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Abstract

The aim of this text is to construct and to enumerate self-dual θ-cyclic and θ-negacyclic
codes over IFp2 where p is a prime number and θ is the Frobenius automorphism.

1 Introduction

A linear code over a finite field IFq is a k-dimensional subspace of IFnq . Cyclic codes over IFq
form a class of linear codes who are invariant under a cyclic shift of coordinates. This cyclicity
condition enables to describe a cyclic code as an ideal of IFq[X]/(Xn − 1). A self-dual linear
code is a code who is equal to its annihilator (with respect to the scalar product). One reason
of the interest in self-dual codes is that they have strong connections with combinatorics.

In 1983, N. J. A. Sloane and J. G. Thompson investigated the construction and the
enumeration of self-dual cyclic binary codes with a given length n ([19]). These codes are
determined by a polynomial equation whose solutions can be described thanks to some fac-
torization properties of Xn + 1 in IF2[X]. Later this study was generalized to self-dual cyclic
codes over finite fields of characteristic 2 ([11, 10]) and to self-dual negacyclic codes over finite
fields of odd characteristic ([5], [17]).

For θ automorphism of a finite field IFq, θ-cyclic codes (also called skew cyclic codes) of
length n were defined in [2]. These codes are such that a right circular shift of each codeword
gives another word who belongs to the code after application of θ to each of its n coordinates.
If θ is the identity, θ-cyclic codes are cyclic codes; if q is the square of a prime number and
θ is the Frobenius automorphism (who therefore has order 2), θ-cyclic codes form a subclass
of the class of quasi-cyclic codes of index 2 ([18]). Self-dual quasi-cyclic codes have been also
studied in [8], [13], [14].

Skew cyclic codes have an interpretation in the Ore ring R = IFq[X; θ] of skew polynomials
where multiplication is defined by the rule X · a = θ(a)X for a in IFq. Like self-dual cyclic
codes, self-dual θ-cyclic codes over IFq are characterized by an equation, called ”self-dual skew
equation” and defined in the Ore ring IFq[X; θ]. When q is the square of a prime number and
θ is the Frobenius automorphism over IFq, properties specific to the ring IFq[X; θ] will enable
to extend N. J. A. Sloane and J. G. Thompson original approach to solve the self-dual skew
equation.
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The text is organized as follows. In Section 2, some definitions and facts about θ-cyclic
codes, θ-negacyclic codes and self-dual codes are recalled. The self-dual skew equation char-
acterizing self-dual θ-cyclic or θ-negacyclic codes is recalled. Its solutions are least common
right multiples of skew polynomials who satisfy intermediate skew equations in IFq[X; θ] ([3]).
The main goal of this paper consists in constructing and enumerating the solutions of these
intermediate skew equations when q is the square of a prime number p and θ is the Frobenius
automorphism over IFp2 .

In Section 3, self-dual θ-cyclic and θ-negacyclic codes whose dimension is a power of
p are considered over IFp2 . In this case, the self-dual skew equation splits into one single
intermediate skew equation. When p is equal to 2, the complete description of its solutions
was obtained in [3] thanks to some factorization properties (recalled in Proposition 3) specific
to IFp2 [X; θ]. Using the same arguments, one can also describe the solutions of the self-dual
skew equation when p is an odd prime number (Proposition 4). The results are summed up
in Table 1.

In Section 4, self-dual θ-cyclic and θ-negacyclic codes whose dimension is prime to p are
considered over IFp2 (Proposition 8). A resolution of the intermediate skew equations based on
Cauchy interpolations over IFp2 (Propositions 6 and 7) enables to provide a parametrization
of the solutions.

In Section 5, self-dual θ-cyclic and θ-negacyclic codes of any dimension over IFp2 are
constructed and enumerated (Theorem 1). The steps of the resolutions of the intermediate
skew equations are summed up in Tables 4 and 5. Proposition 4 (Section 3) and Proposition
8 (Section 4) can be seen as particular cases of Theorem 1.

The text ends in Section 6 with some concluding remarks and perspectives.

2 Generalities on self-dual skew constacyclic codes

For a finite field IFq and θ an automorphism of IFq one considers the ring R = IFq[X; θ] where
addition is defined to be the usual addition of polynomials and where multiplication is defined
by the rule : for a in IFq

X · a = θ(a)X. (1)

The ring R is called a skew polynomial ring or Ore ring (cf. [16]) and its elements are
skew polynomials. When θ is not the identity, the ring R is not commutative, it is a left and
right Euclidean ring whose left and right ideals are principal. Left and right gcd and lcm
exist in R and can be computed using the left and right Euclidean algorithms. The center of
R is the commutative polynomial ring Z(R) = IFθq[X

m] where IFθq is the fixed field of θ and
m is the order of θ. The bound B(h) of a skew polynomial h with a nonzero constant term
is the monic skew polynomial f with a nonzero constant term belonging to Z(R) of minimal
degree such that h divides f on the right in R ([9]).

Definition 1 (definition 1 of [3]) Consider an element a of IFq and two integers n, k such
that 0 ≤ k ≤ n. A (θ, a)-constacyclic code or skew constacyclic code C of length n is
a left R-submodule Rg/R(Xn − a) ⊂ R/R(Xn − a) in the basis 1, X, . . . ,Xn−1 where g is a
monic skew polynomial dividing Xn − a on the right in R with degree n − k. If a = 1, the
code is θ-cyclic and if a = −1, it is θ-negacyclic. The skew polynomial g is called skew
generator polynomial of C.
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If θ is the identity then θ-cyclic and θ-negacylic codes are respectively cyclic and negacyclic
codes.

Example 1 Consider p a prime number, θ : x 7→ xp the Frobenius automorphism over IFp2
and α in IFp2. The remainder in the right division of X2 − 1 by X + α in IFp2 [X; θ] is equal
to αp+1 − 1 :

X2 − 1 = (X − θ(α)) · (X + α) + αθ(α)− 1.

Therefore, there are p+ 1 θ-cyclic codes of length 2 and dimension 1 over IFp2; their skew
generator polynomials are the skew polynomials X + α where αp+1 = 1.

Definition 2 ([3], Definition 2) Consider an integer d and h =
d∑
i=0

hi X
i in R of degree

d. The skew reciprocal polynomial of h is h∗ =
d∑
i=0

Xd−i · hi =
d∑
i=0

θi(hd−i) X
i. If m is

the degree of the trailing term of h, the left monic skew reciprocal polynomial of h is
h\ := 1

θd−m(hm)
· h∗. The skew polynomial h is self-reciprocal if h = h\.

Remark 1 For f , g in R, (f · g)∗ = Θdeg(f)(g∗) · f∗ (Lemma 4 of [3]). In particular, for f ,
h in R if f divides h on the left then f \ divides h\ on the right.

The (Euclidean) dual of a linear code C of length n over IFq is defined as C⊥ = {x ∈ IFnq |
∀y ∈ C,< x, y >= 0} where for x, y in IFnq , < x, y >:=

∑n
i=1 xiyi is the (Euclidean) scalar

product of x and y. The code C is self-dual if C is equal to C⊥.
According to [3], self-dual θ-constacyclic codes are necessarily θ-cyclic or θ-negacyclic.

They can be characterized by a skew polynomial equation who is recalled below.

Proposition 1 (Corollary 1 of [3]) Consider ε in {−1, 1}, two integers k, n with k ≤ n
and C a (θ, ε)-constacyclic code with length n, dimension k. Consider g the skew generator
polynomial of C and h the skew check polynomial of C defined by g · h = Xn − ε. The
Euclidean dual C⊥ of C is a (θ, ε)-constacyclic code generated by h\. The code C is Euclidean
self-dual if, and only if,

h\ · h = X2k − ε. (2)

The equation (2) is called self-dual skew equation.

When k is fixed, a first approach to solve the self-dual skew equation consists in construct-
ing the polynomial system satisfied by the unknown coefficients of a solution :

Example 2 Consider p a prime number and θ : x 7→ xp the Frobenius automorphism over
IFp2. The self-dual θ-cyclic codes of dimension 1 over IFp2 are the θ-cyclic codes whose skew
check polynomials h satisfy the self-dual skew equation

h\ · h = X2 − 1.

The monic skew solutions of the self-dual skew equation are the monic skew polynomials
h = X + α where α is in IFp2 and(

X +
1

θ(α)

)
· (X + α) = X2 − 1.
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Developing the left hand side of this relation thanks to the commutation law (1) and
equating the terms of both sides, one gets the conditions α2 + 1 = 0 and αp−1 = −1. If p = 2

then α = 1 and if p is an odd prime number then α2 = −1 and (−1)
p−1
2 = −1. Therefore

if p = 2 there is one self-dual θ-cyclic code of dimension 1 over IF4; if p ≡ 3 (mod 4) there
are two self-dual θ-cyclic codes of dimension 1 over IFp2; if p ≡ 1 (mod 4) then there is no
self-dual θ-cyclic code of dimension 1 over IFp2.

When k is not fixed, a second approach is based on the factorization properties of the
monic solutions of the self-dual skew equation. The starting point of the study is inspired
from Sloane and Thompson construction of self-dual binary cyclic codes ([19]) who is extended
to finite fields with characteristic 2 in [10]. Let us recall their strategy (and therefore assume
that IFq has characteristic 2 and that θ is the identity). Consider two integers s and t such
that k = 2s × t with t odd. The polynomial Xn + 1 = X2k + 1 is factorized in IFq[X] as

the product of r polynomials fi(X)2
s+1

where fi(X) is a self-reciprocal polynomial which

is either irreducible or product of two distinct irreducible polynomials gi(X) and g\i (X) in
IFq[X]. Consider h in IFq[X] such that h\h = X2k + 1. Necessarily, h is the product of

polynomials fi(X)αi , gi(X)βi and g\i (X)γi , where αi, βi and γi are integers of {0, . . . , 2s+1}.
The relation h\h = X2k+1 is satisfied if and only if αi = 2s and βi+γi = 2s+1, therefore there
are (2s+1 + 1)m self-dual cyclic codes of dimension k where m is the number of polynomials

fi(X) = gi(X)g\i (X) dividing Xn + 1 in IFq[X]. Lastly one can notice that the polynomials
h who satisfy the relation h\h = X2k + 1 are least common multiples of polynomials hi who
are defined by the intermediate equations h\ihi = fi(X)2

s+1
:

h\h = X2k + 1⇔ h = lcm(h1, . . . , hr), h
\
ihi = fi(X)2

s+1
.

In [3], this lcm decomposition was generalized to a lcrm decomposition over R = IFq[X; θ] in
the particular case when q is the square of a prime number and θ is the Frobenius automor-
phism (Proposition 28 of [3]). This decomposition enables to derive a first formula for the
number of (θ, ε)-constacyclic codes of dimension k (Proposition 2 below). First one introduces
some notations that will be useful later :

Notation 1 For F = F (X2) in IFp[X
2], k in IN∗ and ε in {−1, 1},

HF := {h ∈ R | h is monic and h\ · h = F (X2)}

HF := {h ∈ HF | no non constant divisor of F (X2) in IFp[X
2] divides h in R}

DF := {f = f(X2) ∈ IFp[X
2] | f is monic and f divides F (X2)}

F := {f = f(X2) ∈ IFp[X
2] | f is irreducible in IFp[X

2] and degX2(f) > 1}

G := {f = f(X2) ∈ IFp[X
2] | f = gg\ with g 6= g\ irreducible in IFp[X

2]}

Fk,ε := DX2k−ε ∩ F

Gk,ε := DX2k−ε ∩ G

Following this notation, the monic solutions of the self-dual skew equation are the elements
of HX2k−ε.
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Proposition 2 Consider p a prime number, θ the Frobenius automorphism over IFp2, R =
IFp2 [X; θ], k a positive integer, s, t two integers such that k = ps × t and p does not divide t.
The number of self-dual (θ, ε)-constacyclic codes of dimension k over IFp2 is

#HX2k−ε = Nε ×
∏

f∈Fk,ε

#Hfps ×
∏

f∈Gk,ε

#Hfps

where

N1 =


#H(X2+1)ps if p = 2

#H(X2−1)ps if k ≡ 1 (mod 2) and p odd

#H(X2−1)ps ×#H(X2+1)ps if k ≡ 0 (mod 2) and p odd

and

N−1 =

{
#H(X2+1)ps if k ≡ 1 (mod 2) and p odd

1 if k ≡ 0 (mod 2) and p odd.

Proof. Consider the factorization of X2t − ε over IFp[X
2] into the product of distinct

irreducible polynomials of IFp[X
2] and split this product into two sub-products, the product

of self-reciprocal irreducible factors and the product of non self-reciprocal irreducible factors.
In this second product, factors appear by pairs (g, g\ 6= g) therefore X2k − ε = (X2t − ε)ps =∏r
i=1 f

ps

i where fi = fi(X
2) is self-reciprocal, either irreducible in IFp[X

2] or product of two

distinct irreducible polynomials gi(X
2) and g\i (X

2) of IFp[X
2]. Following [3], one has

1. HX2k−ε = {lcrm(h1, . . . , hr) | hi ∈ Hfpsi } ([3], Proposition 28);

2. If h belongs to HX2k−ε, then h = lcrm(h1, . . . , hr) where h\i = gcrd(fp
s

i , h
\) and hi ∈

H
fp
s

i
([3], Proposition 28, point (2)).

Therefore, the following application φ is well defined and is injective :

φ :

{
HX2k−ε → H

fp
s

1
× · · · × H

fp
s
r

h 7→ (h1, . . . , hr), h\i = gcrd(fp
s

i , h
\).

Let us prove that φ is surjective. Consider (h1, . . . , hr) in H
fp
s

1
× · · · × H

fp
s
r

and h =

lcrm(h1, . . . , hr). According to point 1., the skew polynomial h belongs to HX2k−ε. It

remains to prove that for all i in {1, . . . , r}, h\i = gcrd(fp
s

i , h
\). According to point 2.,

h = lcrm(h̃1, . . . , h̃r) where h̃\i = gcrd(fp
s

i , h
\) and h̃i ∈ Hfpsi . Consider i in {1, . . . , r},

one has h\i · hi = fp
s

i and fi is central, therefore h\i divides fp
s

i on the right. Further-

more h = lcrm(h1, . . . , hr) therefore hi divides h on the left and h\i divides h\ on the right

(see Remark 1). As h̃\i is the greatest common right divisor of fp
s

i and h\, h\i divides h̃\i
on the right. Furthermore h\i · hi = h̃\i · h̃i = fp

s

i so hi and h̃i have the same degree and

h\i = h̃\i = gcrd(fp
s

i , h
\). To conclude φ is bijective and

#HX2k−ε =
r∏
i=1

#H
fp
s

i
= Nε ×

∏
f∈Fk,ε

#Hfps ×
∏

f∈Gk,ε

#Hfps

where Nε =
∏

deg(fi)=1 #H
fp
s

i
.
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Let us determine Nε in the three following cases : p = 2, ε = 1; p odd prime, ε = 1 and p
odd prime, ε = −1.

For p = 2, the self-reciprocal polynomial of degree 1 in X2 dividing X2k − 1 is X2 + 1
therefore N1 = #H(X2+1)ps .

For p odd prime, the self-reciprocal polynomials of degree 1 in X2 dividing X2k − 1 are
X2 − 1 if k is odd; X2 − 1 and X2 + 1 if k is even therefore,

N1 =

{
#H(X2−1)ps if k ≡ 1 (mod 2)

#H(X2−1)ps ×#H(X2+1)ps if k ≡ 0 (mod 2).

For p odd prime and k even number, X2k + 1 has no self-reciprocal factor of degree 1
in X2. If k is odd, X2 + 1 is the only self-reciprocal polynomial of degree 1 in X2 dividing
X2k + 1. Therefore,

N−1 =

{
#H(X2+1)p

s if k ≡ 1 (mod 2)

1 if k ≡ 0 (mod 2).

The rest of the paper will be devoted to the enumeration of the elements of the set HX2k−ε
when k is a power of p (Section 3), k is coprime with p (Section 4) and k is any integer (Section
5). Following Proposition 2, the main task will consist in constructing Hfps for f = X2 ± 1,
f in F and f in G. The main difficulty comes from the non unicity of the factorization of
skew polynomials in the Ore ring R.

In Section 3, one assumes that k is a power of p, therefore X2k − ε factorizes over IFp[X
2]

as X2k − ε = (X2 − ε)ps and the self-dual skew equation splits into one single intermediate
skew equation. For s > 0, it is solved by using a partition and factorization properties specific
to IFp2 [X; θ].

3 Self-dual θ-cyclic and θ-negacyclic codes with dimension ps

over IFp2.

The aim of this section is to construct and to enumerate self-dual θ-cyclic and θ-negacyclic
codes over IFp2 whose dimension is ps where θ is the Frobenius automorphism. Recall that
over IF4, there is one single self-dual cyclic code of dimension 2s. When p is an odd prime
number there is no self-dual cyclic code over IFp2 and there are ps + 1 self-dual negacyclic
codes of dimension ps (Corollary 3.3 of [5]). Lastly, there are only three self-dual θ-cyclic
codes of dimension 2s > 1 over IF4 (Corollary 26 of [3]). In what follows one proves that the
number of self-dual θ-cyclic and θ-negacyclic codes of dimension ps over IFp2 is exponential
in the dimension ps when p is an odd prime number (Proposition 4 and Table 1).

In order to construct the set HX2k−ε = H(X2−ε)ps , factorization properties specific to
IFp2 [X; θ] will be useful. The following proposition enables to characterize the skew poly-
nomials that have a unique factorization into the product of monic linear skew polynomials
dividing X2 − ε (see also Proposition 16 of [3]).

Proposition 3 Consider p a prime number, θ the Frobenius automorphism over IFp2, R =
IFp2 [X; θ], m a nonnegative integer, f(X2) in IFp[X

2] irreducible and h = h1 · · ·hm in R where
hi is irreducible in R, monic and divides f(X2). The following assertions are equivalent :
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(i) The above factorization of h is not unique.

(ii) f(X2) divides h.

(iii) There exists i in {1, . . . ,m− 1} such that hi · hi+1 = f(X2).

Proof. Consider f(X2) ∈ IFp[X
2] irreducible with degree d > 1 such that f \(X2) =

f(X2). According to [15], page 6 (or Lemma 1.4.11 of [4] with e = 2), as f(X2) is irreducible
in the center of R, the skew polynomial f(X2) has ((p2)d − 1)/(pd − 1) = pd + 1 irreducible
monic right factors of degree d in R, in particular it is reducible in R. According to Proposition
16 of [3] the points (i), (ii) and (iii) are therefore equivalent.

Corollary 1 Consider p a prime number, θ the Frobenius automorphism over IFp2, R =
IFp2 [X; θ], m a nonnegative integer, ε in {−1, 1} and h = (X + λ1) · · · (X + λm) in R where

λp+1
i = ε. The following assertions are equivalent :

(i) The above factorization of h is not unique.

(ii) X2 − ε divides h.

(iii) There exists i in {1, . . . ,m−1} such that (X+λi)·(X+λi+1) = X2−ε i.e. λiλi+1 = −ε.
Proof. This a consequence of Proposition 3 with f(X2) = X2 − ε. It suffices to notice

that X + λi divides X2 − ε if and only if λp+1
i = ε. In this case (X + λi) · (X + λi+1) =

X2 + (λi + ε
λi+1

)X + λiλi+1 and (X + λi) · (X + λi+1) = X2 − ε⇔ λiλi+1 = −ε.
The elements of H(X2−ε)ps who have a unique factorization in R into the product of

monic irreducible skew polynomials are therefore not divisible by X2 − ε. In what follows
one constructs for m in IN the set of elements of H(X2−ε)m who are not divisible by X2 − ε.
Recall that one denotes H(X2−ε)m this set of elements (see notations in Section 2) :

H(X2−ε)m := {h ∈ H(X2−ε)m | X2 − ε does not divide h}.

Lemma 1 Consider p a prime number, θ the Frobenius automorphism, R = IFp2 [X; θ], m a
nonnegative integer and ε in {−1, 1}. Assume that p is odd and m is odd, then the number
of elements of H(X2−ε)m is

#H(X2−ε)m =

{
0 if ε = 1, p ≡ 1 (mod 4) or ε = −1, p ≡ 3 (mod 4)

2p
m−1

2 if ε = 1, p ≡ 3 (mod 4) or ε = −1, p ≡ 1 (mod 4).

Assume that p is equal to 2, then the number of elements of H(X2+1)m is

#H(X2+1)m =


0 if m > 2
2 if m = 2
1 if m = 1.

Proof.
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• One first proves that the elements h of H(X2−ε)m are

h = (X + λ1) · · · (X + λm)

where


∀i ∈ {1, . . . ,m}, λp+1

i = ε
∀i ∈ {1, . . . ,m− 1}, λiλi+1 6= −ε
λ21 = −1
∀j ∈ {1, . . . , bm−12 c}, (λ2jλ2j+1)

2 = 1.

(3)

Namely, consider h in H(X2−ε)m . As h divides (X2 − ε)m and as X2 − ε is irreducible
with degree 1 in IFp[X

2], h is a (non necessarily commutative) product of linear monic
skew polynomials dividing X2 − ε (Lemma 13 (2) of [3] or [15] page 6). Furthermore,
the degree of h is equal to m (because deg(h\ · h) = 2m) therefore one has :

h = (X + λ1) · · · (X + λm) where λi ∈ IFp2 , λ
p+1
i = ε.

In particular, the first relation of (3) is satisfied. As X2−ε does not divide h, according
to Corollary 1 :

∀i ∈ {1, . . . ,m− 1}, (X + λi) · (X + λi+1) 6= X2 − ε (4)

therefore
∀i ∈ {1, . . . ,m− 1}, λiλi+1 6= −ε

which is the second relation of (3). The following expression of h\ can be obtained using
an induction argument (left to the reader) :

h\ = (X + λ̃m) · · · (X + λ̃1)

where for i in {1, . . . ,m}, λ̃i is defined by :

λ̃i :=

{
1/λi × ε× (λ1 · · ·λi)2 if i ≡ 1 (mod 2)

1/λi ×
ε

(λ1 · · ·λi−1)2
if i ≡ 0 (mod 2). (5)

Furthermore, X2 − ε does not divide h\, otherwise X2 − ε would divide h, therefore

∀i ∈ {1, . . . ,m− 1}, (X + λ̃i+1) · (X + λ̃i) 6= X2 − ε. (6)

The relation h\ · h = (X2 − ε)m can be written

(X + λ̃m) · · · (X + λ̃1) · (X + λ1) · · · (X + λm) = (X2 − ε)m. (7)

As X2 − ε is central, the factorization of the skew polynomial (X2 − ε)m into the
product of monic skew polynomials dividing X2 − ε is not unique, therefore, according
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to Corollary 1, X2− ε is necessarily the product of two consecutive monic linear factors
of the left hand side of (7). According to (4) and (6), the only possibility is

(X + λ̃1) · (X + λ1) = X2 − ε.

As X2 − ε is central, the relation (7) can be simplified and one gets

(X + λ̃m) · · · (X + λ̃2) · (X + λ2) · · · (X + λm) = (X2 − ε)m−1.

Using the same argument as before, one gets

(X + λ̃2) · (X + λ2) = X2 − ε
...

(X + λ̃m) · (X + λm) = X2 − ε.

From the equalities above, one deduces that

∀i ∈ {1, . . . ,m}, λiλ̃i = −ε

and using the definition of λ̃i given in (5), one gets λ21 = −1 (third relation of (3)) and
for i odd, (λiλi+1)

2 = 1 (fourth relation of (3)).

Conversely, consider h = (X + λ1) · · · (X + λm) where λ1, . . . , λm are defined by (3).
According to the first relation of (3), the monic skew polynomials X+λi divide X2− ε.
According to the second relation of (3) and to Corollary 1, X2 − ε does not divide
h. Like previously the skew polynomial h\ is equal to (X + λ̃m) · · · (X + λ̃1) where
λ̃i is defined by the relations (5). Furthermore, according to the third and fourth
relations of (3), if i is odd, (λ1 · · ·λi)2 = −1, so for all i in {1, . . . ,m}, λiλ̃i = −ε and
X2 − ε = (X + λ̃i) · (X + λi). The product h\ · h can be simplified as follows :

h\ · h = (X + λ̃m) · · · (X + λ̃1) · (X + λ1) · · · (X + λm)

= (X2 − ε) · (X + λ̃m) · · · (X + λ̃2) · (X + λ2) · · · (X + λm)
(because X2 − ε is central)

...

= (X2 − ε)m−1 · (X + λ̃m) · (X + λm)
= (X2 − ε)m

and one concludes that h belongs to H(X2−ε)m .

• The relations (3) enable to count the number of elements ofH(X2−ε)m . Namely according

to Corollary 1, the elements of H(X2−ε)m have a unique factorization into the product
of monic skew linear polynomials dividing X2 − ε. Therefore the number of elements
of the set H(X2−ε)m is the number of m-tuples (λ1, . . . , λm) of (IFp2)m satisfying the
conditions (3).

Assume that p = 2 and that m is an integer greater than 2. Then the conditions
λ2λ3 6= −1 and (λ2λ3)

2 = 1 are not compatible, therefore the set H(X2−1)m is empty. If

m = 1, it is reduced to {X + 1} (see Example 1). If m = 2, the set H(X2−1)m is equal
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to {(X +λ1) · (X +λ2) | λ1 = 1, λ2 6= 1} = {(X + 1) · (X + a), (X + 1) · (X + a2)} where
a2 + a+ 1 = 0.

Assume that p and m are odd, then the conditions (3) can be simplified as follows :


λ21 = −1
λ2 6= ελ1
∀i ∈ {1, . . . ,m}, λp+1

i = ε
∀j ∈ {1, . . . , (m− 1)/2}, λ2j+1 = ε/λ2j
∀j ∈ {1, . . . , (m− 3)/2}, λ2j+2 6= −λ2j

First, the conditions λ21 = −1 and λp+1
1 = ε imply (−1)(p+1)/2 = ε so H(X2−ε)m is empty

if p ≡ 3 (mod 4) and ε = −1 or p ≡ 1 (mod 4) and ε = 1.

If p ≡ 3 (mod 4) and ε = 1 or p ≡ 1 (mod 4) and ε = −1, then there are two possibilities
for λ1, p possibilities for λ2, one possibility for λ3, p possibilities for λ4, one for λ5, and

so on, thererefore H(X2−ε)m has 2p
m−1

2 elements.

Remark 2 If m is odd, one can simplify the relations (3) by taking α0 = λ1, α1 = λ2 and
for i in {2, . . . , (m− 1)/2}, αi = λ2i. Therefore one gets :

H(X2−ε)m = {(X + α0) · (X2 + 2α1X + ε) · · · (X2 + 2α(m−1)/2X + ε) |
α2
0 = −1, α1 6= εα0,

∀i ∈ {0, . . . , (m− 1)/2}, αp+1
i = ε,

∀i ∈ {2, . . . , (m− 1)/2}, αi 6= −αi−1}.

To describe the set H(X2−ε)ps one uses the following partition :

Lemma 2 Consider p a prime number, θ the Frobenius automorphism over IFp2, R = IFp2 [X; θ],
s in IN and f = f(X2) ∈ {X2 ± 1} ∪ F . One has the following partition :

Hfps =

b p
s

2
c⊔

i=0

f i · Hfps−2i . (8)

Proof. Consider M = bp
s

2 c, h = h(X) in Hfps and i the biggest integer in {0, . . . ,M}
such that f i divides h. Consider H = H(X) in R such that h = f i · H and f does not
divide H. As f i is central, h\ = f i ·H\ therefore H\ ·H = fp

s−2i and H belongs to Hfps−2i .

Conversely, if H in Hfps−2i , then f i ·H belongs to Hfps .
Furthermore consider i > i′, H in Hfps−2i and H ′ in Hfps−2i′ such that f i ·H = f i

′ ·H ′

then f i−i
′

divides H ′, which is impossible as f does not divide H ′. Therefore, for i 6= i′, the
sets f i · Hfps−2i and f i

′ · Hfps−2i′ are disjoint.

Remark 3 If p = 2 and f(X2) = X2 + 1, according to Lemma 2, one gets the following
partition :
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H(X2+1)2s =
2s−1⊔
i=0

(X2 + 1)i · H(X2+1)2s−2i .

According to Lemma 1, the sets H(X2+1)2s−2i are empty when 2s− 2i > 2 and H(X2+1)2 =

{(X + 1) · (X + a), (X + 1) · (X + a2)} where a2 + a+ 1 = 0. Therefore :

H(X2+1)2s = (X2 + 1)2
s−1 · H(X2+1)0

⊔
(X2 + 1)2

s−1−1 · H(X2+1)2

= {(X + 1)2
s
, (X + 1)2

s−1 · (X + a), (X + 1)2
s−1 · (X + a2)}

One gets that for s > 0 there are only three self-dual θ-cyclic codes of dimension 2s over IF4

(see also Corollary 26 of [3]).

Proposition 4 below gives a formula for the number of self-dual θ-cyclic and θ-negacyclic
codes whose dimension is a power of p when p is an odd prime number. The results are also
summed up in Table 1.

Proposition 4 Consider p an odd prime number , s an integer, ε in {−1, 1} and θ the Frobe-
nius automorphism over IFp2. The number of self-dual (θ, ε)-constacyclic codes of dimension
ps over IFp2 is

0 if ε = 1, p ≡ 1 (mod 4) or ε = −1, p ≡ 3 (mod 4)

2
p(p

s+1)/2 − 1

p− 1
if ε = 1, p ≡ 3 (mod 4) or ε = −1, p ≡ 1 (mod 4).

Proof. Consider R = IFp2 [X; θ]. The number of self-dual (θ, ε)-constacyclic codes of
dimension ps over IFp2 is equal to #HX2ps−ε. According to Lemma 2, one has the following
partition :

HX2ps−ε =
M⊔
i=0

(X2 − ε)i · H(X2−ε)ps−2i

where M = ps−1
2 . According to Lemma 1, each set H(X2−ε)ps−2i is empty if ε 6= (−1)

p+1
2

and has 2pM−i elements if ε = (−1)
p+1
2 . Therefore, if ε 6= (−1)

p+1
2 , HX2ps−ε is empty and

otherwise it has
M∑
i=0

2pM−i = 2p
M+1−1
p−1 = 2

p(p
s+1)/2 − 1

p− 1
elements.

Example 3 According to Corollary 3.3 of [5], there are 4 self-dual negacyclic codes of dimen-
sion 3 over IF9. The corresponding skew check polynomials are the polynomials (X − γ)i(X +
γ)3−i ∈ IF9[X] where i is in {0, 1, 2, 3} and γ2 = −1.

According to Proposition 4, for θ : x 7→ x3 Frobenius automorphism over IF9, there
are 2 × (3(3+1)/2 − 1)/(3 − 1) = 8 self-dual θ-cyclic codes of dimension 3 over IF9. Their
skew check polynomials are the elements of HX6−1 and according to Lemma 2, HX6−1 =
H(X2−1)3

⊔
(X2 − 1) · H(X2−1). The sets H(X2−1) (with cardinal 2) and H(X2−1)3 (with

cardinal 6) are constructed with Lemma 1 and Remark 2 :

HX2−1 = {X + α0 | α2
0 = −1, α4

0 = 1} = {X + γ,X − γ}

11



p negacyclic θ-cyclic θ-negacyclic

p ≡ 3 (mod 4) ps + 1 2
p(p

s+1)/2−1

p− 1
0

p ≡ 1 (mod 4) ps + 1 0 2
p(p

s+1)2−1

p− 1

Table 1: Numbers of self-dual negacyclic (Corollary 3.3 of [5]), θ-cyclic (Proposition 4) and
θ-negacyclic (Proposition 4) codes over IFp2 of dimension ps with p odd prime number and
θ : x 7→ xp.

and H(X2−1)3 = {(X + α0) · (X2 + 2α1X + 1) | α0 = ±γ, α1 6= α0, α1 ∈ {±γ,±1}}. The

2× 3 = 6 elements of H(X2−1)3 are listed below :

(X + γ) · (X2 + 2X + 1) = X3 + (γ − 1)X2 + (1− γ)X + γ
(X + γ) · (X2 +X + 1) = X3 + (γ + 1)X2 + (γ + 1)X + γ

(X + γ) · (X2 − 2γX + 1) = X3 + γ
(X − γ) · (X2 + 2X + 1) = X3 + (−γ − 1)X2 + (1 + γ)X − γ
(X − γ) · (X2 +X + 1) = X3 + (−γ + 1)X2 + (−γ + 1)X − γ

(X − γ) · (X2 + 2γX + 1) = X3 − γ.

Proposition 4 enables also to simplify Proposition 2 as follows. It will be useful in the two
next sections.

Proposition 5 Consider p a prime number, θ the Frobenius automorphism over IFp2, R =
IFp2 [X; θ], k a positive integer, s, t two integers such that k = ps × t and p does not divide t.
The number of self-dual (θ, ε)-constacyclic codes over IFp2 with dimension k is

#HX2k−ε = Nε ×
∏

f∈Fk,ε

#Hfps ×
∏

f∈Gk,ε

#Hfps

where

N1 =



0 if k ≡ 1 (mod 2) and p ≡ 1 (mod 4)
or k ≡ 0 (mod 2) and p odd

1 if s = 0 and p = 2
3 if s > 0 and p = 2

2
p(p

s+1)/2 − 1

p− 1
if k ≡ 1 (mod 2) and p ≡ 3 (mod 4)

and

N−1 =


0 if k ≡ 1 (mod 2) and p ≡ 3 (mod 4)
1 if k ≡ 0 (mod 2) and p odd

2
p(p

s+1)/2 − 1

p− 1
if k ≡ 1 (mod 2) and p ≡ 1 (mod 4).

Proof. One starts with Proposition 2 where the expression of Nε is given in function of
#H(X2±1)ps . One simplifies Nε thanks to Proposition 4 (for p odd prime) and Remark 3 (for
p = 2).
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4 Self-dual θ-cyclic and θ-negacyclic codes with dimension prime
to p over IFp2.

Over IFp2 with p odd prime number, there is no self-dual cyclic code and the number of self-
dual negacyclic codes with dimension k prime to p is given in Theorem 2 of [17]. Self-dual
cyclic codes over IF4 with odd dimension are studied in [10],

The aim of this section is to construct and to enumerate self-dual θ-cyclic and θ-negacyclic
codes over IFp2 whose dimension is prime to p when p is a prime number and θ is the Frobenius
automorphism (Proposition 8).

The starting point of the study is Proposition 5 applied in the particular case when the
dimension k of the code is prime to p (i.e. k = ps×t, s = 0 and p 6 |t). One wants to determine
now the set Hf for f in F ∪ G.

Consider f = f(X2) in F ∪G. Note that if f is in F then the degree d of f in X2 is even
(see exercise 3.14 page 141 of [12]). Consider δ in IN such that d = 2δ where δ is in IN∗. Let
h in R monic with degree 2δ :

h = X2δ +
∑2δ−1

i=0 hiX
i

= (X2δ +
∑δ−1

i=0 h2iX
2i) +X ·

(∑δ−1
i=0 θ(h2i+1)X

2i
)
.

The skew reciprocal polynomial h∗ of h is

h∗ = 1 +
∑δ

i=1 h2δ−2iX
2i +

(∑δ−1
i=0 θ(h2δ−2i−1)X

2i
)
·X .

One can associate to h the two polynomials defined in IFp2 [Z] by

A(Z) := Zδ +

δ−1∑
i=0

h2iZ
i and B(Z) :=

δ−1∑
i=0

θ(h2i+1)Z
i. (9)

Using the commutation law (1), one gets that h\ · h = f(X2) if and only if the following
polynomial relations in IFp2 [Z] are satisfied :

ZδA

(
1

Z

)
A(Z) + ZδB

(
1

Z

)
B(Z)− h0f(Z) = 0

ZδA

(
1

Z

)
Θ(B)(Z) + Zδ−1B

(
1

Z

)
Θ(A)(Z) = 0

(10)

where Θ :
∑
aiZ

i 7→
∑
apiZ

i.
In the rest of the section, the following notation will be useful :

Notation 2 Consider P (X2) =
∑
PiX

2i in IFp[X
2], one denotes P (Z) the polynomial in

IFp2 [Z] defined by P (Z) =
∑
PiZ

i. For a in IFp2 and P (X2) in IFp[X
2], P (a) is

∑
Pia

i. The

Frobenius automorphism θ defined over IFp2 is extended to IFp2 and is denoted with the same
letter θ.

Finding (A,B) in IFp2 [Z]×IFp2 [Z] satisfying (10) with A monic, deg(A) = δ and deg(B) ≤
δ − 1 enables to construct the elements h of Hf . One first considers the resolution of (10)
when B(Z) = 0. This amounts to find the elements of Hf ∩ IFp2 [X2].
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Lemma 3 1. Consider f = f(X2) in F with degree 2δ in X2 and f(X2) = f̃(X2) ×
Θ(f̃)(X2) the factorization of f(X2) in IFp2 [X2].

Hf ∩ IFp2 [X2] =

{
∅ if δ ≡ 0 (mod 2)

{f̃(X2),Θ(f̃)(X2)} if δ ≡ 1 (mod 2)

2. Consider f = f(X2) in G with degree 2δ in X2 and g(X2) such that f(X2) = g(X2)g\(X2).
When δ is even, consider the factorization of g(X2) in IFp2 [X2] : g(X2) = g̃(X2) ×
Θ(g̃)(X2). Hf ∩ IFp2 [X2] ={

{g(X2), g\(X2), g̃(X2)Θ(g̃\)(X2), g̃\(X2)Θ(g̃)(X2)} if δ ≡ 0 (mod 2)
{g(X2), g\(X2)} if δ ≡ 1 (mod 2)

Proof. Recall that h is in Hf if and only if (A(Z), B(Z)) defined by (9) satisfies the
relation (10). Furthermore h is in IFp2 [X2] if and only if B(Z) = 0. The elements of Hf ∩
IFp2 [X2] are therefore characterized by the relations B(Z) = 0 and ZδA

(
1
Z

)
A(Z) = h0f(Z)

where h0 is the constant term of A .

Here are now necessary conditions for h belonging to Hf \ IFp2 [X2].

Lemma 4 Consider f = f(X2) in F ∪G with degree 2δ in X2, h in R monic with degree 2δ
and (A(Z), B(Z)) defined in (9). If h ∈ Hf \ IFp2 [X2] then

(i) gcd(A(Z), B(Z)) = 1

(ii) gcd(B(Z), f(Z)) = 1.

Proof.

(i) Assume that A(Z) and B(Z) have a common factor in IFp2 [Z] then according to the
first relation of (10), this factor must divide f(Z). Furthermore, B(Z) 6= 0 and the
degree of B(Z) is ≤ δ − 1, therefore f(Z) must have a nontrivial factor in IFp2 [Z] with
degree ≤ δ−1. Necessarily δ is even, f = gg\ with g = g̃Θ(g̃) product of two irreducible
polynomials of degree δ/2 in IFp2 [Z]. Without loss of generality one can assume that
g̃(Z) is the common factor of A(Z) and B(Z) in IFp2 [Z].

Consider β such that g̃(β) = 0, a(Z) and b(Z) in IFp2 [Z] such that A(Z) = g̃(Z)a(Z)
and B(Z) = g̃(Z)b(Z). From relations (10), one gets that{

Zδ/2a (1/Z) a(Z) + Zδ/2b (1/Z) b(Z) = λΘ(g̃)(Z)g̃\(Z)

Zδ/2a (1/Z) Θ(b)(Z) + Zδ/2−1b (1/Z) Θ(a)(Z) = 0
(11)

where λ is a nonzero constant. Consider u in IFpδ \ {0} such that a(γ) = u × b(γ).
According to (11) evaluated at γ,{

a(γ)a(1/γ) + b(γ)b(1/γ) = 0
γΘ(b)(γ)a(1/γ) + Θ(a)(γ)b(1/γ) = 0.

From the first relation, one deduces that a(1/γ) = −1/u× b(1/γ) and from the second
relation, one deduces −γ/uΘ(b)(γ) + Θ(a)(γ) = 0 so (−γ/u)p × b(γp) + a(γp) = 0. As
a(γp)a(1/γp) + b(γp)b(1/γp) = 0, one gets a(1/γp) = (u/γ)p × b(1/γp). Therefore
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
a(γ) = u× b(γ)
a(1/γ) = −1/u× b(1/γ)
a(γp) = γp/up × b(γp)
a(1/γp) = −up/γp × b(1/γp).

In particular, the polynomial Zδ/2a (1/Z) a(Z) + Zδ/2b (1/Z) b(Z) cancels at γ, 1/γ, γp,
1/γp, therefore it is divisible by f(Z), which is impossible because of the first relation
of (11).

(ii) Assume that B(Z) and f(Z) are not coprime in IFp2 [Z]. Necessarily δ is even, f = gg\

with g = g̃Θ(g̃) product of two irreducible polynomials of degree δ/2 in IFp2 [Z]. Without
loss of generality one can assume that g̃(Z) is the common factor of f(Z) and B(Z) in
IFp2 [Z]. Consider β such that g̃(β) = 0, one has B(β) = 0, B(β−1), B(βp), B(β−p) 6= 0.
Furthermore Θ(B)(βp) = 0 so according to the second relation of (10), Θ(A)(βp)B(1/βp) =
0 and A(β) = 0. Therefore A(Z) and B(Z) have a common factor in IFp2 [Z], which is
impossible according to (i).

To characterize the elements h of Hf such that h does not belong to IFp2 [X2], one will use
the following rational interpolation problem or Cauchy interpolation problem (Section 5.8 of
[20]): given 2δ distinct points x0, . . . , x2δ−1 in IFp2δ and 2δ values y0, . . . , y2δ−1 in IFp2δ , find
a rational function r/t ∈ IFp2δ(Z) such that

(RI) : t(xi) 6= 0,
r(xi)

t(xi)
= yi for 0 ≤ i < 2δ − 1, deg(r) < δ + 1,deg(t) ≤ δ − 1

Note that this problem can be rewritten as

gcd(t, f) = 1, r ≡ P × t−1 (mod f), deg(r) < δ + 1, deg(t) ≤ δ − 1

where f =
∏2δ−1
i=0 (Z − xi), P has degree ≤ 2δ − 1 and P (xi) = yi for 0 ≤ i < 2δ − 1. This

problem can be solved using extended Euclidean algorithm ([20]).

4.1 Construction of Hf for f in F

For f in F , one first gives a characterization of the elements h of Hf \ IFp2 [X2].

Lemma 5 Consider f = f(X2) in F with degree d = 2δ in X2 and α in IFp2δ such that
f(α) = 0.

1. Consider h in R monic with degree d = 2δ and (A(Z), B(Z)) defined in (9). Then
h ∈ Hf \ IFp2 [X2] if and only if there exists u in IFpd such that

A(α) = u×B(α)
A (αp) = αp/up ×B(αp)

gcd(A(Z), B(Z)) = 1
gcd(B(Z), f(Z)) = 1

(12)
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and {
up

δ+1 = −1 if δ even

up
δ−1 = −1/α if δ odd.

(13)

2. Consider u in IFpd such that the condition (13) is satisfied. There exists a unique
solution (A,B) in IFp2 [Z]× IFp2 [Z] to (12) with A monic, deg(A) = δ, deg(B) ≤ δ − 1.

3. The set Hf \ IFp2 [X2] has pδ + 1 elements if δ is even and pδ − 1 elements if δ is odd.

Proof. As f belongs to F , f(α−1) = 0 so there exists i in {0, . . . , d − 1} such that
α−1 = αp

i
. As αp

2i
= (α−1)p

i
= α, and as f(X2) is irreducible in IFp[X

2] with degree d = 2δ,

necessarily i = δ and α−1 = αp
δ
.

1. Consider h in R with degree d = 2δ and (A(Z), B(Z)) defined by (9).

If h belongs to Hf \ IFp2 [X2] then the relations (10) are satisfied by (A(Z), B(Z)) with

B(Z) 6= 0. Consider u, v in IFpd such that

{
A(α) = u×B(α)
A(αp) = v ×B(αp)

. According to

Lemma 4, gcd(B, f) = 1 so B(α), B(αp) 6= 0. If δ is even, then A(α−1) = A(α)p
δ

and

B(α−1) = B(α)p
δ
. Evaluating (10) at α one gets :{

up
δ × u+ 1 = 0

α× upδ + θ−1(v) = 0

therefore v = αp/up and up
δ+1 = −1. If δ is odd, then A(α−1) = A(αp)p

δ−1
and

B(α−1) = B(αp)p
δ−1

. Evaluating (10) at α, one gets :{
vp

δ−1 × u+ 1 = 0

α× vpδ−1
+ θ−1(v) = 0

therefore v = αp/up and up
δ−1 = −1/α.

Conversely, if there exists u in IFpd such that (12) and (13) are satisfied, then one can

check that the polynomials ZδA

(
1

Z

)
A(Z) + ZδB

(
1

Z

)
B(Z)− h0f(Z) and

ZδA

(
1

Z

)
Θ(B)(Z) + Zδ−1B

(
1

Z

)
Θ(A)(Z) cancel at α and αp. Therefore the relations

(10) are satisfied and h belongs to Hf . As gcd(B, f) = 1, B 6= 0 so h belongs to
Hf \ IFp2 [X2].

2. Consider u in IFp2δ such that the condition (13) is satisfied. Consider the 2δ points
(xi, yi)0≤i≤2δ−1 defined by

(xi, yi) =

{
(θi(α), θi(u)) if i ≡ 0 (mod 2)

(θi(α), θi(α/u)) if i ≡ 1 (mod 2).

According to Corollary 5.18 of [20] there exists two nonzero polynomials A and B in
IFp2δ [Z] such that deg(A) < δ+ 1, deg(B) ≤ δ−1 and A(xi) = yiB(xi). Without loss of
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generality, one can assume that A and B are coprime and that A is monic. Furthermore,
the set (xi, yi)0≤i≤2δ−1 is stable under the action of θ2, therefore (Θ2(A),Θ2(B)) satisfies
the relations Θ2(A)(xi) = yiΘ

2(B)(xi). As A and B are coprime and A is monic,
Θ2(A) = A, Θ2(B) = B. Therefore A and B are polynomials of IFp2 [Z].

Considering the two first relations A(x0) = y0B(x0) and A(x1) = y1B(x1) one gets the
relation (12), so the relation (10) is satisfied and the skew polynomial h associated to A
and B belongs to Hf . As A and B are coprime, B and f are also coprime (see Lemma
4). Assume that deg(A) 6= δ, then ZδA(1/Z)A(Z) + ZδB(1/Z)B(Z) would be the zero
polynomial and h would satisfy h∗ · h = 0 which is impossible.

Therefore for u in IFp2δ such that the condition (13) is satisfied, there exists (A,B) in
IFp2 [Z]× IFp2 [Z] satisfying (12) with A monic, deg(A) = δ and deg(B) ≤ δ − 1.

The unicity of (A,B) follows from the fact that A/B is the unique solution to the
rational interpolation problem (RI) with A and B coprime (Corollary 5.18 of [20] ).

3. According to 1., Hf = tu{h ∈ R | h monic, deg(h) = d, (A,B) defined in (9)

solution of (12)} where u satisfies (13). According to 2., for each u satisfying (13),
there is a unique h in R monic of degree d such that (A,B) defined in (9) is solution
of (12). Therefore, the number of elements of Hf is the number of u in IFpd satisfying

up
δ+1 = −1 if δ is even and up

δ−1 = −1/α is δ is odd.

Proposition 6 Consider p a prime number, m a positive integer, θ the Frobenius automor-
phism over IFp2 and R = IFp2 [X; θ]. Let f = f(X2) in F and d = 2δ its degree in X2, then

the set Hf = Hf has 1 + pδ elements.

Proof. The elements of Hf ∩ IFp2 [X2] are given in point 1. of Lemma 3: there are two
elements if δ is odd and no element if δ is even. The elements of Hf who do not belong to
IFp2 [X2] are given in point 3. of Lemma 5. There are pδ − 1 elements if δ is odd and pδ + 1
elements if δ is even.

Example 4 Consider p = 2, θ the Frobenius automorphism over IF4 = IF2(a) where a2 + a+
1 = 0, R = IF4[X; θ] and f(X2) = X4 + X2 + 1 in F . Consider h = X2 + h1X + h0 in R,
A(Z) = Z + h0 and B(Z) = θ(h1) in IF4[Z]. One has

h\ · h = X4 +X2 + 1⇔
{
ZA (1/Z)A(Z) + ZB (1/Z)B(Z) = h0(Z

2 + Z + 1)
ZA (1/Z) Θ(B)(Z) +B (1/Z) Θ(A)(Z) = 0.

If h1 = 0, one gets h\ · h = X4 + X2 + 1 if and only if ZA
(
1
Z

)
A(Z) = h0(Z

2 + Z + 1).
As Z2 + Z + 1 = (Z + a)(Z + a2) and a2 = 1/a, one gets A(Z) = Z + a or A(Z) = Z + a2

(see Lemma 3), therefore if h1 = 0, h = X2 + a or h = X2 + a2.
Following Lemma 5, if h1 6= 0, then h\ · h = X4 +X2 + 1 if and only if there exists u in

IF4 such that u = 1/a and{
A(a) = u×B(a) = 1/a×B(a)

A(a2) = a2

u2
×B(a2) = a×B(a2).
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Therefore when h1 6= 0, one gets h ∈ HX4+X2+1 if and only h = X2 +X+ 1. As a conclusion
the set HX4+X2+1 is

HX4+X2+1 = HX4+X2+1 = {X2 + a,X2 + a2, X2 +X + 1}.

Example 5 Consider p = 2, θ the Frobenius automorphism over IF4 = IF2(a) with a2+a+1 =
0 and R = IF4[X; θ]. The skew polynomial X12 + X6 + 1 belongs to F and its degree in X2

is 6. Consider α in IF26 such that α6 + α3 + 1 = 0. According to Lemma 3 the elements
of HX12+X6+1 with no term of odd degree are X6 + a and X6 + a2. According to Lemma
5, the other elements of HX12+X6+1 are the monic skew polynomials h of degree 6 such that
(A(Z), B(Z)) defined by relations (9) are solutions of (12) with u7 = 1/α. The table below
gives the solutions corresponding to the seven problems (12).

u h

1 + α X6 + a2X5 + aX4 + aX2 + a2X + a2

1 + α+ α5 X6 +X5 + a2X4 + aX2 +X + 1

α+ α3 + α4 + α5 X6 +X4 + a2X3 + a2X2 + a2

α5 X6 +X3 + 1

1 + α3 + α4 X6 +X4 + aX3 + aX2 + a

α+ α3 + α4 X6 +X5 + aX4 + a2X2 +X + 1

1 + α3 + α4 + α5 X6 + aX5 + a2X4 + a2X2 + aX + a

The number of elements of HX12+X6+1 is 9 = 1 + 23.

4.2 Construction of Hf for f in G

For f in G, one gives a characterization of the elements of Hf \ IFp2 [X2].

Lemma 6 Consider f = f(X2) in G with degree 2δ in X2 and g irreducible in IFp[X
2] such

that f(X2) = g(X2)g\(X2). Consider β in IFpδ such that g(β) = 0.

1. Consider h in R monic with degree 2δ and (A(Z), B(Z)) defined by relations (9). Then
h ∈ Hf \ IFp2 [X2] if and only if there exists u in IFpd such that



A(β) = u×B(β)
A(1/β) = −1/u×B(1/β)
A(βp) = βp/up ×B(βp)
A(1/βp) = −up/βp ×B(1/βp)

gcd(A(Z), B(Z)) = 1
gcd(B(Z), f(Z)) = 1

(14)

and {
up

δ−1 = 1 if δ even

up
δ+1 = β if δ odd.

(15)

2. Consider u in IFpd such that the condition (15) is satisfied. There exists a unique
solution (A,B) in IFp2 [Z]× IFp2 [Z] to (14) with A monic, deg(A) = δ, deg(B) ≤ δ − 1.
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3. The set Hf \ IFp2 [X2] has pδ − 1 elements if δ is even and pδ + 1 elements if δ is odd.

Proof.

1. Consider h in R with degree d = 2δ and (A(Z), B(Z)) defined by (9).

If h ∈ Hf \IFp2 [X2] then (A(Z), B(Z)) satisfies the relation (10) with B(Z) 6= 0. Accord-
ing to Lemma 4, B is coprime with f , therefore B(β), B(1/β), B(βp) and B(1/βp) 6= 0.
Consider u in IFpδ such that A(β) = u×B(β). According to (10) evaluated at β,{

A(β)A(1/β) +B(β)B(1/β) = 0
βΘ(B)(β)A(1/β) + Θ(A)(β)B(1/β) = 0.

From the first relation, one deduces that A(1/β) = −1/u×B(1/β) and from the second
relation, one deduces −β/uΘ(B)(β)+Θ(A)(β) = 0 so (−β/u)p×B(βp)+A(βp) = 0. As
A(βp)A(1/βp) + B(βp)B(1/βp) = 0, one gets A(1/βp) = (u/β)p × B(1/βp). Therefore
the relations (14) are satisfied.

Furthermore, if δ is odd, one gets another constraint, namely as β = βp
δ

one gets
Θ(A)(β) = (Θ(A)(βp))p

δ−1
= (upB(β)p)p

δ−1
= up

δ
Θ(B)(β). Furthermore, −β/uΘ(B)(β)+

Θ(A)(β) = 0, so −β/u+ up
δ

= 0 and up
δ+1 = β. The relations (15) are therefore satis-

fied.

Conversely, if there exists u in IFpδ such that (14) and (15) are satisfied, then one can

check that the polynomials ZδA

(
1

Z

)
A(Z) + ZδB

(
1

Z

)
B(Z)− h0f(Z) and

ZδA

(
1

Z

)
Θ(B)(Z) + Zδ−1B

(
1

Z

)
Θ(A)(Z) cancel at β, 1/β, βp and 1/βp. Therefore

the relations (10) are satisfied and h belongs to Hf . As gcd(B, f) = 1, B is nonzero so
h belongs to H \ IFp2 [X2].

2. Consider u in IFp2δ such that the condition (15) is satisfied. Consider the 2δ points
(xi, yi)0≤i≤2δ−1 defined by

(xi, yi) =

{
(θi(β), θi(u)) if i ≡ 0 (mod 2), i < δ

(θi(β), θi(β/u)) if i ≡ 1 (mod 2), i < δ

(xi+δ, yi+δ) =

{
(θi(1/β),−θi(1/u)) if i ≡ 0 (mod 2), i < δ
(θi(1/β),−θi(u/β)) if i ≡ 1 (mod 2), i < δ.

According to Corollary 5.18 of [20] there exists two nonzero polynomials A and B
in IFp2δ [Z] such that deg(A) < δ + 1, deg(B) ≤ δ − 1 and for i in {0, . . . , 2δ − 1},
A(xi) = yiB(xi). Without loss of generality, one can assume that A and B are coprime
and that A is monic. Furthermore, as the the set of points {(xi, yi)} is stable under the
application of θ2, A(Z) and B(Z) belong to IFp2 [Z].

Considering the four relations A(x0) = y0B(x0), A(x1) = y1B(x1), A(xδ) = yδB(xδ)
and A(xδ+1) = yδ+1B(xδ+1) one gets the relation (14), so the relation (10) is satisfied
and the skew polynomial h associated to A and B belongs to Hf . As A and B are
coprime, B and f are also coprime (see Lemma 4). Assume that deg(A) 6= δ, then
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ZδA(1/Z)A(Z) + ZδB(1/Z)B(Z) would be the zero polynomial and h would satisfy
h∗ · h = 0 which is impossible.

Therefore for u in IFp2δ such that the condition (15) is satisfied, there exists (A,B) in
IFp2 [Z]× IFp2 [Z] satisfying (14) with A monic, deg(A) = δ and deg(B) ≤ δ − 1 with A
and B coprime.

The unicity follows form the fact that A/B is the unique solution to the rational inter-
polation problem (RI) with A and B coprime ( Corollary 5.18 of [20] ).

3. Like in Lemma 5, the number of elements of Hf is deduced from points 1. and 2.

Proposition 7 Consider p a prime number, θ the Frobenius automorphism over IFp2 and
R = IFp2 [X; θ]. Let f = f(X2) in G and d = 2δ its degree in X2, then the set Hf has 3 + pδ

elements and Hf has 1 + pδ elements.

Proof. The result is deduced from point 2. of Lemma 3 and point 3. of Lemma 6.
Furthermore if f(X2) = g(X2)g\(X2) belongs to G, then Hf(X2) = Hf(X2) \ {g(X2), g\(X2)}
has 1 + pδ elements.

Example 6 Consider IF4 = IF2(a) where a2 + a + 1 = 0, θ the Frobenius automorphism,
R = IF4[X; θ] and f(X2) = (X6 + X2 + 1)(X6 + X4 + 1) in G with degree 6 = 2 × 3 in X2.
Consider β in IF23 such that β3 + β2 + 1 = 0. According to Lemma 3, the elements of Hf
with no term of odd degree are X6 + X2 + 1 and X6 + X4 + 1. According to Lemma 6, the
other elements of Hf are deduced from the polynomials A(Z) and B(Z) of IF4[Z] satisfying
(14) with u9 = β, A(Z) monic of degree 3 and B(Z) of degree ≤ 2.

For example take u = v3 where v6+v4+v3+v+1 = 0, then u9 = β and the unique solution
(A,B) in IF4[Z]×IF4[Z] of (14) with A monic of degree 3 and B of degree ≤ 2 is (A,B) = (Z3+
a, aZ2+a2Z+1). Therefore, h(X) = (X6+a)+X ·(aX4+a2X2+1) = X6+a2X5+aX3+X+a
is an element of Hf with at least one non zero term of odd degree. The entire set Hf is
{X6 +X2 + 1, X6 +X4 + 1, X6 +X5 + aX3 + a2X + a,X6 + a2X5 +X4 +X2 + aX + 1, X6 +
aX5+X4+X2+a2X+1, X6+X5+X4+X3+X2+X+1, X6+aX4+aX3+X2+a,X6+a2X4+
a2X3+X2+a2, X6+aX5+a2X3+X+a2, X6+X5+a2X3+aX+a2, X6+a2X5+aX3+X+a}.
It has 2δ + 3 = 11 elements (Proposition 7).

4.3 Conclusion

The proposition below gives a formula for the number of self-dual θ-cyclic and θ-negacyclic
codes over IFp2 whose dimension is prime to p. Tables 2 and 3 illustrate this proposition over
IF4 and IF9 and give some elements of comparison with cyclic and negacyclic codes.

Proposition 8 Consider p a prime number, θ the Frobenius automorphism over IFp2, k a
positive integer not divisible by p and ε in {−1, 1}. The number of self-dual (θ, ε)-constacyclic
codes with dimension k defined over IFp2 is

Nε ×
∏

f∈Fk,ε

(pδ + 1)×
∏

f∈Gk,ε

(pδ + 3)

where 2δ is the degree of f in X2 and Nε is defined below :
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N1 =


0 if k ≡ 1 (mod 2) and p ≡ 1 (mod 4)

or k ≡ 0 (mod 2) and p odd
1 if p = 2
2 if k ≡ 1 (mod 2) and p ≡ 3 (mod 4)

N−1 =


0 if k ≡ 1 (mod 2) and p ≡ 3 (mod 4)
1 if k ≡ 0 (mod 2) and p odd
2 if k ≡ 1 (mod 2) and p ≡ 1 (mod 4).

Proof. According to Proposition 5, with s = 0, the number of self-dual (θ, ε)-constacyclic
codes over IFp2 with dimension k is

#HX2k−ε = Nε ×
∏

f∈Fk,ε

#Hf ×
∏

f∈Gk,ε

#Hf

where Nε satisfies the above conditions. The final result follows from Proposition 6 and
Proposition 7.

Example 7 Consider θ : x 7→ x2 the Frobenius automorphism over IF4 = IF2(a) where
a2 + a+ 1 = 0. The self-dual θ-cyclic codes of dimension 9 over IF4 are characterized by the
monic solutions of the self-dual skew equation h\ · h = X18 + 1. As X18 + 1 = (X2 + 1)(X4 +
X2 + 1)(X12 + X6 + 1) in IF2[X

2] and as the polynomials X4 + X2 + 1 and X12 + X6 + 1
are self-reciprocal and irreducible in IF2[X

2], the set F9,1 is {X4 +X2 + 1, X12 +X6 + 1} and
the set G9,1 is empty. According to Proposition 8, the number of self-dual θ-cyclic codes of
dimension 9 over IF4 is 1× (21 + 1)× (23 + 1) = 27. More precisely the set HX18+1 is given
by

HX18+1 = {lcrm(h1, h2, h3) | h1 ∈ HX2+1, h2 ∈ HX4+X2+1, h3 ∈ HX12+X6+1}

and the sets HX2+1, HX4+X2+1 and HX12+X6+1 with cardinalities 1, 3 and 9 were previously
computed in Examples 2, 4 and 5.

5 Self-dual θ-cyclic and θ-negacyclic codes with any dimension
over IFp2.

In this section, one constructs and enumerates all self-dual θ-cyclic and θ-negacyclic codes
over IFp2 where p is a prime number and θ is the Frobenius automorphism.

Like in Section 4, the starting point of the construction is Proposition 5, who enables to
write the monic solutions of the self-dual skew equation as least common right multiples of
skew polynomials satisfying intermediate skew equations. The main topic of this section is
therefore to construct the intermediate sets Hfps where s > 0 and f = f(X2) belongs to
F ∪ G.

First, one assumes that f = f(X2) belongs to F .
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k c θ-c
1 1 1
3 3 3
5 1 5
7 3 11
9 9 27
11 3 33
13 1 65
15 9 285
17 1 289
19 3 513
21 9 2211
23 3 2051
25 1 5125
27 27 13851
29 1 16385
31 3 42875
33 9 107811

k c θ-c
35 9 225445
37 1 262145
39 9 799305
41 1 1050625
43 3 2146689
45 81 10513935
47 3 8388611
49 9 23068705
51 9 58159227
53 1 67108865
55 9 173015535
57 9 405017091
59 3 536870913
61 1 1073741825
63 9 5984882937
65 1 5801453125
67 3 8589934593

k c θ-c
69 9 25807570971
71 3 34359738371
73 3 70344300625
75 27 306316140375
77 27 389768283201
79 3 549755813891
81 81 1859049764379
83 3 2199023255553
85 3 6502298510645
87 9 13194944987145
89 3 17695491973201
91 9 49242466343785
93 9 139327459600875
95 9 176265457835535
97 1 281475010265089
99 81 1041914208570939

Table 2: Numbers of self-dual cyclic codes (c , Corollary 1 of [10]) and θ-cyclic codes (θ-c,
prop. 8) over IF4 in odd dimension k < 100 where θ : x 7→ x2.

k nc θ-c θ-nc
1 2 2 0
2 4 0 4
4 4 0 12
5 8 20 0
7 8 56 0
8 4 0 84
10 64 0 336
11 8 492 0
13 32 1800 0
14 64 0 3136
16 4 0 6564
17 8 13124 0
19 8 39368 0
20 1024 0 84672
22 64 0 236208
23 8 354300 0
25 32 1181000 0

k nc θ-c θ-nc
26 1024 0 2143296
28 64 0 6429888
29 8 9565940 0
31 8 28697816 0
32 4 0 43046724
34 64 0 172186896
35 512 297608640 0
37 32 774919712 0
38 64 0 1549839424
40 1024 0 4182119424
41 2048 7414796864 0
43 8 20920706408 0
44 64 0 41845664448
46 64 0 125524238448
47 8 188286357660 0
49 32 585779779424 0
50 1024 0 1171559559744

Table 3: Numbers of self-dual negacyclic (nc, Theorem 2 of [17]), self-dual θ-cyclic (θ-c, prop.
8) and self-dual θ-negacyclic (θ-nc, prop. 8) codes over IF9 in dimension k ≤ 50 coprime with
3 where θ : x 7→ x3.
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5.1 Construction of Hfp
s for f in F

The aim of this subsection is to compute Hfps for f in F and to compute its number of
elements. The final result is given in Proposition 9 and the main steps are summed up in
Table 4.

Consider f = f(X2) is in F . Recall that according to Lemma 2, one has the partition :

Hfps =

b p
s

2
c⊔

i=0

f i · Hfps−2i

where for m in IN, the set Hfm is defined by

Hfm = {h ∈ Hfm | f does not divide h}.

Lemma 7 below generalizes Lemma 1 and uses the same type of arguments linked to the
factorization of skew polynomials.

Lemma 7 Consider p a prime number, θ the Frobenius automorphism over IFp2, R = IFp2 [X; θ],
m a nonnegative integer and f = f(X2) in F with degree d = 2δ > 1 in X2.

1. The constant coefficients of the elements of Hf are squares in IFp2.

2. The set Hfm has (1 + pδ)pδ(m−1) elements and is equal to
(
h1 ·

1

ν1

)
· · ·
(
hm ·

1

νm

)
·

 m∏
j=1

νj

 | hj ∈ Hf , ν
2
j = (hj)0, hj 6= νj−1 · h\j−1 ·

1

νj−1

 .

Proof.
To simplify the presentation, the following notations will be used in this proof : h = h(X),

f = f(X2).

1. Consider h = Xd +
d−1∑
i=0

hiX
i in Hf = Hf . If p = 2, then h0 is a nonzero element of IF4

and therefore is a suqare in IF4. Assume that p is odd. According to Section 4, the

polynomials A(Z) = Zδ +

δ−1∑
i=0

h2iZ
i and B(Z) =

δ−1∑
i=0

θ(h2i+1)Z
i defined in (9) satisfy

the relations (10). If f(Z) and B(Z) are coprime then f(Z) = f \(Z) and Zδ−1B(1/Z)
are also coprime. Therefore the relations (10) imply that f(Z) = A(Z)Θ(A)(Z) −
ZB(Z)Θ(B)(Z), Zδ−1B(1/Z) = −h0Θ(B)(Z) and ZδA(1/Z) = h0Θ(A)(Z). In par-
ticular, one has 1 − h0hp0 = 0 so h0 is a square. If f(Z) and B(Z) are not coprime,
then according to Lemma 4, B(Z) = 0 and using Lemma 3, one gets A(Z) = f̃(Z)
or Θ(f̃)(Z) where f(Z) = f̃(Z)Θ(f̃)(Z) is the factorization of f(Z) into irreducible
polynomials of IFp2 [Z]. As f = f \, the constant coefficient of f is equal to 1, so one gets

hp+1
0 = 1 and h0 is a square.
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2. Consider h in Hfm . As h divides fm and f is irreducible in IFp[X
2], all the irreducible

factors of h divide f and have the same degree d (Lemma 13 (2) of [3] or [15] page 6) :

h =
m∏
i=1

Hi, Hi monic, deg(Hi) = d,Hi|f, Hi irreducible.

Furthermore, f does not divide h, therefore according to Proposition 3, for all j in
{1 . . .m− 1}, Hj ·Hj+1 is distinct of f .

Using an induction argument (left to the reader), one gets the following expression of
h\ :

h\ =

m−1∏
i=0

1

µm−i
H\
m−i · µm−i

where µi = (H1 · · ·Hi−1)0 is defined as the constant coefficient of H1 · · ·Hi−1. Fur-
thermore, this factorization (into the product of irreducible monic polynomials of same
degree d dividing f) is unique (because the factorization of h is unique).

As the factorization of fm into the product of irreducible factors is not unique (because
fm is central), according to Proposition 3, fm = h\ · h must have two consecutive
irreducible monic factors whose product is f . As h and h\ do not possess two consecutive
factors whose product is f , necessarily, 1

µ1
H\

1 ·µ1 ·H1 = f and proceeding by induction,
one gets

∀j ∈ {1, . . . ,m− 1}, 1

µj
H\
j · µj ·Hj = f and Hj+1 6=

1

µj
H\
j · µj . (16)

Conversely, consider h = H1 · · ·Hm with 1
µj
H\
j · µj ·Hj = f,Hj+1 6= 1

µj
H\
j · µj and µj

constant coefficient of H1 · · ·Hj−1 , then h\ · h = fm and Hj ·Hj+1 6= f . Furthermore,
the skew polynomials Hj are all irreducible because they are nontrivial factors of f and
f is irreducible in IFp[X

2], therefore according to Proposition 3, the skew polynomial h
is not divisible by f and it belongs to Hfm .

The conclusion follows thanks to the following equivalence :


h = H1 · · ·Hm
1
µj
H\
j · µj ·Hj = f

Hj+1 6= 1
µj
H\
j · µj

⇔


h =

(
h1 · 1

ν1

)
· · ·
(
hm · 1

νm

)
·
∏m
j=1 νj

h\j · hj = f

hj+1 6= νjh
\
j ·

1
νj

where µj = (H1 · · ·Hj−1)0 is the constant coefficient of H1 · · ·Hj−1, νj is defined in IFp2
by ν2j = (Hj)0 = (hj)0 and hj = (ν0 · · · νj)Hj · 1

ν0···νj .

3. The number of elements of Hfm follows from the fact that Hf has 1 + pδ elements
(Proposition 6).

The construction of the set Hfps for f in F is deduced from Lemma 2 and Lemma 7. The
whole construction is illustrated in Table 4.
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Lemma 3 and
Cauchy in-
terpolation
(Lemma 5)

Decomposition
into the products
of elements of Hf
(Proposition 3)

Partition
(Lemma 2)

↓ ↓ ↓

Hf (Proposition 6) → Hfm (Lemma 7) → Hfps (Proposition 9)

Table 4: Main steps of the construction of Hfps for f in F

Proposition 9 Consider p a prime number, θ the Frobenius automorphism over IFp2, R =
IFp2 [X; θ], s a nonnegative integer and f = f(X2) in F with degree d = 2δ > 1 in X2. The

set Hfps has
pδ(p

s+1) − 1

pδ − 1
elements.

Proof. According to Lemma 2, Hfps =

b p
s

2
c⊔

i=0

f i · Hfps−2i and according to Lemma 7, Hfm

has (1 + pδ)(pδ)m−1 if m 6= 0 and 1 element if m = 0. Therefore Hfps has
∑(ps−1)/2

i=0 (1 +

pδ)(pδ)p
s−2i−1 elements if p is odd and 1 +

∑2s−1−1
i=0 (1 + 2δ)(2δ)2

s−2i−1 elements otherwise. In

both cases one gets #Hfps = pδ(p
s+1)−1
pδ−1 .

Example 8 Consider IF4 = IF2(a), θ the Frobenius automorphism and f(X2) = X4 +X2 +1

in F . According to Proposition 9, the set Hf2 has 21×(21+1)−1
21−1 = 7 elements. More precisely,

Hf2 = f1 · Hf0
⊔
f0 · Hf2 = {f} tHf2. Furthermore, according to Lemma 7, the elements of

Hf2 are constructed by using products of elements of Hf = {X2 + a,X2 + a2, X2 + X + 1}
(see Example 4 for the construction of Hf ). Here are the 6 elements of Hf2 :

(X2 +X + 1) · (1/1)(X2 + a) · (1/a2)a2 = X4 +X3 + a2X2 + a2X + a

(X2 +X + 1) · (1/1)(X2 + a2) · (1/a)a = X4 +X3 + aX2 + aX + a2

(X2 + a) · (1/a2)(X2 + a) · (1/a2)a = X4 + a2

(X2 + a) · (1/a2)(X2 +X + 1) · a2 = X4 + a2X3 + a2X2 +X + a

(X2 + a2) · (1/a)(X2 + a2) · (1/a)a2 = X4 + a

(X2 + a2) · (1/a)(X2 +X + 1) · a = X4 + aX3 + aX2 +X + a2.

In next subsection one constructs the set Hfps when f = f(X2) belongs to G.

5.2 Construction of Hfps for f in G

In this subsection, one computes Hfps for f in G (Proposition 11). The construction is
summed up in Table 5.

Assume that f = f(X2) = g(X2)g\(X2) with g(X2) 6= g\(X2) irreducible in IFp[X
2].

Recall that the set Hfm is defined by
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Hfm = {h ∈ Hfm | g(X2) and g\(X2) do not divide h}.

One first starts with a partition of Hfps which generalizes Lemma 2 :

Lemma 8 Consider p a prime number, θ the Frobenius automorphism over IFp2, R = IFp2 [X; θ],
s ∈ IN and f = f(X2) = g(X2)g\(X2) in G with g = g(X2) 6= g\(X2) irreducible in IFp[X

2].

Hfps =

ps⊔
i=0

ps−i⊔
j=0

gig\
j · Hfps−(i+j) . (17)

Proof. Consider h in Hfps and i ∈ {0, . . . , ps}, j ∈ {0, . . . , ps − i} such that h =

g(X2)ig\(X2)j ·H where g(X2) and g\(X2) do not divide H. One has h\ = g\(X2)ig(X2)j ·H\,
therefore H\ ·H = fp

s−(i+j) and h belongs to the set g(X2)ig\(X2)j · Hfps−(i+j) . Conversely,

consider i ∈ {0, . . . , ps}, j ∈ {0, . . . , ps−i} and H inHfps−(i+j) , then g(X2)ig\(X2)j ·H belongs
to Hfps . Consider (i, j) 6= (i′, j′) with i > i′ ∈ {0, . . . , ps}, j ∈ {0, . . . , ps− i}, j′ ∈ {0, . . . , ps−
i′}, u ∈ Hfps−(i+j) , u′ ∈ Hfps−(i′+j′) . Assume that g(X2)ig\(X2)j · u = g(X2)i

′
g\(X2)j

′ · u′.
If j ≥ j′ then g(X2) divides u′ which is impossible, therefore j < j′. Necessarily, g(X2)
divides g\(X2)j

′−j · u′. As g(X2) and g\(X2) both divide g\(X2)j
′−j · u′, their lclm is also

a divisor of g\(X2)β · u′. But g(X2) and g\(X2) are right coprime and belong to IFp[X
2]

therefore their lclm coincides with their lcm i.e. g(X2)g\(X2). So one gets that g(X2) divides
g\(X2)j

′−j−1 · u′. After repeating the same argument one gets that g(X2) divides g\(X2) · u′.
As g(X2) and g\(X2) both divide g\(X2)u′ their lclm g(X2)g\(X2) divides g\(X2)u′ therefore
g(X2) divides u′, contradiction.

In what follows one constructs the set Hfm for f in G and m greater than 1 (Lemma 9).
This construction requires a generalization of Proposition 3 :

Proposition 10 Consider p a prime number, θ the Frobenius automorphism over IFp2, R =
IFp2 [X; θ], f(X2) = g(X2)g\(X2) in IFp[X

2] with degree d in X2 where g(X2) 6= g\(X2) is
irreducible in IFp[X

2]. Assume that h = h1 · · ·hm is a product of monic skew polynomials of
degree d whose bound is f(X2). The following assertions are equivalent :

(i) The above factorization of h is not unique.

(ii) g(X2) or g\(X2) divides h in R.

(iii) There exists i in {1, . . . ,m− 1} such that g(X2) or g\(X2) divides hi · hi+1 in R.

Proof. To simplify the presentation, one denotes f = f(X2), g = g(X2) and g\ = g\(X2).
The implication (iii) ⇒ (ii) comes from the fact that g and g\ are central. Let us prove

that (ii)⇒ (i). If g divides h, then it divides h on the right so h has at least two distinct right
factors u and v irreducible dividing g. As the bound of hm is equal to f = gg\, necessarily, h
has an irreducible right factor w dividing g\. The skew polynomials lclm(u,w) and lclm(v, w)
are two right factors of h with degree d dividing f . According to Theorem 13 of [16], as u
and w are irreducible and do not have the same bound, the lclm-decomposition lclm(u,w)
is unique. Similarly, the lclm decomposition lclm(v, w) is unique. Furthermore, u and v are
distinct, so the skew polynomials lclm(u,w) and lclm(v, w) are distinct.
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Let us prove by induction onm that if h1 · · ·hm = g1 · · · gm are two distinct decompositions
of h into the product of monic skew polynomials whose bound is f and whose degree is d,
then there are two consecutive factors whose product is divisible by g or g\.

Consider h = h1 · h2 = g1 · g2 where gi, hi are skew polynomials with degree d and
with bound f . Assume that g and g\ do not divide h. Then gcrd(h, g) is an irreducible
skew polynomial of degree δ dividing g which is also equal to gcrd(h2, g) and gcrd(g2, g).
Similarly, gcrd(h2, g

\) = gcrd(g2, g
\). Furthermore, according to Theorem 4.1 of [6], h2 =

lclm(gcrd(h2, g), gcrd(h2, g
\)) and g2 = lclm(gcrd(g2, g), gcrd(g2, g

\)), therefore g2 = h2 and
(h1, h2) = (g1, g2).

Consider m > 2 and assume the property is true for m − 1. Consider two distinct de-
compositions of h into the product of monic skew polynomials with degree d ad bound f :
h = h1 · · ·hm = g1 · · · gm. Therefore, hi and gj are products of two irreducible monic skew
polynomials of degree δ dividing g and g\.

If gcrd(hm, gm) = 1 then lclm(hm, gm) = hm−1 · hm divides h1 · · ·hm and hm−1 is a
monic skew polynomial of degree d dividing f which is the product of two irreducible monic
skew polynomials of degree δ dividing g and g\. Consider H in R such that Hhm−1 =
h1 · · ·hm−1. If hm−1 = hm−1 then lclm(hm, gm) = hm−1 · hm has two factorizations into the
product of two monic skew polynomials of degree d dividing f , therefore, g or g\ divides
hm−1 · hm. Otherwise, as h1, . . . , hm−1, hm−1 are the products of an irreducible polynomial
dividing g and an irreducible polynomial dividing g\, H is the product of m − 2 irreducible
polynomials dividing g and m − 2 skew polynomials dividingg\. In particular, H divides
gm−2(g\)m−2. According to Theorem 4.1 of [6], H = lclm(G, G̃) where G = gcrd(H, gm−2)
and G̃ = gcrd(H, (g\)m−2). As g (resp. g\) is irreducible in IFp[X

2], the skew polynomial G
(resp. G̃) is the product of N (resp. Ñ) monic irreducible skew polynomials dividing g (resp.
g\). Without loss of generality, one can assume that N ≤ Ñ . Consider G = G1 · · ·GN (resp.
G̃ = G̃1 · · · G̃Ñ ) the factorization of G as the product of N (resp. Ñ) monic irreducible factors

dividing g (resp. g\). As g (resp. g\) does not divide G (resp G̃), according to Proposition 3,
these factorizations are unique. Therefore, according to Theorem 14 of [16], H = H1 · · ·HN

where Hi = lclm(Gi, G̃i) with R/GiR and R/GiR (resp. R/G̃iR and R/G̃iR) isomorphic
modules. As Gi divides g, according to Corollary of Theorem 10 of [9], Gi also divides g. As

Gi and G̃i are right coprime with same degree d/2, Gi and G̃i are also right coprime therefore
Hi is a skew polynomial of degree d which divides f . Lastly, as H has degree (m − 2)d one
gets N = m−2. Therefore, H can be written as the product of m−2 monic skew polynomials
of degree d dividing f and one can apply the induction hypothesis to H · hm−1.

Assume that gcrd(hm, gm) = u 6= 1. Necessarily u is an irreducible monic skew polynomial
of degree δ which divides g or g\. Without loss of generality, one can assume that u divides
g. Consider v such that lclm(gm, hm) = v · hm and H in R such that h1 · · ·hm = H · v · hm
i.e h1 · · ·hm−1 = H · v. Necessarily v is an irreducible monic skew polynomial of degree δ
dividing g\ and H = h̃1 · · · h̃m−2 · w where w is an irreducible skew polynomial dividing g,
h̃i is a product of two irreducible monic skew polynomials of degree δ dividing g and g\. If
hm−1 = w · v, then w · lclm(gm, hm) = hm−1 · hm and one concludes that g or g\ divides
hm−1 · hm. If hm−1 6= w · v then h1 · · ·hm−1 = h̃1 · · · h̃m−2 · (w · v) where w · v is a monic skew
polynomial of degree d dividing f , and one concludes using the induction hypothesis.

Remark 4 The unique factorization of h in Proposition 10 below is the unique representation
of h as the product of maximal completely reducible factors as it is defined in [16] page 498.
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If f(X2) is irreducible in IFp[X
2] (and f(X2) ∈ R does not divide h), then this factorization

coincides with the factorization of h into irreducible monic skew polynomials.

Lemma 9 generalizes Lemma 7 (where F is replaced with G). It uses the same type
of arguments linked to the factorization of skew polynomials. The elements of Hfm are
constructed by using products of elements of Hf .

Lemma 9 Consider p a prime number, θ the Frobenius automorphism over IFp2, R = IFp2 [X; θ],
m a nonnegative integer and f = f(X2) in G with degree d = 2δ > 1 in X2.

1. The constant coefficients of the elements of Hf are squares in IFp2.

2. The set Hfm has (1 + pδ)pδ(m−1) elements and is equal to
(
h1 ·

1

ν1

)
· · ·
(
hm ·

1

νm

)
·

 m∏
j=1

νj

 | hj ∈ Hf , ν
2
j = (hj)0, hj 6= νj−1h

\
j−1 ·

1

νj−1

 .

Proof.
To simplify the presentation, the following notations will be used in this proof : h = h(X),

f = f(X2) = g(X2)g\(X2), g = g(X2) and g\ = g\(X2).

1. If p = 2 the nonzero elements of IFp2 are squares. Assume that p is an odd prime

number. Consider h in Hfm with constant term h0, A(Z) and B(Z) defined in (9). Like

in point 1. of Lemma 7, if B(Z) and f(Z) are coprime then hp+1
0 = 1 so h0 is a square

in IFp2 . If B(Z) and f(Z) are not coprime, then according to Lemma 4, δ is necessarily
odd and A(Z) = g̃(Z)Θ(g̃\)(Z) or A(Z) = g̃\(Z)Θ(g̃)(Z) where g(Z) = g̃(Z)Θ(g̃)(Z) is
the factorization of g(Z) in IFp2 [Z]. Denote µ the constant coefficient of g̃(Z), then the
constant coefficient h0 of A(Z) is such that h0 = µ/µp = 1/µp−1 if A(Z) = g̃(Z)Θ(g̃\)(Z)
or such that h0 = µp/µ = µp−1 if A(Z) = g̃\(Z)Θ(g̃)(Z), therefore h0 is a square in IFp2 .

2. Like in Lemma 7, it suffices to prove that Hfm ={
H1 · · ·Hm | 1

µi
H\
i · µi ·Hi = f, µi = (H1 · · ·Hi−1)0, Hi+1 6= 1

µi
H\
i · µi, g, g\

}
.

Consider h in Hfm . Let us prove that h can be written as the product of m monic
skew polynomials with degree d and with bound f . As h divides fm, according to
Theorem 4.1 of [6], h = lclm(G, G̃) where G = gcrd(h, gm) and G̃ = gcrd(h, (g\)m).
As g (resp. g\) is irreducible in IFp[X

2], the skew polynomial G (resp. G̃) is the
product of N (resp. Ñ) monic irreducible skew polynomials dividing g (resp. g\).
Without loss of generality, one can assume that N ≤ Ñ . Consider G = G1 · · ·GN (resp.
G̃ = G̃1 · · · G̃Ñ ) the factorization of G as the product of N (resp. Ñ) monic irreducible
factors dividing g (resp. g\). According to Proposition 3, as g (resp. g\) does not divide
G (resp G̃), these factorizations are unique. Therefore, according to Theorem 14 of [16],

h = H1 · · ·HN where Hi = lclm(Gi, G̃i) with R/GiR and R/GiR (resp. R/G̃iR and
R/G̃iR) isomorphic modules. As Gi divides g, according to Corollary of Theorem 10 of

[9], Gi also divides g. As Gi and G̃i are right coprime with same degree d/2, Gi and G̃i
are also coprime therefore Hi is a skew polynomial of degree d which divides f . Lastly,
the degree of h is equal to m× d and one gets N = m. Therefore
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h =

m∏
i=1

Hi, Hi monic,deg(Hi) = d, Hi divides f,Hi 6= g,Hi 6= g\.

Consider µi = (H1 · · ·Hi−1)0 the constant coefficient of H1 · · ·Hi−1. Using an induction
argument, one has :

h\ =

m−1∏
i=0

1

µm−i
H\
m−i · µm−i.

By hypothesis h\ · h = fm, therefore(
1

µm
H\
m · µm

)
· · ·
(

1

µ2
H\

2 · µ2
)
·
(

1

µ1
H\

1 · µ1
)
·H1 ·H2 · · ·Hm = fm

is the product of 2m monic factors with degree d and with bound f . As fm is central,
the above decomposition is not unique. Therefore, according to Proposition 10, there
exists two consecutive factors in h\ · h whose product is divisible by g or g\. Such a

product can be of three types :
(

1
µi+1

H\
i+1 · µi+1

)
·
(

1
µi
H\
i · µi

)
, Hi ·Hi+1 or 1

µ1
H\

1 ·µ1 ·H1.

However g and g\ do not divide Hi ·Hi+1, otherwise, they would divide h, and they do
not divide 1

µi+1
H\
i+1 · µi+1

1
µi
H\
i · µi = 1

µi
(Hi ·Hi+1)

∗µi either. Therefore g or g\ divides
1
µ1
H\

1 · µ1 ·H1. As g is central, one gets that g and g\ divide 1
µ1
H\

1 · µ1 ·H1, therefore

f divides 1
µ1
H\

1 · µ1 · H1 and as these two skew polynomials are monic with the same
degree they are equal. By induction, one gets

1

µi
H\
i · µi ·Hi = f,Hi+1 6=

1

µi
H\
i · µi, g, g

\.

Conversely, consider h =
m∏
i=1

Hi, with
1

µi
H\
i · µi ·Hi = f , Hi+1 6= 1

µi
H\
i · µi, g, g\. One

has h\ =
m−1∏
i=0

1

µm−i
H\
m−i · µm−i therefore h\ ·h = fm. It remains to prove that g and g\

do not divide h. Assume that g divides h, all the skew factors Hi in the decomposition
of h are monic, with degree d, divide f and are distinct of g, g\, therefore, according
to Proposition 10, there exists i such that g divides Hi · Hi+1. Consider u in R such
that Hi ·Hi+1 = g · u. As both Hi and Hi+1 divide f without diving g or g\, they are
the products of two irreducible polynomials dividing respectively g and g\, therefore the
skew polynomial u is the product of two irreducible skew polynomials both dividing g\

and u divides (g\)2. The relation (Hi ·Hi+1)
∗ = (g\ · u)∗ gives H\

i+1 · λiH
\
i = λiu

\ · g\
where λi is the constant coefficient of Hi. Multiplying the above equality on the left
by µi+1Hi+1 · 1

µi+1
and on the right by µiHi · 1

µi
yields f2 = ( 1

λi
µi+1Hi+1 · 1

µi+1
λiu

\ ·
g\ · µi) · (Hi · 1

µi
). As f2 is central, the two terms of the product commute and f2 =

Hi · ( 1
µi

1
λi
µi+1)Hi+1 · ( 1

µi+1
λi)u

\ · g\ · µi = Hi ·Hi+1 · 1
µi
· u\ · g\ · µi = g · u · 1

µi
· u\ · g\ · µi

therefore (u · 1
µi
· u\ · µi) · g\ = g · (g\)2 = u · v · g, where v in R is such that u · v = (g\)2.

One gets the relation 1
µi
u\ ·µi ·g\ = v ·g. The skew polynomials g and g\ divide v ·g and

deg(v · g) = deg(f), therefore f = v · g, v = g\ and u = g\ which is impossible because
Hi ·Hi+1 6= f .
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Lemma 3 and
Cauchy in-
terpolation
(Lemma 6)

Decomposition
into the products
of elements of Hf
(Proposition 10)

Partition
(Lemma 8)

↓ ↓ ↓

Hf (Proposition 7) → Hfm (Lemma 9) → Hfps (Proposition 11)

Table 5: Main steps of the construction of Hfps for f in G

The number of elements of Hfm follows from the fact that Hf has 1 + pδ elements
(Proposition 7).

The construction of the set Hfps for f in G is deduced from Lemma 8 and Lemma 9. The
whole construction is illustrated in Table 5.

Proposition 11 Consider p a prime number, θ the Frobenius automorphism over IFp2, R =
IFp2 [X; θ], s a nonnegative integer and f = f(X2) in G with degree d = 2δ > 1 in X2. The

set Hfps has

(
pδ(p

s+1) − 2ps − 3
) (

1 + pδ
)

+ 4ps + 4

(pδ − 1)
2 elements.

Proof.
Consider f = f(X2) = g(X2)g\(X2) in G, then according to Lemma 8, one has the

partition

Hfps =

ps⊔
i=0

ps−i⊔
j=0

g(X2)jg\(X2)
i−j · Hfps−i−j . Furthermore, according to Lemma 9,

the set Hfm has (pδ + 1)pδ(m−1) if m ≥ 1 and 1 element if m = 0. Therefore the number of
elements of the set Hfps is

ps∑
i=0

ps−i−1∑
j=0

(1 + pδ)(pδ)p
s−i−1−j + 1

 =

(
pδ(p

s+1) − 2ps − 3
) (

1 + pδ
)

+ 4ps + 4

(pδ − 1)
2 .

Example 9 Consider IF4 = IF2(a), θ : x 7→ x2 and f = f(X2) = (X6+X2+1)(X6+X4+1) ∈
G with degree d = 6 in X2. According to Proposition 11, the set Hf2 has 93 elements. More
precisely,

Hf2 = Hf2 t (X6 +X2 + 1)Hf t (X6 +X4 + 1)Hf

t{(X6 +X2 + 1)2, (X6 +X4 + 1)2, (X6 +X2 + 1)(X6 +X4 + 1)}.
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There are 9 elements in Hf = Hf \ {X6 + X2 + 1, X6 + X4 + 1} (see example 6) and
72 = (1 + 23) × 23 skew polynomials in Hf2. Here is one of these elements : h = X12 +
aX11 + a2X10 + a2X7 + a2X6 + X5 + a2X2 + aX + a = (h1 · 1

ν1
) · (h2 · 1

ν2
) · (ν1ν2) where

h1 = X6 +X5 + aX3 + a2X + a, h2 = X6 +X5 +X4 +X3 +X2 +X + 1 are two elements
of Hf , ν1 = a2 is the square root of the constant coefficient of h1 and ν2 = 1 .

5.3 Conclusion

The following theorem gives the number of self-dual θ-cyclic and θ-negacyclic codes of any
dimension k over IFp2 for p prime number and θ Frobenius automorphism. Tables 6 and 7
illustrate this theorem over IF4 for k = 2s × t and t ∈ {1, 3, 5, 7, 9} and over IF9 for k = 3s × t
and t ∈ {1, 2, 4, 5, 7}.

Theorem 1 Consider p prime number, θ the Frobenius automorphism over IFp2, k a positive
integer, ε in {−1, 1}, s, t two integers such that k = ps × t and p does not divide t. The
number of self-dual (θ, ε)-constacyclic codes of dimension k over IFp2 is

Nε ×
∏

f∈Fk,ε

pδ(p
s+1) − 1

pδ − 1
×
∏

f∈Gk,ε

(
pδ(p

s+1) − 2ps − 3
) (

1 + pδ
)

+ 4ps + 4

(pδ − 1)
2

where

N1 =



0 if k ≡ 1 (mod 2) and p ≡ 1 (mod 4)
or k ≡ 0 (mod 2) and p odd

1 if s = 0 and p = 2
3 if s > 0 and p = 2

2
p(p

s+1)/2 − 1

p− 1
if k ≡ 1 (mod 2) and p ≡ 3 (mod 4)

and

N−1 =


0 if k ≡ 1 (mod 2) and p ≡ 3 (mod 4)
1 if k ≡ 0 (mod 2) and p odd

2
p(p

s+1)/2 − 1

p− 1
if k ≡ 1 (mod 2) and p ≡ 1 (mod 4).

Proof. According to Proposition 5, the number of self-dual (θ, ε)-constacyclic codes over
IFp2 with dimension k is

#HX2k−ε = Nε ×
∏

f∈Fk,ε

#Hfps ×
∏

f∈Gk,ε

#Hfps

where Nε satisfies the above conditions. The final result follows from Proposition 9 and
Proposition 11.

Remark 5 Proposition 4 is a particular case of Theorem 1 for t = 1 while Proposition 8 is
a particular case for s = 0.

31



Dimension cyclic θ-cyclic

2s 1 3 ([3])

3× 2s 1 + 2s+1 3× (22
s+1 − 1)

5× 2s 1 42
s+1 − 1

7× 2s 1 + 2s+1 3× (9× 82
s+1 − 7× 2s+1 − 23)/49

9× 2s (1 + 2s+1)2 3× (22
s+1 − 1)× (82

s+1 − 1)/7

Table 6: Number of self-dual cyclic codes (Theorem 3.6 of [11]) and self-dual θ-cyclic codes
(Theorem 1) over IF4 in dimension t× 2s with s ∈ IN∗, t ∈ {1, 3, 5, 7, 9} and θ : x 7→ x2

.

Dimension θ-cyclic θ-negacyclic

3s 3(3
s+1)/2 − 1 0

2× 3s 0 (33
s+1 − 1)/2

4× 3s 0 (5× 93
s+1 − 8× 3s − 13)/25

5× 3s (3(3
s+1)/2 − 1)× (93

s+1 − 1)/8 0

7× 3s (3(3
s+1)/2 − 1)× (273

s+1 − 1)/26 0

Table 7: Number of self-dual θ-cyclic and θ-negacyclic codes (Theorem 1) over IF9 in dimen-
sions t× 3s with s ∈ IN, t ∈ {1, 2, 4, 5, 7} and θ : x 7→ x3.

6 Conclusion and perspectives

This text provides a construction and an enumeration of Euclidean self-dual θ-cyclic and θ-
negacyclic codes over IFp2 where p is a prime number and θ is the Frobenius automorphism.
The main ingredient of this study relies on the adaptation of Sloane and Thompson approach
([19]) to solve the self-dual skew equation over IFp2 [X; θ]. Some comparisons with the number
of cyclic and negacyclic codes with the same dimensions are also provided.

This construction should be generalized to Hermitian self-dual θ-negacyclic codes over IFp2
(work in progress). However, the question of the enumeration of self-dual skew codes over
IFpe with e greater than 2 remains open. Namely, many properties in this text are specific to
the ring IFp2 [X; θ] and a new approach should be adopted to hope a generalization. Lastly,
a lot of work still remains in the study of the minimal distances of the codes constructed in
this text.
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