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Abstract We present a model for genome size evolution that takes into account both
local mutations such as small insertions and small deletions, and large chromosomal
rearrangements such as duplications and large deletions. We introduce the possibility
of undergoing several mutations within one generation. The model, albeit minimalist,
reveals a non-trivial spontaneous dynamics of genome size: in the absence of selection,
an arbitrary large part of genomes remains beneath a finite size, even for a duplication
rate 2.6-fold higher than the rate of large deletions, and even if there is also a systematic
bias toward small insertions compared to small deletions. Specifically, we show that
the condition of existence of an asymptotic stationary distribution for genome size
non-trivially depends on the rates and mean sizes of the different mutation types.
We also give upper bounds for the median and other quantiles of the genome size
distribution, and argue that these bounds cannot be overcome by selection. Taken
together, our results show that the spontaneous dynamics of genome size naturally
prevents it from growing infinitely, even in cases where intuition would suggest an
infinite growth. Using quantitative numerical examples, we show that, in practice, a
shrinkage bias appears very quickly in genomes undergoing mutation accumulation,
even though DNA gains and losses appear to be perfectly symmetrical at first sight.
We discuss this spontaneous dynamics in the light of the other evolutionary forces
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proposed in the literature and argue that it provides them a stability-related size limit
below which they can act.

Keywords Genome size · Molecular evolution · Chromosomal rearrangements ·
Markov chain · Doeblin’s condition

1 Introduction

Genome lengths span several order of magnitudes across all living species (Koonin
2008, 2009) and the origin of these variations is still unclear. Total genome size does
not correlate well with organismal complexity, a paradox called “C-value paradox”
in the 1970s (Thomas 1971). When it was discovered that DNA comprises not only
genes but also a lot of non-coding sequences, it felt logical to rather search for a cor-
relation between gene number and organismal complexity. There again, no obvious
correlation was found, a phenomenon called the “G-value paradox” (Betrán and Long
2002; Hahn and Wray 2002). One reason could be the difficulty to define an objective
and quantitative measure of organismal complexity. But even if such a good measure
was available, its correlation with genome size or gene number could very well be low
anyway. Indeed, genome size results from a tension between multiple evolutionary
pressures, some acting at the mutation level, other at the selection level, some tending
to make the genome grow, other tending to make it shrink. It is thus essential to under-
stand how each pressure acts individually in order to disentangle their interactions.

The formalism we propose here sets a general framework for the study of the
impact of mutational mechanisms on genome length with two important features: (i)
genomes can undergo both small indels and large chromosomal rearrangements and
(ii) genomes undergo a size-dependent number of mutations rather than limiting the
mutations to one per replication. This framework allows us to give a simple condition
for the existence and uniqueness of a stationary distribution for genome size in the
absence of selection, and we characterize how each type of mutation impacts the
spontaneous dynamics of genome size. We find that for a wide range of mutation
rates, the spontaneous dynamics of genome size naturally prevents it from growing
indefinitely.

We present the details of the mathematical model and the hypotheses that underlie
the biological mechanisms for mutations and replication in Sect. 2. In Sect. 3, we
analyze the evolution of genome size in the absence of selection. It shows that a
stationary distribution exists even if duplications are twice as frequent as deletions. In
Sect. 4, we use a continuous approximation to analyze further the outcome of mutations
in a single generation and show that one generation is already enough for genome size
to be bounded, independently from the initial sizes of the genomes. In Sect. 5, we
generalize the results to various distributions for the size of mutations and to the
presence of selection. As the bounds found in Sect. 4 apply for every generation, we
argue that selection cannot help overcome the bounds found in Sect. 4 but determines
how the population behaves with respect to these bounds. In order to illustrate how our
results apply in biologically plausible situations, we propose numerical simulations of
genome size evolution in mutation accumulation experiments in Sect. 6. We discuss
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A Model for Genome Size Evolution 2251

the extensions and limits of the model, as well as the links with previous studies, in
Sect. 7.

2 A Model for Genome Size Evolution

2.1 Definition of the Model

We consider four types of mutations that occur in natural genomes: small insertions
and deletions (hereafter called indels), large deletions and duplications. In this study,
we suppose that the impact of mutations on a genome of size s0 is as follows:

• For small insertions, 1 to lins bases are added to the genome. The size after one
mutation belongs to {s0 + 1, . . . , s0 + lins}. The transition probabilities can be
defined arbitrarily, but we suppose they do not depend on the starting state s0. The
state s0 = 0 can be escaped through small insertions.

• For small deletions, 1 to lsdel bases are removed from the genome (if possible).
The size after one mutation belongs to {max(0, s0 − lsdel), . . . , max(0, s0 − 1)}.
The transition probabilities can be defined arbitrarily, but should not depend on
the starting size s0. All the transitions that go below 0 are rewired to 0. If s0 = 0,
the size after the small deletion is 0 with probability 1.

• For duplications, 1 to s0 bases are added to the genome. The size after one mutation
belongs to {s0 + 1, . . . , 2s0}. We suppose that each final state is reached with
probability 1/s0. If s0 = 0, the size after the duplication is 0 with probability 1.

• For large deletions, 1 to s0 bases are removed from the genome. The size after one
mutation belongs to {0, . . . , s0−1}. We suppose that each final state is reached with
probability 1/s0. If s0 = 0, the size after the large deletion is 0 with probability 1.

We suppose that small deletions (resp. insertions) and large deletions (resp. dupli-
cations) occur according to different mechanisms (thus at different rates). The fact that
the indel distribution does not depend on s0 is not strictly necessary, but makes one
part of the proof simpler (see Remark 4 in Appendix 1). The important assumption is
that there is an upper bound on the size of indels (lins for small insertions and lsdel for
small deletions), but these bounds may be arbitrarily large (several kb for example).
Indels can be thought as representing two kinds of events. First, replication slippage
of the DNA polymerase can lead to the loss or gain of a few base pairs. Second, the
transposition of transposable elements leads to the gain of up to 10 kb. They can be
incorporated as small insertions in our model. However, note that here the insertion
rate will be defined per base pair whereas the transposition rate is normally given per
transposable element. One could imagine a more complex model where two organi-
zation levels are considered: the base pair level for some mutational mechanisms and
the copy number level for other elements such as transposable elements or tandemly
repeated sequences, but that would increase the number of parameters. By choosing
the base pair level and expressing the mutation rate per base pair, the spontaneous rate
of transposition will be higher than normally expected. Hence the pressure toward
genome growth is high in the model. Therefore, the convergence toward finite sizes
proved in this growth-prone model (Theorem 2) should arguably hold in the more
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realistic model where transposable elements replicate more moderately based on their
copy number.

For large deletions and duplications, we have assumed that the number of base
pairs that are lost or gained follows a uniform distribution between 1 and the current
genome size. Mechanistically, if the two end points of a deletion (or a duplication)
are taken at random along the genome, the resulting distribution of losses (or gains)
is uniform. We use these distributions as a guideline through the paper but this is not
necessary for showing that the genome size remains bounded. We will see that the proof
holds for a more general family of distributions (see Sect. 5, Corollary 1). It is also
important to note that these distributions reflect the spontaneous events. Estimations of
the distributions of rearrangements based on fixed events (filtered by natural selection)
yield exponential or, more generally, gamma distributions (Sankoff et al. 2005; Darling
et al. 2008). The spontaneous distributions are generally not accessible because large
events are likely to be lethal and thus not observable. Data from bacteria suggest that
they could follow a lognormal law (see Sect. 6, Fig. 3).

There is evidence that large events occur in all species. In bacterial strains culti-
vated in laboratory conditions, amplifications and numerous large deletions through
ectopic recombination have been observed, the size of single deletions reaching up to
more than 200 kb under weak selection (Porwollik et al. 2004; Nilsson et al. 2005).
What is more, at least locally, the deletion sizes might be uniform because of ran-
dom insertions of transposable elements (Cooper et al. 2001). In the human genome,
duplications and large deletions causing genetic diseases have been identified. For
example, in half of the cases, the Charcot-Marie-Tooth disease is caused by a 1.4 Mb
duplication. Another example is the Smith-Magenis syndrom, often associated with
a partial deletion of chromosome 17, spanning from 950 kb to 9 Mb (Lupski 2007).
For comparison purposes, a deletion of 9 Mb is approximately twice the size of the
whole genome of E. coli K12 (4.6 Mb). Additionally, whole chromosomes, or even
genomes, can be lost or duplicated because of segregation problems during cell divi-
sion. Whole genome duplications have been selected frequently through the history
of life and numerous genomes bear traces of such events (Jaillon et al. 2009).

For each type of mutation, we define a mutation rate expressed as a number of
mutations per base pair per generation: μins for small insertions, μsdel for small dele-
tions, μldel for large deletions and μdup for duplications. We call μ = μins + μsdel +
μldel +μdup the total mutation rate per base pair per generation (note that in this paper,
the term “mutations” refers to small indels and chromosomal rearrangements). For
every generation, we suppose that the occurrences of mutations of type t ype along a
genome follow independent Poisson processes with rate μtype, where μtype is the rate
of the mutation considered. The total number of mutations per generation is given by
a Poisson law with parameter μs0, where s0 is the size of the genome considered at
the beginning of the generation. As we shall see later (Sect. 5), allowing for several
mutations per generation is essential when we include selection in the model. As a
result of the independence of the Poisson processes, the probability that any given
mutation is a small insertion (for example) is μins/μ. We can write the mutations
as transitions on N, the space of all possible genome sizes. We chose not to have a
predefined maximal genome size to ensure that infinite growth is possible and that the
convergence to a stationary distribution is not trivial.
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A Model for Genome Size Evolution 2253

We define two transition matrices on this space. The first, called M1, describes the
action of a single mutation. The second matrix, called MG , gives the transitions for
one generation, when all mutations have been drawn according to independent Poisson
processes.

Definition 1 M1 = ((M1)i j )i, j∈N where (M1)i j is the probability that a genome
having initial size i ends up having size j after exactly one mutation. M1 is a stochastic
matrix. The transition rates from state i to state j are computed according to the
definitions above. M1 gives the evolution of genome size mutation after mutation.

Definition 2 MG = ((MG)i j )i, j∈N\{0} where (MG)i j is the probability that a genome
having initial size i ends up having size j after one generation. Several mutations can
occur in one generation depending on the rates μsdel, μins, μldel and μdup. MG gives
the evolution of genome size generation after generation.

Importantly, we define MG on N
∗ = N\{0} instead of N. All individuals ending

up with length 0 after complete replication are automatically reassigned to the state
with length 1. While 0 is not an absorbing state in the Markov chain (N, M1) because
of small insertions, it would be absorbing in the Markov chain (N, MG) because the
number of mutations per replication given by the Poisson law is 0. Therefore, if we
kept this state, it would partially affect the spontaneous dynamics of genomes: even
if genomes tended do grow, there would be a nonzero probability that they remain
trapped in the absorbing state. In (N∗, MG), we made sure that there is no absorbing
state (there is a nonzero probability to leave every state), thus no trivial stationary
distribution.

We define a population vector νt such that ∀t ∈ N, νt is a probability measure on
N

∗, corresponding to the density of an infinite population. νt (s) represents the fraction
of genomes with size s at generation t . We consider an arbitrary starting population ν0.
In the special case where all genome states confer the same probability of reproduction
(no selection), the evolution of the population is given by

νt+1 = νt MG (1)

Because MG is stochastic and does not depend on t , Eq. (1) can be interpreted
as describing the evolution of the time-homogeneous Markov chain (N∗, MG) in the
space of genome sizes.

2.2 Fundamental Properties of the Gain and Loss Distributions

Because mutations will accumulate with time (within a generation or along a lineage),
it is essential to understand how the effects of these mutations on genome size will “add
up” in order to understand whether genomes have a tendency to grow or to shrink. The
model includes processes of different nature. Small indels have additive effects and
the average impact of an indel does not depend on the initial genome size. For equal
rates of small insertions and small deletions (μins = μsdel) and for the same length
distribution of insertions and small deletions (lins = lsdel) in particular, the transitions
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due to small indels are symmetrical. On the contrary, duplications and large deletions
have a multiplicative effect on genome size and the average gains and losses vary with
the starting genome size s0. Explicitly, the average gains and losses are

1 + 2 + · · · + s0

s0
= s0(s0 + 1)

2s0
� s0

2
. (2)

As illustrated in Fig. 1a, for equal duplication and large deletion rates, the transitions
might look symmetrical because for a given starting point, gains and losses compensate
each other. However, this does not give a good indication for our process, as in fact we
need to know whether a loss or a gain that was just undergone will be compensated,
taking into account the fact that genome size has changed between the two mutations.
In linear scale, this question is difficult to answer because average gains and losses
keep changing. Indeed, as depicted on Fig. 1a, a smaller genome undergoes smaller
average gains and losses. For example, if a genome undergoes a deletion followed
by a duplication, the loss will be on average bigger than the gain, as the genome
will have reached a smaller size between the two mutations. This remains true if it
undergoes the duplication first, so we expect an average loss, even if the distributions
are symmetrical and happen at the same rate. Hence, the overall average change in
genome size is difficult to predict, as it is the sum of ever-changing average gains and
losses.

In order to aggregate losses and gains efficiently, we need to find a scale in which the
average impacts of deletions and duplications do not change with genome size, so we
can simply add them up without worrying about intermediate states. This is the case
in logarithmic scale (Fig. 1b), in which the gain and loss distributions become nearly
invariant by translation. It becomes clear that the duplication/large deletion process is
de facto biased toward shrinkage as, on average, approximately 2.59 duplications are
needed to revert a deletion (see Property 1 below). For indels, the linear scale is well-
adapted (Fig. 1c) but, as they are asymptotically negligible compared to duplications
and large deletions (Fig. 1d), we choose logarithmic scale over linear scale.

Definition 3 We call Sn the random variable giving the state of (N, M1) after n muta-
tions. In probability notation, the starting point s0 ∈ N is written as a subscript, as in
Prs0 [Sn = k] = (Mn

1)s0k , the probability that the size k ∈ N is reached in n mutations,
starting from s0. For simplicity, when the starting size s0 has no influence, we drop
the subscript, as in Prs0

[
Sn+1 = j |Sn = i

] = Pr
[
Sn+1 = j |Sn = i

] = (M1)i j .

Property 1 Let �(s) = E
[
log(Sn+1)|Sn = s

]−E
[
log(Sn)|Sn = s

]
, the average size

of one-mutation jumps in logarithmic scale, starting from s.

• if the (n+1)th mutation is a large deletion, �(s) −→
s→+∞ −1.

• if the (n+1)th mutation is a duplication, �(s) −→
s→+∞ 2 log 2 − 1.

• if the (n+1)th mutation is an indel, �(s) −→
s→+∞ 0.

The proof of this property is given at the beginning of Appendix 1 (restated as
Property 5).
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A B

DC

Fig. 1 Schematic densities of transitions in linear and logarithmic scales for two different starting states s0
(schematic transition density in gray) and s′

0 (schematic transition density in black). The arrows indicate
the size of the average jumps for each type of mutation. a In linear scale, for equal rates, the duplication
and large deletion processes look symmetrical, but the average jumps depend on the starting point. b In
logarithmic scale, the apparent symmetry is broken: there is a clear tendency to shrink and the average
jumps become nearly equal for every starting point. c The linear scale is perfectly adapted for indels that
occur at equal rates when the distribution does not depend on the starting size. d The logarithmic scales
breaks the symmetrical properties of indels, but their impact becomes smaller with the initial size

3 Existence and Uniqueness of a Stationary Distribution for the Generational
Markov Chain (N∗, MG)

Equation (1) corresponds to the Markov chain (N∗, MG), it describes the evolution of
genome size in the absence of selection. We will show the existence and uniqueness
of a stationary distribution for genome size using the following extension of Doeblin’s
condition.

Theorem 1 (Doeblin’s condition in g steps) Let M be a transition probability matrix
on a state space S with the property that, for some integer g ≥ 1, some state i f ∈ S and
ε > 0, (Mg)i i f ≥ ε for all i ∈ S. Then M has a unique stationary probability vector
π , (π)i f ≥ ε. In other words, for all initial distributions μ, the system converges to
the distribution given by π . Mathematically,

‖μMt − π‖ ≤ 2(1 − ε)
� t

g 
, t ≥ 0.

In this definition and in the rest of this article, the norm is the 1-norm, e.g., ‖μ‖ =∑
i∈X

∣∣μi

∣∣. A proof of this theorem can be found in Stroock (2005). In this section,
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we will use Doeblin’s condition in g = 2 steps (generations) to prove the following
theorem.

Theorem 2 (Stationary distribution for genome size without selection) If (2 log 2 −
1)μdup < μldel, then the Markov chain (N∗, MG) has a unique asymptotic stationary
probability vector ν∞. For any initial distribution ν0, the distribution of genome sizes
converges to ν∞. Mathematically,

lim
t→∞ ‖ν0Mt

G − ν∞‖ = 0

Biologically, the convergence of the distribution implies that, even after a long time
of evolution, genome size does not tend to infinity: an arbitrary large part of genomes
is located beneath a finite size. The rate of small insertions and small deletions does
not impend the convergence of the system. In particular, the rate of transposition of
transposable elements can be arbitrarily large, genomes will still converge toward
finite sizes. What is more, genome size remains finite for a duplication rate μdup as
large as �2.6 higher than the rate of large deletions μldel.

The remainder of this section is dedicated to the proof of this theorem and can be
skipped without impeding the understanding of the results.

To prove that Doeblin’s condition is met, we have to evaluate the generational
transitions in MG . In order to do this, we need to study the single mutation level first.
In the mutational Markov chain (N, M1), every state communicates with its neighbors.
More precisely, it is possible to gain exactly one base pair through small insertions or
duplications and to lose exactly one base pair by small deletions or large deletions.
By combining these transitions, we can imagine a mutational path starting from any
initial genome size to any final size, in a finite number of mutations. At the generation
level, these mutational paths may exactly occur with some positive probability given
by the Poisson processes. Thus all the states in (N∗, MG) can transit to any state in
N

∗ in one step (generation).

3.1 Concerns to Overcome

Even though all the transitions in (N∗, MG) are strictly positive, Doeblin’s condition is
not trivially met. Because N

∗ is infinite, the probability associated to some transitions
may, and will, become arbitrarily small, so there is no trivial lower bound ε > 0 as
demanded in Doeblin’s condition. The infinite size of the matrix is the main concern
here, because a number of classical theorems (such as Perron–Frobenius) do not apply.
What is more, there is no absorbing state, so there is no trivial stationary distribution.
The important property is that in logarithmic scale, duplications and large deletions
overcome small indels and become invariant by translation (Property 1). The diffi-
culty of the proof of Theorem 2 is that this behavior is only asymptotic (it is a good
description for large genomes).
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3.2 Sketch of the Proof

We will subdivide the space of genome states in two subspaces, a finite subspace
Xsmall ⊂ N

∗ of genomes smaller than a specific size s̃, and an infinite subspace
X large ⊂ N

∗ of genomes larger than s̃. We will show that a final genome size s f ≤ s̃
can be reached in g = 2 generations with a probability greater than a certain ε > 0,
regardless of the starting genome size s0.

• If s0 ∈ Xsmall, this condition is easily met because the subspace is finite. This will
be formally stated in Lemma 1.

• If s0 ∈ X large, the probability to reach s f in two generations is at least the probabil-
ity to reach a state in Xsmall at the first generation and then to reach s f from there.
For the first generation, we will show that as long as duplications are not much
more frequent than deletions (μdup < 2.59μldel approximately), large genomes
tend to become smaller, reach a smaller size in a finite time and stay around this
smaller size. This will be formally stated in Lemma 2. We will also use Cheby-
shev’s inequality to show that the number of mutations in one generation is indeed
sufficient to shrink below s̃. For the second generation, we will use again Lemma 1.

Lemma 1 Suppose we have a non-empty and finite subset of possible genome sizes
X ⊂ N

∗. Then there is s f ∈ X and ε1 > 0 such that (MG)si s f ≥ ε1 for all si ∈ X.

Proof Pick any s f ∈ X . As X is finite, the transition probabilities toward s f are
bounded below by a real value ε1. As just seen in the main text, every state is accessible
by any other state in (N∗, MG) with strictly positive probability, thus ε1 > 0. ��

This lemma shows that Doeblin’s condition applies trivially for MG if we restrict
genome size a priori. However, in our model, genomes may be arbitrarily large. We
will show that no matter how large they are, they will reach the same finite set of states
ultimately under the condition of the theorem.

Lemma 2 If (2 log 2 − 1)μdup < μldel, there exists δ > 0 and a size threshold s̃ ∈ N

such that

(a) ∀n ≥ 0,∀s ≥ s̃, E
[
log(Sn+1)|Sn = s

] ≤ E
[
log(Sn)|Sn = s

] − δ.
(b) ∃ε′ > 0, ∀n ≥ 0,

Prs0

[
Sn ≤ s̃

] ≥
{

ε′ if s0 ≤ s̃

ε′
(

1 − log s0
log s̃+nδ

)
if s0 > s̃

(where log is arbitrarily extended by log 0 = 0)

Details of the proof for Lemma 2 are presented in Appendix 1. This proof is done
by looking at the general behavior for large genomes (with size >s̃) and return times
for small genomes (with size ≤s̃). It involves several steps. We begin by looking at
the impact of each mutation on genome size in the scale adapted to the mutations that
scales most with genome size. As stated in Property 1, asymptotically, large deletions
and duplications overcome local mutations and determine the spontaneous behavior.
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The balance between duplications and deletions decides whether large genomes will
tend to grow or to shrink. If (2 log 2 − 1)μdup < μldel, the tendency is toward smaller
genomes and we can find a threshold s̃ above which genomes shrink by at least some
(relative) amount δ on average. We show that the probability for genomes to get below
the s̃ threshold at least once progressively tends to 1, when the number n of mutations
increases (parenthesized part of the lower part of claim (b)).

In parallel, we show that a fixed fraction of genomes starting below s̃ remains
always there. To do so, we show that starting from s̃ and aggregating with s̃ the states
below s̃ represents a worst-case scenario in terms of genome growth. We study the
time of first returns to s̃ in this worst-case scenario. We prove that the expected value
of the first return time is finite and, using a theorem based on return times, derive the
upper part of claim (b). This also implies that no matter how far above s̃ the genome
size starts, once it is reached, a fixed fraction remains there forever (explaining the
presence of ε′ in the two parts of claim (b)).

As detailed below, we complete the demonstration of Theorem 2 by showing that
for large genomes, the number of mutations in one generation is indeed sufficient to
shrink below s̃ (at least asymptotically) by linking the mutation chain (N, M1) to the
generation chain (N∗, MG).

Proof (of Theorem 2) We call Gt the random variable that describes the state of
(N∗, MG) at generation t . Let s̃ ∈ N be the critical size given by Lemma 2. We
subdivide the space of genome states into the finite subset Xsmall = {1 ≤ s ≤ s̃} and
the infinite subset X large = {s > s̃} = N\Xsmall. We will show that some final genome
size s f ≤ s̃ can be reached in g = 2 generations with a probability greater than ε > 0,
regardless of the starting genome size s0.

Case s0 ≤ s̃ (s0 ∈ Xsmall): The probability to reach size s f after two generations is
at least the probability to reach s f and then to stay on s f . We can apply Lemma 1 to
Xsmall

∃s f ≤ s̃, ∃ε1 > 0, ∀s0 ≤ s̃, Pr
[
Gt+1 = s f |Gt = s0

] ≥ ε1. (3)

This is true in particular if s0 = s f .

∀s0 ≤ s̃, Pr
[
Gt+2 = s f |Gt = s0

] ≥ (ε1)
2.

Case s0 > s̃ (s0 ∈ X large): The probability to reach s f ≤ s̃ in two generations is at least
the probability to reach a state in Xsmall at the first generation and then to reach size
s f from there. We begin by considering the first step, that is, Pr

[
Gt+1 ≤ s̃|Gt = s0

]
.

This transition probability is obtained by summing the probability transitions after n
mutations, (Sn)n∈N, weighted by the probability that n mutations occur within one
generation. The number of mutations N follows a Poisson distribution with parameter
μs0.

Pr
[
Gt+1 ≤ s̃|Gt = s0

] =
∑

n≥0

Prs0

[
Sn ≤ s̃

] (μs0)
n

n! e−μs0 .
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According to Lemma 2,

∃ε′ > 0, Prs0

[
Sn ≤ s̃

] ≥ ε′
(

1 − log s0

log s̃ + nδ

)
.

In order for this relation to be meaningful, we look for n∗(s0) such that ∀n ≥
n∗(s0), Prs0

[
Sn ≤ s̃

] ≥ ε′/2. We find n∗(s0) = (2 log s0 − log s̃)/δ. This is the
number of mutations that are needed to make sure that the probability of going below
s̃ at least once is more than 1/2. By dropping the first terms of the sum, we obtain

Pr
[
Gt+1 ≤ s̃|Gt = s0

] ≥
∑

n≥n∗(s0)

Pr
[
Sn ≤ s̃|S0 = s0

] (μs0)
n

n! e−μs0

thus

Pr
[
Gt+1 ≤ s̃|Gt = s0

] ≥ ε′

2
Pr

[
N ≥ (2 log s0 − log s̃)/δ

]
.

When s0 goes to +∞, we have (2 log s0 − log s̃)/δ � μs0 = E [N ]. What is more,
σ [N ] = √

μs0. This means that when s0 tends to infinity, (2 log s0 − log s̃)/δ is
below E [N ] by a number of standard deviations that tends to infinity. The one-sided
Chebyshev inequality implies that Pr

[
N ≥ (2 log s0 − log s̃)/δ

]
tends to 1. Because

this nonzero limits exists and because the probability is always strictly positive, it is
necessarily bounded below by some positive number. Multiplication by ε′/2 does not
change that fact, hence

∃ε2 > 0, Pr
[
Gt+1 ≤ s̃|Gt = s0

] ≥ ε2.

Once a state s j ∈ Xsmall is reached, we apply the relation given by Lemma 1 for the
second generation with the same s f as in (3)

∀s0 > s̃, Pr
[
Gt+2 = s f |Gt = s0

] ≥ ε2ε1.

Taking ε = ε1 ×min{ε1, ε2} gives the desired lower bound for Doeblin’s condition
in two steps for (N∗, MG). ��

4 Quantitative Bounds for the Distribution Using a Continuous Approximation

Theorem 2 shows that without selection, the size distribution converges toward a spe-
cific distribution ν∞. From a theoretical point of view, the quantiles of this distribution
give bounds that indicate where the population will asymptotically be found. However,
the proof gives very little quantitative information about the location of these bounds.
In order to be more precise, we need to take into account the second moments of the
transition distributions. The proof of Theorem 2 relies on the fact that, asymptoti-
cally, the effect of indels become negligible compared to deletions and duplications
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(Property 1) already for the first-order moments. We use this remark to simplify the
computations of the second moments and the bounds for the quantiles of the size
distribution by considering a simplified and continuous model.

Definition 4 We consider a genome with starting size s0 ∈ R
∗+ that undergoes only

independent large deletions and duplications. We call Ŝn ∈ R
∗+ the genome length after

n mutations. The size evolution is given by Ŝn+1 = λn Ŝn , where λn ↪→ U([0, 1]) if
the nth mutation is a deletion and λn ↪→ U([1, 2]) if it is a duplication. In log scale,
log Ŝn+1 = log λn + log Ŝn . We call Jn = log λn . As in the general case, we assume
that in one generation the number of deletions and duplications are Poisson-distributed
with parameters μldels0 and μdups0 and follow independent Poisson processes. We call
Ŝ f the genome size at the end of the generation.

Property 2 Because the mutations follow independent processes, the (Jn)n∈N are
independent, identically distributed and do not depend on Ŝn. What is more,

E [Jn] = E
[
log λn|del.

]
Pr [deletion] + E

[
log λn|dup.

]
Pr

[
duplication

]

= − μldel

μldel + μdup
+ (2 log 2 − 1)

μdup

μldel + μdup

Similarly we can obtain the second moment (thus the standard deviation)

E

[
J 2

n

]
= 2(μldel + (1 − log 2)2μdup)

μldel + μdup
.

Proof The results follow from integration by parts, namely E
[
log λn|del.

] =
∫ 1

0 log xdx = −1, E
[
log λn|dup.

] = ∫ 2
1 log xdx = 2 log 2 − 1 and for the second

moment
∫ 1

0 log2 xdx = 2,
∫ 2

1 log2 xdx = 2(1 − log 2)2. ��

Property 3 Es0

[
log Ŝn

]
= log s0 + nE [Jn] and σs0

[
log Ŝn

]
= √

nσ [Jn] by the

independence of the jumps. The Central Limit Theorem states that, asymptotically,
log Ŝn is normally distributed.

Under the continuous approximation, we have a simple jumping process that is
space-homogeneous in log scale. As the two first moments are finite, it asymptotically
behaves like biased diffusion because of the central limit theorem. The standard devia-
tion increases more slowly than the mean is shifted so the expected value gives a good
description of the whole distribution. The bias condition is very simple: if E [Jn] < 0,
the genome shrinks on average, if E [Jn] > 0, it grows on average with every mutation.
The shrinkage condition is the same as for the discrete model: genomes asymptotically
shrink if and only if μldel > (2 log 2 − 1)μdup.

The main difference with the discrete case is that the relative amount by which
genomes shrink is identical whatever the starting position (even for small genomes)
and it can lead log Ŝn to have negative values, which was not possible in the discrete
space. This means that once the genome becomes small (in the sense of the proof of
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Theorem 2) it keeps getting smaller so there is no need to prove that it will remain
small (as we did in Lemma 2). This is because there are no local mutations, which
could have a strong effect on small genomes.

Thus, for large genomes, the behavior of the discrete Markov chain (N, M1) is close
to the continuous approximation and is similar to biased diffusion. When genomes
become smaller, the bias may become weaker because of indels and discretization
effects. On the border, the state s = 0 is a wall that cannot be crossed. Therefore, the
discrete system is composed of a wall on one side, biased diffusion on the infinite side
and an uncharacterized behavior in between. If the diffusion is biased toward the wall
(μldel > (2 log 2 − 1)μdup), it is easy to imagine that the population will end up next
to the wall, even though its exact final position is partly determined by small indels.

We now compute the distribution of genome size in the continuous model after one
generation by weighting the (log Ŝn)n∈N with the Poisson distribution.

Property 4 By definition, for all x ∈ R,

Prs0

[
log Ŝ f ≤ x

]
=

∑

n≥0

Prs0

[
log Ŝn ≤ x

] ((μldel + μdup)s0)
n

n! e−(μldel+μdup)s0 .

The expected value is Es0

[
log Ŝ f

]
= log s0 + s0((2 log 2 − 1)μdup − μldel) and the

standard deviation is σs0

[
log Ŝ f

]
= √

s0

√
2(log 2 − 1)2μdup + 2μldel.

The proof is given in Appendix 1. We introduce now a parameter k that will be
used to compute the fraction of the population located beyond the mean of genome
size after one generation plus k standard deviations. We begin by computing the latter
quantity depending on s0.

Lemma 3 Let k ≥ 1 and Qk(s0) = exp
(
Es0

[
log Ŝ f

]
+ kσs0

[
log Ŝ f

])
. We call

A = μldel−(2 log 2−1)μdup and B =
√

2(log 2 − 1)2μdup + 2μldel, so that Qk(s0) =
exp(log s0 − As0 + k B

√
s0). If (2 log 2 − 1)μdup < μldel,

1. Qk(s0) reaches a maximum for

smax,(k)
0 = 1

A
+ k2 B2

8A2

(

1 +
√

1 + 16A

B2

)

2. Qk(s0) = s0 for a unique value s(k)
fixed = k2 B2/A2 ≥ smax,(k)

0 .

The proof is straightforward and detailed in Appendix 1. The general shape of the
curve and the points smax,(k)

0 and s(k)
fixed are depicted on Fig. 2 in the case were k = 1

and μdup = μldel = 10−6. By using Chebyshev’s inequality, Qk can be related to the
quantiles of the distribution and we obtain the following proposition.

Proposition 1 Suppose (2 log 2 − 1)μdup < μldel and k ≥ 1.
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Fig. 2 Upper bound for the median of the distribution (plot of Qk with k = 1, μdup = μldel = 10−6).

The x axis is the starting size and the y axis gives an upper bound for the median after one generation. s(1)
fixed

is the point above which the probability that the genome shrinks is more than 0.5, smax,(1)
0 is the starting

point from which growth seems to be the most likely. A genome starting from smax,(1)
0 may grow above

s(1)
fixed, but it will probably shrink in the next step. The gray area indicates this accessible but transient set

of states

1. There is a bound s̃(k)
max such that

∀s0 ∈ R
∗+, Prs0

[
Ŝ f ≤ s̃(k)

max

]
≥ 1 − 1

1 + k2

In other words, we can find a threshold s̃(k)
max independent from s0 below which an

arbitrary large part of the distribution can be found after one generation of the
deletion/duplication process.

2. Let

s̃(k)
fixed = k2 2(log 2 − 1)2μdup + 2μldel

(μldel − (2 log 2 − 1)μdup)2

we have

∀s0 ≥ s̃(k)
fixed, Prs0

[
Ŝ f ≤ s̃(k)

fixed

]
≥ 1 − 1

1 + k2
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Proof The proposition is a restatement of Lemma 3 by using Cantelli’s inequality (or
one-sided Chebyshev inequality). It states that

Prs0

[
log Ŝ f ≤ Es0

[
log Ŝ f

]
+ kσs0

[
log Ŝ f

]]
≥ 1 − 1

1 + k2

thus

Prs0

[
Ŝ f ≤ Qk(s0)

]
≥ 1 − 1

1 + k2

The first part of the proposition follows by taking s̃(k)
max = Qk(s

max,(k)
0 ) where smax,(k)

0

is defined as in Lemma 3. The second part is obtained with s̃(k)
fixed = s(k)

fixed in Lemma 3

and by noting that Q′
k(s0) < 0 for all s0 ≥ s(k)

fixed, so that Qk(s0) ≤ Qk(s
(k)
fixed). ��

Lemma 3 and Proposition 1 introduce two sequences of bounds that depend on a
parameter k. s̃(k)

max gives bounds for the quantiles of the distribution at generation t + 1
that work for every starting genome and thus any starting distribution at time t . For
k = 1, the probability to get below s̃(1)

max is at least 0.5 for every step. If the probabilities
are seen as population densities, s̃(1)

max gives an upper bound for the median of the
population at any step (except maybe the starting step). Increasing k increases the
bound but gives even more restrictive conditions on the localization of the population
at any step. For example, for k = 2, we have s̃(2)

max > s̃(1)
max but instead, we know that

80 % of the population is below s̃(2)
max at any step.

Note that this would remain true even if the individuals were selected and then
mutated. Proposition 1 says that no matter which individuals are selected (i.e., no
matter the set of starting sizes s0), the offspring will most likely be located below
s̃(1)

max at the next step. Figure 2 helps finding out the outcome of the selection-mutation
process. To predict the impact of the mutations on size, one can interpret the x-axis as
being the starting size and the y-axis as giving some likelihood about the final size.
Contrary to what could be naively expected, a fitness function that would select the
genomes around smax,(1)

0 would lead to the largest genomes at the next generation,
whereas a fitness function that would strongly select very large genomes would lead
to much smaller genomes, as these large genomes are unable to maintain their size,
even for one generation.

We also illustrate bound s̃(k)
fixed, which is not a bound that works for any starting

distribution but whose expression is much simpler than that of s̃(k)
max. Genomes starting

from s̃(1)
fixed have a probability higher than 0.5 to shrink, showing that they are already

strongly unstable. This shrinkage probability is far worse for genomes larger than s̃(1)
fixed.

The analysis shows that it is possible for genomes starting around smax,(k)
0 to increase

above s̃(k)
fixed but due to the definition of s̃(k)

fixed, this behavior can only be transient. s̃(k)
fixed

is a plausible upper bound for the average behavior, even when selection is applied.
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In the simple case where μldel = μdup = μdupdel, we have

s̃(k)
fixed = k2

μdupdel

2(log 2 − 1)2 + 2

(1 − (2 log 2 − 1))2 . � 5.81
k2

μdupdel
(4)

More generally, if duplication and deletion rates are mechanically linked such that
they are proportional to each other, say μdup = λμldel with λ < 1/(2 log 2 − 1), then

s̃(k)
fixed = k2

μldel

2λ(log 2 − 1)2 + 2

(1 − λ(2 log 2 − 1))2 . (5)

These relations suggest that the bound on genome size would be roughly inversely
proportional to the rate of large deletions and duplications.

This analysis was done for a simplified model (continuous approximation) but it
is arguably a good approximation for large genomes (genomes for which indels are
negligible as in the definition of s̃), even in the discrete model involving all types
of mutations. We expect that Proposition 1 can be obtained, with some variations,
for the discrete case by showing not only that the first moment is biased (see δ in
Lemma 2), but also that the standard deviation increases more slowly with the number
n of mutations than the first moment decreases. In this case, this would mean that,
regardless of the selection applied to the genomes, we can capture an arbitrarily large
part of the distribution in a finite domain at any time step.

5 Generalizations and Interpretations

Theorem 2 shows that there is an asymptotic distribution ν∞ for genome sizes in the
absence of selection. The convergence of the distribution implies that an arbitrary large
part of genomes is located beneath a finite size. What is more, the convergence does
not depend on the rate of small insertions (possibly including transposable elements)
and small deletions. For uniform distributions of duplications and large deletions,
the distribution of genome sizes converges for equal rates of duplication and large
deletions and even if duplications are twice as frequent and deletions. However, as
mentioned in the presentation of the model, the uniform distribution for the sizes of
duplications and large deletions is not necessary for the proof. In the first subsection
below, we give a more general condition for the existence of a stationary distribution
that encompasses a larger family of distributions. In the remainder of the section, we
relate the results obtained to a more general model with selection in the case of an
infinite population and their implications for a finite population.

5.1 Extension of Theorem 2 to More General Distributions for Duplications
and Deletions

We have initially hypothesized these distributions to be uniform for mathematical
convenience, but all the proofs remain true under conditions similar to Property 1. All
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the results hold if the expected change of genome size for small indels, for duplications
and large deletions converges to a constant in a specific scale given by a positive and
increasing function f . This is the idea of invariance by translation illustrated in Fig. 1.
In the general case, the existence of a stationary distribution is also determined by
a condition on duplication and deletion rates (and in extreme cases indel rates) that
depends only on the average size of jumps.

Corollary 1 (Generalization of Theorem 2) Suppose we have distributions of
duplications, large deletions and indels, such that there exists a positive and
increasing scaling function f that verifies the following conditions. For �(s) =
E

[
f (Sn+1) − f (Sn)|Sn = s

]
:

• if the (n+1)th mutation is a deletion, �(s) −→
s→+∞ δldel.

• if the (n+1)th mutation is a duplication,�(s) −→
s→+∞ δdup.

• if the (n+1)th mutation is an small insertion, �(s) −→
s→+∞ δins.

• if the (n+1)th mutation is an small deletion, �(s) −→
s→+∞ δsdel.

where δldel ≤ 0, δdup ≥ 0, δins ≥ 0 and δsdel ≤ 0 are constants among which at least
one is nonzero.

Then the Markov chain (N∗, MG) has a unique asymptotic stationary probability
vector ν∞ if

μldelδldel + μdupδdup + μinsδins + μsdelδsdel < 0 (6)

If the duplications and deletions scale more rapidly than indels, δins = δsdel = 0
and the condition simplifies to

μdup

μldel
<

|δldel|
δdup

except for δdup = 0, in which case there is always a stationary distribution.

The proof is the same as for Theorem 2, by replacing (2 log 2 − 1)μdup − μldel by
the left hand-side of the new condition (inequality (6)), in particular for the definition
of the global δ that incorporates the average impact of all mutations.

If the duplication and deletion processes are of multiplicative nature (but not neces-
sarily uniform), f = log is the natural choice in the formula above, as used throughout
the manuscript. If the width of the deletion and duplication distribution does not scale
proportionally to s0, another choice of f has to be made, such that the expected change
tends to a constant. In the extreme case where the average jump size already tends to a
constant in normal scale ( f = idN) for both deletions and duplications, the proof still
works but the condition also incorporates the indel rates and their mean jump size.
However we expect that, if the impact of indels is bounded as in our model, they will
become negligible and they will not appear in the condition for realistic duplication
and deletion distributions.
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For example, we can consider all distributions of quasi-multiplicative nature. Corol-
lary 1 typically applies if the losses and gains considered are relative. Roughly speak-
ing, this happens if the distribution of gains and losses for some fraction of the genome
is always the same (e.g., there is always the same probability to lose less than 5, 10%
or any other fraction of the genome, no matter the initial size). In this case, the relation
above applies no matter whether the distribution is exponentially decreasing, uniform,
multimodal, gamma, etc. What is more, if the relative gains and losses are symmet-
rical (in linear scale), there will be a stationary distribution for equal duplication and
deletion rates and also for duplication rates moderately higher than deletion rates (the
exact relation has to be computed for each distribution).

If the second moment converges to a finite value in the scale given by f , as is the
case for multiplicative or quasi-multiplicative distributions, the line of analysis given
in Sect. 4 can be used. In other words, according to Chebyshev’s inequality, it will be
possible to find bounds that will hold for every step of the generation process. As a
result, as discussed below, selection will not be able to lead to infinite genome growth
in these cases also. We expect that the proof can be extended for a second moment that
does not converge in the scale given by f , but is bounded. In this case, the analysis
may become more technical and the bounds given by Chebyshev’s inequality very
weak, but would still imply that selection cannot lead to infinite genome growth.

5.2 Interpretation for General Genome Structures in the Presence of Selection

We did not introduce selection in the model presented until here. In this section, we
propose a more general framework for which our results hold but for which selection
can be based on any feature of the genome or of the population. Let 	 be the space of all
genome states corresponding to different genome architectures, e.g., all sequences of
base pairs drawn from {A,C,G,T}. We define a population vector πt such that ∀t ∈ N,
πt is a probability measure on 	, corresponding to the density of an infinite population.
We consider an arbitrary starting population π0. For every generation, we assume that
we can distinguish the selection process from the mutation process. We call Selt the
selection operator. Selection may change with time. The outcome of selection has to
be a probability measure whose support is expected to be identical to the support of
πt . Once selection has operated, we suppose that the population is mutated according
to an operator M . Again, the outcome is a probability measure.

The density of the population at step t + 1 in the space 	 of genome states is given
by

πt+1 = M ◦ Selt (πt ) (7)

We suppose that genomes undergo the same mutations as those studied until here
(small indels, large deletions, duplications) and other mutations that do not change
genome size but the detailed architecture (e.g., point mutations, inversions, transloca-
tions). Our results apply to this model under the following condition:
Projection condition We suppose that there is a projection ϕ : 	 → N that is compat-
ible with transitions induced by mutations. Here, the projection is size : 	 → N that
associates a genome with its size in number of base pairs. For two genomes ω1, ω2 ∈ 	
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such that size(ω1) = size(ω2) = s0, the probability that ω1 or ω2 end up having some
size s f ∈ N after one mutation is exactly the same, even if ω1 and ω2 have a different
detailed architecture (e.g., the position or the number of genes). The transitions in the
genome size space depend only on the initial genome size.

In this case, the transitions in terms of size are given by the matrix MG (the additional
mutations do not change genome size and thus they do not change the mutation paths
in (N, M1)). To link the models formally, we define a projection sizeπ to obtain, from
the population density πt in 	, the population density in the space N

∗ of genome sizes:

∀s ∈ N
∗, sizeπ (πt )(s) :=

∫

	

1{ω∈	,size(ω)=s}dπt

In matrix notation, the density of the population at step t + 1 in the space N
∗ of

genome sizes is given by

sizeπ (πt+1) = sizeπ (Selt (πt ))MG (8)

In the absence of selection, the selection operator is the identity function, thus

sizeπ (πt+1) = sizeπ (πt )MG (9)

which is the equation studied in this article. According to Theorem 2, in the absence
of selection, the marginal distribution of genome size of the population πt is going to
converge if duplications are not more than 2.6 times more frequent than large deletions.
However, we cannot show that the marginal distribution of genome size will converge
in the presence of selection. Instead, we can characterize upper bounds for its quantiles.

If we consider the general model in Eq. (7) or its projection on size in Eq. (8), we
see that selection occurs prior to mutations. The selection operator returns a vector
Selt (πt ) for which the bounds found in Proposition 1 will hold. For example, by
choosing k for s̃(k)

max, we can say that for all t ≥ 1, at most 100/(1 + k2)% of the
population contained in πt+1 will have a size larger than s̃(k)

max, no matter how selection
operated. Because we can find a bound that works at any generation, the spontaneous
mechanism we have just described cannot be overcome by selection.

As these are upper bounds, they impose an upper limit to viable genome size but
do not describe accurately where a population will be able to stabilize. This will be
determined by the selection operator and the details of all mutation processes. Without
further details on the selection operator, it is impossible to say whether the population
will reach a stationary distribution and how far from the bounds they will evolve.
Nonetheless, Fig. 2 already gives some intuition about the interactions between the
selection and the mutation operators, as the size of the selected genomes has a strong
impact on the outcome. As a result, selection determines how the population stabilizes
with respect to these bounds and how close to the bounds individuals eventually get.
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5.3 Generalization to a Finite Population

The remarks for an infinite population hold to a lesser extent for finite-sized populations
of independently mutating individuals because the results of Sects. 3 and 4 hold for a
single individual from a probabilistic point of view. If we decouple the selection and
the mutation steps, we can have information on the probabilities of genomes being
below some bound using Proposition 1.

Basically, the idea is the same as in the infinite population case, except that the
evolution of individuals is stochastic and Eq. (7) is not a good description for this kind
of processes. However, if we assume that for generation t, It individuals belonging to
	 survived, we can use the conclusions of Proposition 1. As explained for an infinite
population, Proposition 1 allows us to choose a threshold s̃(k)

max such that the probability
that any of the It mutating genomes goes above s̃(k)

max is at most 1/(1 + k2), where
k can be chosen arbitrarily large. Because the individuals mutate independently, an
upper bound on the number of genomes that are above s̃(k)

max at any generation is given
by a binomial distribution B(It , 1/(1 + k2)). The proportion of genomes supposed to
be above s̃(k)

max is the same on average for all It ∈ N : 100/(1 + k2)%, but the standard
deviation around this proportion becomes smaller when It increases. When It tends
to infinity, we find the same result as in the infinite case.

6 Numerical Illustration and Practical Implications for the Study of Real
Genomes

The theoretical results presented above may have important practical implications for
the study of real genomes. To illustrate this, we present here a quantitative, numerical
example of spontaneous genome size evolution, with parameter values taken from
experimental data. Specifically, we simulated a “mutation accumulation” experiment
on a genome made up of a single 4-Mb chromosome—which is roughly the size of the
genomes of Escherichia coli and Salmonella enterica—, with spontaneous mutation
rates and event size distribution derived from experimental data in both species (see
details below). Mutation accumulation experiments aim at unraveling the rates and
spectrum of spontaneous mutations. To do so, several lineages are propagated inde-
pendently in the laboratory, starting from the same ancestor. Each lineage experiences
regular, frequent single-cell population bottlenecks, so that natural selection cannot
operate efficiently and evolution proceeds almost only by genetic drift. A key example
of a mutation experiment with E. coli can be found in Kibota and Lynch (1996). Here,
we mimicked an ideal mutation accumulation experiment, by simulating the evolution
of genome size in 10,000 independent lines, all starting with an initial size of 4 × 106

bp, during 1,000 generations, with a single-cell bottleneck at each generation. This is
an “ideal” experiment in the sense that, contrary to the real laboratory experiments,
we do not have to let the population grow between two bottlenecks or to pick up
only the viable organisms. In the simulations, natural selection cannot act at all. No
mutation will be filtered by natural selection, thereby allowing for a direct access to
the spontaneous rates and spectrum of mutations.
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In these simulated lineages, four types of mutations could occur: segmental dupli-
cations, large deletions, small insertions and small deletions. At each replication, the
number of each type of event was drawn from a Poisson law with mean μtypes, where
μtype is the per-bp rate of this type of mutation and s is the size of the genome before
the replication. The events were performed in a random order.

The rate of large deletions μldel was set to 3.778×10−9 per bp, which yields, in the
initial state, 0.017 deletions per genome per generation, as measured in Salmonella
enterica (Nilsson et al. 2005). To simulate an unbiased process, we also set the seg-
mental duplication rate μdup to 3.778 × 10−9 per bp. The rates of small insertions
and small deletions were both set to twice the rate of large deletions and duplications.
The size of a small indel was uniformly drawn between 1 and 40 bp, regardless of the
current chromosome size.

For the size of duplications and large deletions, we tested two size distributions: (i)
the uniform distribution between 1 and the current chromosome size, as introduced
in Sect. 2, and (ii) a lognormal distribution truncated at the current chromosome
size, as explained below. We obtained this lognormal distribution by fitting the size
distribution of 127 rearrangements observed in evolving cultures of Escherichia coli
(D. Schneider, personal communication) and Salmonella enterica (Nilsson et al. 2005;
Sun et al. 2012). Only experimentally verified duplications, deletions and inversions
were considered. Figure 3 (left) shows the empirical cumulative distribution function
for this dataset, as well as the fitted lognormal distribution. Its mean is 10.1214 in
natural logarithmic scale (4.3957 in log10 scale) and its standard deviation is 2.5602
(1.1119 in log10 scale). This lognormal distribution is a rather accurate representation
of the events occurring on the initial 4 Mb genome. No experimental data are available,
however, for the size distribution of the events occurring in mutant E. coli or Salmonella
with a significantly different genome size. More generally, we do not know how the size
of the spontaneous events scales with genome size in a particular species. We decided
to simulate here the weakest possible scaling: instead of varying the parameters of
the lognormal distribution with genome size, we used the same lognormal distribution
ln N (10.1214, 2.5602) for any genome size, except that this distribution was truncated
at the current chromosome size. Indeed, a segmental duplication (resp. deletion) cannot
duplicate (resp. delete) more than the complete chromosome. In practice, an event size
was drawn from the distribution N (10.1214, 2.5602) with independent redraw as long
as the event size exceeded the current genome size. As shown by Fig. 3 (right), this
truncation induces a variation of the mean event size with the size of the genome. This
variation is much weaker than the one of the uniform distribution, but it will prove
important in the outcome of the simulations.

In terms of Corollary 1, for the uniform distribution, the scaling function f is the
logarithm. In this logarithmic scale, we know from Property 1 that δldel = −1, δdup =
2 log 2 − 1, and δins = δsdel = 0. With μdup = μldel = 3.778 × 10−9, we obtain
μdupδdup +μldelδldel +μinsδins +μsdelδsdel � −2.32 ×10−9. This negative value tells
us that genome size will reach a unique asymptotic stationary distribution, and hence
that it will not grow infinitely.

For the truncated lognormal distribution, the scaling function f is simply the
identity function, thus we stay in the normal scale. For infinite genome sizes,
the truncated lognormal distribution converges to the complete lognormal distribu-
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Fig. 3 Left Empirical cumulative distribution function for the size (in bp) of for 107 experimentally verified
rearrangements, observed in evolving cultures of Escherichia coli (D. Schneider, personal communication)
and Salmonella enterica (Nilsson et al. 2005; Sun et al. 2012). The green curve is the distribution function
of the lognormal distribution ln N (10.1214, 2.5602). Right Expected size of a duplication or a deletion
as a function of genome size, if the size is drawn from a uniform distribution between 1 and the size of
the genome (dotted line), or if the size is drawn from the lognormal distribution ln N (10.1214, 2.5602)

truncated at the size of the genome (solid line)

tion. Hence, the event size tends to a constant for infinite genomes, and we have

δldel = −e10.1214+ 2.56022
2 � −6.59 × 105, δdup � +6.59 × 105. For the small events,

we have δins = +20 and δsdel = −20. With μdup = μldel and μins = μsdel, we obtain
μdupδdup +μldelδldel +μinsδins +μsdelδsdel = 0. With this null value, we cannot predict
the asymptotic behavior of genome size. The simulations below will show, however,
that the variation of event size for “small” genome sizes (Fig. 3) suffices to induce a
shrinkage.

Indeed, after 1,000 generations without selection, genome shrinkage was observed
in 99 % of the lines for the uniform distribution, and in 61 % of the lines for the truncated
lognormal distribution, although (i) the rates of duplications and large deletions were
identical, (ii) the rates of small insertions and small deletions were identical, (iii)
the event size distributions were also identical for gains and losses. Both proportions
are significantly different from 0.5 (χ2 test with 1 degree of freedom, both p values
< 2 × 10−16). The median DNA loss was −3.8 × 106 bp in the uniform case, and
−6.3 × 105 bp in the lognormal case. In both cases, this DNA loss is statistically
different from 0 (Wilcoxon signed rank test, both p values < 2 × 10−16). As shown
by Table 1, this shrinkage was neither due to a bias in the small indel counts nor
to an excess of deletions over duplications, but to deletions being on average longer
than duplications. By looking at these polymorphisms only, one might be tempted
to conclude that the size distribution of the spontaneous events is different for the
deletions and for the duplications, while we know here that both types of events
actually had the same size distribution for any starting genome size.

To further illustrate this spontaneous mutational dynamics toward shrinkage—
despite equal rates of duplication and deletion, and despite identical spontaneous
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Table 1 Median number of events and median size of observed events in a mutation accumulation line,
after 1,000 generations

Uniform distribution Large deletions Duplications Small deletions Small insertions

Median number of events
in a line

4 ± 3.1 4 ± 5.2 8 ± 8.8 8 ± 8.7

Median size of events in a
line (in bp)

(2.0 ± 15) × 106 (1.1 ± 8.3) × 106 19.8 ± 6.0 19.9 ± 6.1

Lognormal distribution Large deletions Duplications Small deletions Small insertions

Median number of events
in a line

14 ± 7.1 14 ± 8.7 29 ± 14.8 28 ± 14.8

Median size of events in a
line (in bp)

(1.9 ± 2.5) × 105 (1.4 ± 1.3) × 105 20.0 ± 2.5 20.0 ± 2.5

Fig. 4 Spontaneous evolution of genome size in 100 mutation accumulation lines, under the uniform
distribution (left) or under the truncated lognormal distribution (right) for the size of the rearrangements.
The thick line indicates the median of the 100 lines. The simulations were stopped when genome size
became inferior to 104 (which would correspond to fewer than 10 genes in a typical bacterial genome)

size distributions for both event types—, we propagated 100 mutation accumulation
lines, again without any selection, until they reached the size of 104 bp, starting from
4×106 bp as previously. As shown by Fig. 4, for all lines, this shrinkage of two orders
of magnitude occurs in less than 75,000 generations for the uniform case, and in less
than 250,000 generations for the truncated lognormal case.

The practical implication of this spontaneous dynamics toward shrinkage is that
mutation accumulation experiments where deletions are longer than duplications
should be interpreted with caution, as this pattern can be obtained with identical event
size distributions. Moreover, additional simulations with higher duplication rates indi-
cate that the median change in genome size after 1,000 generations remains negative
for μdup = 1.2μldel for the truncated lognormal distribution, or for μdup = 2μldel
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for the uniform distribution (in agreement with Theorem 2). Thus, a net decrease in
genome size in a mutation accumulation experiment neither implies that the deletion
rate is higher than the duplication rate, nor that spontaneous deletions tend to be longer
than spontaneous duplications for a given starting point. It might just as well come
from a variation of event count and event size with chromosome size.

7 Discussion

In this section, we discuss the relevance of our two main results: (i) the condition for
the existence of a stationary distribution for genome size, and (ii) the upper bounds for
the quantiles of the genome size distribution at any time step. Finally, we investigate
the link between our results and current theories on genome size evolution.

7.1 On the condition for the existence of a stationary distribution for genome size

The model and the results presented here allow to determine the global spontaneous
behavior of genome size in a variety of conditions. It allows for a large family of
distributions for indels, duplications and deletions. Conveniently, the condition for
the existence of an asymptotic distribution only depends on the first moment of these
distributions in a scale adapted to the distribution that scales most with genome size
(usually large deletions and/or duplications). The most difficult part may be finding the
scaling function, but once it is found, the global dynamics is dictated by a very simple
condition on the mutation rates, given in Corollary 1. Usually, the condition will only
involve the ratio of duplication over large deletion rates. When the condition is met
and no selection is applied, the genomes converge toward an asymptotic stationary
distribution. From a biological point of view, this means that genomes do not grow
indefinitely. As our proof highlights, there is a threshold above which they will undergo
systematic shrinkage.

Finding the appropriate scale might be one of the most important challenges but can
also be very simple for some families of distributions. For example, if the duplication
and deletion processes are of quasi-multiplicative nature, this condition is obtained
in logarithmic scale, as illustrated throughout the paper and in Fig. 1. Biologically
speaking, the strength of this scaling is that it breaks apparent symmetries. In the case
illustrated in Fig. 1, it might look as if the duplications and deletions are symmetrical
because for every starting position, losses and gains compensate each other. Naively,
one might conclude that the process is unbiased. However, from the genome’s point
of view as a walker along a Markov chain, symmetry means reversibility of jumps: do
the losses and gains that I undergo when I move compensate each other? If there is a
scaling in which the average size of jumps does not depend (asymptotically) on the
starting position, we can answer the question. In the rescaling shown in Fig. 1, it is
clear that the process that we thought unbiased at first, is in fact biased toward losses.
Indeed, after a loss is undergone, the average size of rearrangement diminishes with
genome size, such that the average loss will always be larger than the next average
gain.
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As shown in Sect. 6, even if we choose a function that does not scale asymptotically
(average gains and losses due to rearrangements tend to a constant for large genomes
in normal scale), a scaling in gains and losses for small genomes will still induce a
bias toward losses. The process based on the truncated lognormal distributions for
rearrangements that we illustrated might not converge in theory for equal duplication
and deletion rates (Corollary 1 does not apply) but, in practice, the bulk of genomes
will still undergo shrinkage because average losses are larger than average gains,
notwithstanding the symmetry of the rearrangement distributions.

From a mathematical point of view, our model displays similarities with mod-
els for the so-called mini- and micro satellite loci, where a short sequence of DNA
is highly repeated (Charlesworth et al. 1994). Mathematical models were designed
for the dynamics of the number of repeats in microsatellites, incorporating additive
mechanisms similar to indels in our model and/or multiplicative mechanisms due to
recombination. In models incorporating only additive effects, the dynamics of the
number of elements is relatively simple as it reflects the difference between average
gains and losses (Krüger and Vogel 1975; Walsh 1987; Moody 1988; Basten and
Moody 1991; Caliebe et al. 2010). However, this implies that selection is necessary
to prevent the number of repeats from going down to one or from going up to infinity.
When multiplicative effects are introduced, the dynamics become less trivial, as noted
in the present study. Distributions of the number of elements can converge around a
finite number of elements in situations where average gains seemed to be higher than
average losses (Stephan 1987; Falush and Iwasa 1999).

Adding additive effects (such as indels) to a multiplicative model does not change
the existence of the stationary distribution but changes some important features. Corol-
lary 1 implies that when multiplicative and additive processes are at work, we can have
non-trivial stationary distributions without the need for selection. This is particularly
true in non-intuitive cases, when the apparent bias is toward gains, but the rescaled
analysis predicts average loss. In those cases, the mode of the distribution cannot be
trivially predicted to lie at the origin or to diverge. For example, Falush and Iwasa
(1999) predicted a non-trivial stationary distribution for the number of repeats, where
most individuals own more than one or two copies. Compared to the microsatellite
models, the strength of our result is that it can be used to predict the exact thresh-
old condition with simple calculations, without having to make any approximation.
Moreover, in most models where the size of the mutation scales with the number of
elements, each mutation type is allowed to occur at most once per reproduction, which
may be appropriate for the study of microsatellites, but unrealistic for large genomes.

The interplay between additive and multiplicative processes might also be under-
lined in the study of genome reduction. Mira et al. (2001) have argued that indel biases
and losses through large deletions are good candidates to explain the reductive genome
evolution undergone by some bacterial species. Several models and papers have used
this general idea but have focused only on biases in the small indel patterns (Petrov
2000; Leushkin et al. 2013). Our numerical examples (Sect. 6) show that such a bias
is not necessary for observing genome shrinkage, as it suffices that there be a positive
scaling in the size of rearrangements. A symmetrical distribution of gains and losses,
or even a slight bias toward gains will result in genome size tending to decrease with
time (Fig. 4). The “rearrangement bias” (due to the scaling of rearrangements) and
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the indel bias are two different biases that might be complementary. According to our
model and simulations, the rearrangement bias would set an upper size to genome size
but would not necessarily lead to the convergence toward a particular value below this
bound (notably in the presence of selection), while the indel bias could not lead to
infinite growth but would strongly affect the convergence of genome size within stable
genomes (see discussion and figure in Sect. 7.3).

7.2 On the Upper Bounds for the Quantiles of the Genome Size Distribution

In the model presented here, we took into account the possibility of several mutations
in one generation. This does not change the condition for a stationary distribution given
by the first-order dynamics, but highlights a fragility of large genomes, which we quan-
tified by calculating upper bounds for the quantiles of the genome size distribution after
one generation. Contrary to the mutational Markov chain, the generational Markov
chain shows that there is a non-negligible probability that the genomes located above
a given threshold, no matter how large they may be, collapse. Strikingly, as already
hinted in Lemma 2 and the proof of Theorem 2, once the threshold is crossed, the
probability of collapsing even increases with genome size, because the average loss
due to the increasing number of mutations grows more rapidly than the genome size.

In order to quantify this phenomenon further, including the second moment gave
a more precise picture. In the case of multiplicative processes, the standard deviation
is small compared to the average shifts, such that the average behavior identified in
Sect. 3 gives in fact a good picture of the fate of large genomes. This is illustrated
in Fig. 2, where it appears that after one generation, the genomes which manage to
maintain or increase their size with probability higher than 0.5 are restricted to a finite
domain.

The existence of these bounds has two main implications. First, they are not bounds
on the stationary distribution but on the whole process. This means that even if a
selective force is applied, they are verified for every surviving individual. In other
words, selection cannot help overcome these bounds, even if the selection operator
favors the largest genomes. On the contrary, as depicted on Fig. 2, very large genomes
that may be selected are going to be the least robust, as they become even smaller than
the rest of the population and their genome is going to undergo major shuffling. This
result is in contrast with other models for evolution with selection on a unbounded
fitness space, which showed that the growth speed of the first moment of the fitness
distribution converges to a positive constant, even when a density-dependent cut-off
prevented the fittest individuals to replicate (Tsimring et al. 1996; Brunet and Derrida
1997). We do not need here such a cut-off to prevent infinite genome growth, even if
selection would favor the largest genomes. To analyze more rigorously our model in
the presence of selection, a possibility would be to consider a Markov process in the
space of measures on X , as in the evolutionary models proposed by Fleming and Viot
(1979), Champagnat et al. (2006).

Second, the individuals who have important probabilities to maintain their size are
those which undergo rare rearrangements. In this sense, our model predicts as a result
what is assumed by numerous models, namely that the majority of a robust population
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will undergo at most one rearrangement (or even one mutation if the rates are similar)
per generation. Allowing for several mutations in one generation highlights an indirect
pressure that limits genome growth but that is not necessarily likely to be observed in
a sample of the population.

We predicted at the end of Sect. 4 an inverse relationship between total genome
size and mutation rate, in the case where the deletion and duplication rate are propor-
tional (Eq. 5). This relationship is strikingly similar to Drake’s experimental data for
microorganisms (Drake 1991), where genome size seems to be inversely proportional
to the “global mutation rate”. However, in Drake’s study, most spontaneous events
used to determine the global rate are of local nature (indels, small rearrangements and
point mutations), while in our study, the critical rates are the rates of chromosomal
rearrangements.

Thus, to better assess the relevance of the relationship we predicted, we need to know
more about the actual rates of duplications and deletions. Conflicting data sets exist on
the link between allelic recombination rates and genome size (see Awadalla (2003) and
Ross-Ibarra (2007) for example), but deletions and duplications are non-allelic recom-
bination events, and the rate of non-allelic recombination is not necessarily directly
proportional to the rate of allelic recombination. Indeed, allelic recombination results
from homologous recombination only, while non-allelic recombination can result from
other mechanisms. In human, Turner et al. (2008) have measured the spontaneous rates
of non-allelic recombination events leading to deletions and duplications, but only at
four recombination hotspots. So far, genome-wide measurements of duplication and
deletion rates have been obtained by mutation accumulation experiments for a few
species only. Figure 5 shows the available data points, as well as the lower bounds for
genome shrinkage computed in Sect. 4, Eq. (4). We observe that genomes stabilize
in zones were rearrangements are rare and the probability to shrink is very low, far
below the bounds were genomes start to become unstable. The precise dynamics of
genomes in the presence of selection depends on the selection operator, so our model
cannot precisely predict how far below the bounds real organisms are going to be.

The existence of our bounds relies on rates of chromosomal rearrangements that are
expressed as rates per base pair to determine how often they occur in one generation.
Because of the Poisson law, the number of expected rearrangements increases linearly
with genome size. As genome length may change after every rearrangement, this
hypothesis may seem strong. For example, even if a large part of the genome was lost
after a large deletion, the number of rearrangements remaining is given by the Poisson
law based on the initial genome length, so the genome will continue to mutate several
times if the initial size was large. It would be interesting to study the case where the rates
of the Poisson process take into account the current genome size (the process would
not be Poisson anymore) in order to reevaluate the number of mutations remaining.
Preliminary results indicate that the results would still hold but that the curve giving
the median of the size after replication as a function of the starting size would increase
monotonically to a finite limit (instead of decreasing for large genomes as on Fig. 2).
Alternatively, it could be interesting to estimate the number of rearrangements based
on a mechanical model.

From a biochemical point of view, the rearrangement rate should not be expressed
as a per base rate, but depending on elements that drive rearrangements (in which case
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Fig. 5 Comparison of the bounds on genome size derived in Sect. 4, Eq. (4) with the genome size for four
organisms. Spontaneous deletion rates were computed per base pair and per cell division from experimental
data on mutation accumulations for the bacterium Salmonella enterica (Nilsson et al. 2005), the budding
yeast Saccharomyces cerevisiae (Lynch et al. 2008), the worm Caenorhabditis elegans (Lipinski et al. 2011)
and the fruit fly Drosophila melanogaster (Schrider et al. 2013). The value next to each line is the lower
bound for the probability that a genome located along this line will shrink at the next step in our model for
equal duplication and deletion rates (Eq. 4, Sect. 4)

we could look for a projection ϕ on these elements instead of the mapping on size). To
study the relevance of our analysis, a deeper biochemical understanding of the scaling
of rearrangement rate and size with genome size is needed. Some rearrangements are
known to be driven by specific sequences, such as transposable elements, insertion
sequences or tandemly repeated sequences. Biological data indicate that the number
of transposable elements scales with genome size (Oliver et al. 2007), and in Ara-
bidopsis the reduction of genome size could be linked to the capacity of one family
of transposable elements to mediate rearrangements (Devos et al. 2002).

The impossibility of long-term accurate replication for large genomes reminds of
Eigen’s error threshold (Eigen 1971; Eigen et al. 1988). Eigen noted that the mutation
rate puts a limit on the size of a replicating polymer. If a molecule exceeds this critical
size, the number of mutations per replication is so high that the information is destroyed
in subsequent generations of the molecule. This model is often considered relevant
for viruses, which have small genome sizes and high point mutation rates (Eigen
and Schuster 1979; Nowak 1992; Wilke 2003). Although the original formulation of
Eigen’s model was rather general, the error threshold prediction was derived for the
special case where all sequences have the same fixed length and undergo only point
mutations (Eigen 1971; Eigen et al. 1988). Subsequent studies have relaxed other
assumptions such as the infinite population size (Nowak and Schuster 1989) or the
homogeneity of the mutation rate along the sequence (Barbosa et al. 2012), but in all
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cases the mutations considered remained the local ones, although the importance of
duplications and deletions was discussed in Eigen et al. (1988). Other models were
designed to tackle related questions such as the existence of an error threshold limiting
the total number of essential genes (Zeldovich et al. 2007) or the extension to a cost
including transcription or translation errors (Bird 1995; Pál and Hurst 2000).

Our study shows that the nature of the mutations included in the model is important
when studying the evolution of the genome structure as a whole, possibly including
coding and noncoding DNA. If only local mutations are considered, then the maxi-
mum size rule applies only to the coding part of the genome (Eigen et al. 1988). We
have shown here that if rearrangements with global effects are considered as well, then
the noncoding part of the genome is also bounded, because noncoding DNA is muta-
genic for the surrounding genes, as it provides breakpoints for large duplications and
deletions. This phenomenon was observed in an individual-based model of genome
evolution where genomes were explicitly represented as variable-length binary strings,
and where an artificial chemistry was defined to compute the fitnesses (Knibbe et al.
2007). Knibbe’s model fits into our framework and corresponds to the finite-sized
population case discussed in Sect. 5. By including rearrangements in Eigen’s origi-
nal model, we predict the existence of a generalized error-threshold applicable to the
whole genome.

7.3 On the Link with Current Hypotheses in Molecular Evolution

Genome growth is generally explained by the self-replicating activity of transposable
elements and by the neo- or sub-functionalization of gene duplicates (Lynch and
Conery 2003), while the mechanisms pushing toward genome reduction are less clear.
Our results reveal that the sole dynamics of large duplications and large deletions
implies a subtle bias toward genome shrinkage. In the model, genomes tend to shrink
even if the duplication and deletion rates are equal because of the multiplicative nature
of these events. Thus, the chromosomal instability of large genomes presented here
is one of the pressures that can oppose genome growth. However, it is not the only
pressure acting on genome size. As detailed below, other models hypothesize that
total genome size has a direct fitness cost, that transposable element insertions are
deleterious or that indels play a prominent role.

Some theories suggest that genome size could be directly selected. Long genomes
could be longer to replicate and have a higher metabolic cost than smaller ones and thus
be counter-selected (Maniloff 1996; Poole et al. 2003). This hypothesis is now largely
rejected, for example Mira et al. (2001) found no correlation between doubling time
and genome size across diverse bacterial taxa, probably because replication can start
anew on a genome already engaged in replication, and because there is much more
material than DNA that has to be copied and shared during division. Alternatively,
the size of the nucleus (and, directly or indirectly, of the cell) could be linked to the
bulk DNA content. In this hypothesis, an optimal cell size is selected for physiological
reasons and the large variations of non-coding DNA are interpreted as a way to control
precisely the size of the nucleus (Cavalier-Smith 1978, 1985; Gregory 2001; DeLong
et al. 2010). Our model suggests that if selection favors a specific size, convergence of
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the population is possible only if this optimal size is in the zone where chromosomal
rearrangements are rare. In other words, a larger DNA content is possible only if
molecular mechanisms evolve that increase the stability of chromosomes by reducing
the frequency of duplications and large deletions.

Other theories focus more specifically on the gene repertoire and events that can
affect it. On the one hand, transposition of transposable elements can lead to genome
growth but their insertions can be deleterious either because they disrupt genes
or because they promote ectopic recombination and thus, possibly, large deletions.
Because of these deleterious effects, selection would naturally eliminate transposable
elements of the genome. However, population genetics predicts that, in populations
with smaller effective sizes, selection will be less likely to eliminate them and the
genome will be larger . Accumulation of selfish elements would thus reflect small
population sizes (see Lynch and Conery (2003) for further details).

On the other hand, some explanations invoke a higher spontaneous rate of small
deletions compared to small insertions, with a bias strong enough to prevent the
genome from growing (Petrov 2000). This bias is due to more frequent or larger
small deletions compared to small insertions and it is usually detected because it leads
to an erosion of non-coding sequences (Ophir and Graur 1997; Mira et al. 2001; Kuo
and Ochman 2009; Leushkin et al. 2013). In this case, smaller population sizes can
lead to smaller genomes. Indeed, because of random genetic drift, some non-essential
genes may be inactivated and, subsequently, the resulting pseudogenes may be eroded
by accumulation of small deletions (Mira et al. 2001). More generally, the evolution
of genome size in small populations will be more influenced by mutational biases.

We predict that above some size threshold, the mutation bias due to ectopic recombi-
nation identified here will be stronger than any other mutational bias and even stronger
than selective pressures: it will bring the genome back under the stability threshold. For
stable chromosomes (which undergo fewer and smaller rearrangements), the dynamics
of genome size will be influenced by selection (if the population is large), transposition
of transposable elements, the tendency to genome shrinkage due to ectopic recombi-
nation as identified here and the biases in the small indels. Therefore, the equilibrium
genome size depends on the strength of each of these forces, which will depend on
the species considered (Fig. 6).

Indeed, large variations exist within closely related species (Thomas 1971; Betrán
and Long 2002; Tenaillon et al. 2011), indicating that there might not be one explana-
tion valid for all species. While a spontaneous bias toward small deletions compared
to small insertions seems to be widespread among bacteria (Kuo and Ochman 2009),
some species exhibit an opposite bias toward insertions (Denver et al. 2004). Similarly,
transposable elements are rare in some species (supposedly in bacteria for example)
and their transposition rate may be controlled by the host, so that the interplay between
small indels, large deletions and transposition has to be evaluated for each species.

To conclude, several evolutionary pressures act together on real genomes. The
advantage of modeling studies such as the present one is that one can isolate and
investigate a given pressure such as, here, the spontaneous formation of deletions and
duplications through ectopic recombination.
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Fig. 6 Sketch of mutational pressures and selective pressures according to the theories in the
literature. Arrows indicate the schematic strength of each pressure. The mutational arrows indicate the
average size of each type of spontaneous mutation: shrinkage pressure due to large duplications and large
deletions, shrinkage pressure due to small deletions and growth pressure due to small insertions and trans-
posable elements (TEs). Whereas the average impact of a small deletion, a small insertion or a TE insertion
does not depend on genome size, the average loss due to duplication and large deletion events scales with
genome size (see Sect. 2.2). Our model predicts that this mutational bias overcomes other mutational and
selective pressures for genomes larger than a certain threshold s̃ (as defined in Lemma 2). Below the thresh-
old, other pressures will play a more significant role and the genome size at equilibrium should depend on
the precise intensity of each mutational pressure for the species considered, and on the effective population
size. a In large populations, the selective pressures identified in the literature (see main text for details) can
be strong enough to overcome these mutational pressures except for very large genomes which cannot be
maintained because of strong chromosomal instabilities according to Proposition 1. b In small populations,
the mutational pressures do not change but, according to population genetics, the selective pressures are
less efficient. Because of genetic drift, more spontaneous deleterious events are fixed in the population. The
dynamics of the population should therefore be more influenced by spontaneous events, e.g., transposition
of transposable elements, biases in small indels or increased ectopic recombination. Still, even if these pres-
sures drive the genome toward expansion, the bias identified in this article will quickly grow and overcome
them, keeping the genome under a finite bound.
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Appendix 1: Existence of an Asymptotic Distribution: Detailed Proof of Lemma 2

Remark 1 In the whole section, we will consider log as a function defined on N with
log 0 = 0 and the usual values for n ≥ 1, such that log is a positive and increasing
function on N.

The section is dedicated to the proof of Lemma 2. Before the actual proof, we
will list properties of the Markov chain (N, M1). We will focus on the fate of small
genomes on the one hand and of large genomes on the other hand.

Properties of Large Genomes

We begin with the properties of large genomes. We start with the proof of Property 1,
in a slightly more detailed version. This property, introduced in Sect. 2, states that,
asymptotically, duplications and large deletions overcome small indels and their aver-
age impact tends to a constant in logarithmic scale.

Property 5 (Detailed version of Property 1) Let �(s) = E
[
log(Sn+1)|Sn = s

] −
E

[
log(Sn)|Sn = s

]
.

(a) • if the (n+1)th mutation is a deletion

∀s ≥ 3, �(s) = −1 + 1

s

(
s−1∑

k=2

log k −
∫ s

0
log xdx

)

−→
s→+∞ −1

• if the (n+1)th mutation is a duplication

∀s ≥ 3, �(s) = 2 log 2 − 1

+1

s

(
2s∑

k=s+1

log k −
∫ 2s

s
log xdx

)

−→
s→+∞ 2 log 2 − 1

• if the (n+1)th mutation is a small deletion resp. a small insertion

�(s) =
s→+∞ O

(
1

s

)
−→

s→+∞ 0

(b) In the general case

�(s) = (2 log 2 − 1)μdup − μldel

μ
+ ξ(s)

where lim
s→+∞ ξ(s) = 0.
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Proof If the (n+1)th mutation is a deletion,

E
[
log(Sn+1)|Sn = s

] =
∑

k≥0

log(k)Pr
[
Sn+1 = k|Sn = s

] = 1

s

s−1∑

k=2

log k

= 1

s

(

s(log s − 1) +
s−1∑

k=2

log k −
∫ s

0
log xdx

)

= log s − 1 + 1

s

(
s−1∑

k=2

log k −
∫ s

0
log xdx

)

The result easily follows as E
[
log(Sn)|Sn = s

] = log s. The demonstration for dupli-
cations is similar and trivial for the others mutations given the definition of transitions.

Result (b) comes from the law of total expectation conditioned on every type of
mutation. The limits and the fact that ξ(s) vanishes when s → ∞ come from simple
sum-integral comparisons and Taylor expansions. For deletions, log being an increas-
ing function:

∀k ≥ 2, log k ≤
∫ k+1

k
log(x)dx ≤ log(k + 1)

Summing over k ∈ {2, . . . , s − 1} for some s ≥ 3

s−1∑

k=2

log k ≤
∫ s

2
log(x)dx ≤

s−1∑

k=2

log(k + 1) =
s−1∑

k=2

log k − log 2 + log s

reorganizing each side separately and multiplying by 1/s

− log s + log 2

s
≤ 1

s

(
s−1∑

k=2

log k −
∫ s

2
log(x)dx

)

≤ 0

which vanishes when s → +∞. The missing integral term (
∫ 2

0 log(x)dx) is constant
and also vanishes when divided by s. Changing the summation subsets yields the same
result for duplications.

For small deletions, let fs(k) = Pr
[
Sn+1 = k|Sn = s

]
knowing that a small dele-

tion happened. For s ≥ lsdel

�(s) =
−1∑

k=−lsdel

fs(s + k)(log(s + k) − log s) =
−1∑

k=−lsdel

fs(s + k) log(1 + k/s)

=
s→+∞

−1∑

k=−lsdel

fs(s + k)O
( 1

s

) = O
( 1

s

)

The result is symmetrical for small insertions.
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Unconditioning leads to multiplying these terms by constants, lims→+∞ ξ(s) = 0.��
Asymptotically, the average bias is determined by (2 log 2 − 1)μdup − μldel. We

are interested in the case where genome tend to shrink, so we sum up the previous
property in a new property restricted to our scope.

Property 6 If (2 log 2 − 1)μdup − μldel < 0, we call δ = |(2 log 2 − 1)μdup −
μldel|/(2μ) > 0. There is a threshold size s̃ ∈ N such that

∀n ≥ 0,∀s ≥ s̃, E
[
log(Sn+1)|Sn = s

] ≤ E
[
log(Sn)|Sn = s

] − δ

This is only a rephrasing of Property 5(b) by using the definition of the limit.

Remark 2 This is a strong property as it applies to any distribution at step n whose
support is above s̃. In other words, we can change the conditioning Sn = s to any of
these distributions, the property still holds because of the theorem of total expectation.

Properties of Small Genomes

We begin by showing that, statistically, a genome with a smaller size will give smaller
genomes after one mutation.

Property 7 ∀s1, s2 ∈ N, s1 ≤ s2 ⇒ Pr
[
Sn+1 ≤ k|Sn = s1

] ≥ Pr
[
Sn+1 ≤ k|Sn=s2

]

Proof Let Fs(k) = Pr
[
Sn+1 ≤ k|Sn = s

]
. We use 1{s,...} := 1{k∈N,k≥s}.

We condition on the type of the (n + 1)th mutation. If the mutation is a deletion,
F0 = 1N and if s > 0, Fs(k) = (k + 1)1{0,...,s−1}(k)/s + 1{s,...}(k). For a duplication,
F0 = 1N, if s > 0, Fs(k) = (k − s)1{s+1,...,2s}(k)/s + 1{2s+1,...}(k). Because the
transitions for indels are invariant by translation, we have Fs1(k) = Fs2(k +s2 −s1) ≥
Fs2(k) as s2 − s1 ≥ 0.

Let s1 ≤ s2 ∈ N. For every type of mutation, ∀k ∈ N, Fs1(k) ≥ Fs2(k). Uncondi-
tioning by multiplying by the probability of each mutation does not change this fact
as it is a weighted average. ��

This property is useful in the following when we show that small genomes tend
to remain small. Indeed, if we can show that some genome of size smin tends to stay
small, we expect that it is also true for any genome of smaller size (but another property
could be used, see Remark 4 below). We give this a formal meaning by introducing
the following definition.

Definition 5 Let smin > 0. We define a subprocess S�
n on (N�, M�

1 ) as follows. We
keep only the states larger or equal to smin in N, so N

� = {s ∈ N : s ≥ smin} ⊂ N.
The transitions in M�

1 are the same as in M1, except those which go below smin which
are rewired to smin. Formally,

∀i ≥ smin,∀ j > smin, Pr
[
S�

n+1 = j |S�
n = i

]

= (M�
1 )i j := (M1)i j = Pr

[
Sn+1 = j |Sn = i

]
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and

∀i ≥ smin, (M�
1 )ismin :=

∑

0≤k≤smin

(M1)ik = Pr
[
Sn+1 ≤ smin|Sn = i

]

We begin by some simple properties of the Markov chain (N�, M�
1 ).

Property 8 If max{μsdel, μldel} > 0 and max{μins, μdup} > 0, (N�, M�
1 ) is irre-

ducible and aperiodic.

Proof Irreducibility means that it is possible to get from any state s1 ∈ N
� to any other

state s2 ∈ N
� in an arbitrary number of steps. As the mutations span the neighboring

states (on both sides if the condition of the property is satisfied), this is easy to verify.
The periodicity of a given state s ∈ N

� is given by gcd{n ∈ N : Prs
[
S�

n = s
]

> 0}. As
the chain is irreducible, it is aperiodic if there is a state s ∈ N

� for which (M�
1 )ss > 0

(see e.g., Woess 2009). This is the case for smin when max{μsdel, μldel} > 0 as all the
transitions going below smin are rewired to smin. ��
Property 9 If s0 ≥ smin, ∀n ≥ 1,

Prs0

[
n⋂

k=1

(S�
k > smin)

]

= Prs0

[
n⋂

k=1

(Sk > smin)

]

This property is worth noting but it is rather obvious from the rewiring: it involves
only transitions that have the same probabilities on both sides at any step. It comes
from the fact that for large genomes (N�, M�

1 ) behaves exactly like (N, M1).
We arrive to the property that we originally wanted to show and that follows from

Property 7.

Property 10 Let s0 ∈ N and s�
0 = max{s0, smin}.

∀n ≥ 0,∀s ≥ smin, Prs0 [Sn ≤ s] ≥ Prs�
0

[
S�

n ≤ s
]

In particular Prs0 [Sn ≤ smin] ≥ Prs�
0

[
S�

n = smin
]
.

Proof The proof is by induction. As s�
0 ≥ s0, the property is obvious for n = 0.

We suppose that the property holds for some n ≥ 0. Let s ≥ smin. We need to
show that Prs0

[
Sn+1 ≤ s

] − Prs�
0

[
S�

n+1 ≤ s
] ≥ 0. We will use conditioning over the

distributions at step n. If we want the result to be meaningful, we need to compare
the distribution given by the same quantiles of Sn and S�

n . ∀x ∈ [0, 1], let qx =
min{k ∈ N : Prs0 [Sn ≤ k] ≥ x}, the quantile function of Sn . Because the genome size
is bounded for every n (duplication at most double the genome size), q1 is well defined
and, as N is discrete, qx is piecewise constant. We write the conditioning according to
the quantile function as

∀x ∈ [0, 1], h(x) = Prs0

[
Sn+1 ≤ s|Sn < qx

]
Prs0 [Sn < qx ]

+ Pr
[
Sn+1 ≤ s|Sn = qx

]
(x − Prs0 [Sn < qx ])
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We sum contributions up to the state preceding qx and x controls the amount of contri-
butions coming from qx . When x = Prs0 [Sn ≤ qx ] is reached, qx has to be increased.
We have that h(0) = 0, h(1) = Prs0

[
Sn+1 ≤ s

]
and h is continuous and piecewise

linear. The points were h cannot be differentiated are the points {Prs0 [Sn ≤ k] , k ∈ N},
because the value of qx changes. Because genome size is bounded, this set is finite.
Similarly, we define q�

x and h�, using S�
n and N

�. We have qx ≤ q�
x by our induction

hypothesis and, when the derivative is defined (as qx and q�
x are constant in this case)

(h − h�)′(x) = Pr
[
Sn+1 ≤ s|Sn = qx

] − Pr
[
S�

n+1 ≤ s|S�
n = q�

x

]

We apply Property 7, (h−h�)′(x) ≥ Pr
[
Sn+1 ≤ s|Sn=q�

x

]−Pr
[
S�

n+1 ≤ s|S�
n =q�

x

]
.

By the definition of S�, Pr
[
Sn+1 ≤ s|Sn = q�

x

] = Pr
[
S�

n+1 ≤ s|S�
n = q�

x

]
, thus

(h − h�)′(x) ≥ 0. By integrating over x ∈ [0, 1], using the fact that the number of
points where the derivative is not defined is finite and h−h� is continuous everywhere,
we get

(h − h�)(1) = Prs0

[
Sn+1 ≤ s

] − Prs�
0

[
S�

n+1 ≤ s
] ≥ 0

��
Remark 3 The properties given in this subsection apply mostly to small genomes,
the general idea being that if we know how smin behaves, we have information about
what happens below. Process (N�, M�

1 ) will be useful when it comes to showing that
genomes starting below smin partly stay below smin. It suffices to show it for smin in
(N�, M�

1 ): Property 10 shows that if we take some smaller starting point in (N, M1),
it is even worse, we have created a worst-case scenario.

Remark 4 Property 7, used to create the worst-case scenario, is in fact not neces-
sary. We could have aggregated the states below s̃ in a different way, for example by
monitoring all transitions starting below s̃ and creating a chimeric state based on the
transition which go farthest above s̃ (there is only a finite number of transitions starting
below s̃ so a worst transition is bound to exist). This would relax some hypotheses
that are not necessary for the existence of the stationary distribution, e.g., the indel
distribution could freely depend on the starting size s0. However, Property 7 seems
biologically plausible and is fulfilled for the distributions usually considered in the
literature.

Proof of Lemma 2

We now have all the tools to prove Lemma 2. According to the properties on large
genomes, large genomes tend to shrink when (2 log 2 − 1)μdup − μldel < 0. We still
have to show at what speed they get below threshold s̃ and that they tend to remain
there asymptotically. By the properties on small genomes, we know that to analyze
what happens below s̃ we can look at s̃ only thanks to S� (Remark 3). Showing that
genomes remain around s̃ can be seen from the return time viewpoint. If they indeed
stay around this value, one expects that the return times are rather small, typically that
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their expected value is finite. We show that this is indeed the case and sufficient for
our proof.

Proof (of Lemma 2) (a) (a) is exactly Property 6.
(b) We proceed in four steps to show (b). Step 1 is dedicated to showing that large

genomes asymptotically end up below s̃, step 2 that small genomes tend to remain
small by analyzing what happens starting from s̃, step 3 logically concludes on
what happens when genomes are small from the beginning and step 4 uses the
conclusions of step 1 and 2 to show that large genomes asymptotically get below
s̃ and stay there.
1. Let s0 ≥ s̃. ∀n ≥ 0, define An = ⋂

0≤k≤n(Sk ≥ s̃), pn = Prs0 [An] and
en = Es0

[
log(Sn)|An

]
. Conditioning on the outcome at step n + 1 yields

Es0

[
log(Sn+1)|An

] =Es0

[
log(Sn+1)|An+1

] pn+1

pn

+ Es0

[
log(Sn+1)|An ∩ (Sn+1 < s̃)

]

× Prs0

[
An ∩ (Sn+1 < s̃)

]

pn

As pn > 0 and Es0

[
log(Sn+1)|An ∩ Sn+1 < s̃

] ≥ 0 (as log here is a positive
function, see Remark 1),

en+1 pn+1 = Es0

[
log(Sn+1)|An+1

]
pn+1 ≤ Es0

[
log(Sn+1)|An

]
pn

≤ (en − δ)pn

The last inequality follows from Property 6 (see Remark 2), combined with
the Markov property. By induction, we get

en pn ≤ e0 p0 − δ

n−1∑

k=0

pk = log s0 − δ

n−1∑

k=0

pk ≤ log s0 − nδpn

The last inequality results from the fact that the sequence (pn)n∈N is decreasing.
Finally

pn ≤ log s0

en + nδ
≤ log s0

log s̃ + nδ
, (10)

which concludes the proof of the first step. What is more, going back to the
previous inequality, we get a bound on the partial sum

δ

n∑

k=0

pk ≤ log s0 − en+1 pn+1 ≤ log s0
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2. We use Definition 5 with smin = s̃. Let T be the time of first return to s̃ in
(N�, M�

1 ). ∀n ≥ 0, define Bn = (S0 ≥ s̃) ∩ ⋂
1≤k≤n(Sk > s̃) ⊂ An . Note

that Prs̃ [B0] = 1 so that for k ≥ 1, Prs̃ [T = k] = Prs̃
[
Bk−1

] − Prs̃ [Bk]. By
Property 9, ∀s0 ≥ s̃, ∀n ≥ 1,

Prs0

[
n⋂

k=1

(S�
k > s̃)

]

= Prs0

[
n⋂

k=1

(Sk > s̃)

]

= Prs0 [Bn] ≤ Prs0 [An] = pn

(11)

so Prs̃ [T < +∞] = 1−Prs̃
[⋂

k≥1(S�
k > s̃)

] ≥ 1− limn pn = 1. This shows
that s̃ is a recurring state in (N�, M�

1 ). What is more,

Es̃ [T ] =
∑

k≥1

kPrs̃ [T = k] =
∑

k≥1

k
(
Prs̃

[
Bk−1

] − Prs̃ [Bk]
)

We reorganize terms within the series by looking at the partial sums

n∑

k=1

kPrs̃
[
Bk−1

] −
n∑

k=1

kPrs̃ [Bk] =
n−1∑

k=0

(k + 1)Prs̃ [Bk] −
n∑

k=1

kPrs̃ [Bk]

=
n−1∑

k=0

Prs̃ [Bk] − nPrs̃ [Bn] ≤
n−1∑

k=0

pk ≤ log s̃

δ

Where the last inequalities follow from (11) and the conclusion of step 1.
From the partial sum, we can easily infer that Es̃ [T ] < +∞. This shows that
s̃ is a positive recurrent state. (N�, M�

1 ) is thus irreducible, aperiodic (Prop-
erty 8) and positive recurrent. The convergence theorem for positive recur-
rent chains shows that there is a unique asymptotic stationary distribution and
limn Pr

[
S�

n = s̃
] = 1/Es̃ [T ] > 0 (see Woess 2009). What is more, ∀n ≥ 0,

Prs̃
[
S�

n = s̃
]

> 0 as (M�
1 )s̃ s̃ > 0. These two remarks imply that the set

{Prs̃
[
S�

n = s̃
]
, n ∈ N} is inferiorly bounded by some ε > 0.

3. Property 10 allows us to apply the conclusion of the last step to (N, M1)

∀s0 ≤ s̃,∀n ∈ N, Prs0

[
Sn ≤ s̃

] ≥ Prs̃
[
S�

n = s̃
] ≥ ε

This proves inequality (b)i. of the lemma. As the chain is time homogeneous,
this can be generalized as

∀s ≤ s̃,∀k ≥ 0,∀n ≥ 0, Pr
[
Sn+k ≤ s̃|Sk = s

] ≥ ε (12)

When we applied Property 8 in the previous step, we neglected the case μdup =
μins = 0. However, in this case, the inequalities presented in this step are
obvious with ε = 1.
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4. Let s0 > s̃. We compute Prs0

[
Sn ≤ s̃

]
by partitioning over the time of first

passage below s̃,

Prs0

[
Sn ≤ s̃

] =
∑

k≥1

Prs0

[
Sn ≤ s̃|Sk ≤ s̃, Sk−1 > s̃, . . . , S0 > s̃

]

× Prs0

[
Sk ≤ s̃, Sk−1 > s̃, . . . , S0 > s̃

]

Note that all terms k > n are zero. If we use the definiton of Bk and relation (12)
(applying Remark 2) when n ≥ 1

Prs0

[
Sn ≤ s̃

] ≥ ε

n∑

k=1

(Prs0

[
Bk−1

] − Prs0 [Bk]) = ε(1 − Prs0 [Bn])

We finally apply relation (11) and (10)

Prs0

[
Sn ≤ s̃

] ≥ ε(1 − pn) ≥ ε

(
1 − log s0

log s̃ + nδ

)

This proves inequality (b)ii. of the lemma. The relation for n = 0 is trivial as
the right-hand side is negative.

��

Appendix 2: Proofs for the Continuous Case

Proof (Proof (of Property 4)) The most important point is the change of summation
subset when summing over the Poisson distribution, as in

∑

n≥0

n
((μldel + μdup)s0)

n

n! e−(μldel+μdup)s0

= (μldel + μdup)s0e−(μldel+μdup)s0
∑

n≥1

((μldel + μdup)s0)
n−1

(n − 1)!
= (μldel + μdup)s0

In the following we define P� [·] as the operator for the Poisson summation (more
precisely, P� [] is the expected value with respect to the Poisson distribution). For
example, we write the relation above as P� [n] = (μldel + μdup)s0. Similarly, we can
show that P� [n(n − 1)] = (μldel +μdup)

2s2
0 . In the following, we allow ourselves to

interchange the operators P� [·] and E [·], we will justify this at the end of the proof.

Es0

[
log Ŝ f

]
= P�

[
Es0

[
log Ŝn

]]
= log s0 + E [Jn] P� [n]

= log s0 + s0((2 log 2 − 1)μdup − μldel).
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To simplify the computation of the second moment, we call A = μldel − (2 log 2 −
1)μdup and B =

√
2(μldel + (1 − log 2)2μdup). We have P� [nE [Jn]] = −As0 and

P�
[
nE

[
J 2

n

]] = B2s0. The variance of Ŝ f is given by the formula

Es0

[
log2 Ŝ f

]
−

(
Es0

[
log Ŝ f

])2 = P�
[
Es0

[
log2 Ŝn

]]
− (log s0 − As0)

2

where

Es0

[
log2 Ŝn

]
= σ 2

s0

[
log Ŝn

]
+

(
Es0

[
log Ŝn

])2 = nσ 2 [Jn] + (log s0 + nE [Jn])2

= log2 s0 + 2 log s0nE [Jn] + n(n − 1)(E [Jn])2 + nE

[
J 2

n

]

We apply the Poisson summation and use the various definitions and properties

P�
[
Es0

[
log2 Ŝn

]]
= log2 s0 − 2 log s0 As0 + A2s2

0 + B2s0

= (log s0 − As0)
2 + B2s0

We deduce

σs0

[
log Ŝ f

]
=

√
B2s0 = √

s0

√
2(μldel + (1 − log 2)2μdup)

Interchanging P� [·] and E [·] is legitimate as an application of Fubini-Tonelli’s the-

orem. As P�
[
Es0

[
log2 Ŝn

]]
< +∞, the conditions of the theorem are met for the

second moment, and as, asymptotically, |x | < x2, this extends to the first moment. ��
Proof (of Lemma 3) We have

Q′
k(s0) = Qk(s0)

(
1

s0
− A + k B

2
√

s0

)
= Qk(s0)

2 − 2As0 + k B
√

s0

2s0

The sign of the derivative is determined by 2 − 2As0 + k B
√

s0 which cancels for a
unique value

√
s0 = k B + √

k2 B2 + 16A

4A

(because A > 0). Squaring this relation yields smax,(k)
0 . As the main coefficient −2A

is negative, the derivative is positive below smax,(k)
0 and negative above.

To obtain s(k)
fixed, we compute Qk(s0) = s0 which yields

√
s0 = k B/A and, as

A > 0, the value of s(k)
fixed is immediate. What is more

Q′
k(s

(k)
fixed) = Qk(s

(k)
fixed)

2s(k)
fixed

(
2 − 2k2 B2

A
+ k2 B2

A

)
= 1

2

(
2 − k2 B2

A

)
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We can rewrite the ratio B2/A as

B2

A
= 2 × (log 2 − 1)2μdup + μldel

μldel − (2 log 2 − 1)μdup
= 2 × 1 + (log 2 − 1)2(μdup/μldel)

1 − (2 log 2 − 1)(μdup/μldel)
≥ 2

For the last inequality, we show that the ratio is equal to 2 for μdup/μldel = 0 and
increases to infinity when μdup/μldel tends to 1/((2 log 2−1)). We supposed that k ≥
1, thus Q′

k(s
(k)
fixed) ≤ 0. As the subset where the derivative is negative is {s ≥ smax,(k)

0 },
necessarily s(k)

fixed ≥ smax,(k)
0 . ��
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