk(A+),
([[M]]n)p,q(u, σ, i, j) computes the sum of the weights of runs of length n from
configuration (u, σ, p, i, ε) to configuration (u, σ, q, j, ε).

This is true for n = 0, as 1Unit(A+)(u, σ, i, j) = 1 if and only if i = j. Then,
assuming the property for n − 1 ≥ 0, we prove it for n. A run of length n > 0
starts with a transition followed by a run of length n − 1. Hence, the sum of
the weights of runs of length n from configuration (u, σ, p, i, ε) to configuration
(u, σ, q, j, ε) is computed by∑

r∈Q,k∈pos(u)

[[M]]p,r(u, σ, i, k)× ([[M]]n−1)r,q(u, σ, k, j)

which is equal to ([[M]]n)p,q(u, σ, i, j) by definition of the matrix multiplication
induced by the Cauchy product. ut

Now, it is well known that the entries of the star of a matrix H are in the
rational closure5 of the entries of H [14]. Hence, we obtain:

Theorem 4. Let A = (Q,A, I,M, T) be a 0-layered GpebWA. We can construct
a matrix Φ(M) ∈ pebWEQ×Q which is equivalent to the automaton, i.e., such
that [[Φ(M)]] = [[M]]∗. Moreover, the entries of Φ(M) are in the rational closure
of the entries of M .

The matrix Φ(M) can be constructed from M using one of the classical
algorithm, e.g., the recursive algorithm used in the proof below. We can also
apply McNaughton-Yamada algorithm, or the state elimination method, or the
system resolution method starting from any initial state p and final state q.

Proof. We use the recursive method, due to Conway, to construct a matrix Φ(M)
of pebWE such that [[Φ(M)]] = [[M]]∗.

5 The rational closure is the closure under sum (+) concatenation (·) and star (∗).

17

Let N ∈ KQ×Q be a matrix over a continuous semiring K. For any block

decomposition N =

(
A B
C D

)
with A and D square matrices, we have [14]

N∗ =

(
A′ A′BD′

D′CA′ D′ +D′CA′BD′

)
. (3)

with D′ = D∗ and A′ = (A+BD′C)∗.
Following (3) we define Φ(M) inductively. If |Q| = 1, i.e., when M ∈ pebWE,

then we simply let Φ(M) = M∗. From the compositionality of the semantics of
pebWE (1), we obtain [[Φ(M)]] = [[M]]∗.

Next, if |Q| > 1 we consider the block decomposition M =

(
E F
G H

)
with H

of size 1. Then, we let

Φ(M) =

(
E′ E′FH ′

H ′GE′ H ′ +H ′GE′FH ′

)
. (4)

with H ′ = H∗ and E′ = Φ(E + FH ′G). We apply (3) with K = S〈〈Mk(A+)〉〉,
N = [[M]] and the block decomposition with D of size 1. Hence, we have [[E]] = A,
[[F]] = B, [[G]] = C and [[H]] = D. From the compositionality of the semantics
of pebWE (1), we obtain [[H ′]] = [[H]]∗ = D∗ = D′. By induction we get [[E′]] =
[[Φ(E + FH ′G)]] = [[E + FH ′G]]∗. Using again the compositionality (1), we get
[[E′]] = [[E+FH ′G]]∗ = A′, as well as [[E′FH ′]] = A′BD′ and [[H ′GE′]] = D′CA′.
From (3-4) we deduce [[Φ(M)]] = [[M]]∗. ut

6.3 Dynamically Marked Words

In order to deal also with drop and lift moves of GpebWA, we first describe
the semantics at a higher level, as we did in Section 4.1 for pebWE. If we only
consider weighted automata with two-way navigation, marked words are suitable
to define an equivalent semantics of pebWA. However, as soon as we introduce
drop and lift moves, it is necessary to encode the contents of the stack of pebbles
in the marked words, as it will change throughout the computation. Hence, we
consider the partial monoid (DMk(A+), ·,DUnit(A+)) of dynamically marked
words over A+ where

DMk(A+) = {(u, σ, i, π, i′, π′) | u ∈ A+, σ : Peb→ pos(u),

i, i′ ∈ pos(u), π, π′ ∈ (Peb× pos(u))∗}
DUnit(A+) = {(u, σ, i, π, i, π) | u ∈ A+, σ : Peb→ pos(u),

i ∈ pos(u), π ∈ (Peb× pos(u))∗}

and the partial concatenation is defined for all u ∈ A+, σ : Peb → pos(u),
i, i′, i′′ ∈ pos(u), π, π′, π′′ ∈ (Peb× pos(u))∗ by

(u, σ, i, π, i′, π′) · (u, σ, i′, π′, i′′, π′′) = (u, σ, i, π, i′′, π′′)

and it is undefined in all other cases. We can check that this is indeed a par-
tial monoid, so that, by Proposition 1, (S〈〈DMk(A+)〉〉,+,×, 0, 1DUnit(A+)) is a
continuous semiring.

18

6.4 Automata to expressions: K-layered generalized pebWA

It is now possible to give a natural semantics of drop and lift moves as series
over DMk(A+):

[[[↓x]]](u, σ, i, π, i′, π′) =

{
1 if i < |u|, i′ = 0, π′ = π(x, i)

0 otherwise,

[[[↑]]](u, σ, i, π, i′, π′) =

{
1 if π = π′(y, i′) for some y ∈ Peb

0 otherwise.

Actually, it is also possible to introduce dynamic pebble weighted expressions
(DpebWE) simply by replacing the x!− construct by new atoms for drop and
lift moves:

F ::= s | ϕ | → | ← | ↓x | ↑ | F + F | F · F | F ∗ .
The dynamic semantics [[[F]]] of a DpebWE is a series over DMk(A+). The se-
mantics of ↓x and ↑ is already given above. For another atom F , it is inherited
from the semantics of pebWE:

[[[E]]](u, σ, i, π, i′, π′) =

{
[[E]](u, σπ, i, i

′) if π′ = π

0 otherwise.

Finally, since S〈〈DMk(A+)〉〉 is a continuous semiring, the semantics of sum,
concatenation and star is obtained compositionnally:

[[[E + F]]] = [[[E]]] + [[[F]]] [[[E · F]]] = [[[E]]]× [[[F]]] [[[E∗]]] = [[[E]]]∗ .

We can now mimick Section 6.2 in order to translate automata into DpebWE.
For instance, the DpebWE (↓x(2→)+/?↑→)∗ is equivalent to the pebWA on the
left of Figure 4.

Actually, we can deal with DpebWA which are automata A = (Q,A, I,M, T)
where transitions are labelled with DpebWE, i.e., M ∈ DpebWEQ×Q. The se-
mantics is obtained as for pebWA via a weighted transition system TS(A): the
weight of a transition (u, σ, p, i, π) ; (u, σ, q, i′, π′) is now [[[Mp,q]]](u, σ, i, π, i

′, π′).
Then, for (u, σ, i, π, i′, π′) ∈ DMk(A+), we define [[[Ap,q]]](u, σ, i, π, i′, π′) as the
sum of weights of the runs from configuration (u, σ, p, i, π) to configuration
(u, σ, q, i′, π′). Copying, mutatis mutandis, the proofs of Theorems 3 and 4 we
obtain:

Proposition 5. Let A = (Q,A, I,M, T) be a DpebWA. For all p, q ∈ Q, we
have [[[Ap,q]]] = ([[[M]]]∗)p,q. Moreover, the matrix Φ(M) ∈ DpebWEQ×Q (whose
entries are in the rational closure of the entries of M) satisfies [[[Φ(M)]]] = [[[M]]]∗.

In particular, the semantics of a DpebWA verifies: [[[A]]] = [[[I]]]× [[[M]]]∗× [[[T]]].

Remark 6. The partial monoid Mk(A+) is embedded in DMk(A+) by identifying
the marked word (u, σ, i, i′) with the dynamically marked word (u, σ, i, ε, i′, ε).
Also, any pebWA A = (Q,A, I,M, T) is a DpebWA and the semantics over
Mk(A+) coincide: [[Ap,q]](u, σ, i, i′) = [[[Ap,q]]](u, σ, i, ε, i′, ε).

19

Hence, Proposition 5 constructs a DpebWE equivalent over Mk(A+) to the
pebWA A. But our aim is to construct a pebWE which is equivalent to A. This
is achieved below using as a tool the detour via DpebWE.

First, we show that pebWE can be seen as a fragment of DpebWE if we
interpret x!E as a macro for ↓x · E · /? · ↑. Indeed with this interpretation, the
semantics coincide:

Lemma 7. Let E be a pebWE and let (u, σ, i, π, i′, π′) ∈ DMk(A+). Then,
[[[E]]](u, σ, i, π, i′, π′) 6= 0 implies π′ = π. Moreover, if π′ = π then

[[[E]]](u, σ, i, π, i′, π′) = [[E]](u, σπ, i, i
′) .

Proof. We proceed by structural induction on the pebWE. For atoms of pebWE,
the result is clear from the definition of [[[−]]]. For sum, concatenation and star,
the result is trivial since both semantics are compositional. The interesting case
is x!E which is interpreted as ↓x ·E ·/? · ↑ in DpebWE. By definition of [[[−]]] and
the Cauchy product in S〈〈DMk(A+)〉〉 we have

s = [[[↓x · E · /? · ↑]]](u, σ, i, π, i′, π′) =
∑
y∈Peb

[[[E]]](u, σ, 0, π(x, i), |u|, π′(y, i′)) .

Since E ∈ pebWE, we obtain by induction that each term of the sum above is
null if π(x, i) 6= π′(y, i′). Hence, s 6= 0 implies π′ = π. Moreover, if π′ = π then
either i′ 6= i and s = 0 = [[x!E]](u, σπ, i, i

′), or i′ = i and

s = [[[E]]](u, σ, 0, π(x, i), |u|, π(x, i)) = [[E]](u, σπ(x,i), 0, |u|) = [[x!E]](u, σπ, i, i)

where the second equality holds by induction and the third one follows from
σπ(x,i) = σπ[x 7→ i]. ut

We will extend Theorem 4 to any K-layered GpebWA A = (Q,A, I,M, T).
For i ≤ K, we let Q(i) = `−1(i) be the set of states in layer i. Note that a
GpebWA is also a DpebWA hence we may apply the above results.

Proposition 8. Let A = (Q,A, I,M, T) be a 1-layered GpebWA. We can con-
struct a 0-layered GpebWA A(1) = (Q(1), A, I(1),M (1), T (1)) which is equivalent

to A: [[Ap,q]] = [[A(1)
p,q]] for all p, q ∈ Q(1).

We use the layered decomposition given in (2). To simplify the notation, we

write N = N (1), D = D(1), L = L(0) and P = N (0) so that M =

(
N D
L P

)
.

Let p, q ∈ Q(1) be in layer 1 and p′, q′ ∈ Q(0) be in layer 0. Then, D is a drop-
matrix whose (p, p′)-entry can be written

∑
x∈Peb d

x
p,p′ · ↓x with dxp,p′ ∈ S〈Test〉.

The (q′, q)-entry of the lift-matrix L can be written eq′,q · ↑ with eq′,q ∈ S〈Test〉.
Now, P is a Q(0) × Q(0) matrix of pebWE and we may apply Proposition 5 in
order to get a matrix Φ(P) of pebWE which is equivalent to the iteration of P :
[[[Φ(P)]]] = [[[P]]]∗. From (D,P,L), we define the Q(1) ×Q(1) pebWE-matrix G by

Gp,q =
∑
p′,q′

∑
x∈Peb

dxp,p′ · x!
(
Φ(P)p′,q′ · eq′,q · →∗

)
.

20

The matrix G is also denoted C(D,P,L) below. Note that the maximal pebble-
depth of the entries of G is at most 1 plus the maximal pebble-depth of the
entries of P since the construction Φ(P) does not increase the pebble-depth.

Lemma 9. We have [[[G]]] = [[[D]]]× [[[P]]]∗ × [[[L]]].

Proof. Recall that when viewing pebWE as DpebWE we interpret the expression
x!E as ↓x · E · /? · ↑. Now, it is easy to check that [[[→∗ · /? · ↑]]] = [[[↑]]], hence
the pebWE x!

(
Φ(P)p′,q′ · eq′,q · →∗

)
is equivalent to ↓x · Φ(P)p′,q′ · eq′,q · ↑. We

deduce that
[[[Gp,q]]] =

∑
p′,q′

[[[Dp,p′]]]× [[[Φ(P)p′,q′]]]× [[[Lq′,q]]] .

Since [[[Φ(P)]]] = [[[P]]]∗ by Proposition 5, the result follows. ut

To conclude the proof of Proposition 8, we simply set M (1) = N +G. Now,
for all p, q ∈ Q(1), we have [[[Ap,q]]] = ([[[M]]]∗)p,q by Proposition 5. Moreover, the
upper-left of [[[M]]]∗ is ([[[N]]] + [[[D]]]× [[[P]]]∗ × [[[L]]])∗ which is, by Lemma 9, equal
to ([[[N]]] + [[[G]]])∗ = [[[M (1)]]]∗. Using again Proposition 5 we get for all p, q ∈ Q(1)

that [[[A(1)
p,q]]] = ([[[M (1)]]]∗)p,q = ([[[M]]]∗)p,q = [[[Ap,q]]]. Using Remark 6, we deduce

that [[Ap,q]] = [[A(1)
p,q]].

Proposition 8 can then be generalized to an arbitrary number of layers.

Proposition 10. Let A = (Q,A, I,M, T) be a K-layered GpebWA. We can
construct a 0-layered GpebWA A(K) = (Q(K), A, I(K),M (K), T (K)) which is

equivalent to A: [[Ap,q]] = [[A(K)
p,q]] for all p, q ∈ Q(K).

Proof. We use again the notation of the layered decomposition. The proof is by
induction on K. When K = 0 we simply have A(0) = A, i.e., M (0) = N (0).
For K > 0, we set M (K) = N (K) + C(D(K),M (K−1), L(K−1)) where the matrix
M (K−1) is obtained by induction. Correctness follows from Proposition 8. ut

Finally, from Theorem 4 and Proposition 10 we deduce:

Theorem 11. Let A = (Q,A, I,M, T) be a K-layered GpebWA. The matrix
H = Φ(M (K)) of pebWE satisfies [[Hp,q]] = [[Ap,q]] for all p, q ∈ Q(K).
Therefore, the pebWE E(A) = I × H × T is equivalent to A: [[E(A)]] = [[A]].
Moreover, the pebble-depth of E(A) is at most K if A is a K-layered pebWA.

7 From Expressions to Automata

We describe in this section how to transform a weighted expression with pebbles
to an equivalent weighted automaton with pebbles. Expressions are very conve-
nient to denote in a rather clear and intuitive way the quantitative functions that
we want to compute. On the other hand, automata are much more amenable to
efficient algorithms, e.g., for evaluation as shown in Section 8. Hence, we need
efficient translations from expressions to automata. Such translations have been

21

well-studied both in the boolean and in the weighted (1-way) cases. Glushkov’s
translation (or Berry-Sethi) is acknowledged to be among the best ones. The
good news is that this construction can be adapted to cope with 2-way moves
and pebbles as we will show in this section. The construction is by structural
induction on the expression.

Theorem 12. For each pebWE E we can construct a layered pebWA A(E)
such that [[A(E)]] = [[E]], i.e., for all (u, σ, i, j) ∈ Mk(A+) we have

[[A(E)]](u, σ, i, j) = [[E]](u, σ, i, j) .

Moreover, the number of layers in A(E) is the pebble-depth of E.

We define the literal-length ``(E) of an expression as the number of occur-
rences of moves (← or→) plus twice the number of occurrences of ! (in x!−). We
will see that the number of states of A(E) will be 1 + ``(E). For a 2-way expres-
sion E of pebble-depth 0 (2-way-WE) the literal-length is simply the number of
moves, which are the positions to be marked for Glushkov’s construction.

For the rational operations (+, ·, ∗, and +), we can still use the classical
constructions even though we are working with pebWA. We recall these con-
structions below for the sake of completeness. The main novelty is indeed the
treatment of pebbles.

We adopt the presentation of standard automata by Sakarovitch [30]. A stan-
dard automaton A = (Q,A, I,M, T) has a single initial state ι with (initial)
weight 1, all other states have initial weight 0. Moreover, the initial state ι has
no ingoing transition. We use both the graphical representation and the matrix
representation of an automaton:

A = ι

c
NJ U A =

(
1 0

) 0 J

0 N

 c

U

Since terminal weights allow polynomials over Test with the mapping T : Q →
S〈Test〉, we will be able to cope with expressions of the form E · ϕ? and E · s
without adding unnecessary states. For s ∈ S and ϕ ∈ Test, we simply write s
for stt? and ϕ for 1ϕ, and also → for 1tt?→ and ← for 1tt?←.

We start with atoms. Compared to the classical (1-way) translation, a slight
difference is that we are using tests (ϕ) and moves (←,→) instead of letters
(a = a?→) for the atoms. The automata for the atoms are defined as

A(s) = ι
s A(→) = ι

→ 1

A(ϕ) = ι
ϕ

A(←) = ι
← 1

and we can easily see that they are equivalent to the corresponding atoms: if E
is an atom then [[E]](u, σ, i, j) = [[A(E)]](u, σ, i, j) for all (u, σ, i, j) ∈ Mk(A+).

22

The constructions for sum and concatenation are as usual.

A1 +A2 = ι

c1 + c2

N1J1 U1

N2J2 U2

A1 · A2 = ι

c1c2

N1J1 U1c2

N2
c1J2 U2

U1J2

In the concatenation, we are overloading the product notation as follows. The
product of two monomials s1ϕ1 and s2ϕ2 from S〈Test〉 should be understood
as (s1s2)(ϕ1 ∧ ϕ2) to stay in S〈Test〉. Hence c1c2 and the entries of U1c2 are
in S〈Test〉. Similarly, in U1J2, the product of a monomial s1ϕ1 ∈ S〈Test〉 and
a monomial s2ϕ2d (with d ∈ Move) is defined as (s1s2)(ϕ1 ∧ ϕ2)d. Hence, the
entries of the matrices c1J2 and U1J2 are in S〈Test〉〈Move〉. The matrix repre-
sentation is therefore:

A1 · A2 =
(

1 0 0
)

0 J1 c1J2

0 N1 U1J2

0 0 N2

c1c2

U1c2

U2

For instance, the automaton for 2a = 2 · a? · → is computed as follows:

ι

2

· ι

a?

· ι
→

1

= ι
2a

1

Similarly, for the expression E = (2a? + b?)→(2b? + 3c?) we compute the con-
catenation of 3 automata as follows:

ι

2a? + b?

· ι
→

1

· ι

2b? + 3c?

= ι
2a+ b

2b? + 3c?

Finally, the star is also computed as usual with the following construction.

A∗ = ι

c′
N + Uc′Jc′J Uc′

A∗ =
(

1 0
) 0 c′J

0 N + Uc′J

 c′

Uc′

where c′ ∈ S〈Test〉 is defined to be equivalent to c∗ as follows. Since c ∈ S〈Test〉
and test formulas are closed under boolean connectives, we find an equivalent

23

expression c ≡
∑
i siϕi with (ϕi)i pairwise incompatible test formulas (i 6= j

implies ϕi ∧ ϕj unsatisfiable). Then we can easily check that [[c]]∗ = [[c′]] with
c′ =

∑
i s
∗
iϕi. Notice that s∗i ∈ S is well-defined since the semiring is complete.

As for the concatenation, we can check that the entries of Uc′ are in S〈Test〉
and the entries of Uc′J are in S〈Test〉〈Move〉. The strict iterationA+ is computed
similarly by simply changing the final weight of ι to c′′ =

∑
i s

+
i ϕi (note that

0+ = 0), but keeping the other occurrences of c′ in c′J , Uc′J and Uc′.
For instance, for expression E = →+a?←+b?→+c?←+d?→+ introduced in

Section 4, we can compute the automaton as follows:

A(→+) = ι

→

→ 1 A(→+ · a?) = ι

→

→ a?

A(E) = ι

→

→

←

a?←

→

b?→

←

c?←

→

d?→ 1

Finally, we give the construction for x!E which should drop the pebble on the
current position, evaluate E from beginning to end (/?) of the word and finally
lift the pebble. From a standard automaton A equivalent to E, we construct the
following standard automaton x!A :

x!A = ι′

ι

↓
x

τ ′

NJ U⊳?↑

x!A =
(

1 0 0 0
)

0 0 ↓x 0

0 0 0 0

0 0 0 J

0 U/?↑ 0 N

0

1

0

0

 (5)

For instance, consider again expression E below used in Section 4:

E =→+ a?x!
(

(¬x?→)∗ b? (¬x?→)+ c?←+ d?→+
)
→∗ .

The construction applied to E gives the following pebWA.

ι′
→

→

a?↓
x

¬x?→

¬x?→

(b? ∧ ¬x?)→

(b? ∧ ¬x?)→

¬x?→ ←

c?←

→

d?→ ⊳?↑

τ ′
→

→

1

24

Let us briefly discuss the complexity of our translation. Clearly, the number
of states of the automaton A(E) is 1 plus the literal-length ``(E) of expression
E. The time complexity is cubic in the length of E. It should be possible to get
a quadratic algorithm by generalizing the notion of star normal form introduced
in [9] for word languages or the algorithm presented in [1] for classical weighted
expressions and automata.

To conclude this section, we prove the correctness of the constructions. This
correctness is trivial for the atoms. For sum, product and star, the proof is similar
to the case of classical (1-way) weighted expressions and automata. For the sake
of completeness, we give below the arguments for product and star, then we deal
with the x!− construction.

From Proposition 5, we know that [[[A]]] = [[[I]]] × [[[M]]]∗ × [[[T]]]. Using the
special form of standard automata and (3), we have

[[[M]]] =

 0 [[[J]]]

0 [[[N]]]

 [[[M]]]∗ =

 1 [[[J]]][[[N]]]∗

0 [[[N]]]∗

and we get [[[A]]] = [[[c]]] + [[[J]]][[[N]]]∗[[[U]]].

For the concatenation, the matrix N of A = A1 · A2 satisfies (applying (3)):

[[[N]]] =

 [[[N1]]] [[[U1J2]]]

0 [[[N2]]]

 [[[N]]]∗ =

 [[[N1]]]∗ [[[N1]]]∗[[[U1J2]]][[[N2]]]∗

0 [[[N2]]]∗

 .

Hence we obtain

[[[A]]] = [[[c]]] + [[[J]]][[[N]]]∗[[[U]]]

= [[[c1c2]]] + [[[J1]]][[[N1]]]∗[[[U1c2]]]

+ [[[J1]]][[[N1]]]∗[[[U1J2]]][[[N2]]]∗[[[U2]]] + [[[c1J2]]][[[N2]]]∗[[[U2]]]

= ([[[c1]]] + [[[J1]]][[[N1]]]∗[[[U1]]])([[[c2]]] + [[[J2]]][[[N2]]]∗[[[U2]]]) = [[[A1]]][[[A2]]]

For the star construction, the correctness is obtained as follows using classical
rational identities and [[[c]]]∗ = [[[c′]]]:

[[[A]]]∗ = ([[[c]]] + [[[J]]][[[N]]]∗[[[U]]])∗ = ([[[c]]]∗[[[J]]][[[N]]]∗[[[U]]])∗[[[c]]]∗

= ([[[c′]]][[[J]]][[[N]]]∗[[[U]]])∗[[[c′]]]

= [[[c′]]] + [[[c′]]][[[J]]]([[[N]]]∗[[[U]]][[[c′]]][[[J]]])∗[[[N]]]∗[[[U]]][[[c′]]]

= [[[c′]]] + [[[c′]]][[[J]]]([[[N]]] + [[[U]]][[[c′]]][[[J]]])∗[[[U]]][[[c′]]]

= [[[c′]]] + [[[c′J]]]([[[N + Uc′J]]])∗[[[Uc′]]] = [[[A∗]]]

It remains to prove the correctness of the new construction for the x!− op-
eration. Assume for simplicity that A is a 0-layered automaton, then A′ = x!A
is a 1-layered automaton and its layered decomposition is shown in (5). We

25

write the corresponding block decomposition of the transition matrix of A′ as

M ′ =

(
0 D
L M

)
where M is the transition matrix of A, D is the drop matrix with

only non-zero entry being Dι′,ι = ↓x, and L is the lift matrix with non-zero en-
tries in the column U/?↑. By (3), the upper-left block of [[[M ′]]]∗ is [[[D]]][[[M]]]∗[[[L]]],
hence we have

[[[A′]]] = ([[[M ′]]]∗)ι′,τ ′ = ([[[D]]][[[M]]]∗[[[L]]])ι′,τ ′ = [[[G]]]ι′,τ ′

where G = C(D,M,L) (see Lemma 9). Let Q be the set of non-initial states of
A. We have,

Gι′,τ ′ =
∑
q∈Q x!

(
(Φ(M)ι,qUq)/?→∗

)
≡ x!

(∑
q∈Q Φ(M)ι,qUq

)
.

We conclude using

[[A]] = [[I]][[M]]∗[[T]] = [[I]][[Φ(M)]][[T]] = [[c+
∑
q∈Q Φ(M)ι,qUq]]

and x!(c + F) ≡ x!F when c ∈ S〈Test〉 and F ∈ pebWE since we only consider
nonempty words and the x!− construct requires to read the whole word.

8 Evaluation of pebble weighted automata

In this section, we study the evaluation problem of a K-layered pebWA A with
reusable pebbles: given a word u and a valuation σ : Peb → pos(u), compute
[[A]](u, σ). The challenge is important since, even if the word is fixed, the number
of accepting runs may be infinite. We will prove in particular that the complexity
of the evaluation problem is only linear in the size of the input word when the
number p of reusable pebbles is at most 1.

The computations are done with matrix operations sum, product and star.
But it is important to know the cost in scalar operations. This is well-known
for sum and product of matrices. We show below that computing the star of a
square matrix has the same complexity as computing the product of matrices.
Indeed, we can improve the cubic complexity of product and star by using a
better algorithm for computing the product of matrices.

Lemma 13. Let K be a continuous semiring and N ∈ Kn×n be a square matrix
of dimension n. We can compute N∗ with O(n) scalar star operations and O(n3)
scalar sum and product operations.

Proof. We use (3) with a block decomposition of N such that D is a scalar, i.e.,
a block of size 1. Assuming that A′ is already computed, (3) allows to compute
N∗ with one scalar star operation and a quadratic number of scalar sum and
product operations. The result follows by induction. ut

Before explaining, how to evaluate efficiently pebWA, let us recall how this
can be done for classical finite-state automata. In case of a deterministic finite-
state automaton, we can easily check whether a word u is accepted by following

26

the single computation in the automaton labeled by u, from left to right: at every
position of the word, we only have to keep one memory cell containing the state
reached after the current prefix of u. This memory cell can be updated with each
letter in constant time using the transition function. On the overall, this leads
to a complexity O(|u|) (in particular, independent of the automaton size). For a
non-deterministic finite-state automaton, this complexity is not achievable any-
more. A first solution consists of determinizing the automaton and then applying
previous method: we obtain a complexity O(2n + |u|) where n is the number of
states of the NFA. This method cannot be extended to weighted automata, as
they are not necessarily determinizable. Hence, we would rather use a dynamic
programming method. We will pay the price of non-determinism by using more
memory cells during the left-to-right computation of the runs of the automaton
over the word. We use one memory cell sq for every state q of the automaton.
Cell sq is a boolean which is true after reading a word u if and only if there
exists a run labeled u leading from an initial state to state q. Cells are initially
true for initial states and false otherwise. The update of the cells when reading
a letter a is done by the multiplication of the row vector of cells (of dimension
1 × |Q|) with the adjacency matrix of the transitions of the automaton labeled
with letter a. Hence, each update requires a number of operations O(n2), leading
to an overall complexity of O(n2|u|). This method can naturally be extended to
the weighted setting using memory cells containing values in S. More precisely,
cell sq holds the sum of weights of runs starting in an initial state and ending
in state q. The update now use the weighted transition matrix and can be done
with the same complexity.

We now explain how to evaluate layered pebWA with similar methods. Let
A = (Q,A, I,M, T) be a K-layered pebWA. As in Section 6.4, for k ≤ K, we let
Q(k) = `−1(k) be the set of states in layer k. For each layer k we let nk = |Q(k)|.
The total number of states is then n = |Q| =

∑K
k=0 nk.

Theorem 14. Given a K-layered pebWA with p ≥ 0 reusable pebbles and a
word u ∈ A+, we can compute with O((p+ 1)|Q|3|u|p+1) scalar operations (sum,
product, star) the values [[Aq,q′]](u, σ) for all layers k ≤ K, states q, q′ ∈ Q(k)

and valuations σ : Peb→ pos(u).

Proof. We follow the same basic idea, recalled previously, used to evaluate clas-
sical weighted automata: memory cells are associated with each state computing
weights of the runs from left to right. The 2-way navigation is then resolved by
adding more memory cells (a quadratic number with respect to n), namely those
that compute weights of the back and forth loops. Finally, we deal with layers
inductively. In the whole proof, we fix a word u ∈ A+.

Recall that, for all valuations σ : Peb → pos(u), layers k ∈ {0, . . . ,K} and
states q, q′ ∈ Q(k), the value [[Aq,q′]](u, σ) is the sum of weights of the runs from
configurations (u, σ, q, 0, ε) to (u, σ, q′, |u|, ε): observe that the stack of pebbles
is empty at the beginning of these runs, hence they stay in layers k, k− 1, . . . , 0.
In the following, these values (and others that will be defined later) will be

27

. (u, σ) . (u, σ)

q

q′

q

q′

Fig. 5. Runs of a 2-way automaton

grouped into matrices indexed by subsets of states. In particular, we let B
(k)
σ =

([[Aq,q′]](u, σ))q,q′∈Q(k) be such a matrix indexed by Q(k) ×Q(k).

Let k ∈ {0, . . . ,K} be a layer of the automaton. If k > 0, we assume by in-
duction that for all valuations σ : Peb → pos(u) we have already computed the

matrices B
(k−1)
σ . For each valuation σ : Peb→ pos(u), we will compute the ma-

trix B
(k)
σ reading the word u from left to right. Formally, for 0 ≤ i ≤ |u|, we define

the matrix B→iσ = (B→iσ,q,q′)q,q′∈Q(k) where B→iσ,q,q′ is the sum of weights of the
runs from configuration (u, σ, q, 0, ε) to (u, σ, q′, i, ε) with intermediary configu-
rations of the form (u, σ, r, j, π) with π 6= ε or j ≤ i (See left of Figure 5). These
are the runs which move from the beginning of the word to position i, staying
on the left of position i, unless some pebbles are currently dropped (if a pebble
is dropped, then automaton can read the whole word). In order to compute in-
ductively B→iσ using B→i−1σ , we also define the matrices B xi

σ = (B xi
σ,q,q′)q,q′∈Q(k)

where B xi
σ,q,q′ is the sum of weights of the runs from configuration (u, σ, q, i, ε)

to (u, σ, q′, i, ε) with intermediary configurations of the form (u, σ, r, j, π) with
π 6= ε or j ≤ i (See right of Figure 5). Again, these runs stay on the left of their
starting position except when they drop pebbles.

By definition we have B→0
σ = B x0

σ . Moreover, for 0 < i ≤ |u|, a run from
position 0 to position i can be decomposed as a run from position 0 to position
i− 1 followed by a right move, followed by a loop over position i:

B→iσ = B→i−1σ ×M→,(k)σ,i−1 ×B xi
σ .

Here and in the following, we will denote by M
d,(k)
σ,i the Q(k) × Q(k)-matrix

with (q, q′)-coefficient given by [[Md
q,q′]](u, σ, i, i) for d ∈ {→,←}: this coefficient

denotes the weight of taking a transition with move d from state q to state q′

on position i with current valuation σ. We will also need similar matrices for

drop and lift moves. We denote by M
↓x,(k)
σ,i the Q(k)×Q(k−1)-matrix with (q, q′)-

coefficient given by [[M
↓x
q,q′]](u, σ, i, i). Without loss of generality, we assume that

lift moves only occur on position |u| of the word u, hence we do not need to
give position and valuation (as no pebble can be dropped on this position) to
define similar matrix for lift: let M↑,(k) be the Q(k−1)×Q(k)-matrix with (q, q′)-

coefficient given by [[M↑q,q′]](u, σ, |u|, |u|) for any valuation σ.

28

We now explain how to compute the matrices B xi
σ inductively from left to

right. At the bottom level (k = 0) no pebble can be dropped and we get

B x0
σ = Id

B xi
σ =

(
M
←,(k)
σ,i ×B xi−1

σ ×M→,(k)σ,i−1

)∗
if 0 < i ≤ |u| .

If k > 0, the run may immediately drop some pebble x ∈ Peb on position
0 ≤ i < |u| resulting in the nested computation of

N
(k)
σ,i =

∑
x∈Peb

M
↓x,(k)
σ,i ×B(k−1)

σ[x7→i] ×M
↑,(k) .

If i > 0, the run may also start by moving left, hence we obtain

B x0
σ =

(
N

(k)
σ,0

)∗
B xi
σ =

(
N

(k)
σ,i +M

←,(k)
σ,i ×B xi−1

σ ×M→,(k)σ,i−1

)∗
if 0 < i < |u|

B x|u|
σ =

(
M
←,(k)
σ,|u| ×B x|u|−1

σ ×M→,(k)σ,|u|−1

)∗
using the hypotheses ensuring that no pebble is dropped on the last position.

Finally, once all these matrices obtained, we can compute the behavior of
layer k with the formula

B(k)
σ = B→|u|σ .

To conclude this proof, it remains to count the number of scalar operations in
the whole computation. For this, we first count the number of matrix operations
(sum, product and star) and then infer the number of scalar operations assuming
standard algorithms on matrices (quadratic for sum, cubic for product and cubic
for star using Lemma 13).

Fix a layer k. For all valuations σ (there are |u|p such valuations), matrices
B→iσ , B xi

σ must be computed for every 0 ≤ i ≤ |u|. When k = 0, the total number
of matrix operations (sum, product, star) is O(|u|p × |u|), which corresponds to

O(n30 × |u|p+1) scalar operations. For k > 0, the computation of N
(k)
σ,i takes

O(p(nkn
2
k−1 + n2knk−1)) scalar sum and products for each σ and i. Hence, the

total number of scalar operations for computing all matrices B→iσ , B xi
σ of layer

k is now O(p(nkn
2
k−1 + n2knk−1 + n3k)|u|p+1).

Summing over all k ≤ K, we get a total number of O((p+ 1)n3|u|p+1) scalar

operations since n30 +
∑K
k=1 nkn

2
k−1 + n2knk−1 + n3k ≤ n3. ut

It is important to notice that the complexity with respect to the pebWA does
not depend on the numberK of layers but only on the total number of states. The
number of pebbles occurs in the exponent but since we allow reusable pebbles,
this number may be rather small. This is in the same vein as restricting the num-
ber of variable names, e.g., in first-order logic, without restricting the quantifier

29

depth. Restricting the number of variable names often results in much lower com-
plexity. For instance, the complexity of the evaluation (model-checking) prob-
lem of first-order logic over relational structures drops from PSPACE to PTIME
when the number of variable names is bounded [33,34].

We have seen in Section 2.2 that weighted LTL formulas can be described
with pebWE using two pebbles x and y. Actually, the same constructions are
valid if we reuse pebble x instead of y. For instance, until may be described with

EϕUψ(x) = .?→∗x?
(
(x!(E¬ψ(x)←∗Eϕ(x)))→

)∗
(x!Eψ(x))→∗/? .

Therefore, any weighted LTL formula ϕ may be described with a pebWE Eϕ
using a single pebble x. The pebble-depth of Eϕ being the nesting depth of
modalities in ϕ. Using Theorem 12 we obtain a layered pebWA Aϕ equivalent
to Eϕ. The number K of layers in Aϕ is the pebble-depth of Eϕ, i.e., the nesting
depth of ϕ. Moreover, Aϕ uses only one pebble. The number of states of Aϕ is
linear in the size of ϕ. Hence, Theorem 14 yields an evaluation algorithms using
O(|ϕ|3|u|2) scalar operations. We see below that there is an algorithm which is
also linear in |u|.

We say that a K-layered pebWA A = (Q,A, I,M, T) is strongly K-layered
if in each layer only a fixed pebble may be dropped: for all i ≤ K, there is a
pebble xi ∈ Peb such that for all q, q′ ∈ Q and x ∈ Peb, if `(q) = i and x 6= xi
then M

↓x
q,q′ = 0.

Theorem 15. Given a strongly K-layered pebWA with p > 0 reusable pebbles
and a word u ∈ A+, we can compute with O(|Q|3|u|p) scalar operations (sum,
product, star) the values [[Aq,q′]](u, σ) for all layers k ≤ K, states q, q′ ∈ Q(k)

and valuations σ : Peb→ pos(u).

Proof. The idea is to decrease by 1 the exponent in the complexity by reducing
the total number of valuations σ for which we must compute the matrices used
in the proof of Theorem 14. Indeed, knowing the unique pebble that may be
dropped in a given layer permits to forget the precise position of this pebble
when computing the matrices of this layer.

Let 0 ≤ k ≤ K be a layer of A. In addition to matrices defined in the proof
of Theorem 14, we introduce new matrices Bi

y

σ and Bi→σ in order to compute the
sum of weights of runs which stay on the right of their starting position (except
when they drop pebbles). For every states q, q′ ∈ Q(k) and 0 ≤ i ≤ |u|, we
denote by Bi

y

σ,q,q′ the sum of weights of the runs from configuration (u, σ, q, i, ε)
to (u, σ, q′, i, ε) with intermediary configurations of the form (u, σ, r, j, π) with
π 6= ε or j ≥ i. Finally, we denote by Bi→σ,q,q′ the sum of weights of the runs from
configuration (u, σ, q, i, ε) to (u, σ, q′, |u|, ε) with intermediary configurations of
the form (u, σ, r, j, π) with π 6= ε or j ≥ i.

Apparently, it seems that we will compute twice as many matrices, however
we will gain in complexity by replacing the usual valuation σ by its restriction σ′

to the pebbles in Peb\{xk}. Indeed, with j = σ(xk), we can compute the ma-

trix B
(k)
σ by splitting the word u into three parts: positions appearing before j,

30

position j and positions appearing after j. Hence, for 0 < j = σ(xk) < |u|, we

can compute B
(k)
σ with (notice that σ′[xk 7→ j] = σ)

B(k)
σ = B→j−1σ′ ×M→,(k)σ′,j−1×

(
M
↓xk

,(k)

σ,j ×B(k−1)
σ ×M↑,(k)

+M
←,(k)
σ,j ×B xj−1

σ′ ×M→,(k)σ′,j−1

+M
→,(k)
σ,j ×Bj+1

y

σ′ ×M←,(k)σ′,j+1

)∗
×M→,(k)σ,j ×Bj+1→

σ′ .

This formula can easily be adapted when j = 0. It remains to compute the
matrices B→iσ′ and B xi

σ′ for 0 ≤ i < |u|, and the matrices Bi

y

σ′ and Bi→σ′ for
0 < i ≤ |u|. First, if k > 0 then pebble xk ∈ Peb may be dropped on position
0 ≤ i < |u| (with i 6= σ(xk)) resulting in the nested computation of

N
(k)
σ′,i = M

↓xk
,(k)

σ′,i ×B(k−1)
σ′[xk 7→i] ×M

↑,(k) .

We let N
(0)
σ′,i = 0. Then, it is easy to verify that for 0 < i < |u|:

B x0
σ′ =

(
N

(k)
σ′,0

)∗
and B→0

σ′ = B x0
σ′

B xi
σ′ =

(
N

(k)
σ′,i +M

←,(k)
σ′,i ×B xi−1

σ′ ×M→,(k)σ′,i−1

)∗
B→iσ′ = B→i−1σ′ ×M→,(k)σ′,i−1 ×B xi

σ′

B
|u|

y

σ′ = Id and B
|u|→
σ′ = Id

Bi

y

σ′ =
(
N

(k)
σ′,i +M

→,(k)
σ′,i ×Bi+1

y

σ′ ×M←,(k)σ′,i+1

)∗
Bi→σ′ = Bi

y

σ′ ×M
→,(k)
σ′,i ×Bi+1→

σ′ .

The computation of the four types of matrices, for all valid positions i and all
partial valuations σ′, requires globally O(|u|p−1×|u|) matrix operations. Hence,
this improves the overall complexity as announced. ut

Notice that if p ≤ 1 then any K-layered pebWA is strongly K-layered. In this
case, we get an evaluation algorithm using O(|Q|3|u|) scalar operations. This is
in particular the case for pebWA arising from weighted LTL formulas.

9 Discussion

To conclude, let us briefly mention some interesting topics that could be studied
in the future. As already stated in Section 7, one should try to obtain a quadratic
algorithm for the translation of pebWE to pebWA. Next, as in Section 8 for
the evaluation problem, one should develop efficient algorithms for quantitative
model-checking, emptiness, containment, etc.

We have no restriction over the syntax of expressions or automata. In partic-
ular, 2-way moves may give rise to unbounded loops which is why we considered

31

continuous semirings. We believe that continuous semirings are suitable for most
applications. But in case one needs to work without this hypothesis, it is possible
to put restrictions on the syntax of expressions and automata in order to rule
out unbounded loops and have a well-defined semantics in arbitrary semirings.
For instance, one may restrict iterations to forward proper or backward proper
expressions.

The correctness of our translations between pebWE and pebWA relies on the
partial monoid structure of marked words, which does not use concatenation of
words. We can also endow marked trees with such a partial monoid structure.
Therefore, pebWE can be extended to trees with a semantics in the contin-
uous semiring of series over marked trees. We obtain in this way a weighted
extension of caterpillar expressions or Regular XPath. Similarly, one may define
tree-walking pebWA. We believe that the translations presented in this paper
also apply to pebWE over trees and tree-walking pebWA.

A more prospective problem is to replace the x!− construction of pebWE
with a chop product E ; F which evaluates E on the current prefix and F on
the current suffix. We can easily simulate this relativization mechanism using
a pebble to mark the current position. The converse is an interesting problem
which needs to be investigated: is it possible to simulate pebbles with chop
products?

Acknowledgements The authors would like to thank Benedikt Bollig and Jacques
Sakarovitch for helpful discussions.

References

1. C. Allauzen and M. Mohri. A unified construction of the Glushkov, Follow, and
Antimirov automata. In Proceedings of MFCS’06, volume 4162 of LNCS, pages
110–121. Springer, 2006.

2. G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48:117–126, 1986.

3. J. Berstel and Ch. Reutenauer. Noncommutative rational series with applications,
volume 137 of Encyclopedia of Mathematics & Its Applications. Cambridge, 2011.

4. J.-C. Birget. State-complexity of finite-state devices, state compressibility and
incompressibility. Theory of Computing Systems, 26:237–269, 1993.

5. M. Bojańczyk. Tree-walking automata. In Proceedings of LATA’08, volume 5196
of LNCS, pages 1–2. Springer, 2008.

6. M. Bojańczyk, M. Samuelides, T. Schwentick, and L. Segoufin. Expressive power
of pebble automata. In Proceedings of ICALP’06, volume 4051 of LNCS, pages
157–168. Springer, 2006.

7. B. Bollig and P. Gastin. Weighted versus probabilistic logics. In Proceedings of
DLT’09, volume 5583 of LNCS, pages 18–38. Springer, 2009.

8. B. Bollig, P. Gastin, B. Monmege, and M. Zeitoun. Pebble weighted automata and
transitive closure logics. In Proceedings of ICALP’10, volume 6199 of LNCS, pages
587–598. Springer, 2010.

9. A. Brüggeman-Klein. Regular expressions into finite automata. Theoretical Com-
puter Science, 120:197–213, 1993.

32

10. A. Brüggeman-Klein and D. Wood. Caterpillars: A context specification technique.
Markup Languages, 2(1):81–106, 2000.

11. J. A. Brzozowski and E. J. McCluskey. Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. on Electronic Computers, 12(9):67–76, 1963.

12. P. Buchholz and P. Kemper. Model checking for a class of weighted automata.
Discrete Event Dynamic Systems, 20(1):103–137, Jan. 2009.

13. F. Ciesinski and M. Größer. On probabilistic computation tree logic. In Validation
of Stochastic Systems, volume 2925 of LNCS, pages 333–355. Springer, 2004.

14. J. Conway. Regular Algebra and Finite Machines. Chapman & Hall, 1971.
15. M. Droste and W. Kuich. Semirings and formal power series. In Handbook of

Weighted Automata [16], chapter 1, pages 3–27.
16. M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. EATCS

Monographs in Theoretical Computer Science. Springer, 2009.
17. J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In Jewels are

forever, pages 72–83. Springer, 1999.
18. Z. Ésik and W. Kuich. Modern Automata Theory. 2007. Electronic book, http:

//dmg.tuwien.ac.at/kuich.
19. P. Gastin and B. Monmege. Adding pebbles to weighted automata. In Proceedings

of CIAA’12, volume 7381 of LNCS, pages 28–51. Springer, 2012.
20. N. Globerman and D. Harel. Complexity results for two-way and multi-pebble

automata and their logics. Theoretical Computer Science, 169:161–184, 1996.
21. V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys, 16:1–

53, 1961.
22. K. Knight and J. May. Applications of weighted automata in natural language

processing. In Handbook of Weighted Automata [16], chapter 14, pages 555–579.
23. D. Kuske. Schützenberger’s theorem on formal power series follows from kleene’s

theorem. Theoretical Computer Science, 401(1-3):243–248, 2008.
24. E. Mandrali. Weighted LTL with discounting. In Proceedings of CIAA’12, volume

7381 of LNCS, pages 353–360. Springer, 2012.
25. R. McNaughton and H. Yamada. Regular expressions and state graphs for au-

tomata. IRE Trans. on Electronic Computers, 9(1):39–47, 1960.
26. I. Meinecke. A weighted µ-calculus on words. In Proceedings of DLT’09, volume

5583 of LNCS, pages 384–395. Springer, 2009.
27. B. Ravikumar. On some variations of two-way probabilistic finite automata models.

Theoretical Computer Science, 376(1-2):127–136, 2007.
28. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
29. J. Sakarovitch. Rational and recognisable power series. In Handbook of Weighted

Automata [16], chapter 4, pages 103–172.
30. J. Sakarovitch. Automata and expressions. In AutoMathA Handbook. 2012. To

appear.
31. M. Samuelides and L. Segoufin. Complexity of pebble tree-walking automata. In

Proceedings of FCT’07, volume 4639 of LNCS, pages 458–469. Springer, 2007.
32. M.-P. Schützenberger. On the definition of a family of automata. Information and

Control, 4:245–270, 1961.
33. M. Vardi. The complexity of relational query languages. In Proceedings of

STOC’82, pages 137–146. ACM Press, 1982.
34. M. Vardi. On the complexity of bounded-variable queries. In Proceedings of

PODS’95, pages 266–276. ACM Press, 1995.

33

http://dmg.tuwien.ac.at/kuich
http://dmg.tuwien.ac.at/kuich

	Adding Pebbles to Weighted Automata Easy Specification & Efficient Evaluation

