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A linear code over a finite field IF q is a k-dimensional subspace of IF n q . Cyclic codes over IF q form a class of linear codes who are invariant under a cyclic shift of coordinates. This cyclicity condition enables to describe a cyclic code as an ideal of IF q [X]/(X n -1). A self-dual linear code is a code who is equal to its annihilator (with respect to the scalar product). One reason of the interest in self-dual codes is that they have strong connections with combinatorics.

In 1983, N. J. A. Sloane and J. G. Thompson investigated the construction and the enumeration of self-dual cyclic binary codes with a given length n ( [START_REF] Sloane | Cyclic self-dual codes[END_REF]). These codes are determined by a polynomial equation whose solutions can be described thanks to some factorization properties of X n + 1 in IF 2 [X]. Later this study was generalized to self-dual cyclic codes over finite fields of characteristic 2 ( [START_REF] Kai | On cyclic self-dual codes[END_REF][START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF]) and to self-dual negacyclic codes over finite fields of odd characteristic ( [START_REF] Dinh | Repeated-root constacyclic codes of length 2p s Finite Fields and[END_REF], [START_REF] Sahni | Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields[END_REF]).

For θ automorphism of a finite field IF q , θ-cyclic codes (also called skew cyclic codes) of length n were defined in [START_REF] Boucher | Skew-cyclic codes[END_REF]. These codes are such that a right circular shift of each codeword gives another word who belongs to the code after application of θ to each of its n coordinates. If θ is the identity, θ-cyclic codes are cyclic codes; if q is the square of a prime number and θ is the Frobenius automorphism (who therefore has order 2), θ-cyclic codes form a subclass of the class of quasi-cyclic codes of index 2 ( [START_REF] Siap | Skew cyclic codes of arbitrary length[END_REF]). Self-dual quasi-cyclic codes have been also studied in [START_REF] Han | Construction of quasi-cyclic self-dual codes[END_REF], [START_REF] Ling | On the algebraic structure of quasi-cyclic codes. I. Finite fields[END_REF], [START_REF] Ling | On the algebraic structure of quasi-cyclic codes IV : Repeated Roots Chain rings[END_REF].

Skew cyclic codes have an interpretation in the Ore ring R = IF q [X; θ] of skew polynomials where multiplication is defined by the rule X • a = θ(a)X for a in IF q . Like self-dual cyclic codes, self-dual θ-cyclic codes over IF q are characterized by an equation, called "self-dual skew equation" and defined in the Ore ring IF q [X; θ]. When q is the square of a prime number and θ is the Frobenius automorphism over IF q , properties specific to the ring IF q [X; θ] will enable to extend N. J. A. Sloane and J. G. Thompson original approach to solve the self-dual skew equation.

The text is organized as follows. In Section 2, some definitions and facts about θ-cyclic codes, θ-negacyclic codes and self-dual codes are recalled. The self-dual skew equation characterizing self-dual θ-cyclic or θ-negacyclic codes is recalled. Its solutions are least common right multiples of skew polynomials who satisfy intermediate skew equations in IF q [X; θ] ( [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]). The main goal of this paper consists in constructing and enumerating the solutions of these intermediate skew equations when q is the square of a prime number p and θ is the Frobenius automorphism over IF p 2 .

In Section 3, self-dual θ-cyclic and θ-negacyclic codes whose dimension is a power of p are considered over IF p 2 . In this case, the self-dual skew equation splits into one single intermediate skew equation. When p is equal to 2, the complete description of its solutions was obtained in [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF] thanks to some factorization properties (recalled in Proposition 3) specific to IF p 2 [X; θ]. Using the same arguments, one can also describe the solutions of the self-dual skew equation when p is an odd prime number (Proposition 4). The results are summed up in Table 1.

In Section 4, self-dual θ-cyclic and θ-negacyclic codes whose dimension is prime to p are considered over IF p 2 (Proposition 8). A resolution of the intermediate skew equations based on Cauchy interpolations over IF p 2 (Propositions 6 and 7) enables to provide a parametrization of the solutions.

In Section 5, self-dual θ-cyclic and θ-negacyclic codes of any dimension over IF p 2 are constructed and enumerated (Theorem 1). The steps of the resolutions of the intermediate skew equations are summed up in Tables 4 and5. Proposition 4 (Section 3) and Proposition 8 (Section 4) can be seen as particular cases of Theorem 1.

The text ends in Section 6 with some concluding remarks and perspectives.

Generalities on self-dual skew constacyclic codes

For a finite field IF q and θ an automorphism of IF q one considers the ring R = IF q [X; θ] where addition is defined to be the usual addition of polynomials and where multiplication is defined by the rule : for a in IF q X • a = θ(a) X.

The ring R is called a skew polynomial ring or Ore ring (cf. [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF]) and its elements are skew polynomials. When θ is not the identity, the ring R is not commutative, it is a left and right Euclidean ring whose left and right ideals are principal. Left and right gcd and lcm exist in R and can be computed using the left and right Euclidean algorithms. The center of R is the commutative polynomial ring Z(R) = IF θ q [X m ] where IF θ q is the fixed field of θ and m is the order of θ. The bound B(h) of a skew polynomial h with a nonzero constant term is the monic skew polynomial f with a nonzero constant term belonging to Z(R) of minimal degree such that h divides f on the right in R ( [START_REF] Jacobson | The Theory of Rings Mathematical Surveys and Monographs[END_REF]).

Definition 1 (definition 1 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]) Consider an element a of IF q and two integers n, k such that 0 ≤ k ≤ n. A (θ, a)-constacyclic code or skew constacyclic code C of length n is a left R-submodule Rg/R(X n -a) ⊂ R/R(X n -a) in the basis 1, X, . . . , X n-1 where g is a monic skew polynomial dividing X n -a on the right in R with degree n -k. If a = 1, the code is θ-cyclic and if a = -1, it is θ-negacyclic. The skew polynomial g is called skew generator polynomial of C.

If θ is the identity then θ-cyclic and θ-negacylic codes are respectively cyclic and negacyclic codes.

Example 1 Consider p a prime number, θ : x → x p the Frobenius automorphism over IF p 2 and α in IF p 2 . The remainder in the right division of X 2 -1 by X + α in IF p 2 [X; θ] is equal to α p+1 -1 :

X 2 -1 = (X -θ(α)) • (X + α) + αθ(α) -1.

Therefore, there are p + 1 θ-cyclic codes of length 2 and dimension 1 over IF p 2 ; their skew generator polynomials are the skew polynomials X + α where α p+1 = 1.

Definition 2 ([3], Definition 2) Consider an integer d and h =

d i=0 h i X i in R of degree d. The skew reciprocal polynomial of h is h * = d i=0 X d-i • h i = d i=0 θ i (h d-i ) X i . If m is the degree of the trailing term of h, the left monic skew reciprocal polynomial of h is h := 1 θ d-m (hm) • h * . The skew polynomial h is self-reciprocal if h = h . Remark 1 For f , g in R, (f • g) * = Θ deg(f ) (g * ) • f * (Lemma 4 of [3]). In particular, for f , h in R if f divides h on the left then f divides h on the right.
The (Euclidean) dual of a linear code C of length n over IF q is defined as C ⊥ = {x ∈ IF n q | ∀y ∈ C, < x, y >= 0} where for x, y in IF n q , < x, y >:= n i=1 x i y i is the (Euclidean) scalar product of x and y. The code

C is self-dual if C is equal to C ⊥ .
According to [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF], self-dual θ-constacyclic codes are necessarily θ-cyclic or θ-negacyclic. They can be characterized by a skew polynomial equation who is recalled below.

Proposition 1 (Corollary 1 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]) Consider ε in {-1, 1}, two integers k, n with k ≤ n and C a (θ, ε)-constacyclic code with length n, dimension k. Consider g the skew generator polynomial of C and h the skew check polynomial of C defined by g

• h = X n -ε. The Euclidean dual C ⊥ of C is a (θ, ε)-constacyclic code generated by h . The code C is Euclidean self-dual if, and only if, h • h = X 2k -ε. ( 2 
)
The equation ( 2) is called self-dual skew equation.

When k is fixed, a first approach to solve the self-dual skew equation consists in constructing the polynomial system satisfied by the unknown coefficients of a solution :

Example 2 Consider p a prime number and θ : x → x p the Frobenius automorphism over IF p 2 . The self-dual θ-cyclic codes of dimension 1 over IF p 2 are the θ-cyclic codes whose skew check polynomials h satisfy the self-dual skew equation

h • h = X 2 -1.
The monic skew solutions of the self-dual skew equation are the monic skew polynomials h = X + α where α is in IF p 2 and

X + 1 θ(α) • (X + α) = X 2 -1.
Developing the left hand side of this relation thanks to the commutation law (1) and equating the terms of both sides, one gets the conditions α 2 + 1 = 0 and α p-1 = -1. If p = 2 then α = 1 and if p is an odd prime number then α 2 = -1 and (-1)

p-1 2 
= -1. Therefore if p = 2 there is one self-dual θ-cyclic code of dimension 1 over IF 4 ; if p ≡ 3 (mod 4) there are two self-dual θ-cyclic codes of dimension 1 over IF p 2 ; if p ≡ 1 (mod 4) then there is no self-dual θ-cyclic code of dimension 1 over IF p 2 .

When k is not fixed, a second approach is based on the factorization properties of the monic solutions of the self-dual skew equation. The starting point of the study is inspired from Sloane and Thompson construction of self-dual binary cyclic codes ( [START_REF] Sloane | Cyclic self-dual codes[END_REF]) who is extended to finite fields with characteristic 2 in [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF]. Let us recall their strategy (and therefore assume that IF q has characteristic 2 and that θ is the identity). Consider two integers s and t such that k = 2 s × t with t odd. The polynomial X n + 1 = X 2k + 1 is factorized in IF q [X] as the product of r polynomials f i (X) 2 s+1 where f i (X) is a self-reciprocal polynomial which is either irreducible or product of two distinct irreducible polynomials g i (X) and

g i (X) in IF q [X]. Consider h in IF q [X] such that h h = X 2k + 1.
Necessarily, h is the product of polynomials f i (X) α i , g i (X) β i and g i (X) γ i , where α i , β i and γ i are integers of {0, . . . , 2 s+1 }. The relation h h = X 2k +1 is satisfied if and only if α i = 2 s and β i +γ i = 2 s+1 , therefore there are (2 s+1 + 1) m self-dual cyclic codes of dimension k where m is the number of polynomials

f i (X) = g i (X)g i (X) dividing X n + 1 in IF q [X].
Lastly one can notice that the polynomials h who satisfy the relation h h = X 2k + 1 are least common multiples of polynomials h i who are defined by the intermediate equations

h i h i = f i (X) 2 s+1 : h h = X 2k + 1 ⇔ h = lcm(h 1 , . . . , h r ), h i h i = f i (X) 2 s+1 .
In [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF], this lcm decomposition was generalized to a lcrm decomposition over R = IF q [X; θ] in the particular case when q is the square of a prime number and θ is the Frobenius automorphism (Proposition 28 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]). This decomposition enables to derive a first formula for the number of (θ, ε)-constacyclic codes of dimension k (Proposition 2 below). First one introduces some notations that will be useful later :

Notation 1 For F = F (X 2 ) in IF p [X 2 ], k in IN * and ε in {-1, 1}, H F := {h ∈ R | h is monic and h • h = F (X 2 )} H F := {h ∈ H F | no non constant divisor of F (X 2 ) in IF p [X 2 ] divides h in R} D F := {f = f (X 2 ) ∈ IF p [X 2 ] | f is monic and f divides F (X 2 )} F := {f = f (X 2 ) ∈ IF p [X 2 ] | f is irreducible in IF p [X 2 ] and deg X 2 (f ) > 1} G := {f = f (X 2 ) ∈ IF p [X 2 ] | f = gg with g = g irreducible in IF p [X 2 ]} F k,ε := D X 2k -ε ∩ F G k,ε := D X 2k -ε ∩ G
Following this notation, the monic solutions of the self-dual skew equation are the elements of H X 2k -ε .

Proposition 2 Consider p a prime number, θ the Frobenius automorphism over IF p 2 , R = IF p 2 [X; θ], k a positive integer, s, t two integers such that k = p s × t and p does not divide t. The number of self-dual (θ, ε)-constacyclic codes of dimension k over

IF p 2 is #H X 2k -ε = N ε × f ∈F k,ε #H f p s × f ∈G k,ε #H f p s
where

N 1 =    #H (X 2 +1) p s if p = 2 #H (X 2 -1) p s if k ≡ 1 (mod 2) and p odd #H (X 2 -1) p s × #H (X 2 +1) p s if k ≡ 0 (mod 2)
and p odd and

N -1 = #H (X 2 +1) p s if k ≡ 1 (mod 2) and p odd 1 if k ≡ 0 (mod 2
) and p odd.

Proof. Consider the factorization of X 2t -ε over IF p [X 2 ] into the product of distinct irreducible polynomials of IF p [X 2 ] and split this product into two sub-products, the product of self-reciprocal irreducible factors and the product of non self-reciprocal irreducible factors. In this second product, factors appear by pairs (g, g = g) therefore

X 2k -ε = (X 2t -ε) p s = r i=1 f p s i where f i = f i (X 2 ) is self-reciprocal, either irreducible in IF p [X 2 ] or product of two distinct irreducible polynomials g i (X 2 ) and g i (X 2 ) of IF p [X 2 ]. Following [3], one has 1. H X 2k -ε = {lcrm(h 1 , . . . , h r ) | h i ∈ H f p s i } ([3], Proposition 28); 2. If h belongs to H X 2k -ε , then h = lcrm(h 1 , . . . , h r ) where h i = gcrd(f p s i , h ) and h i ∈ H f p s i ([3], Proposition 28, point (2)).
Therefore, the following application φ is well defined and is injective :

φ : H X 2k -ε → H f p s 1 × • • • × H f p s r h → (h 1 , . . . , h r ), h i = gcrd(f p s i , h ). Let us prove that φ is surjective. Consider (h 1 , . . . , h r ) in H f p s 1 × • • • × H f p s r
and h = lcrm(h 1 , . . . , h r ). According to point 1., the skew polynomial h belongs to H X 2k -ε . It remains to prove that for all i in {1, . . . , r}, h i = gcrd(f p s i , h ). According to point 2., h = lcrm( h1 , . . . , hr ) where h

i = gcrd(f p s i , h ) and hi ∈ H f p s i . Consider i in {1, . . . , r}, one has h i • h i = f p s i
and f i is central, therefore h i divides f p s i on the right. Furthermore h = lcrm(h 1 , . . . , h r ) therefore h i divides h on the left and h i divides h on the right (see Remark 1). As h i is the greatest common right divisor of f p s i and h , h i divides h i on the right. Furthermore h i • h i = h i • hi = f p s i so h i and hi have the same degree and

h i = h i = gcrd(f p s i , h ). To conclude φ is bijective and #H X 2k -ε = r i=1 #H f p s i = N ε × f ∈F k,ε #H f p s × f ∈G k,ε #H f p s
where

N ε = deg(f i )=1 #H f p s i .
Let us determine N ε in the three following cases : p = 2, ε = 1; p odd prime, ε = 1 and p odd prime, ε = -1.

For p = 2, the self-reciprocal polynomial of degree 1 in

X 2 dividing X 2k -1 is X 2 + 1 therefore N 1 = #H (X 2 +1) p s .
For p odd prime, the self-reciprocal polynomials of degree 1 in

X 2 dividing X 2k -1 are X 2 -1 if k is odd; X 2 -1 and X 2 + 1 if k is even therefore, N 1 = #H (X 2 -1) p s if k ≡ 1 (mod 2) #H (X 2 -1) p s × #H (X 2 +1) p s if k ≡ 0 (mod 2).
For p odd prime and k even number, X 2k + 1 has no self-reciprocal factor of degree 1 in X 2 . If k is odd, X 2 + 1 is the only self-reciprocal polynomial of degree 1 in X 2 dividing X 2k + 1. Therefore,

N -1 = #H (X 2 +1) p s if k ≡ 1 (mod 2) 1 if k ≡ 0 (mod 2).
The rest of the paper will be devoted to the enumeration of the elements of the set H X 2k -ε when k is a power of p (Section 3), k is coprime with p (Section 4) and k is any integer (Section 5). Following Proposition 2, the main task will consist in constructing H f p s for f = X 2 ± 1, f in F and f in G. The main difficulty comes from the non unicity of the factorization of skew polynomials in the Ore ring R.

In Section 3, one assumes that k is a power of p, therefore X 2k -ε factorizes over IF p [X 2 ] as X 2k -ε = (X 2 -ε) p s and the self-dual skew equation splits into one single intermediate skew equation. For s > 0, it is solved by using a partition and factorization properties specific to IF p 2 [X; θ].

3 Self-dual θ-cyclic and θ-negacyclic codes with dimension p s over IF p 2 .

The aim of this section is to construct and to enumerate self-dual θ-cyclic and θ-negacyclic codes over IF p 2 whose dimension is p s where θ is the Frobenius automorphism. Recall that over IF 4 , there is one single self-dual cyclic code of dimension 2 s . When p is an odd prime number there is no self-dual cyclic code over IF p 2 and there are p s + 1 self-dual negacyclic codes of dimension p s (Corollary 3.3 of [START_REF] Dinh | Repeated-root constacyclic codes of length 2p s Finite Fields and[END_REF]). Lastly, there are only three self-dual θ-cyclic codes of dimension 2 s > 1 over IF 4 (Corollary 26 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]). In what follows one proves that the number of self-dual θ-cyclic and θ-negacyclic codes of dimension p s over IF p 2 is exponential in the dimension p s when p is an odd prime number (Proposition 4 and Table 1).

In order to construct the set H X 2k -ε = H (X 2 -ε) p s , factorization properties specific to IF p 2 [X; θ] will be useful. The following proposition enables to characterize the skew polynomials that have a unique factorization into the product of monic linear skew polynomials dividing X 2 -ε (see also Proposition 16 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]).

Proposition 3 Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], m a nonnegative integer, f (X 2 ) in IF p [X 2 ] irreducible and h = h 1 • • • h m in R where h i is irreducible in R, monic and divides f (X 2 ).
The following assertions are equivalent :

(i) The above factorization of h is not unique.

(ii) f (X 2 ) divides h.

(iii) There exists i in {1, . . . , m -1} such that h i • h i+1 = f (X 2 ). Proof. Consider f (X 2 ) ∈ IF p [X 2 ] irreducible with degree d > 1 such that f (X 2 ) = f (X 2
). According to [START_REF] Odoni | On additive polynomials over a finite field[END_REF], page 6 (or Lemma 1.4.11 of [START_REF] Caruso | Some algorithms for skew polynomials over finite fields[END_REF] with e = 2), as f (X 2 ) is irreducible in the center of R, the skew polynomial f (X 2 ) has ((p 2 ) d -1)/(p d -1) = p d + 1 irreducible monic right factors of degree d in R, in particular it is reducible in R. According to Proposition 16 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF] the points (i), (ii) and (iii) are therefore equivalent.

Corollary 1 Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], m a nonnegative integer, ε in {-1, 1} and h = (X + λ 1 ) • • • (X + λ m ) in R where λ p+1 i = ε.
The following assertions are equivalent :

(i) The above factorization of h is not unique.

(ii) X 2 -ε divides h. (iii) There exists i in {1, . . . , m-1} such that (X +λ i )•(X +λ i+1 ) = X 2 -ε i.e. λ i λ i+1 = -ε. Proof. This a consequence of Proposition 3 with f (X 2 ) = X 2 -ε. It suffices to notice that X + λ i divides X 2 -ε if and only if λ p+1 i = ε. In this case (X + λ i ) • (X + λ i+1 ) = X 2 + (λ i + ε λ i+1 )X + λ i λ i+1 and (X + λ i ) • (X + λ i+1 ) = X 2 -ε ⇔ λ i λ i+1 = -ε.
The elements of H (X 2 -ε) p s who have a unique factorization in R into the product of monic irreducible skew polynomials are therefore not divisible by X 2 -ε. In what follows one constructs for m in IN the set of elements of H (X 2 -ε) m who are not divisible by X 2 -ε. Recall that one denotes H (X 2 -ε) m this set of elements (see notations in Section 2) :

H (X 2 -ε) m := {h ∈ H (X 2 -ε) m | X 2 -ε does not divide h}.
Lemma 1 Consider p a prime number, θ the Frobenius automorphism, R = IF p 2 [X; θ], m a nonnegative integer and ε in {-1, 1}. Assume that p is odd and m is odd, then the number of elements of

H (X 2 -ε) m is #H (X 2 -ε) m = 0 if ε = 1, p ≡ 1 (mod 4) or ε = -1, p ≡ 3 (mod 4) 2p m-1 2 if ε = 1, p ≡ 3 (mod 4) or ε = -1, p ≡ 1 (mod 4).
Assume that p is equal to 2, then the number of elements of

H (X 2 +1) m is #H (X 2 +1) m =    0 if m > 2 2 if m = 2 1 if m = 1.
Proof.

• One first proves that the elements h of

H (X 2 -ε) m are h = (X + λ 1 ) • • • (X + λ m )
where

       ∀i ∈ {1, . . . , m}, λ p+1 i = ε ∀i ∈ {1, . . . , m -1}, λ i λ i+1 = -ε λ 2 1 = -1 ∀j ∈ {1, . . . , m-1 2 }, (λ 2j λ 2j+1 ) 2 = 1. (3) Namely, consider h in H (X 2 -ε) m . As h divides (X 2 -ε) m and as X 2 -ε is irreducible with degree 1 in IF p [X 2 ],
h is a (non necessarily commutative) product of linear monic skew polynomials dividing X 2 -ε (Lemma 13 (2) of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF] or [START_REF] Odoni | On additive polynomials over a finite field[END_REF] page 6). Furthermore, the degree of h is equal to m (because deg(h • h) = 2m) therefore one has :

h = (X + λ 1 ) • • • (X + λ m ) where λ i ∈ IF p 2 , λ p+1 i = ε.
In particular, the first relation of ( 3) is satisfied. As X 2 -ε does not divide h, according to Corollary 1 :

∀i ∈ {1, . . . , m -1}, (X + λ i ) • (X + λ i+1 ) = X 2 -ε (4) therefore ∀i ∈ {1, . . . , m -1}, λ i λ i+1 = -ε
which is the second relation of (3). The following expression of h can be obtained using an induction argument (left to the reader) :

h = (X + λm ) • • • (X + λ1 )
where for i in {1, . . . , m}, λi is defined by :

λi := 1/λ i × ε × (λ 1 • • • λ i ) 2 if i ≡ 1 (mod 2) 1/λ i × ε (λ 1 • • • λ i-1 ) 2 if i ≡ 0 (mod 2). (5) Furthermore, X 2 -ε does not divide h , otherwise X 2 -ε would divide h, therefore ∀i ∈ {1, . . . , m -1}, (X + λi+1 ) • (X + λi ) = X 2 -ε. (6) 
The relation h

• h = (X 2 -ε) m can be written (X + λm ) • • • (X + λ1 ) • (X + λ 1 ) • • • (X + λ m ) = (X 2 -ε) m . ( 7 
)
As X 2 -ε is central, the factorization of the skew polynomial (X 2 -ε) m into the product of monic skew polynomials dividing X 2 -ε is not unique, therefore, according to Corollary 1, X 2 -ε is necessarily the product of two consecutive monic linear factors of the left hand side of [START_REF] Guenda | Self-dual Repeated Root Cyclic and Negacyclic Codes over Finite Fields[END_REF]. According to ( 4) and ( 6), the only possibility is

(X + λ1 ) • (X + λ 1 ) = X 2 -ε.
As X 2 -ε is central, the relation ( 7) can be simplified and one gets

(X + λm ) • • • (X + λ2 ) • (X + λ 2 ) • • • (X + λ m ) = (X 2 -ε) m-1 .
Using the same argument as before, one gets

(X + λ2 ) • (X + λ 2 ) = X 2 -ε . . . (X + λm ) • (X + λ m ) = X 2 -ε.
From the equalities above, one deduces that ∀i ∈ {1, . . . , m}, λ i λi = -ε and using the definition of λi given in ( 5), one gets λ 2 1 = -1 (third relation of ( 3)) and for i odd, (λ i λ i+1 ) 2 = 1 (fourth relation of ( 3)).

Conversely, consider h = (X + λ 1 ) • • • (X + λ m ) where λ 1 , . . . , λ m are defined by [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]. According to the first relation of (3), the monic skew polynomials X + λ i divide X 2 -ε. According to the second relation of (3) and to Corollary 1, X 2 -ε does not divide h. Like previously the skew polynomial h is equal to (X + λm ) • • • (X + λ1 ) where λi is defined by the relations [START_REF] Dinh | Repeated-root constacyclic codes of length 2p s Finite Fields and[END_REF]. Furthermore, according to the third and fourth

relations of (3), if i is odd, (λ 1 • • • λ i ) 2 = -1, so for all i in {1, . . . , m}, λ i λi = -ε and X 2 -ε = (X + λi ) • (X + λ i ). The product h • h can be simplified as follows : h • h = (X + λm ) • • • (X + λ1 ) • (X + λ 1 ) • • • (X + λ m ) = (X 2 -ε) • (X + λm ) • • • (X + λ2 ) • (X + λ 2 ) • • • (X + λ m ) (because X 2 -ε is central) . . . = (X 2 -ε) m-1 • (X + λm ) • (X + λ m ) = (X 2 -ε) m
and one concludes that h belongs to H (X 2 -ε) m .

• The relations (3) enable to count the number of elements of H (X 2 -ε) m . Namely according to Corollary 1, the elements of H (X 2 -ε) m have a unique factorization into the product of monic skew linear polynomials dividing X 2 -ε. Therefore the number of elements of the set H (X 2 -ε) m is the number of m-tuples (λ 1 , . . . , λ m ) of (IF p 2 ) m satisfying the conditions (3).

Assume that p = 2 and that m is an integer greater than 2. Then the conditions

λ 2 λ 3 = -1 and (λ 2 λ 3 ) 2 = 1 are not compatible, therefore the set H (X 2 -1) m is empty. If m = 1, it is reduced to {X + 1} (see Example 1). If m = 2, the set H (X 2 -1) m is equal to {(X + λ 1 ) • (X + λ 2 ) | λ 1 = 1, λ 2 = 1} = {(X + 1) • (X + a), (X + 1) • (X + a 2 )} where a 2 + a + 1 = 0.
Assume that p and m are odd, then the conditions (3) can be simplified as follows : mod 4) and ε = -1 or p ≡ 1 (mod 4) and ε = 1.

           λ 2 1 = -1 λ 2 = ελ 1 ∀i ∈ {1, . . . , m}, λ p+1 i = ε ∀j ∈ {1, . . . , (m -1)/2}, λ 2j+1 = ε/λ 2j ∀j ∈ {1, . . . , (m -3)/2}, λ 2j+2 = -λ 2j First, the conditions λ 2 1 = -1 and λ p+1 1 = ε imply (-1) (p+1)/2 = ε so H (X 2 -ε) m is empty if p ≡ 3 (
If p ≡ 3 (mod 4) and ε = 1 or p ≡ 1 (mod 4) and ε = -1, then there are two possibilities for λ 1 , p possibilities for λ 2 , one possibility for λ 3 , p possibilities for λ 4 , one for λ 5 , and so on, thererefore

H (X 2 -ε) m has 2p m-1 2 elements.
Remark 2 If m is odd, one can simplify the relations (3) by taking α 0 = λ 1 , α 1 = λ 2 and for i in {2, . . . , (m -1)/2}, α i = λ 2i . Therefore one gets :

H (X 2 -ε) m = {(X + α 0 ) • (X 2 + 2α 1 X + ε) • • • (X 2 + 2α (m-1)/2 X + ε) | α 2 0 = -1, α 1 = εα 0 , ∀i ∈ {0, . . . , (m -1)/2}, α p+1 i = ε, ∀i ∈ {2, . . . , (m -1)/2}, α i = -α i-1 }.
To describe the set H (X 2 -ε) p s one uses the following partition : Lemma 2 Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], s in IN and f = f (X 2 ) ∈ {X 2 ± 1} ∪ F.
One has the following partition :

H f p s = p s 2 i=0 f i • H f p s -2i . (8) 
Proof.

Consider M = p s 2 , h = h(X) in H f p s and i the biggest integer in {0, . . . , M } such that f i divides h. Consider H = H(X) in R such that h = f i • H and f does not divide H. As f i is central, h = f i • H therefore H • H = f p s -2i and H belongs to H f p s -2i . Conversely, if H in H f p s -2i , then f i • H belongs to H f p s . Furthermore consider i > i , H in H f p s -2i and H in H f p s -2i such that f i • H = f i • H then f i-i divides H , which is impossible as f does not divide H . Therefore, for i = i , the sets f i • H f p s -2i and f i • H f p s -2i are disjoint.
Remark 3 If p = 2 and f (X 2 ) = X 2 + 1, according to Lemma 2, one gets the following partition :

H (X 2 +1) 2 s = 2 s-1 i=0 (X 2 + 1) i • H (X 2 +1) 2 s -2i .
According to Lemma 1, the sets H (X 2 +1) 2 s -2i are empty when 2 s -2i > 2 and H (X 2 +1) 2 = {(X + 1) • (X + a), (X + 1) • (X + a 2 )} where a 2 + a + 1 = 0. Therefore :

H (X 2 +1) 2 s = (X 2 + 1) 2 s-1 • H (X 2 +1) 0 (X 2 + 1) 2 s-1 -1 • H (X 2 +1) 2 = {(X + 1) 2 s , (X + 1) 2 s -1 • (X + a), (X + 1) 2 s -1 • (X + a 2 )}
One gets that for s > 0 there are only three self-dual θ-cyclic codes of dimension 2 s over IF 4 (see also Corollary 26 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]).

Proposition 4 below gives a formula for the number of self-dual θ-cyclic and θ-negacyclic codes whose dimension is a power of p when p is an odd prime number. The results are also summed up in Table 1.

Proposition 4 Consider p an odd prime number , s an integer, ε in {-1, 1} and θ the Frobenius automorphism over

IF p 2 . The number of self-dual (θ, ε)-constacyclic codes of dimension p s over IF p 2 is    0 if ε = 1, p ≡ 1 (mod 4) or ε = -1, p ≡ 3 (mod 4) 2 p (p s +1)/2 -1 p -1 if ε = 1, p ≡ 3 (mod 4) or ε = -1, p ≡ 1 (mod 4). Proof. Consider R = IF p 2 [X; θ].
The number of self-dual (θ, ε)-constacyclic codes of dimension p s over IF p 2 is equal to #H X 2p s -ε . According to Lemma 2, one has the following partition :

H X 2p s -ε = M i=0 (X 2 -ε) i • H (X 2 -ε) p s -2i where M = p s -1 2 . According to Lemma 1, each set H (X 2 -ε) p s -2i is empty if ε = (-1) p+1 2 and has 2p M -i elements if ε = (-1) p+1 2 . Therefore, if ε = (-1) p+1 2 , H X 2p s -ε is empty and otherwise it has M i=0 2p M -i = 2 p M +1 -1 p-1 = 2 p (p s +1)/2 -1 p -1 elements.
Example 3 According to Corollary 3.3 of [START_REF] Dinh | Repeated-root constacyclic codes of length 2p s Finite Fields and[END_REF], there are 4 self-dual negacyclic codes of dimension 3 over IF 9 . The corresponding skew check polynomials are the polynomials

(X -γ) i (X + γ) 3-i ∈ IF 9 [X] where i is in {0, 1, 2, 3} and γ 2 = -1.
According to Proposition 4, for θ : x → x 3 Frobenius automorphism over IF 9 , there are 2 × (3 (3+1)/2 -1)/(3 -1) = 8 self-dual θ-cyclic codes of dimension 3 over IF 9 . Their skew check polynomials are the elements of H X 6 -1 and according to Lemma 2,

H X 6 -1 = H (X 2 -1) 3 (X 2 -1) • H (X 2 -1)
. The sets H (X 2 -1) (with cardinal 2) and H (X 2 -1) 3 (with cardinal 6) are constructed with Lemma 1 and Remark 2 : 

H X 2 -1 = {X + α 0 | α 2 0 = -1, α 4 0 = 1} = {X + γ, X -γ} p negacyclic θ-cyclic θ-negacyclic p ≡ 3 (mod 4) p s + 1 2 p (p s +1)/2-1 p -1 0 p ≡ 1 (mod 4) p s + 1 0 2 p (p s +1)2-1 p -1
: x → x p .
and

H (X 2 -1) 3 = {(X + α 0 ) • (X 2 + 2α 1 X + 1) | α 0 = ±γ, α 1 = α 0 , α 1 ∈ {±γ, ±1}}. The 2 × 3 = 6 elements of H (X 2 -1) 3 are listed below :                (X + γ) • (X 2 + 2X + 1) = X 3 + (γ -1)X 2 + (1 -γ)X + γ (X + γ) • (X 2 + X + 1) = X 3 + (γ + 1)X 2 + (γ + 1)X + γ (X + γ) • (X 2 -2γX + 1) = X 3 + γ (X -γ) • (X 2 + 2X + 1) = X 3 + (-γ -1)X 2 + (1 + γ)X -γ (X -γ) • (X 2 + X + 1) = X 3 + (-γ + 1)X 2 + (-γ + 1)X -γ (X -γ) • (X 2 + 2γX + 1) = X 3 -γ.
Proposition 4 enables also to simplify Proposition 2 as follows. It will be useful in the two next sections.

Proposition 5 Consider p a prime number, θ the Frobenius automorphism over IF p 2 , R = IF p 2 [X; θ], k a positive integer, s, t two integers such that k = p s × t and p does not divide t. The number of self-dual (θ, ε)-constacyclic codes over

IF p 2 with dimension k is #H X 2k -ε = N ε × f ∈F k,ε #H f p s × f ∈G k,ε #H f p s
where

N 1 =                0 if k ≡ 1 (mod 2) and p ≡ 1 (mod 4) or k ≡ 0 (mod 2) and p odd 1 if s = 0 and p = 2 3 if s > 0 and p = 2 2 p (p s +1)/2 -1 p -1 if k ≡ 1 (mod 2) and p ≡ 3 (mod 4)
and

N -1 =        0 if k ≡ 1 (mod 2) and p ≡ 3 (mod 4) 1 if k ≡ 0 (mod 2) and p odd 2 p (p s +1)/2 -1 p -1 if k ≡ 1 (mod 2
) and p ≡ 1 (mod 4).

Proof. One starts with Proposition 2 where the expression of N ε is given in function of #H (X 2 ±1) p s . One simplifies N ε thanks to Proposition 4 (for p odd prime) and Remark 3 (for p = 2).

4 Self-dual θ-cyclic and θ-negacyclic codes with dimension prime to p over IF p 2 .

Over IF p 2 with p odd prime number, there is no self-dual cyclic code and the number of selfdual negacyclic codes with dimension k prime to p is given in Theorem 2 of [START_REF] Sahni | Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields[END_REF]. Self-dual cyclic codes over IF 4 with odd dimension are studied in [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF],

The aim of this section is to construct and to enumerate self-dual θ-cyclic and θ-negacyclic codes over IF p 2 whose dimension is prime to p when p is a prime number and θ is the Frobenius automorphism (Proposition 8).

The starting point of the study is Proposition 5 applied in the particular case when the dimension k of the code is prime to p (i.e. k = p s × t, s = 0 and p |t). One wants to determine now the set

H f for f in F ∪ G. Consider f = f (X 2 ) in F ∪ G. Note that if f is in F then the degree d of f in X 2
is even (see exercise 3.14 page 141 of [START_REF] Lidl | Finite fields[END_REF]). Consider δ in IN such that d = 2δ where δ is in IN * . Let h in R monic with degree 2δ :

h = X 2δ + 2δ-1 i=0 h i X i = (X 2δ + δ-1 i=0 h 2i X 2i ) + X • δ-1 i=0 θ(h 2i+1 )X 2i .
The skew reciprocal polynomial h * of h is

h * = 1 + δ i=1 h 2δ-2i X 2i + δ-1 i=0 θ(h 2δ-2i-1 )X 2i • X .
One can associate to h the two polynomials defined in IF p 2 [Z] by

A(Z) := Z δ + δ-1 i=0 h 2i Z i and B(Z) := δ-1 i=0 θ(h 2i+1 )Z i . ( 9 
)
Using the commutation law (1), one gets that h • h = f (X 2 ) if and only if the following polynomial relations in IF p 2 [Z] are satisfied :

       Z δ A 1 Z A(Z) + Z δ B 1 Z B(Z) -h 0 f (Z) = 0 Z δ A 1 Z Θ(B)(Z) + Z δ-1 B 1 Z Θ(A)(Z) = 0 ( 10 
)
where Θ :

a i Z i → a p i Z i .
In the rest of the section, the following notation will be useful :

Notation 2 Consider P (X 2 ) = P i X 2i in IF p [X 2 ], one denotes P (Z) the polynomial in IF p 2 [Z] defined by P (Z) = P i Z i . For a in IF p 2 and P (X 2 ) in IF p [X 2 ], P (a) is P i a i .
The Frobenius automorphism θ defined over IF p 2 is extended to IF p 2 and is denoted with the same letter θ. [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF] with A monic, deg(A) = δ and deg(B) ≤ δ -1 enables to construct the elements h of H f . One first considers the resolution of [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF] when B(Z) = 0. This amounts to find the elements of

Finding (A, B) in IF p 2 [Z]×IF p 2 [Z] satisfying
H f ∩ IF p 2 [X 2 ]. Lemma 3 1. Consider f = f (X 2 ) in F with degree 2δ in X 2 and f (X 2 ) = f (X 2 ) × Θ( f )(X 2 ) the factorization of f (X 2 ) in IF p 2 [X 2 ]. H f ∩ IF p 2 [X 2 ] = ∅ if δ ≡ 0 (mod 2) { f (X 2 ), Θ( f )(X 2 )} if δ ≡ 1 (mod 2) 2. Consider f = f (X 2 ) in G with degree 2δ in X 2 and g(X 2 ) such that f (X 2 ) = g(X 2 )g (X 2 ).
When δ is even, consider the factorization of

g(X 2 ) in IF p 2 [X 2 ] : g(X 2 ) = g(X 2 ) × Θ(g)(X 2 ). H f ∩ IF p 2 [X 2 ] = {g(X 2 ), g (X 2 ), g(X 2 )Θ(g )(X 2 ), g (X 2 )Θ(g)(X 2 )} if δ ≡ 0 (mod 2) {g(X 2 ), g (X 2 )} if δ ≡ 1 (mod 2)
Proof. Recall that h is in H f if and only if (A(Z), B(Z)) defined by ( 9) satisfies the relation [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF]

. Furthermore h is in IF p 2 [X 2 ] if and only if B(Z) = 0. The elements of H f ∩ IF p 2 [X 2 ]
are therefore characterized by the relations B(Z) = 0 and

Z δ A 1 Z A(Z) = h 0 f (Z) where h 0 is the constant term of A .
Here are now necessary conditions for h belonging to

H f \ IF p 2 [X 2 ]. Lemma 4 Consider f = f (X 2 ) in F ∪ G with degree 2δ in X 2 , h in R monic with degree 2δ and (A(Z), B(Z)) defined in (9). If h ∈ H f \ IF p 2 [X 2 ] then (i) gcd(A(Z), B(Z)) = 1 (ii) gcd(B(Z), f (Z)) = 1.
Proof.

(i) Assume that A(Z) and B(Z) have a common factor in IF p 2 [Z] then according to the first relation of [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF], this factor must divide f (Z). Furthermore, B(Z) = 0 and the degree of

B(Z) is ≤ δ -1, therefore f (Z) must have a nontrivial factor in IF p 2 [Z] with degree ≤ δ -1. Necessarily δ is even, f = gg with g = gΘ(g) product of two irreducible polynomials of degree δ/2 in IF p 2 [Z].
Without loss of generality one can assume that g(Z) is the common factor of A(Z) and

B(Z) in IF p 2 [Z]. Consider β such that g(β) = 0, a(Z) and b(Z) in IF p 2 [Z] such that A(Z) = g(Z)a(Z) and B(Z) = g(Z)b(Z).
From relations [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF], one gets that

Z δ/2 a (1/Z) a(Z) + Z δ/2 b (1/Z) b(Z) = λΘ(g)(Z)g (Z) Z δ/2 a (1/Z) Θ(b)(Z) + Z δ/2-1 b (1/Z) Θ(a)(Z) = 0 ( 11 
)
where

λ is a nonzero constant. Consider u in IF p δ \ {0} such that a(γ) = u × b(γ).
According to [START_REF] Kai | On cyclic self-dual codes[END_REF] evaluated at γ,

a(γ)a(1/γ) + b(γ)b(1/γ) = 0 γΘ(b)(γ)a(1/γ) + Θ(a)(γ)b(1/γ) = 0.
From the first relation, one deduces that a(1/γ) = -1/u × b(1/γ) and from the second relation, one deduces -γ/uΘ(b

)(γ) + Θ(a)(γ) = 0 so (-γ/u) p × b(γ p ) + a(γ p ) = 0. As a(γ p )a(1/γ p ) + b(γ p )b(1/γ p ) = 0, one gets a(1/γ p ) = (u/γ) p × b(1/γ p ). Therefore        a(γ) = u × b(γ) a(1/γ) = -1/u × b(1/γ) a(γ p ) = γ p /u p × b(γ p ) a(1/γ p ) = -u p /γ p × b(1/γ p ).
In particular, the polynomial Z δ/2 a (1/Z) a(Z) + Z δ/2 b (1/Z) b(Z) cancels at γ, 1/γ, γ p , 1/γ p , therefore it is divisible by f (Z), which is impossible because of the first relation of [START_REF] Kai | On cyclic self-dual codes[END_REF]. To characterize the elements h of H f such that h does not belong to IF p 2 [X 2 ], one will use the following rational interpolation problem or Cauchy interpolation problem (Section 5.8 of [START_REF] Von Zur Gathen | Modern computer algebra[END_REF]): given 2δ distinct points x 0 , . . . , x 2δ-1 in IF p 2δ and 2δ values y 0 , . . . , y 2δ-1 in IF p 2δ , find a rational function r/t ∈ IF p 2δ (Z) such that

(RI) : t(x i ) = 0, r(x i ) t(x i ) = y i for 0 ≤ i < 2δ -1, deg(r) < δ + 1, deg(t) ≤ δ -1
Note that this problem can be rewritten as

gcd(t, f ) = 1, r ≡ P × t -1 (mod f ), deg(r) < δ + 1, deg(t) ≤ δ -1
where f = 2δ-1 i=0 (Z -x i ), P has degree ≤ 2δ -1 and P (x i ) = y i for 0 ≤ i < 2δ -1. This problem can be solved using extended Euclidean algorithm ( [START_REF] Von Zur Gathen | Modern computer algebra[END_REF]).

Construction of H

f for f in F For f in F, one first gives a characterization of the elements h of H f \ IF p 2 [X 2 ]. Lemma 5 Consider f = f (X 2 ) in F with degree d = 2δ in X 2 and α in IF p 2δ such that f (α) = 0.
1. Consider h in R monic with degree d = 2δ and (A(Z), B(Z)) defined in [START_REF] Jacobson | The Theory of Rings Mathematical Surveys and Monographs[END_REF]. Then

h ∈ H f \ IF p 2 [X 2 ] if and only if there exists u in IF p d such that        A(α) = u × B(α) A (α p ) = α p /u p × B(α p ) gcd(A(Z), B(Z)) = 1 gcd(B(Z), f (Z)) = 1 (12)
and

u p δ +1 = -1 if δ even u p δ -1 = -1/α if δ odd. ( 13 
)
2. Consider u in IF p d such that the condition ( 13) is satisfied. There exists a unique solution (A, B) in

IF p 2 [Z] × IF p 2 [Z] to (12) with A monic, deg(A) = δ, deg(B) ≤ δ -1.

The set

H f \ IF p 2 [X 2 ] has p δ + 1 elements if δ is even and p δ -1 elements if δ is odd.
Proof. As f belongs to F, f (α -1 ) = 0 so there exists i in {0, . . . , d -1} such that α -1 = α p i . As α p 2i = (α -1 ) p i = α, and as f (X 2 ) is irreducible in IF p [X 2 ] with degree d = 2δ, necessarily i = δ and α -1 = α p δ .

1. Consider h in R with degree d = 2δ and (A(Z), B(Z)) defined by [START_REF] Jacobson | The Theory of Rings Mathematical Surveys and Monographs[END_REF].

If h belongs to H f \ IF p 2 [X 2
] then the relations [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF] are satisfied by (A(Z), B(Z)) with [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF] at α one gets :

B(Z) = 0. Consider u, v in IF p d such that A(α) = u × B(α) A(α p ) = v × B(α p ) . According to Lemma 4, gcd(B, f ) = 1 so B(α), B(α p ) = 0. If δ is even, then A(α -1 ) = A(α) p δ and B(α -1 ) = B(α) p δ . Evaluating
u p δ × u + 1 = 0 α × u p δ + θ -1 (v) = 0 therefore v = α p /u p
and u p δ +1 = -1. If δ is odd, then A(α -1 ) = A(α p ) p δ-1 and B(α -1 ) = B(α p ) p δ-1 . Evaluating (10) at α, one gets :

v p δ-1 × u + 1 = 0 α × v p δ-1 + θ -1 (v) = 0 therefore v = α p /u p and u p δ -1 = -1/α.
Conversely, if there exists u in IF p d such that ( 12) and ( 13) are satisfied, then one can check that the polynomials

Z δ A 1 Z A(Z) + Z δ B 1 Z B(Z) -h 0 f (Z) and Z δ A 1 Z Θ(B)(Z) + Z δ-1 B 1 Z Θ(A)(Z)
cancel at α and α p . Therefore the relations [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF] are satisfied and h belongs to H f . As gcd(B, f ) = 1, B = 0 so h belongs to

H f \ IF p 2 [X 2 ].
2. Consider u in IF p 2δ such that the condition (13) is satisfied. Consider the 2δ points (x i , y i ) 0≤i≤2δ-1 defined by

(x i , y i ) = (θ i (α), θ i (u)) if i ≡ 0 (mod 2) (θ i (α), θ i (α/u)) if i ≡ 1 (mod 2).
According to Corollary 5.18 of [START_REF] Von Zur Gathen | Modern computer algebra[END_REF] there exists two nonzero polynomials A and B in IF

p 2δ [Z] such that deg(A) < δ + 1, deg(B) ≤ δ -1 and A(x i ) = y i B(x i ).
Without loss of generality, one can assume that A and B are coprime and that A is monic. Furthermore, the set (x i , y i ) 0≤i≤2δ-1 is stable under the action of θ 2 , therefore (Θ 2 (A), Θ 2 (B)) satisfies the relations Θ 2 (A)(x i ) = y i Θ 2 (B)(x i ). As A and B are coprime and A is monic, Θ

2 (A) = A, Θ 2 (B) = B. Therefore A and B are polynomials of IF p 2 [Z].
Considering the two first relations A(x 0 ) = y 0 B(x 0 ) and A(x 1 ) = y 1 B(x 1 ) one gets the relation [START_REF] Lidl | Finite fields[END_REF], so the relation ( 10) is satisfied and the skew polynomial h associated to A and B belongs to H f . As A and B are coprime, B and f are also coprime (see Lemma 4). Assume that deg(A) = δ, then Z δ A(1/Z)A(Z) + Z δ B(1/Z)B(Z) would be the zero polynomial and h would satisfy h * • h = 0 which is impossible.

Therefore for u in IF p 2δ such that the condition ( 13) is satisfied, there exists (A, B) in

IF p 2 [Z] × IF p 2 [Z] satisfying (12) with A monic, deg(A) = δ and deg(B) ≤ δ -1.
The unicity of (A, B) follows from the fact that A/B is the unique solution to the rational interpolation problem (RI) with A and B coprime (Corollary 5.18 of [START_REF] Von Zur Gathen | Modern computer algebra[END_REF] ).

According to 1., H

f = u {h ∈ R | h monic, deg(h) = d, (A, B) defined in (9)
solution of ( 12)} where u satisfies [START_REF] Ling | On the algebraic structure of quasi-cyclic codes. I. Finite fields[END_REF]. According to 2., for each u satisfying (13), there is a unique h in R monic of degree d such that (A, B) defined in ( 9) is solution of [START_REF] Lidl | Finite fields[END_REF]. Therefore, the number of elements of H f is the number of u in IF p d satisfying u p δ +1 = -1 if δ is even and u p δ -1 = -1/α is δ is odd. Proof. The elements of H f ∩ IF p 2 [X 2 ] are given in point 1. of Lemma 3: there are two elements if δ is odd and no element if δ is even. The elements of H f who do not belong to IF p 2 [X 2 ] are given in point 3. of Lemma 5. There are p δ -1 elements if δ is odd and p δ + 1 elements if δ is even. 

2 + a + 1 = 0, R = IF 4 [X; θ] and f (X 2 ) = X 4 + X 2 + 1 in F. Consider h = X 2 + h 1 X + h 0 in R, A(Z) = Z + h 0 and B(Z) = θ(h 1 ) in IF 4 [Z]. One has h • h = X 4 + X 2 + 1 ⇔ ZA (1/Z) A(Z) + ZB (1/Z) B(Z) = h 0 (Z 2 + Z + 1) ZA (1/Z) Θ(B)(Z) + B (1/Z) Θ(A)(Z) = 0. If h 1 = 0, one gets h • h = X 4 + X 2 + 1 if and only if ZA 1 Z A(Z) = h 0 (Z 2 + Z + 1). As Z 2 + Z + 1 = (Z + a)(Z + a 2 ) and a 2 = 1/a, one gets A(Z) = Z + a or A(Z) = Z + a 2 (see Lemma 3), therefore if h 1 = 0, h = X 2 + a or h = X 2 + a 2 .
Following Lemma 5, if h 1 = 0, then h • h = X 4 + X 2 + 1 if and only if there exists u in IF 4 such that u = 1/a and

A(a) = u × B(a) = 1/a × B(a) A(a 2 ) = a 2 u 2 × B(a 2 ) = a × B(a 2 ).
Therefore when h 1 = 0, one gets h ∈ H X 4 +X 2 +1 if and only h = X 2 + X + 1. As a conclusion the set The skew polynomial X 12 + X 6 + 1 belongs to F and its degree in X 2 is 6. Consider α in IF 2 6 such that α 6 + α 3 + 1 = 0. According to Lemma 3 the elements of H X 12 +X 6 +1 with no term of odd degree are X 6 + a and X 6 + a 2 . According to Lemma 5, the other elements of H X 12 +X 6 +1 are the monic skew polynomials h of degree 6 such that (A(Z), B(Z)) defined by relations ( 9) are solutions of ( 12) with u 7 = 1/α. The table below gives the solutions corresponding to the seven problems [START_REF] Lidl | Finite fields[END_REF].

H X 4 +X 2 +1 is H X 4 +X 2 +1 = H X 4 +X 2 +1 = {X 2 + a, X 2 + a 2 , X 2 + X + 1}.
u h 1 + α X 6 + a 2 X 5 + aX 4 + aX 2 + a 2 X + a 2 1 + α + α 5 X 6 + X 5 + a 2 X 4 + aX 2 + X + 1 α + α 3 + α 4 + α 5 X 6 + X 4 + a 2 X 3 + a 2 X 2 + a 2 α 5 X 6 + X 3 + 1 1 + α 3 + α 4 X 6 + X 4 + aX 3 + aX 2 + a α + α 3 + α 4 X 6 + X 5 + aX 4 + a 2 X 2 + X + 1 1 + α 3 + α 4 + α 5 X 6 + aX 5 + a 2 X 4 + a 2 X 2 + aX + a
The number of elements of H X 12 +X 6 +1 is 9 = 1 + 2 3 .

Construction of H f for f in G

For f in G, one gives a characterization of the elements of

H f \ IF p 2 [X 2 ]. Lemma 6 Consider f = f (X 2 ) in G with degree 2δ in X 2 and g irreducible in IF p [X 2 ] such that f (X 2 ) = g(X 2 )g (X 2 ). Consider β in IF p δ such that g(β) = 0.
1. Consider h in R monic with degree 2δ and (A(Z), B(Z)) defined by relations [START_REF] Jacobson | The Theory of Rings Mathematical Surveys and Monographs[END_REF]. Then

h ∈ H f \ IF p 2 [X 2 ] if and only if there exists u in IF p d such that                A(β) = u × B(β) A(1/β) = -1/u × B(1/β) A(β p ) = β p /u p × B(β p ) A(1/β p ) = -u p /β p × B(1/β p ) gcd(A(Z), B(Z)) = 1 gcd(B(Z), f (Z)) = 1 (14)
and

u p δ -1 = 1 if δ even u p δ +1 = β if δ odd. ( 15 
)
2. Consider u in IF p d such that the condition ( 15) is satisfied. There exists a unique solution

(A, B) in IF p 2 [Z] × IF p 2 [Z] to (14) with A monic, deg(A) = δ, deg(B) ≤ δ -1.

The set

H f \ IF p 2 [X 2
] has p δ -1 elements if δ is even and p δ + 1 elements if δ is odd.

Proof.

1. Consider h in R with degree d = 2δ and (A(Z), B(Z)) defined by [START_REF] Jacobson | The Theory of Rings Mathematical Surveys and Monographs[END_REF].

If h ∈ H f \IF p 2 [X 2
] then (A(Z), B(Z)) satisfies the relation [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF] with B(Z) = 0. According to Lemma 4, B is coprime with f , therefore B(β), B(1/β), B(β p ) and B(1

/β p ) = 0. Consider u in IF p δ such that A(β) = u × B(β). According to (10) evaluated at β, A(β)A(1/β) + B(β)B(1/β) = 0 βΘ(B)(β)A(1/β) + Θ(A)(β)B(1/β) = 0.
From the first relation, one deduces that A(1/β) = -1/u × B(1/β) and from the second relation, one deduces -β/uΘ(B)(β)+Θ(A)(β) = 0 so (-β/u) p ×B(β p )+A(β p ) = 0. As A(β p )A(1/β p ) + B(β p )B(1/β p ) = 0, one gets A(1/β p ) = (u/β) p × B(1/β p ). Therefore the relations ( 14) are satisfied.

Furthermore, if δ is odd, one gets another constraint, namely as [START_REF] Odoni | On additive polynomials over a finite field[END_REF] are therefore satisfied.

β = β p δ one gets Θ(A)(β) = (Θ(A)(β p )) p δ-1 = (u p B(β) p ) p δ-1 = u p δ Θ(B)(β). Furthermore, -β/uΘ(B)(β)+ Θ(A)(β) = 0, so -β/u + u p δ = 0 and u p δ +1 = β. The relations
Conversely, if there exists u in IF p δ such that ( 14) and ( 15) are satisfied, then one can check that the polynomials

Z δ A 1 Z A(Z) + Z δ B 1 Z B(Z) -h 0 f (Z) and Z δ A 1 Z Θ(B)(Z) + Z δ-1 B 1 Z Θ ( 
A)(Z) cancel at β, 1/β, β p and 1/β p . Therefore the relations [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF] are satisfied and h belongs to H f . As gcd(B, f ) = 1, B is nonzero so

h belongs to H \ IF p 2 [X 2 ].
2. Consider u in IF p 2δ such that the condition ( 15) is satisfied. Consider the 2δ points (x i , y i ) 0≤i≤2δ-1 defined by

(x i , y i ) = (θ i (β), θ i (u)) if i ≡ 0 (mod 2), i < δ (θ i (β), θ i (β/u)) if i ≡ 1 (mod 2), i < δ (x i+δ , y i+δ ) = (θ i (1/β), -θ i (1/u)) if i ≡ 0 (mod 2), i < δ (θ i (1/β), -θ i (u/β)) if i ≡ 1 (mod 2), i < δ.
According to Corollary 5.18 of [START_REF] Von Zur Gathen | Modern computer algebra[END_REF] there exists two nonzero polynomials A and B in IF

p 2δ [Z] such that deg(A) < δ + 1, deg(B) ≤ δ -1 and for i in {0, . . . , 2δ -1}, A(x i ) = y i B(x i ).
Without loss of generality, one can assume that A and B are coprime and that A is monic. Furthermore, as the the set of points {(x i , y i )} is stable under the application of θ 2 , A(Z) and B(Z

) belong to IF p 2 [Z].
Considering the four relations A(x 0 ) = y 0 B(x 0 ), A(x 1 ) = y 1 B(x 1 ), A(x δ ) = y δ B(x δ ) and A(x δ+1 ) = y δ+1 B(x δ+1 ) one gets the relation ( 14), so the relation ( 10) is satisfied and the skew polynomial h associated to A and B belongs to H f . As A and B are coprime, B and f are also coprime (see Lemma 4). Assume that deg(A) = δ, then The unicity follows form the fact that A/B is the unique solution to the rational interpolation problem (RI) with A and B coprime ( Corollary 5.18 of [START_REF] Von Zur Gathen | Modern computer algebra[END_REF] ).

Z δ A(1/Z)A(Z) + Z δ B(1/Z)B(Z)
3. Like in Lemma 5, the number of elements of H f is deduced from points 1. and 2.

Proposition 7 Consider p a prime number, θ the Frobenius automorphism over

IF p 2 and R = IF p 2 [X; θ]. Let f = f (X 2
) in G and d = 2δ its degree in X 2 , then the set H f has 3 + p δ elements and H f has 1 + p δ elements.

Proof. The result is deduced from point 2. of Lemma 3 and point 3. of Lemma 6.

Furthermore if f (X 2 ) = g(X 2 )g (X 2 ) belongs to G, then H f (X 2 ) = H f (X 2 ) \ {g(X 2 ), g (X 2 )} has 1 + p δ elements. Example 6 Consider IF 4 = IF 2 (a) where a 2 + a + 1 = 0, θ the Frobenius automorphism, R = IF 4 [X; θ] and f (X 2 ) = (X 6 + X 2 + 1)(X 6 + X 4 + 1) in G with degree 6 = 2 × 3 in X 2 .
Consider β in IF 2 3 such that β 3 + β 2 + 1 = 0. According to Lemma 3, the elements of H f with no term of odd degree are X 6 + X 2 + 1 and X 6 + X 4 + 1. According to Lemma 6, the other elements of H f are deduced from the polynomials A(Z) and B(Z) of IF 4 [Z] satisfying [START_REF] Ling | On the algebraic structure of quasi-cyclic codes IV : Repeated Roots Chain rings[END_REF] with u 9 = β, A(Z) monic of degree 3 and B(Z) of degree ≤ 2.

For example take u = v 3 where v 6 +v 4 +v 3 +v+1 = 0, then u 9 = β and the unique solution [START_REF] Ling | On the algebraic structure of quasi-cyclic codes IV : Repeated Roots Chain rings[END_REF] with A monic of degree 3 and B of degree ≤ 2 is (A, B) = (Z 3 + a, aZ 2 +a 2 Z +1). Therefore, h(X) = (X 6 +a)+X •(aX 4 +a 2 X 2 +1) = X 6 +a 2 X 5 +aX 3 +X +a is an element of H f with at least one non zero term of odd degree. The entire set H f is

(A, B) in IF 4 [Z]×IF 4 [Z] of
{X 6 + X 2 + 1, X 6 + X 4 + 1, X 6 + X 5 + aX 3 + a 2 X + a, X 6 + a 2 X 5 + X 4 + X 2 + aX + 1, X 6 + aX 5 +X 4 +X 2 +a 2 X +1, X 6 +X 5 +X 4 +X 3 +X 2 +X +1, X 6 +aX 4 +aX 3 +X 2 +a, X 6 +a 2 X 4 + a 2 X 3 +X 2 +a 2 , X 6 +aX 5 +a 2 X 3 +X +a 2 , X 6 +X 5 +a 2 X 3 +aX +a 2 , X 6 +a 2 X 5 +aX 3 +X +a}.
It has 2 δ + 3 = 11 elements (Proposition 7).

Conclusion

The proposition below gives a formula for the number of self-dual θ-cyclic and θ-negacyclic codes over IF p 2 whose dimension is prime to p. Tables 2 and3 

N ε × f ∈F k,ε (p δ + 1) × f ∈G k,ε (p δ + 3)
where 2δ is the degree of f in X 2 and N ε is defined below :

N 1 =        0 if k ≡ 1 (mod 2) and p ≡ 1 (mod 4)
or k ≡ 0 (mod 2) and p odd 1 if p = 2 2 if k ≡ 1 (mod 2) and p ≡ 3 (mod 4)

N -1 =    0 if k ≡ 1 (mod 2
) and p ≡ 3 (mod 4) 1 if k ≡ 0 (mod 2) and p odd 2 if k ≡ 1 (mod 2) and p ≡ 1 (mod 4).

Proof. According to Proposition 5, with s = 0, the number of self-dual (θ, ε)-constacyclic

codes over IF p 2 with dimension k is #H X 2k -ε = N ε × f ∈F k,ε #H f × f ∈G k,ε #H f
where N ε satisfies the above conditions. The final result follows from Proposition 6 and Proposition 7. 

h • h = X 18 + 1. As X 18 + 1 = (X 2 + 1)(X 4 + X 2 + 1)(X 12 + X 6 + 1) in IF 2 [X 2
] and as the polynomials X 4 + X 2 + 1 and X 12 + X 6 + 1 are self-reciprocal and irreducible in IF 2 [X 2 ], the set F 9,1 is {X 4 + X 2 + 1, X 12 + X 6 + 1} and the set G 9,1 is empty. According to Proposition 8, the number of self-dual θ-cyclic codes of dimension 9 over IF 4 is 1 × (2 1 + 1) × (2 3 + 1) = 27. More precisely the set H X 18 +1 is given by

H X 18 +1 = {lcrm(h 1 , h 2 , h 3 ) | h 1 ∈ H X 2 +1 , h 2 ∈ H X 4 +X 2 +1 , h 3 ∈ H X 12 +X 6 +1 }
and the sets H X 2 +1 , H X 4 +X 2 +1 and H X 12 +X 6 +1 with cardinalities 1, 3 and 9 were previously computed in Examples 2, 4 and 5.

5 Self-dual θ-cyclic and θ-negacyclic codes with any dimension over IF p 2 .

In this section, one constructs and enumerates all self-dual θ-cyclic and θ-negacyclic codes over IF p 2 where p is a prime number and θ is the Frobenius automorphism. Like in Section 4, the starting point of the construction is Proposition 5, who enables to write the monic solutions of the self-dual skew equation as least common right multiples of skew polynomials satisfying intermediate skew equations. The main topic of this section is therefore to construct the intermediate sets H f p s where s > 0 and f = f (X 2 ) belongs to F ∪ G.

First, one assumes that f = f (X 2 ) belongs to F. 

k c θ-c 1 

Construction of H f p s for f in F

The aim of this subsection is to compute H f p s for f in F and to compute its number of elements. The final result is given in Proposition 9 and the main steps are summed up in Table 4. Consider f = f (X 2 ) is in F. Recall that according to Lemma 2, one has the partition :

H f p s = p s 2 i=0 f i • H f p s -2i
where for m in IN, the set H f m is defined by

H f m = {h ∈ H f m | f does not divide h}.
Lemma 7 below generalizes Lemma 1 and uses the same type of arguments linked to the factorization of skew polynomials.

Lemma 7 Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], m a nonnegative integer and f = f (X 2 ) in F with degree d = 2δ > 1 in X 2 .
1. The constant coefficients of the elements of H f are squares in IF p 2 . 1) elements and is equal to

The set

H f m has (1 + p δ )p δ(m-
   h 1 • 1 ν 1 • • • h m • 1 ν m •   m j=1 ν j   | h j ∈ H f , ν 2 j = (h j ) 0 , h j = ν j-1 • h j-1 • 1 ν j-1    .

Proof.

To simplify the presentation, the following notations will be used in this proof :

h = h(X), f = f (X 2 ). 1. Consider h = X d + d-1 i=0 h i X i in H f = H f . If p = 2, then h 0 is a nonzero element of IF 4
and therefore is a suqare in IF 4 . Assume that p is odd. According to Section 4, the polynomials 9) satisfy the relations [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF]. If f (Z) and B(Z) are coprime then f (Z) = f (Z) and Z δ-1 B(1/Z) are also coprime. Therefore the relations [START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF] 

A(Z) = Z δ + δ-1 i=0 h 2i Z i and B(Z) = δ-1 i=0 θ(h 2i+1 )Z i defined in (
imply that f (Z) = A(Z)Θ(A)(Z) - ZB(Z)Θ(B)(Z), Z δ-1 B(1/Z) = -h 0 Θ(B)(Z) and Z δ A(1/Z) = h 0 Θ(A)(Z).
In particular, one has 1 -h 0 h p 0 = 0 so h 0 is a square. If f (Z) and B(Z) are not coprime, then according to Lemma 4, B(Z) = 0 and using Lemma 3, one gets

A(Z) = f (Z) or Θ( f )(Z) where f (Z) = f (Z)Θ( f )(Z) is the factorization of f (Z) into irreducible polynomials of IF p 2 [Z]. As f = f , the constant coefficient of f is equal to 1, so one gets h p+1 0 = 1 and h 0 is a square. 2. Consider h in H f m . As h divides f m and f is irreducible in IF p [X 2 ]
, all the irreducible factors of h divide f and have the same degree d (Lemma 13 (2) of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF] or [START_REF] Odoni | On additive polynomials over a finite field[END_REF] page 6) :

h = m i=1 H i , H i monic, deg(H i ) = d, H i |f, H i irreducible.
Furthermore, f does not divide h, therefore according to Proposition 3, for all j in

{1 . . . m -1}, H j • H j+1 is distinct of f .
Using an induction argument (left to the reader), one gets the following expression of h :

h = m-1 i=0 1 µ m-i H m-i • µ m-i
where

µ i = (H 1 • • • H i-1 ) 0 is defined as the constant coefficient of H 1 • • • H i-1 .
Furthermore, this factorization (into the product of irreducible monic polynomials of same degree d dividing f ) is unique (because the factorization of h is unique).

As the factorization of f m into the product of irreducible factors is not unique (because f m is central), according to Proposition 3, f m = h • h must have two consecutive irreducible monic factors whose product is f . As h and h do not possess two consecutive factors whose product is f , necessarily,

1 µ 1 H 1 • µ 1 • H 1 = f and proceeding by induction, one gets ∀j ∈ {1, . . . , m -1}, 1 µ j H j • µ j • H j = f and H j+1 = 1 µ j H j • µ j . (16) 
Conversely, consider

h = H 1 • • • H m with 1 µ j H j • µ j • H j = f, H j+1 = 1 µ j H j • µ j and µ j constant coefficient of H 1 • • • H j-1 , then h • h = f m and H j • H j+1 = f .
Furthermore, the skew polynomials H j are all irreducible because they are nontrivial factors of f and f is irreducible in IF p [X 2 ], therefore according to Proposition 3, the skew polynomial h is not divisible by f and it belongs to H f m .

The conclusion follows thanks to the following equivalence :

     h = H 1 • • • H m 1 µ j H j • µ j • H j = f H j+1 = 1 µ j H j • µ j ⇔        h = h 1 • 1 ν 1 • • • h m • 1 νm • m j=1 ν j h j • h j = f h j+1 = ν j h j • 1 ν j where µ j = (H 1 • • • H j-1 ) 0 is the constant coefficient of H 1 • • • H j-1 , ν j is defined in IF p 2 by ν 2 j = (H j ) 0 = (h j ) 0 and h j = (ν 0 • • • ν j )H j • 1 ν 0 •••ν j .
3. The number of elements of H f m follows from the fact that H f has 1 + p δ elements (Proposition 6).

The construction of the set H f p s for f in F is deduced from Lemma 2 and Lemma 7. The whole construction is illustrated in Table 4. (1 + p δ )(p δ ) p s -2i-1 elements if p is odd and 1 + 2 s-1 -1 i=0

↓ ↓ ↓ H f (Proposition 6) → H f m (Lemma 7) → H f p s (Proposition 9)
(1 + 2 δ )(2 δ ) 2 s -2i-1 elements otherwise. In both cases one gets #H f p s = p δ(p s +1) -1

p δ -1
.

Example 8 Consider IF 4 = IF 2 (a), θ the Frobenius automorphism and f (X 2 ) = X 4 + X 2 + 1 in F. According to Proposition 9, the set H f 2 has 2 1×(2 1 +1) -1

2 1 -1 = 7 elements. More precisely, H f 2 = f 1 • H f 0 f 0 • H f 2 = {f } H f 2 .
Furthermore, according to Lemma 7, the elements of H f 2 are constructed by using products of elements of H f = {X 2 + a, X 2 + a 2 , X 2 + X + 1} (see Example 4 for the construction of H f ). Here are the 6 elements of H f 2 :

               (X 2 + X + 1) • (1/1)(X 2 + a) • (1/a 2 )a 2 = X 4 + X 3 + a 2 X 2 + a 2 X + a (X 2 + X + 1) • (1/1)(X 2 + a 2 ) • (1/a)a = X 4 + X 3 + aX 2 + aX + a 2 (X 2 + a) • (1/a 2 )(X 2 + a) • (1/a 2 )a = X 4 + a 2 (X 2 + a) • (1/a 2 )(X 2 + X + 1) • a 2 = X 4 + a 2 X 3 + a 2 X 2 + X + a (X 2 + a 2 ) • (1/a)(X 2 + a 2 ) • (1/a)a 2 = X 4 + a (X 2 + a 2 ) • (1/a)(X 2 + X + 1) • a = X 4 + aX 3 + aX 2 + X + a 2 .
In next subsection one constructs the set H f p s when f = f (X 2 ) belongs to G.

Construction of H f p s for f in G

In this subsection, one computes H f p s for f in G (Proposition 11). The construction is summed up in Table 5.

Assume that f = f (X 2 ) = g(X 2 )g (X 2 ) with g(X 2 ) = g (X 2 ) irreducible in IF p [X 2 ]. Recall that the set H f m is defined by H f m = {h ∈ H f m | g(X 2
) and g (X 2 ) do not divide h}.

One first starts with a partition of H f p s which generalizes Lemma 2 : Lemma 8 Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], s ∈ IN and f = f (X 2 ) = g(X 2 )g (X 2 ) in G with g = g(X 2 ) = g (X 2 ) irreducible in IF p [X 2 ]. H f p s = p s i=0 p s -i j=0 g i g j • H f p s -(i+j) . (17) 
Proof. Consider h in H f p s and i ∈ {0, . . . , p s }, j ∈ {0, . . . , p s -i} such that h = g(X 2 ) i g (X 2 ) j •H where g(X 2 ) and g (X 2 ) do not divide H. One has h = g (X 2 ) i g(X 2 ) j •H , therefore H • H = f p s -(i+j) and h belongs to the set g(X 2 ) i g (X 2 ) j • H f p s -(i+j) . Conversely, consider i ∈ {0, . . . , p s }, j ∈ {0, . . . , p s -i} and H in H f p s -(i+j) , then g(X 2 ) i g (X 2 ) j •H belongs to H f p s . Consider (i, j) = (i , j ) with i > i ∈ {0, . . . , p s }, j ∈ {0, . . . , p s -i}, j ∈ {0, . . . , p

s - i }, u ∈ H f p s -(i+j) , u ∈ H f p s -(i +j ) . Assume that g(X 2 ) i g (X 2 ) j • u = g(X 2 ) i g (X 2 ) j • u . If j ≥ j then g(X 2
) divides u which is impossible, therefore j < j . Necessarily, g(X 2 ) divides g (X 2 ) j -j • u . As g(X 2 ) and g (X 2 ) both divide g (X 2 ) j -j • u , their lclm is also a divisor of g (X 2 ) β • u . But g(X 2 ) and g (X 2 ) are right coprime and belong to IF p [X 2 ] therefore their lclm coincides with their lcm i.e. g(X 2 )g (X 2 ). So one gets that g(X 2 ) divides g (X 2 ) j -j-1 • u . After repeating the same argument one gets that g(X 2 ) divides g (X 2 ) • u . As g(X 2 ) and g (X 2 ) both divide g (X 2 )u their lclm g(X 2 )g (X 2 ) divides g (X 2 )u therefore g(X 2 ) divides u , contradiction.

In what follows one constructs the set H f m for f in G and m greater than 1 (Lemma 9). This construction requires a generalization of Proposition 3 : Proposition 10 Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], f (X 2 ) = g(X 2 )g (X 2 ) in IF p [X 2 ] with degree d in X 2 where g(X 2 ) = g (X 2 ) is irreducible in IF p [X 2 ]. Assume that h = h 1 • • • h m is
a product of monic skew polynomials of degree d whose bound is f (X 2 ). The following assertions are equivalent :

(i) The above factorization of h is not unique.

(ii) g(X 2 ) or g (X 2 ) divides h in R.

(iii) There exists i in {1, . . . , m -1} such that g(X 2 ) or g (X 2 ) divides h i • h i+1 in R.

Proof. To simplify the presentation, one denotes f = f (X 2 ), g = g(X 2 ) and g = g (X 2 ). The implication (iii) ⇒ (ii) comes from the fact that g and g are central. Let us prove that (ii) ⇒ (i). If g divides h, then it divides h on the right so h has at least two distinct right factors u and v irreducible dividing g. As the bound of h m is equal to f = gg , necessarily, h has an irreducible right factor w dividing g . The skew polynomials lclm(u, w) and lclm(v, w) are two right factors of h with degree d dividing f . According to Theorem 13 of [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF], as u and w are irreducible and do not have the same bound, the lclm-decomposition lclm(u, w) is unique. Similarly, the lclm decomposition lclm(v, w) is unique. Furthermore, u and v are distinct, so the skew polynomials lclm(u, w) and lclm(v, w) are distinct.

Let us prove by induction on m

that if h 1 • • • h m = g 1 • • • g m
are two distinct decompositions of h into the product of monic skew polynomials whose bound is f and whose degree is d, then there are two consecutive factors whose product is divisible by g or g .

Consider h = h 1 • h 2 = g 1 • g 2 where g i , h i are skew polynomials with degree d and with bound f . Assume that g and g do not divide h. Then gcrd(h, g) is an irreducible skew polynomial of degree δ dividing g which is also equal to gcrd(h 2 , g) and gcrd(g 2 , g). Similarly, gcrd(h 2 , g ) = gcrd(g 2 , g ). Furthermore, according to Theorem 4.1 of [START_REF] Giesbrecht | Factoring in skew-polynomial rings over finite fields[END_REF], h 2 = lclm(gcrd(h 2 , g), gcrd(h 2 , g )) and g 2 = lclm(gcrd(g 2 , g), gcrd(g 2 , g )), therefore g 2 = h 2 and (h 1 , h 2 ) = (g 1 , g 2 ).

Consider m > 2 and assume the property is true for m -1. Consider two distinct decompositions of h into the product of monic skew polynomials with degree d ad bound f :

h = h 1 • • • h m = g 1 • • • g m .
Therefore, h i and g j are products of two irreducible monic skew polynomials of degree δ dividing g and g .

If

gcrd(h m , g m ) = 1 then lclm(h m , g m ) = h m-1 • h m divides h 1 • • • h m and h m-1
is a monic skew polynomial of degree d dividing f which is the product of two irreducible monic skew polynomials of degree δ dividing g and g . Consider

H in R such that Hh m-1 = h 1 • • • h m-1 . If h m-1 = h m-1 then lclm(h m , g m ) = h m-1
• h m has two factorizations into the product of two monic skew polynomials of degree d dividing f , therefore, g or g divides h m-1 • h m . Otherwise, as h 1 , . . . , h m-1 , h m-1 are the products of an irreducible polynomial dividing g and an irreducible polynomial dividing g , H is the product of m -2 irreducible polynomials dividing g and m -2 skew polynomials dividingg . In particular, H divides g m-2 (g ) m-2 . According to Theorem 4.1 of [START_REF] Giesbrecht | Factoring in skew-polynomial rings over finite fields[END_REF], H = lclm(G, G) where G = gcrd(H, g m-2 ) and G = gcrd(H, (g ) m-2 ). As g (resp. g ) is irreducible in IF p [X 2 ], the skew polynomial G (resp. G) is the product of N (resp. Ñ ) monic irreducible skew polynomials dividing g (resp. g ). Without loss of generality, one can assume that N

≤ Ñ . Consider G = G 1 • • • G N (resp. G = G1 • • • G Ñ )
the factorization of G as the product of N (resp. Ñ ) monic irreducible factors dividing g (resp. g ). As g (resp. g ) does not divide G (resp G), according to Proposition 3, these factorizations are unique. Therefore, according to Theorem 14 of [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF]

, H = H 1 • • • H N where H i = lclm(G i , Gi ) with R/G i R and R/G i R (resp. R/ Gi R and R/ Gi R) isomorphic modules.
As G i divides g, according to Corollary of Theorem 10 of [START_REF] Jacobson | The Theory of Rings Mathematical Surveys and Monographs[END_REF], G i also divides g. As G i and Gi are right coprime with same degree d/2, G i and Gi are also right coprime therefore H i is a skew polynomial of degree d which divides f . Lastly, as H has degree (m -2)d one gets N = m-2. Therefore, H can be written as the product of m-2 monic skew polynomials of degree d dividing f and one can apply the induction hypothesis to H • h m-1 .

Assume that gcrd(h m , g m ) = u = 1. Necessarily u is an irreducible monic skew polynomial of degree δ which divides g or g . Without loss of generality, one can assume that u divides g. Consider v such that lclm(g m , h

m ) = v • h m and H in R such that h 1 • • • h m = H • v • h m i.e h 1 • • • h m-1 = H • v.
Necessarily v is an irreducible monic skew polynomial of degree δ dividing g and H = h1 • • • hm-2 • w where w is an irreducible skew polynomial dividing g, hi is a product of two irreducible monic skew polynomials of degree δ dividing g and g . If

h m-1 = w • v, then w • lclm(g m , h m ) = h m-1 • h m and one concludes that g or g divides h m-1 • h m . If h m-1 = w • v then h 1 • • • h m-1 = h1 • • • hm-2 • (w • v)
where w • v is a monic skew polynomial of degree d dividing f , and one concludes using the induction hypothesis.

Remark 4

The unique factorization of h in Proposition 10 below is the unique representation of h as the product of maximal completely reducible factors as it is defined in [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF] page 498.

If f (X 2 ) is irreducible in IF p [X 2 ] (and f (X 2 ) ∈ R does not divide h), then this factorization coincides with the factorization of h into irreducible monic skew polynomials.

Lemma 9 generalizes Lemma 7 (where F is replaced with G). It uses the same type of arguments linked to the factorization of skew polynomials. The elements of H f m are constructed by using products of elements of H f . Lemma 9 Consider p a prime number, θ the Frobenius automorphism over

IF p 2 , R = IF p 2 [X; θ], m a nonnegative integer and f = f (X 2 ) in G with degree d = 2δ > 1 in X 2 .
1. The constant coefficients of the elements of H f are squares in IF p 2 .

2. The set H f m has (1 + p δ )p δ(m-1) elements and is equal to

   h 1 • 1 ν 1 • • • h m • 1 ν m •   m j=1 ν j   | h j ∈ H f , ν 2 j = (h j ) 0 , h j = ν j-1 h j-1 • 1 ν j-1    .

Proof.

To simplify the presentation, the following notations will be used in this proof :

h = h(X), f = f (X 2 ) = g(X 2 )g (X 2 ), g = g(X 2
) and g = g (X 2 ).

1. If p = 2 the nonzero elements of IF p 2 are squares. Assume that p is an odd prime number. Consider h in H f m with constant term h 0 , A(Z) and B(Z) defined in [START_REF] Jacobson | The Theory of Rings Mathematical Surveys and Monographs[END_REF]. Like in point 1. of Lemma 7, if B(Z) and f (Z) are coprime then h p+1 0 = 1 so h 0 is a square in IF p 2 . If B(Z) and f (Z) are not coprime, then according to Lemma 4, δ is necessarily odd and A(Z) = g(Z)Θ(g )(Z) or A(Z) = g (Z)Θ(g)(Z) where g

(Z) = g(Z)Θ(g)(Z) is the factorization of g(Z) in IF p 2 [Z]. Denote µ the constant coefficient of g(Z), then the constant coefficient h 0 of A(Z) is such that h 0 = µ/µ p = 1/µ p-1 if A(Z) = g(Z)Θ(g )(Z) or such that h 0 = µ p /µ = µ p-1 if A(Z) = g (Z)Θ(g)(Z), therefore h 0 is a square in IF p 2 .

Like in Lemma 7, it suffices to prove that H

f m = H 1 • • • H m | 1 µ i H i • µ i • H i = f, µ i = (H 1 • • • H i-1 ) 0 , H i+1 = 1 µ i H i • µ i , g, g . Consider h in H f m .
Let us prove that h can be written as the product of m monic skew polynomials with degree d and with bound f . As h divides f m , according to Theorem 4.1 of [START_REF] Giesbrecht | Factoring in skew-polynomial rings over finite fields[END_REF], h = lclm(G, G) where G = gcrd(h, g m ) and G = gcrd(h, (g ) m ). As g (resp. g ) is irreducible in IF p [X 2 ], the skew polynomial G (resp. G) is the product of N (resp. Ñ ) monic irreducible skew polynomials dividing g (resp. g ). Without loss of generality, one can assume that N ≤ Ñ . Consider G = G 1 • • • G N (resp. G = G1 • • • G Ñ ) the factorization of G as the product of N (resp. Ñ ) monic irreducible factors dividing g (resp. g ). According to Proposition 3, as g (resp. g ) does not divide G (resp G), these factorizations are unique. Therefore, according to Theorem 14 of [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF], h = H 1 • • • H N where H i = lclm(G i , Gi ) with R/G i R and R/G i R (resp. R/ Gi R and R/ Gi R) isomorphic modules. As G i divides g, according to Corollary of Theorem 10 of [START_REF] Jacobson | The Theory of Rings Mathematical Surveys and Monographs[END_REF], G i also divides g. As G i and Gi are right coprime with same degree d/2, G i and Gi are also coprime therefore H i is a skew polynomial of degree d which divides f . Lastly, the degree of h is equal to m × d and one gets N = m. Therefore Table 5: Main steps of the construction of H f p s for f in G

The number of elements of H f m follows from the fact that H f has 1 + p δ elements (Proposition 7).

The construction of the set H f p s for f in G is deduced from Lemma 8 and Lemma 9. The whole construction is illustrated in Table 5. Proof. Consider f = f (X 2 ) = g(X 2 )g (X 2 ) in G, then according to Lemma 8, one has the partition H f p s = p s i=0 p s -i j=0 g(X 2 ) j g (X 2 ) i-j • H f p s -i-j . Furthermore, according to Lemma 9, the set H f m has (p δ + 1)p δ(m-1) if m ≥ 1 and 1 element if m = 0. Therefore the number of elements of the set H f p s is H f 2 = H f 2 (X 6 + X 2 + 1)H f (X 6 + X 4 + 1)H f {(X 6 + X 2 + 1) 2 , (X 6 + X 4 + 1) 2 , (X 6 + X 2 + 1)(X 6 + X 4 + 1)}.

There are 9 elements in H f = H f \ {X 6 + X 2 + 1, X 6 + X 4 + 1} (see example 6) and 72 = (1 + 2 3 ) × 2 3 skew polynomials in H f 2 . Here is one of these elements : h = X 12 + aX 11 + a 2 X 10 + a 2 X 7 + a 2 X 6 + X 5 + a 2 X 2 + aX + a = (h 1 • 1 ν 1 ) • (h 2 • 1 ν 2 ) • (ν 1 ν 2 ) where h 1 = X 6 + X 5 + aX 3 + a 2 X + a, h 2 = X 6 + X 5 + X 4 + X 3 + X 2 + X + 1 are two elements of H f , ν 1 = a 2 is the square root of the constant coefficient of h 1 and ν 2 = 1 .

Conclusion

The following theorem gives the number of self-dual θ-cyclic and θ-negacyclic codes of any dimension k over IF p 2 for p prime number and θ Frobenius automorphism. Tables 6 and7 illustrate this theorem over IF 4 for k = 2 s × t and t ∈ {1, 3, 5, 7, 9} and over IF 9 for k = 3 s × t and t ∈ {1, 2, 4, 5, 7}.

Theorem 1 Consider p prime number, θ the Frobenius automorphism over IF p 2 , k a positive integer, ε in {-1, 1}, s, t two integers such that k = p s × t and p does not divide t. The number of self-dual (θ, ε)-constacyclic codes of dimension k over IF p 2 is

N ε × f ∈F k,ε p δ(p s +1) -1 p δ -1 × f ∈G k,ε
p δ(p s +1) -2p s -3 1 + p δ + 4p s + 4 (p δ -1)

2
where Proof. According to Proposition 5, the number of self-dual (θ, ε)-constacyclic codes over

N 1 =                0 if k ≡ 1 ( mod 
IF p 2 with dimension k is #H X 2k -ε = N ε × f ∈F k,ε #H f p s × f ∈G k,ε #H f p s
where N ε satisfies the above conditions. The final result follows from Proposition 9 and Proposition 11.

Remark 5 Proposition 4 is a particular case of Theorem 1 for t = 1 while Proposition 8 is a particular case for s = 0. 

Conclusion and perspectives

This text provides a construction and an enumeration of Euclidean self-dual θ-cyclic and θnegacyclic codes over IF p 2 where p is a prime number and θ is the Frobenius automorphism.

The main ingredient of this study relies on the adaptation of Sloane and Thompson approach ( [START_REF] Sloane | Cyclic self-dual codes[END_REF]) to solve the self-dual skew equation over IF p 2 [X; θ]. Some comparisons with the number of cyclic and negacyclic codes with the same dimensions are also provided. This construction should be generalized to Hermitian self-dual θ-negacyclic codes over IF p 2 (work in progress). However, the question of the enumeration of self-dual skew codes over IF p e with e greater than 2 remains open. Namely, many properties in this text are specific to the ring IF p 2 [X; θ] and a new approach should be adopted to hope a generalization. Lastly, a lot of work still remains in the study of the minimal distances of the codes constructed in this text.

(

  ii) Assume that B(Z) and f (Z) are not coprime in IF p 2 [Z]. Necessarily δ is even, f = gg with g = gΘ(g) product of two irreducible polynomials of degree δ/2 in IF p 2 [Z]. Without loss of generality one can assume that g(Z) is the common factor of f (Z) and B(Z) in IF p 2 [Z]. Consider β such that g(β) = 0, one has B(β) = 0, B(β -1 ), B(β p ), B(β -p ) = 0. Furthermore Θ(B)(β p ) = 0 so according to the second relation of (10), Θ(A)(β p )B(1/β p ) = 0 and A(β) = 0. Therefore A(Z) and B(Z) have a common factor in IF p 2 [Z], which is impossible according to (i).

Proposition 6

 6 Consider p a prime number, m a positive integer, θ the Frobenius automorphism over IF p 2 and R = IF p 2 [X; θ]. Let f = f (X 2 ) in F and d = 2δ its degree in X 2 , then the set H f = H f has 1 + p δ elements.

Example 4

 4 Consider p = 2, θ the Frobenius automorphism over IF 4 = IF 2 (a) where a

Example 5

 5 Consider p = 2, θ the Frobenius automorphism over IF 4 = IF 2 (a) with a 2 +a+1 = 0 and R = IF 4 [X; θ].

  would be the zero polynomial and h would satisfy h * • h = 0 which is impossible.Therefore for u in IF p 2δ such that the condition (15) is satisfied, there exists (A, B) inIF p 2 [Z] × IF p 2 [Z] satisfying[START_REF] Ling | On the algebraic structure of quasi-cyclic codes IV : Repeated Roots Chain rings[END_REF] with A monic, deg(A) = δ and deg(B) ≤ δ -1 with A and B coprime.

Proposition 8

 8 illustrate this proposition over IF 4 and IF 9 and give some elements of comparison with cyclic and negacyclic codes. Consider p a prime number, θ the Frobenius automorphism over IF p 2 , k a positive integer not divisible by p and ε in {-1, 1}. The number of self-dual (θ, ε)-constacyclic codes with dimension k defined over IF p 2 is

Example 7

 7 Consider θ : x → x 2 the Frobenius automorphism over IF 4 = IF 2 (a) where a 2 + a + 1 = 0. The self-dual θ-cyclic codes of dimension 9 over IF 4 are characterized by the monic solutions of the self-dual skew equation

  Proposition 7) → H f m (Lemma 9) → H f p s (Proposition 11)

Proposition 11 4 (p δ - 1

 1141 Consider p a prime number, θ the Frobenius automorphism over IF p 2 , R = IF p 2 [X; θ], s a nonnegative integer and f = f (X 2 ) in G with degree d = 2δ > 1 in X 2 . The set H f p s has p δ(p s +1) -2p s -3 1 + p δ + 4p s +

( 1 + 4 (p δ - 1 ) 2 . 9

 14129 p δ )(p δ ) p s -i-1-j + 1   = p δ(p s +1) -2p s -3 1 + p δ + 4p s + Example Consider IF 4 = IF 2 (a), θ : x → x 2 and f = f (X 2 ) = (X 6 +X 2 +1)(X 6 +X 4 +1) ∈ G with degree d = 6 in X 2 .According to Proposition 11, the set H f 2 has 93 elements. More precisely,

2 )0

 2 and p ≡ 1 (mod 4) or k ≡ 0 (mod 2) and p odd 1 if s = 0 and p = 2 3 if s > 0 and p = 2 2 p (p s +1)/2 -1 p -1 if k ≡ 1 (mod 2) and p ≡ 3 (mod 4) if k ≡ 1 (mod 2) and p ≡ 3 (mod 4) 1 if k ≡ 0 (mod 2) and p odd 2 p (p s +1)/2 -1 p -1 if k ≡ 1 (mod 2) and p ≡ 1 (mod 4).

3 s 3 ( 3 s 5 5 × 3 s ( 3 ( 3 s7 × 3 s ( 3 ( 3 sTable 7 :

 333533337 +1)/2 -1 0 2 × 3 s 0 (3 3 s +1 -1)/2 4 × 3 s 0 (5 × 9 3 s +1 -8 × 3 s -13)/2 +1)/2 -1) × (9 3 s +1 -1)/8 0 +1)/2 -1) × (273 s +1 -1)/26 0 Number of self-dual θ-cyclic and θ-negacyclic codes (Theorem 1) over IF 9 in dimensions t × 3 s with s ∈ IN, t ∈ {1, 2, 4, 5, 7} and θ : x → x 3 .

Table 1 :

 1 Numbers of self-dual negacyclic (Corollary 3.3 of[START_REF] Dinh | Repeated-root constacyclic codes of length 2p s Finite Fields and[END_REF]), θ-cyclic (Proposition 4) and θ-negacyclic (Proposition 4) codes over IF p 2 of dimension p s with p odd prime number and θ

Table 2 :

 2 Numbers of self-dual cyclic codes (c , Corollary 1 of[START_REF] Jia | On Self-Dual Cyclic Codes Over Finite Fields[END_REF]) and θ-cyclic codes (θ-c, prop. 8) over IF 4 in odd dimension k < 100 where θ : x → x 2 .

	1 3 1 3 9 11 3 3 5 7 9 13 1 15 9 17 1 19 3 21 9 23 3 25 1 27 27 13851 1 3 5 11 27 33 65 285 289 513 2211 2051 5125 29 1 16385 31 3 42875 33 9 107811	k 35 9 c 37 1 39 9 41 1 43 3 45 81 47 3 49 9 51 9 53 1 55 9 57 9 59 3 61 1 1073741825 θ-c 225445 262145 799305 1050625 2146689 10513935 8388611 23068705 58159227 67108865 173015535 405017091 536870913 63 9 5984882937 65 1 5801453125 67 3 8589934593	k 69 9 c 71 3 73 3 75 27 77 27 79 3 81 81 83 3 85 3 87 9 89 3 91 9 93 9 95 9 97 1 99 81 1041914208570939 θ-c 25807570971 34359738371 70344300625 306316140375 389768283201 549755813891 1859049764379 2199023255553 6502298510645 13194944987145 17695491973201 49242466343785 139327459600875 176265457835535 281475010265089
	k	nc	θ-c	θ-nc	k	nc	θ-c	θ-nc
	1	2	2	0	26 1024	0	2143296
	2	4	0	4	28	64	0	6429888
	4	4	0	12	29	8	9565940	0
	5	8	20	0	31	8	28697816	0
	7	8	56	0	32	4	0	43046724
	8	4	0	84	34	64	0	172186896
	10	64	0	336	35 512	297608640	0
	11	8	492	0	37	32	774919712	0
	13	32	1800	0	38	64	0	1549839424
	14	64	0	3136	40 1024	0	4182119424
	16	4	0	6564	41 2048	7414796864	0
	17	8	13124	0	43	8	20920706408	0
	19	8	39368	0	44	64	0	41845664448
	20 1024	0	84672	46	64	0	125524238448
	22	64	0	236208	47	8	188286357660	0
	23	8	354300	0	49	32	585779779424	0
	25	32	1181000	0	50 1024	0	1171559559744

Table 3 :

 3 

Numbers of self-dual negacyclic (nc, Theorem 2 of

[START_REF] Sahni | Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields[END_REF]

), self-dual θ-cyclic (θ-c, prop. 8) and self-dual θ-negacyclic (θ-nc, prop. 8) codes over IF 9 in dimension k ≤ 50 coprime with 3 where θ : x → x 3 .

Table 4 :

 4 Main steps of the construction of H f p s for f in F Proposition 9 Consider p a prime number, θ the Frobenius automorphism overIF p 2 , R = IF p 2 [X; θ], s a nonnegative integer and f = f (X 2 ) in F with degree d = 2δ > 1 in X 2 . The set H f p s has p δ(p s +1) -1 p δ -1 elements.Proof. According to Lemma 2, H f p s = • H f p s -2i and according to Lemma 7, H f m has (1 + p δ )(p δ ) m-1 if m = 0 and 1 element if m = 0. Therefore H f p s has

	p s	
	2	
	i=0	f i (p s -1)/2
		i=0

Table 6 :

 6 × 8 2 s +1 -7 × 2 s+1 -23)/49 9 × 2 s (1 + 2 s+1 ) 2 3 × (2 2 s +1 -1) × (82 s +1 -1)/7 Number of self-dual cyclic codes (Theorem 3.6 of [11]) and self-dual θ-cyclic codes (Theorem 1) over IF 4 in dimension t × 2 s with s ∈ IN * , t ∈ {1, 3, 5, 7, 9} and θ : x → x 2 .

	Dimension	cyclic	θ-cyclic
	2 s	1	3 ([3])
	3 × 2 s	1 + 2 s+1	3 × (2 2 s +1 -1)
	5 × 2 s	1	4 2 s +1 -1
	7 × 2 s 3 × (9 Dimension 1 + 2 s+1 θ-cyclic	θ-negacyclic
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. Using an induction argument, one has :

By hypothesis

is the product of 2m monic factors with degree d and with bound f . As f m is central, the above decomposition is not unique. Therefore, according to Proposition 10, there exists two consecutive factors in h • h whose product is divisible by g or g . Such a product can be of three types :

However g and g do not divide H i • H i+1 , otherwise, they would divide h, and they do not divide

and as these two skew polynomials are monic with the same degree they are equal. By induction, one gets

It remains to prove that g and g do not divide h. Assume that g divides h, all the skew factors H i in the decomposition of h are monic, with degree d, divide f and are distinct of g, g , therefore, according to Proposition 10, there exists i such that g divides

As both H i and H i+1 divide f without diving g or g , they are the products of two irreducible polynomials dividing respectively g and g , therefore the skew polynomial u is the product of two irreducible skew polynomials both dividing g and u divides (g ) 2 . The relation

where λ i is the constant coefficient of H i . Multiplying the above equality on the left by µ i+1 H i+1 • 1 µ i+1 and on the right by

As f 2 is central, the two terms of the product commute and

One gets the relation 1 µ i u • µ i • g = v • g. The skew polynomials g and g divide v • g and deg(v • g) = deg(f ), therefore f = v • g, v = g and u = g which is impossible because