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Construction and number of self-dual skew codes over IFp2

D. Boucher ∗

December 4, 2014

Abstract

The aim of this text is to construct and to count self-dual θ-cyclic and θ-negacyclic
codes over IFp2 where θ is the Frobenius automorphism.

1 Introduction

Self-dual codes have been extensively studied for their practical and theoretical importance.
Cyclic, negacyclic and quasi-cyclic self-dual codes were investigated over finite fields in many
ways ([1, 6, 8, 9, 11, 12, 14]). There is no cyclic self-dual code over IFq when q is odd, and
the number of self-dual cyclic codes over IF2r is given in Theorem 3.6 of [12] (see also [11]).
For p prime number, negacyclic self-dual codes of dimension ps over IFq are constructed and
counted in Corollary 3.3 of [6] when q = pr and in Theorems 3 and 4 of [1] when q is prime
to p.

The goal of this text is to construct and to count self-dual θ-cyclic and θ-negacyclic codes
over IFp2 of any dimension where p is a prime number and θ is the Frobenius automorphism.

Over IFp2 , θ-cyclic codes form, up to equivalence, a subclass of the class of 2-quasi-cyclic
codes ([18]). The number of self-dual 2-quasi-cyclic codes of dimension prime to p over fields of
characteristic p is given in Proposition 6.2 of [14]. A construction (without counting formula)
of self-dual 2-quasi-cyclic codes of dimension not prime to p is given in Theorem 6.2 of [15].

Self-dual θ-cyclic and θ-negacyclic codes of dimension k are characterized by the equations
h\h = X2k− ε in IFp2 [X; θ] where h is the skew check polynomial of the code and h\ is the left
skew reciprocal polynomial of h. The solutions of this equation are constructed in [Proposition
28 of [4]] as least common right multiples of intermediate skew polynomials which satisfy
equations of the type h\h = f(X2)p

s
where f(Y ) ∈ IFp[Y ] is a self-reciprocal polynomial

either irreducible or product of two distinct irreducible polynomials. In the particular case
when p = 2 and f(X2) = X2+1, these equations were solved for any s in [4] using factorization
properties of h. This led to the characterization of self-dual skew codes of dimension 2s over
IF4. In the general case, up to now, these intermediate skew polynomials were determined
by solving the polynomial systems satisfied by their coefficients for fixed values of s. In this
text, one gives a new construction of these intermediate skew polynomials which enables to
obtain a counting formula for self-dual skew codes. The main ingredients to achieve this goal
are some factorization properties of skew polynomials in IFp2 [X; θ] and Cauchy interpolations
in IFp2 [Z].

∗IRMAR, CNRS, UMR 6625, Université de Rennes 1, Université européenne de Bretagne, Campus de
Beaulieu, F-35042 Rennes
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The text is organized as follows. In section 2 some facts about self-dual skew codes
are recalled. In section 3 a strategy for constructing and counting self-dual θ-cyclic and θ-
negacyclic codes over IFp2 for p prime number and θ the Frobenius automorphism is set up.
It is based on the resolution in R = IFp2 [X; θ] of the equation h\h = X2k − ε where h\ is the
left skew reciprocal polynomial of h. This equation can be reduced to intermediate equations
h\h = f(X2)p

s
where f(Y ) ∈ IFp[Y ] (Proposition 28 of [4]) . The main idea is to split this

equation into a finite number of equations of the type h\h = f(X2)m where h and f(X2) have
no common non constant factor in R ∩ IFp[X

2]. In section 4, the equations h\h = (X2 − ε)m
are considered for p odd prime and this leads to a first counting formula, for self-dual θ-
cyclic and θ-negacyclic codes over IFp2 with dimension a power of p (Proposition 2) . This
construction generalizes the construction for p = 2 given in [4]. Some experimental results
and a conjecture about the weight enumerators of these codes are also given. In section 5, the
equations h\h = f(X2)m for f of degree > 1 are then considered. For m = 1, this equation is
solved by Cauchy interpolation problems in IFp2 [Z] whereas for m > 1 one uses factorization
properties of h. Lastly in section 6, the number of self-dual θ-cyclic and θ-negacyclic codes
with any dimension is obtained (Theorem 1) and some perspectives are given.

2 Generalities on self-dual skew codes

For a finite field IFq and θ an automorphism of IFq we consider the ring R = IFq[X; θ] where
addition is defined to be the usual addition of polynomials and where multiplication is defined
by the basic rule X · a = θ(a)X (a ∈ IFq) and extended to all elements of R by associativity
and distributivity. The noncommutative ring R is called a skew polynomial ring or Ore ring
(cf. [17]) and its elements are skew polynomials. It is a left and right Euclidean ring whose
left and right ideals are principal. Left and right gcd and lcm exist in R and can be computed
using the left and right Euclidean algorithm. The center of R is the commutative polynomial
ring Z(R) = IFθq[X

|θ|] where IFθq is the fixed field of θ and |θ| is the order of θ. The bound
B(h) of h ∈ R with a nonzero constant term is the monic skew polynomial f with a non zero
constant term belonging to IFθq[X

|θ|] of minimal degree such that h divides f on the right in
R.

Definition 1 (definition 2 of [2] or definition 1 of [4] ) A module θ-code (or module
skew code) C is a left R-submodule Rg/Rf ⊂ R/Rf in the basis 1, X, . . . ,Xn−1 where g ∈
R = IFq[X; θ] and f is a left multiple of g in R of degree n. If there exists an a ∈ IFq \ {0}
such that g divides Xn − a on the right, then the code C is (θ,a)-constacyclic. If a = 1, the
code is θ-cyclic and if a = −1, it is θ-negacyclic. The skew polynomial g is called skew
generator polynomial of C.

If θ is the identity then a θ-cyclic (resp. θ-negacyclic) code is a cyclic code (resp. nega-
cyclic) code.

The (Euclidean) dual of a linear code C of length n over IFq is defined with the Eu-
clidean scalar product< x, y >=

∑n
i=1 xiyi in IFnq as C⊥ = {x ∈ IFnq | ∀y ∈ C,< x, y >= 0}.

A linear code C over IFq is Euclidean self-dual or self-dual if C = C⊥. To characterize
self-dual module θ-codes, the skew reciprocal polynomial of a skew polynomial (definition 3
of [4]) and also the left monic skew reciprocal polynomial will be useful.
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Definition 2 ([4], Definition 2) The skew reciprocal polynomial of h =
∑d

i=0 hi X
i ∈

R of degree d is h∗ =
∑d

i=0X
d−i · hi =

∑d
i=0 θ

i(hd−i) X
i. The left monic skew reciprocal

polynomial of h is h\ := 1
θd(h0)

· h∗. The polynomial h is self-reciprocal if h = h\.

According to Corollary 1 of [4], a module θ-code with skew generator polynomial g ∈ R
monic of degree k is self-dual if and only if there exists h ∈ R monic (called skew check
polynomial of the code) such that g = h\ and

h\h = X2k − ε with ε ∈ {−1, 1}. (1)

In particular a self-dual θ-code must be either θ-cyclic or θ-negacyclic.
Some properties of the skew reciprocal polynomial and the left skew reciprocal polynomial

will be useful (see also Lemma 24 of [4]).

Lemma 1 Consider R = IFq[X; θ] where q is a prime power, θ an automorphism of IFq and
Θ is the morphism defined on R by Θ(

∑
aiX

i) =
∑
θ(ai)X

i.

1. For f, g ∈ R, (fg)∗ = Θk(g∗)f∗, where k = deg(f).

2. For f ∈ IFθq[X
|θ|], g ∈ R, (fg)∗ = (gf)∗ = f∗g∗ and (fg)\ = f \g\.

3. Consider h = h1 · · ·hm ∈ R where for i = 1, . . . ,m, hi is a monic skew polynomial of R
with degree d and constant coefficients λi. Then

h\ =

1∏
i=m

Θd(i−1)
(

1

θd(µi)
· h\i · µi

)

with µi = λ1 · · ·λi−1 and µ1 = 1.

Proof. Point 1 is in Lemma 4 of [4] and Point 2. is deduced from it. Point 3. is
a generalization of Lemma 24 of [4]. For m = 1, the property is true. Consider m an
integer ≥ 2 and assume that the property is true for m − 1. Consider h = h1 · · ·hm and
H = h1 · · ·hm−1.

h\ =
1

θmd(µm+1)
(Hhm)∗ =

1

θmd(µm+1)
Θ(m−1)d (h∗m) ·H∗

=
1

θmd(µm+1)
·Θ(m−1)d

(
θd(λm)h\m

)
· θ(m−1)d(µm) ·H\

=
1

θmd(µm)
·Θ(m−1)d

(
h\m
)
· θ(m−1)d(µm) ·H\

= Θ(m−1)d
(

1

θd(µm)
h\mµm

)
·

1∏
i=m−1

Θd(i−1)
(

1

θd(µi)
h\iµi

)
=

1∏
i=m

Θd(i−1)
(

1

θd(µi)
· h\i · µi

)
.

To solve the equation (1), a first approach consists in solving the polynomial system whose
unknowns are the coefficients of h. If q = p2 and θ is the Frobenius automorphism, another
construction (Proposition 28 of [4]) is based on a lcrm computation of skew polynomials whose
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coefficients are also solutions to auxiliary polynomial systems coming from equations of the
type H\H = F (X2) where H ∈ R and F (X2) ∈ IFp[X

2] is a self-reciprocal polynomial. The
aim of this text is to give a new way to solve these equations which enables to give a counting
formula.

3 Strategy

Consider, for F (Y ) =
∑
aiY

i ∈ IFp[Y ] the skew polynomial F (X2) =
∑
aiX

2i ∈ R and
define the set HF (X2) by

HF (X2) := {h ∈ R | h monic and h\h = F (X2)}. (2)

Following (1), for ε ∈ {−1, 1}, the set HX2k−ε is the set of the skew check polynomials
of all the self-dual (θ, ε)-constacyclic codes of dimension k over IFp2 . The aim is therefore to
provide a construction of the set HX2k−ε which enables to count its number of elements. The
starting point of this construction is given in Lemma 2 below and is based on Proposition 28
of [4] :

Lemma 2 Consider p prime number, θ : x 7→ xp Frobenius automorphism over IFp2, k ∈ IN∗,
ε ∈ {−1, 1}, s = valp(k), t = k/ps. The number of self-dual (θ, ε)-constacyclic codes of
dimension k is

#HX2k−ε = Nε ×
∏

f(Y )∈Fk,ε

#Hf(X2)ps ×
∏

f(Y )∈Gk,ε

#Hf(X2)ps

where Fk,ε is the set of all monic factors f(Y ) = f \(Y ) in IFp[Y ] of Y t − ε with degree
> 1 such that f(Y ) is irreducible, Gk,ε is the set of all monic factors f(Y ) = f \(Y ) in IFp[Y ]
of Y t − ε with degree > 1 such that f(Y ) = g(Y )g\(Y ) with g(Y ) 6= g\(Y ) monic irreducible
in IFp[Y ]) and Nε is defined below :

for p = 2, Nε =

{
1 if s = 0
3 if s > 0

;

for p odd, Nε =


#H(X2−ε)ps if k ≡ 1 (mod 2)

1 if k ≡ 0 (mod 2), ε = −1
#H(X2−1)ps ×#H(X2+1)ps if k ≡ 0 (mod 2), ε = 1.

Proof. Consider t, s ∈ IN such that k = pst with t prime to p and Y t−ε = f1(Y ) · · · fr(Y )
in IFp[Y ] where fi(Y ) are monic self-reciprocal polynomials which are either irreducible or
products of two monic irreducible polynomials. Then according to Proposition 28 of [4], if

h ∈ HX2k−ε, then h = lcrm(h1, . . . , hr) where for all i in {1, . . . , r}, h\i = gcrd(fi(X
2)p

s
, h\)

and hi belongs to Hfi(X2)ps . Consider therefore the application

φ :

{
HX2k−ε → Hf1(X2)ps × · · · × Hfr(X2)ps

h 7→ (h1, . . . , hr) whereh\i = gcrd(fi(X
2)p

s
, h\).

Consider (h1, . . . , hr) ∈ Hf1(X2)ps × · · · × Hfr(X2)ps and h = lcrm(h1, . . . , hr). According
to Proposition 28 of [4], the skew polynomial h belongs to HX2k−ε. Let us prove that

h\i = gcrd(fi(X
2)p

s
, h\). As h belongs to HX2k−ε, h = lcrm(H1, . . . ,Hr), where H\

i =

gcrd(fi(X
2)p

s
, h\) and Hi belongs to Hfi(X2)ps . As h\i divides fi(X

2)p
s

and hi divides on
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the left h, h\i divides on the right h and fi(X
2)p

s
, therefore hi divides on the right Hi, fur-

thermore, hi and Hi have the same degree because they both belong to Hfi(X2)ps , so hi = Hi

and h\i = gcrd(fi(X
2)p

s
, h\). Therefore φ is bijective and one gets that

#HX2k−ε =

r∏
i=1

#Hfi(X2)ps = Nε ×
∏

f(Y )∈Fk,ε

#Hf(X2)ps ×
∏

f(Y )∈Gk,ε

#Hf(X2)ps

where Nε =
∏
f(Y )=f\(Y )|Y t−ε,deg(f)=1 #Hf(X2)ps . The irreducible self-reciprocal polynomials

of IFp[Y ] of degree 1 are Y + 1 and Y −1. For p = 2, Nε = #H(X2+1)2s = 1 if s = 0, 3 if s > 0
according to Proposition 24 of [4]. If p is odd, then the set of self-reciprocal divisors of degree
1 of Y t − ε is empty if ε = −1 and k ≡ 0 (mod 2), {Y − ε} if k ≡ 1 (mod 2); {Y − 1, Y + 1}
if ε = 1 and k ≡ 0 (mod 2). The expression of Nε follows.

It remains now to determine the number of elements of each intermediate set Hf(X2)ps .

These sets were computed in [4] for p = 2 and f(X2) = X2−ε by using factorization properties
of the skew check polynomials.

The strategy here is based on a partition (Lemma 3) of the sets Hf(X2)p
s into subsets

Hf(X2)m who contains the elements of Hf(X2)m which are not divisible by the non constant
factors of f(X2) in IFp[X

2].

Lemma 3 Consider R = IFp2 [X; θ] with p prime number, θ : x 7→ xp, s ∈ IN and f(Y ) =

f \(Y ) in IFp[Y ]. For m ∈ IN, consider Hf(X2)m the set of elements of Hf(X2)m which are
divisible by no non constant divisor in IFp[X

2] of f(X2).

1. If f(Y ) = f \(Y ) is irreducible in IFp[Y ] then

Hf(X2)ps =

b p
s

2
c⊔

i=0

f(X2)i · Hf(X2)ps−2i . (3)

2. If f(Y ) = g(Y )g\(Y ) with g(Y ) 6= g\(Y ) irreducible in IFp[Y ] then

Hf(X2)ps =

ps⊔
i=0

ps−i⊔
j=0

g(X2)ig\(X2)j · Hf(X2)p
s−(i+j) . (4)

Proof.

1. Consider M = bp
s

2 c, h = h(X) in Hf(X2)ps and i the biggest integer in {0, . . . ,M}
such that f(X2)i divides h. Consider H = H(X) in R such that h = f(X2)iH and
f(X2) does not divide H. As f(X2)i is central, according to point 2. of Lemma
1, h\ = f(X2)iH\ and H\H = f(X2)p

s−2i. Conversely, if H\H = f(X2)p
s−2i and

f(X2) does not divide H, then f(X2)iH belongs to Hf(X2)ps . Therefore Hf(X2)ps =
M⋃
i=0

f(X2)iHf(X2)ps−2i . Furthermore consider i > i′, H ∈ Hfps−2i(X2) andH ′ ∈ Hfps−2i′ (X2)

such that f(X2)iH = f(X2)i
′
H ′ then f(X2)i−i

′
dividesH ′, which is impossible as f(X2)

does not divide H ′. Therefore, the sets f(X2)i · Hf(X2)ps−2i and f(X2)i
′ · Hf(X2)ps−2i′

are disjoints.
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2. Consider h in Hf(X2)ps and i, j such that h = g(X2)ig\(X2)jH where g(X2) and g\(X2)

do not divide H. Then according to point 2. of Lemma 1, h\ = g\(X2)ig(X2)jH\,
therefore H\H = fp

s−(i+j) and h ∈ g(X2)ig\(X2)jHf(X2)p
s−(i+j) . Conversely, if H\H =

fp
s−(i+j)(X2) and f(X2) does not divide H, then g(X2)ig\(X2)jH ∈ Hf(X2)m . It

remains to prove that the sets are disjoint. Consider (i, j) 6= (i′, j′) with i > i′ and
g(X2)ig\(X2)ju = g(X2)i

′
g\(X2)j

′
u′ where g(X2) and g\(X2) do not divide u and

u′. If j ≥ j′ then g(X2) divides u′ which is impossible. Assume that j < j′ and
denotes β = j′ − j. Necessarily, g(X2) divides g\(X2)βu′. As g(X2) and g\(X2) both
divide g\(X2)βu′, there lclm is also a divisor of g\(X2)βu′. But g(X2) and g\(X2) are
right coprime and belongs to IFp[X

2] therefore their lclm coincides with their lcm i.e.
g(X2)g\(X2). So one gets that g(X2) divides g\(X2)β−1u′. After repeating the same
argument one gets that g(X2) divides g\(X2)β−2u′, . . . g\(X2)u′, therefore g(X2) divides
u′, contradiction.

The construction of the sets Hf(X2)m for m = 1 will be reduced to Cauchy interpolation
problems in the ring IFp2 [Z]. For m > 1 this construction will require factorization properties
given by Proposition 16 of [4] for f(Y ) irreducible. These factorization properties are recalled
below in Proposition 1 which is a generalization of Proposition 16 of [4] to the case when
f(Y ) = g(Y )g\(Y ) with g(Y ) 6= g\(Y ) irreducible in IFp[Y ].

Remark 1 The unique factorization of h in Proposition 1 below is the unique representation
of h as the product of maximal completely reducible factors as it is defined in [17] page 498.
If f(Y ) is irreducible in IFp[Y ] (and f(X2) ∈ R does not divide h), then this factorization
coincides with the factorization of h into irreducible monic skew polynomials.

Proposition 1 Consider R = IFp2 [X; θ] where p is a prime number and θ : x 7→ xp the
Frobenius automorphism. Consider f(Y ) in IFp[Y ] self-reciprocal with degree d either irre-
ducible in IFp[Y ] or product of two distinct irreducible polynomials in IFp[Y ]. Assume that
h = h1 · · ·hm is a product of monic skew polynomials of degree d bounded by f(X2). The
following assertions are equivalent :

(i) the above factorization of h is unique;

(ii) no non constant factor of f(X2) in IFp[X
2] divides h in R;

(iii) for all i in {1, . . . ,m − 1}, no non constant factor of f(X2) in IFp[X
2] divides hihi+1

in R.

Proof. If f(Y ) is irreducible, then the proof follows from Proposition 16 of [4] and
Theorem 21, 24 of [10]. In the following, we assume that f(Y ) = g(Y )g\(Y ) with g(Y ) 6=
g\(Y ) with same degree δ. To simplify the notations we denote f = f(X2), g = g(X2) and
g\ = g\(X2).

The implication (ii) ⇒ (iii) is immediate. Let us prove that (i) ⇒ (ii). If g divides h,
then it divides h on the right and h has at least two distinct right factors u and v irreducible
bounded by g. As the factors hi of h are all bounded by f = gg\, necessarily, h has an
irreducible right factor w bounded by g\. Then lclm(u,w) and lclm(v, w) are two right
factors of h with degree d dividing f . According to Theorem 13 of [17], as u (resp. v) and
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w are irreducible and do not have the same bound, the lclm-decompositions lclm(u,w) and
lclm(v, w) are unique. Furthermore, u and v are distinct, so the skew polynomials lclm(u,w)
and lclm(v, w) are distinct.

Let us prove by induction onm that if h1 · · ·hm = g1 · · · gm are two distinct decompositions
of h into the product of monic skew polynomials of degree d dividing f , then there are two
consecutive factors whose product is divisible by g or g\.

Consider h = h1h2 = g1g2 where gi, hi are skew polynomials of degree d bounded by f .
Assume that g and g\ do not divide h. Then gcrd(h, g) is an irreducible skew polynomial of
degree δ dividing g which is also equal to gcrd(h2, g) and gcrd(g2, g). Similarly, gcrd(h2, g

\) =
gcrd(g2, g

\). Furthermore, according to Theorem 4.1 of [7], h2 = lclm(gcrd(h2, g), gcrd(h2, g
\))

and g2 = lclm(gcrd(g2, g), gcrd(g2, g
\)), therefore g2 = h2 and (h1, h2) = (g1, g2).

Consider m > 2 and assume the property is true for m − 1. Consider two distinct de-
compositions of h into the product of monic skew polynomials of degree d bounded by f :
h = h1 · · ·hm = g1 · · · gm. Therefore, hi and gj are products of two irreducible monic skew
polynomials of degree δ dividing g and g\.

If gcrd(hm, gm) = 1 then lclm(hm, gm) = hm−1hm divides h1 · · ·hm and hm−1 is a monic
skew polynomial of degree d dividing f which is the product of two irreducible monic skew
polynomials of degree δ dividing g and g\. Consider H ∈ R such that Hhm−1 = h1 · · ·hm−1.
If hm−1 = hm−1 then lclm(hm, gm) = hm−1hm has two factorizations into the product of two
monic skew polynomials of degree d dividing f , therefore, g or g\ divides hm−1hm. Otherwise,
as h1, . . . , hm−1, hm−1 are the products of an irreducible polynomial dividing g and an irre-
ducible polynomial dividing g\, H is the product ofm−2 irreducible polynomials bounded by g
and m−2 skew polynomials bounded by g\. In particular, H divides gm−2(g\)m−2. According
to Theorem 4.1 of [7], H = lclm(G, G̃) where G = gcrd(H, gm−2) and G̃ = gcrd(H, (g\)m−2).
As g(Y ) (resp. g\(Y )) is irreducible in IFp[Y ], the skew polynomial G (resp. G̃) is the product
of N (resp. Ñ) monic irreducible skew polynomials bounded by g (resp. g\). Without loss
of generality, one can assume that N ≤ Ñ . Consider G = G1 · · ·GN (resp. G̃ = G̃1 · · · G̃Ñ )

the factorization of G as the product of N (resp. Ñ) monic irreducible factors bounded by
g (resp. g\). As g (resp. g\) does not divide G (resp G̃), these factorizations are unique.

Therefore, according to Theorem 14 of [17], H = H1 · · ·HN where Hi = lclm(Gi, G̃i) with

R/GiR and R/GiR (resp. R/G̃iR and R/G̃iR) isomorphic modules. As Gi is bounded by
g, according to Corollary of Theorem 10 of [10], Gi is also bounded by g. As Gi and G̃i are

right coprime with same degree d/2, so are Gi and G̃i therefore Hi is a skew polynomial of
degree d which divides f . Lastly, as H has degree (m− 2)d one gets N = m− 2. Therefore,
H can be written as the product of m− 2 monic skew polynomials of degree d dividing f and
one can apply the induction hypothesis to Hhm−1.

Assume that gcrd(hm, gm) = u 6= 1. Necessarily u is an irreducible monic skew polynomial
of degree δ which divides g or g\ let’s say g. Consider v such that lclm(gm, hm) = vhm and
H ∈ R such that h1 · · ·hm = Hvhm i.e h1 · · ·hm−1 = Hv. Necessarily v is an irreducible
monic skew polynomial of degree δ dividing g\ and H = h̃1 · · · h̃m−2w where w is irreducible
dividing g, h̃i is a product of two irreducible monic skew polynomials of degree δ dividing
g and g\. If hm−1 = wv, then wlclm(gm, hm) = hm−1hm and one concludes that g or g\

divides hm−1hm. If hm−1 6= wv then h1 · · ·hm−1 = h̃1 · · · h̃m−2(wv) where wv is a monic skew
polynomial of degree d dividing f , and one concludes using the induction hypothesis.
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4 Construction of the sets H(X2±1)ps

In [4], it is proven that there are three self-dual skew codes of dimension 2s over IF4 with
s 6= 0 (and one self-dual skew code if s = 0). The aim of this section is to construct and
count self-dual skew codes over IFp2 with dimension a power of p when p is an odd prime
number. Following Lemma 3, for p odd prime, the set H(X2−ε)ps is equal to the union of

pairwise disjoint sets

ps−1
2⊔
i=0

(X2 − ε)i · H(X2−ε)ps−2i where H(X2−ε)ps−2i is the set of elements

of H(X2−ε)ps−2i which are not divisible by X2 − ε. Lemma 4 below gives for odd number m,

a construction of the set H(X2−ε)m from which one easily deduces its number of elements.
Lemma 3 and 4 enable therefore to derive a formula for the number of (θ, ε)-constacyclic
codes of dimension a power of p over IFp2 for p odd prime (Proposition 2).

Lemma 4 Consider ε ∈ {−1, 1}, R = IFp2 [X; θ] with p odd prime number, θ the Frobenius

automorphism, m odd number and M = m−1
2 . If ε 6= (−1)

p+1
2 then the set H(X2−ε)m is empty,

otherwise it has 2pM elements and it satisfies H(X2−ε)m ={
(X + α0)

M∏
i=1

(X + αi)(X + θ(αi)) | α2
0 = −1, αp+1

i = ε, α1 6= εα0, αi+1 6= −αi

}
.

Proof.
For m = 1, HX2−ε = HX2−ε = {X +α0 | θ(α0)

2 + 1 = 0, θ(α0) = −εα0} = {X +α0 | α2
0 =

−1, αp+1
0 = ε}.

• Consider m ≥ 3. Assume that h\h = (X2 − ε)m and X2 − ε does not divide h. As h
divides (X2 − ε)m and as X2 − ε is irreducible in IFp[X

2], the bound of h is a power
of X2 − ε, therefore the skew polynomial h is the product of irreducible monic skew
polynomials bounded by X2−ε. Furthermore all irreducible skew polynomials bounded
by X2−ε are of degree 1 with a nonzero constant coefficient and the degree of h is equal
to m, therefore h is the product of m irreducible monic skew polynomials of degree 1 :

h = (X + λ1) · · · (X + λm).

As X2 − ε does not divide h, according to Proposition 1 (or Proposition 16 of [4]), this
factorization is unique and

∀i ∈ {1, . . . ,m− 1}, (X + λi)(X + λi+1) 6= X2 − ε. (5)

Furthermore, according to Lemma 1,

h\ = (X + λ̃m) · · · (X + λ̃2)(X + λ̃1) (6)

where (λ̃i)1≤i≤m is defined by

λ̃2i =
θ(µ2i)

µ2i+1
and λ̃2i+1 =

µ2i+1

θ(µ2i+2)
(7)
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and (µi)1≤i≤m is defined by

µ1 = 1, ∀i ∈ {2, . . . ,m}, µi = λ1 · · ·λi−1. (8)

This factorization of h\ into the product of monic irreducible skew polynomials is unique
(otherwise the factorization of h would not be unique) therefore, according to Proposi-
tion 1 (or Proposition 16 of [4]),

∀i ∈ {1, . . . ,m− 1}, (X + λ̃i+1)(X + λ̃i) 6= X2 − ε. (9)

As h\h = (X2 − ε)m and (X2 − ε)m does not have a unique factorization into the
product of monic linear polynomials, according to Proposition 1 (or Proposition 16 of
[4]), there must exist two irreducible consecutive monic factors in the decomposition of
h\h whose product is X2− ε. According to the relations (5) and (9), the only possibility
is (X + λ1)(X + λ̃1) = X2 − ε and by induction one gets

∀i ∈ {1, . . . ,m}, (X + λi)(X + λ̃i) = X2 − ε. (10)

Developping (10) yields λ̃i = −ε/λi = −θ(λi) therefore λiθ(λi) = λp+1
i = ε and

λ̃2iλ̃2i+1 = θ(λ2i)θ(λ2i+1) (note that one can consider this product for i ≥ 1 because

m ≥ 3). The relation (7) gives λ̃2iλ̃2i+1 = θ(µ2i)
µ2i+1

µ2i+1

θ(µ2i+2)
=

1

θ(λ2i)θ(λ2i+1)
therefore

(λ2iλ2i+1)
2 = 1. Furthermore, according to (5) and (10) , X + λi+1 6= X + λ̃i,

therefore λ2i+1 6= λ̃2i = − ε

λ2i
and as p is odd the relation (λ2iλ2i+1)

2 = 1 implies that

λ2i+1 = ε
λ2i

= θ(λ2i) (note that for p = 2, one gets an impossibility, see also Remark 2).

Assume furthermore that m is odd and consider M = m−1
2 . Considering α0 = λ1 and

for i = 1 . . .M , αi = λ2i, one gets

h = (X + α0)
∏M
i=1(X + αi)(X + θ(αi))

with ∀i ∈ {0, . . . ,M}, αiθ(αi) = αp+1
i = ε. Furthermore, λ̃1 = µ1

θ(µ2)
, λ2 6= λ̃1 and

λ2i+2 6= λ̃2i+1 therefore α2
0 = −1, α1 6= εα0 and αi+1 6= −αi.

• Conversely consider

h = (X + α0)

[
M∏
i=1

(X + αi)(X + θ(αi))

]

where α2
0 = −1, ∀i ∈ {0, . . . ,M}, αiθ(αi) = αp+1

i = ε, α1 6= εα0, ∀i ∈ {1, . . . ,M}, αi+1 6=
−αi. The expression of h\ is given by (6) with (8) and (7) where λ2i = αi and
λ2i+1 = θ(αi). The expressions of µi and λ̃i can be simplified as follows: for i ≥ 1,

µ2i+1 = µ2iαi

µ2i = α0

i−1∏
j=1

αjθ(αj)

 = α0

i−1∏
j=1

ε = α0ε
i−1

9



and 
λ̃2i = θ(α0)

α0αi
= θ(α0)α0

α2
0αi

= − ε
αi

= −θ(αi)

λ̃2i+1 =
µ2i+1

θ(µ2i+2)
=
α0ε

i−1αi
θ(α0)εi

= −αi.

Therefore the expression of h\ in (6) becomes

h\ =

[
1∏

i=M

(X − αi)(X − θ(αi))

]
(X − θ(α0)).

Furthermore (X − θ(α0))(X + α0) = X2 − α0θ(α0) = X2 − ε and for i = 1, . . . ,M ,
(X−αi)(X−θ(αi))(X+αi)(X+θ(αi)) = (X−αi)(X2− ε)(X+θ(αi)) = (X2− ε)(X−
αi)(X + θ(αi)) = (X2 − ε)2. As X2 − ε is central one gets h\h = (X2 − ε)1+2M .

Lastly, to prove that X2 − ε does not divide h, according to Proposition 1, it suffices
to prove that no product of two consecutive factors in the decomposition of h = (X +
α0)

∏M
i=1(X+αi)(X+θ(αi)) is equal to X2−ε i.e. (X+α0)(X+α1), (X+αi)(X+θ(αi))

and (X + θ(αi))(X + αi+1) are distinct from X2 − ε. The constant coefficients of these
polynomials are all distinct from −ε; namely α0α1 6= εα2

0 = −ε, αiθ(αi) = ε 6= −ε
and αi+1θ(αi) 6= −αiθ(αi) = −ε, therefore no product of two consecutive factors in the
decomposition of h is equal to X2 − ε.

• We now count the number of elements of the set H(X2−ε)m : it is empty if and only

if there is not α0 ∈ IFp2 such that α2
0 = −1 and αp+1

0 = ε. Over IFp2 , −1 is always a

square, therefore H(X2−ε)m is empty if and only if (−1)(p+1)/2 6= ε. (i.e. if and only if

p ≡ 1 (mod 4) and ε = 1 or p ≡ 3 (mod 4) and ε = −1). If ε = (−1)(p+1)/2, then there
are as many elements in H(X2−ε)m as the number of (M + 1)-uplets (α0, α1, . . . , αM )

such that α2
0 = −1, αp+1

i = ε, α1 6= εα0, αi+1 6= −αi. Therefore there are 2 choices for
α0 and p choices for α1, . . . , αM , so H(X2−ε)m has 2pM elements.

Remark 2 From the first part of the proof of the previous lemma, one deduces that for m ≥ 3
and p = 2, the sets H(X2−ε)m are empty. Therefore according to Lemma 3, for s ∈ IN∗,

H(X2+1)2s = (X2 + 1)2
s−1 H(X2+1)0

⊔
(X2 + 1)2

s−1−1 H(X2+1)2 .

Furthermore H(X2+1)2 = {(X + 1)(X + u) | u ∈ {a, a2}} where IF4 = IF2(a). Therefore

H(X2+1)2s = {(X + 1)2
s−1(X + u) | u ∈ {1, a, a2}} and one gets that for s > 0 there are only

three self-dual skew codes of dimension 2s over IF4 (see Corollary 26 of [4]).

Proposition 2 below gives a formula for the number of self-dual θ-cyclic and θ-negacyclic
codes whose dimension is a power of p for p odd prime. It is deduced from Lemma 3 and 4.

Proposition 2 Consider p an odd prime number , s ∈ IN, θ : x 7→ xp defined over IFp2 and
ε ∈ {−1, 1}. The number of self-dual (θ, ε)-constacyclic codes of dimension ps over IFp2 is

#H(X2−ε)ps =

 0 if ε 6= (−1)
p+1
2

2
p(p

s+1)/2 − 1

p− 1
if ε = (−1)

p+1
2 .
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Proof.
Consider s ∈ IN∗ and M = ps−1

2 . According to Lemma 3, HX2ps−ε =
⊔M
i=0(X

2 −
1)iH(X2−ε)ps−2i and according to Lemma 4, each set H(X2−ε)ps−2i is empty if ε 6= (−1)

p+1
2

and has 2pM−i elements if ε = (−1)
p+1
2 . Therefore, if ε 6= (−1)

p+1
2 , HX2ps−ε is empty and

otherwise it has
M∑
i=0

2pM−i = 2p
M+1−1
p−1 = 2

p(p
s+1)/2 − 1

p− 1
elements.

To conclude this section, some experimental results about the weight enumerators of self-
dual skew codes with dimension ps and their links to the sets H(X2−ε)m are given below.

Over IF4 the best minimum distance reached by self-dual θ-codes of dimension 2s does not
depend on s and is only 3 for s = 2 and 4 for s ≥ 3 (Theorem 1 [3]). The following proposition
gives a family of self-dual θ-codes of dimension ps whose minimal distance depends only on p
and does not grow with s either (which is quite bad ! ). The skew check polynomials of the

corresponding codes all belong to (X2 − ε)
ps−1

2 HX2−ε.

Proposition 3 Consider p odd prime, α ∈ IFp2 such that α2 + 1 = 0, ε = (−1)
p+1
2 and

θ : x 7→ xp. For each nonnegative integer s, the (ε, θ)-constacyclic code over IFp2 of dimension

ps generated by the skew polynomial (X2 − ε)
ps−1

2 (X + α) is a self-dual code with minimum

distance ≤ p+ 3

2
.

Proof. According to Lemma 4, the skew polynomial h = (X2− ε)
ps−1

2 (X −α) belongs to

(X2 − ε)
ps−1

2 HX2−ε. Therefore, according to Lemma 3, it belongs to H
X2p

s
−ε and g = h\ =

(X2 − ε)
ps−1

2 (X + α) generates a self-dual θ-code of dimension ps.

The skew polynomial (X2−ε)
ps−1(p+1)

2 = (X2ps−1−ε)
p+1
2 has p+3

2 terms and it is also a right

multiple of degree< 2ps of the skew polynomial g as (X2ps−1−ε)
p+1
2 = (X2−ε)

ps−1−1
2 (X+εα)g.

So the code has a word of weight p+3
2 .

Table 1 shows that the weight enumerators of self-dual skew codes over IFp2 (in the third
column) with dimension p (first column) for p = 3, 5, 7 can be classified in function of the sets
H(i) := (X2 − ε)iH(X2−ε)p−2i where 0 ≤ i ≤ p−1

2 (second column). The computations were
made using MAGMA. From this table, on can notice two facts about self-dual skew codes of
dimension p over IFp2 that we cannot explain at the moment. First for p = 3, 5, 7, two codes

with skew check polynomials belonging to two distinct sets H(i) and H(j) cannot have the
same weight enumerator and we have the following conjecture :

Conjecture 1 Let us denote, for 0 ≤ i ≤ ps−1
2 , H(i) := (X2 − ε)iH(X2−ε)ps−2i. Consider

i 6= j ∈ {0, . . . , p
s−1
2 }, h ∈ H

(i) and h′ ∈ H(j). The weight enumerators of the self-dual
(θ, ε)-constacyclic codes of dimension ps with skew check polynomials h and h′ are distinct.

Secondly, for each p ∈ {3, 5, 7}, the skew check polynomials of the self-dual θ-codes of
dimension p who reach the best distances all belong to H(0) (they are not divisible by X2− ε
and have therefore a unique factorization into the product of monic skew polynomials of
degree 1). Here are some examples :
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• There are 4 [6, 3, 4]9 self-dual θ-cyclic codes, one of them has check polynomial h =
(X+a2)(X+1)(X+1) = (X+a2)(X2 +2X+1) = X3 +aX2 +a5X+a2 and generator
polynomial g = X3 + a7X2 + a5X + a2 where a2 + 2a+ 2 = 0.

• There are 32 [10, 5, 6]25 self-dual θ-negacyclic codes, one of them has check polynomial
h = (X + 2)[(X + a22)(X + a14)][(X + a2)(X + a10)] = (X + 2)(X2 + a4X + 4)(X2 +
a8X + 4) = X5 + a17X4 + X3 + 2X2 + a7X + 2 and generator polynomial g = X5 +
aX4 +X3 + 3X2 + a7X + 3 where a2 + 4a+ 2 = 0.

• There are 72 [14, 7, 8]49 self-dual θ-cyclic codes and one of them has check polynomial

h = (X + a36)[(X + a6)(X + a42)][(X + a6)(X + a42)][(X + a12)(X + a36)] = (X +
a36)(X2 + a22X + 1)(X2 + a22X + 1)(X2 + a28X + 1) = X7 + a47X6 + a38X5 + a36X4 +
X3 +a14X2 +a29X+a36 and generator polynomial g = X7 +a17X6 +a38X5 +a36X4 +
X3 + a26X2 + a29X + a36 where a2 + 6a+ 3 = 0.

Paradoxically, as proved below, the set H(0) also provides skew codes with very bad
distance (2) for any s : consider α ∈ IFp2 such that α2 = −1, the skew polynomial Xps + α
generates a self-dual θ-code of minimum distance 2. One can notice that it factorizes uniquely
as the product of monic skew polynomials of degree 1 :

• if p ≡ 1 (mod 4), Xps + α = (X + α)p
s

• if p ≡ 3 (mod 4), Xps + α = (X + α)(X − α)(X + α) · · · (X − α)(X + α).

Namely, as Xps + α divides on the right (X2 + 1)p
s
, its factors are X + u with u2 = −1. As

the bound of Xps + α is (X2 + 1)p
s
, the factorization is unique and is necessarily the one

above.
The self-dual θ-cyclic codes [18, 9]9 are not optimal, as the best distance they reach is

8 which is less than the best known distance (9) for these codes. Conjecture 1 is however
satisfied for these codes (i.e. for p = 3 and s = 2). Some of the [54, 27]9 self-dual θ-cyclic codes
reach the best known distance, 18. Their skew check polynomials belong to H(2) (divisible
exactly by (X2 − 1)2), H(1) (divisible exactly by (X2 − 1)) or H(0) (not divisible by X2 − 1),
but none of them is divisible by (X2− 1)3. As there are 4782968 self-dual θ-cyclic codes with
dimension 27, it remains quite long to compute all the minimal distances. A good strategy
would be to exploit the factorization of the skew check polynomial more deeply to keep the
best codes.

5 Construction of the sets Hf(X2)ps for f of degree > 1

For f(Y ) = f \(Y ) of degree d > 1 such that f(Y ) is irreducible in IFp[Y ] (resp. such that
f(Y ) = g(Y )g\(Y ) with g(Y ) 6= g\(Y ) irreducible in IFp[Y ]), the set Hf(X2)p

s will be con-
structed by using the partition (3) (resp. (4)) given in Lemma 3. It requires the computation
of the sets Hf(X2)m whose elements will be constructed (Lemma 8) using products of ele-

ments of Hf(X2). In the following subsection, the sets Hf(X2) are constructed via Cauchy
interpolations in IFp2 [Z].
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p i Weight enumerators nbe
codes

3 1 1 + 16Y 3 + 72Y 4 + 288Y 5 + 352Y 6 2

0 1 + 24Y 2 + 192Y 4 + 512Y 6

1 + 120Y4 + 240Y5 + 368Y6 4

5 2 1 + 240Y 4 + 1008Y 5 + · · · 2

1 1 + 240Y 4 + 48Y 5 + · · · 2

1 + 48Y 5 + · · · 8

0 1 + 120Y 2 + · · · 2

1 + 120Y 4 + 240Y 5 + · · · 8

1 + 120Y 4 + 480Y 5 + · · · 8

1 + 5040Y6 + · · · 32

7 3 1 + 2016Y 5 + · · · 2

2 1 + 672Y 6 + 5472Y 7 + · · · 12

1 + 3024Y 6 + 8160Y 7 + · · · 2

1 1 + 1008Y 4 + · · · 2

1 + 336Y 6 + 2112Y 7 + · · · 12

1 + 336Y 6 + 4800Y 7 + · · · 12

1 + 336Y 6 + 4128Y 7 + · · · 12

1 + 672Y 6 + 4800Y 7 + · · · 12

1 + 96Y 7 + 143472Y 8 + · · · 12

1 + 2784Y 7 + 124656Y 8 + · · · 12

1 + 4128Y 7 + 115248Y 8 + · · · 24

p i Weight enumerators nbe
codes

7 0 1 + 336Y 2 + · · · 2

1 + 336Y 4 + · · · 36

1 + 336Y 6 + 2688Y 7 + · · · 36

1 + 336Y 6 + 3360Y 7 + · · · 12

1 + 336Y 6 + 1344Y 7 + · · · 24

1 + 336Y 6 + 2016Y 7 + · · · 60

1 + 336Y 6 + 4032Y 7 + · · · 12

1 + 672Y 6 + 3360Y 7 + · · · 12

1 + 672Y 6 + 4704Y 7 + · · · 24

1 + 1008Y 6 + 4032Y 7 + · · · 24

1 + 1008Y 6 + 4704Y 7 + · · · 12

1 + 1680Y 6 + · · · 12

1 + 672Y 7 + · · · 84

1 + 1344Y 7 + · · · 24

1 + 2016Y 7 + · · · 72

1 + 2688Y 7 + · · · 84

1 + 3360Y 7 + · · · 36

1 + 4032Y 7 + · · · 4

1 + 4704Y 7 + · · · 16

1 + 6048Y 7 + · · · 28

1 + 144144Y8 + · · · 72

Table 1: Weight enumerators of self-dual skew codes over IFp2 with dimension p for p = 3, 5, 7

in function of i = p−1
2 , . . . , 1, 0 where i is the biggest integer such that (X2 − ε)i divides the

skew check polynomial of the codes

5.1 Construction of the sets Hf(X2).

Consider f(Y ) ∈ IFp[Y ] with degree d > 1 such that f(Y ) = f \(Y ) and f(Y ) irreducible.
According to [16], page 6 (or Lemma 1.4.11 of [5] with e = 2), the skew polynomial f(X2) ∈ R
has ((p2)d − 1)/(pd − 1) = pd + 1 irreducible monic right factors of degree d. The set Hf(X2)

is a subset of this set of factors. Its construction is mainly based on Cauchy interpolations
(Lemma 6). The following Lemma (see also exercise 3.14 page 141 of [13]) will be useful next

Lemma 5 Consider f(Y ) ∈ IFp[Y ] with degree d > 1 such that f(Y ) = f \(Y ) and f(Y )
irreducible in IFp[Y ]. Consider α ∈ IFpd such that f(α) = 0. Then d is necessarily even and

α−1 = αp
δ

where 2δ = d.

Proof. Consider f(Y ) ∈ IFp[Y ] irreducible with degree d > 1 and such that f(Y ) = f \(Y ).
Consider α ∈ IFpd such that f(α) = 0 and j the order of α. As f \(Y ) = f(Y ), α−1 is a root

of f(Y ), so there exists k ∈ {0, . . . d − 1} such that α−1 = αp
k
. Therefore pk ≡ −1 (mod j)

and p2k ≡ 1 (mod j). Furthermore, d is the order of p modulo j, so d divides 2k. If d was
odd then it would divide k, which is impossible as pk ≡ −1 (mod j). Consider δ such that

d = 2δ, it divides k ∈ {0, . . . , d− 1} therefore k = δ and α−1 = αp
δ
.

The construction of Hf(X2) below is given for f(Y ) self-reciprocal irreducible in IFp[Y ] or
product of two distinct irreducible polynomials.

Lemma 6 Consider R = IFp2 [X; θ] with p prime number, θ : x 7→ xp, m ∈ IN∗ and f(Y )
in IFp[Y ] with degree d = 2δ > 1 in Y such that f(Y ) = f \(Y ) with f(Y ) irreducible or
product of two irreducible polynomials with degree δ. The set Hf(X2) has 1 + pδ elements if f

is irreducible and 3 + pδ elements if f is reducible.

Proof. Assume that f(Y ) is irreducible, as its degree is even (Lemma 5) f(Z) factorizes
in IFp2 [Z] as the product of two irreducible polynomials f̃(Z) and Θ(f̃)(z). If h ∈ R∩IFp2 [X2]
then the equation h\h = f(X2) in R is equivalent to the equation A(X2)A\(X2) = f(X2)
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in IFp2 [X2]. If δ is even then f̃ = f̃ \, so there is no solution; if δ is odd, then f̃ \ = Θ(f̃)

therefore f̃(X2) and Θ(f̃)(X2) are solutions. Consider now α ∈ IFpd such that f(α) = 0.
If h ∈ R \ IFp2 [X2], then writing h(X) = A(X2) + XB(X2), with B 6= 0, one gets that
h\h = f(X2) is equivalent to{

A∗(X2)A(X2) +B∗(X2)B(X2)X2 = λf(X2) ∈ R
A∗(X2)Θ(B)(X2) +B∗(X2)Θ(A)(X2) = 0 ∈ R.

The skew polynomials which appear in the equations belong to IFp2 [X2; θ] = IFp2 [X2] there-
fore, replacing X2 with Z one gets the equivalent system in IFp2 [Z] :{

A∗(Z)A(Z) +B∗(Z)B(Z)Z = λf(Z) ∈ IFp2 [Z]
A∗(Z)Θ(B)(Z) +B∗(Z)Θ(A)(Z) = 0 ∈ IFp2 [Z]

(11)

where the expressions above belong now to the commutative ring IFp2 [Z] and the morphism
of IFp2 [Z] :

∑
aiZ

i 7→
∑
apiZ

i is again denoted Θ. As A(Z) and B(Z) are polynomials of
degree δ and ≤ δ − 1 whereas f(Z) has degree 2δ, these two last equalities can be replaced
with relations of divisibility :{

f(Z) | A∗(Z)A(Z) +B∗(Z)B(Z)Z
f(Z) | A∗(Z)Θ(B)(Z) +B∗(Z)Θ(A)(Z).

(12)

As the degree of B(Z) is ≤ δ − 1 and as f(Z) factors over IFp2 into the product of two
irreducible polynomials of degree δ, B and f are coprime i.e. B(α) 6= 0 and B(αp) 6= 0.

Evaluating right hand sides of (12) at α and αp and replacing α−1 with αp
δ

(cf Lemma 5),
one gets h(X) = A(X2) +XB(X2) ∈ Hf(X2) with B 6= 0

⇔


A(αp

δ
)A(α) +B(αp

δ
)B(α) = 0

A(αp
δ+1

)A(αp) +B(αp
δ+1

)B(αp) = 0

αA(αp
δ
)Θ(B)(α) +B(αp

δ
)Θ(A)(α) = 0

αpA(αp
δ+1

)Θ(B)(αp) +B(αp
δ+1

)Θ(A)(αp) = 0.

If δ is even, then A(αp
δ
) = A(α)p

δ
and B(αp

δ
) = B(α)p

δ
, therefore one gets the equivalent

system  up
δ+1 = −1

A(α) = u×B(α)
A (θ(α)) = θ(αu )×B(θ(α))

(13)

Consider for u ∈ IFp2δ satisfying up
δ+1 = −1 the unique polynomial Pu of IFp2 [Z] with

degree ≤ 2δ− 1 defined by Pu(α) = u and Pu(θ(α)) = θ(α/u). The relation (13) is equivalent
to 

up
δ+1 = −1

A ≡ Pu ×B (mod f̃)

A ≡ Pu ×B (mod Θ(f̃)).

Therefore h(X) = A(X2) + XB(X2) ∈ Hf(X2) with B 6= 0 is equivalent to the following
Cauchy interpolations problems
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RIPu : gcd(B(Z), f(Z)) = 1
A(Z)

B(Z)
≡ Pu(Z) (mod f(Z))

for u such that up
δ+1 = −1.

As there is a unique solution (A,B) to RIPu with A monic (section 5.8 of [19]) for each u

such that up
δ+1 = −1, and as two distinct u provide two distinct solutions, the set Hf(X2) \

IFp2 [X2] has pδ + 1 elements.

If δ is odd, using the relations A(αp
δ
) = A(αp)p

δ−1
and B(αp

δ
) = B(αp)p

δ−1
, one gets the

equivalent system  up
δ−1 = −1/α

A(α) = α
u ×B(α)

A(θ(α)) = θ(u)×B(θ(α))

which is equivalent to the interpolation problem RIP where P is the unique polynomial
of IFp2 [Z] with degree ≤ 2δ − 1 defined by P (α) = α

u and P (θ(α)) = θ(u) for up
δ−1 = −1/α.

The number of elements of Hf is therefore pδ + 1 + 0 if δ is even and (pδ − 1) + 2 = pδ + 1 if
δ is odd.

When f(Y ) is reducible, the relation (12) still holds. If δ is even then g(Z) is the product of
two irreducible polynomials g̃(Z) and Θ(g̃)(Z) belonging to IFp2 [Z] and the set Hf

⋂
IFp2 [X2]

is {g(X2), g\(X2), g̃(X2)Θ(g̃\)(X2), g̃\(X2)Θ(g̃)(X2)}. If δ is odd, then g(Z) is irreducible in
IFp2 [Z] and the set Hf

⋂
IFp2 [X2] is {g(X2), g\(X2)}. Consider β in IFpδ such that g(β) = 0.

Then, for δ even, if h(X) = A(X2) + XB(X2), with B 6= 0 is such that h\h = f(X2) then
f(Z) and B(Z) are coprime i.e. B(β), B(1/β), B(βp), B(1/βp) 6= 0. Indeed if B(β) = 0 then
B(βp), B(1/β), B(1/βp) 6= 0 otherwise the condition on the degree of B would give B = 0.
Furthermore according to the second relation of (12), B∗(βp)Θ(A)(βp) = 0, so A(β) = 0 and
A∗(1/β) = 0. According to (12), B∗(1/β)Θ(A)(1/β) = 0, so Θ(A)(1/β) = 0 and A(1/βp) = 0.
Then first part of (12) gives B∗(1/βp)B(1/βp) = 0 which is impossible. In the same way, one
gets that B(1/β), B(βp), B(1/βp) 6= 0. Therefore

h(X) = A(X2) +XB(X2) ∈ Hf(X2), B 6= 0⇔



A(β)A(1/β) +B(β)B(1/β) = 0
A(βp)A(1/βp) +B(βp)B(1/βp) = 0
βΘ(B)(β)A(1/β) + Θ(A)(β)B(1/β) = 0
1/βΘ(B)(1/β)A(β) + Θ(A)(1/β)B(β) = 0
βpΘ(B)(βp)A(1/βp) + Θ(A)(βp)B(1/βp) = 0
1/βpΘ(B)(1/βp)A(βp) + Θ(A)(1/βp)B(βp) = 0

⇔



up
δ−1 = 1

A(β) = u×B(β)
A( 1

β ) = − 1
u ×B( 1

β )

A(θ(β)) = θ(βu )×B(θ(β))
A(θ( 1

β )) = −θ(uβ )×B(θ( 1
β ))

which is equivalent toRIP where P is the unique polynomial of IFp2 [Z] with degree≤ 2δ−1

defined by P (β) = u, P ( 1
β ) = − 1

u , P (θ(β)) = θ(βu ) and P (θ( 1
β )) = −θ(uβ ) for up

δ−1 = 1. If δ

is odd, then g is irreducible over IFp2 and g\ is irreducible over IFp2 with root 1/β, therefore
for B 6= 0 with degree deg(B) ≤ δ − 1, B(β), B(1/β) 6= 0 and h(X) = A(X2) + XB(X2) ∈
Hf(X2), B 6= 0⇔ 

uθδ(u) = β
A(β) = u×B(β)
A( 1

β ) = − 1
u ×B( 1

β )
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which is equivalent to RIP where P (β) = u, P ( 1
β ) = − 1

u for up
δ+1 = β. The number of

elements of Hf is therefore pδ−1 + 4 = pδ + 3 if δ is even and (pδ + 1) + 2 = pδ + 3 if δ is odd.

Example 1 Consider IF4 = IF2(a), θ Frobenius automorphism, R = IF4[X, θ] and f(Y ) =
Y 2 + Y + 1 ∈ IF2[Y ] irreducible and self-reciprocal. The polynomial f(Z) factorizes in IF4[Z]
as f(Z) = (Z+a)(Z+a2) where a2 +a+1 = 0. As δ = deg(f(Y ))/2 = 1 is odd, the equation
h\h = f(X2) has two solutions in R

⋂
IF4[X

2] namely X2 + a and X2 + a2. Consider α ∈ IF4

such that f(α) = 0 and u such that u2
δ−1 = −1/α i.e. α = a and u = a2. The polynomial

P ∈ IF4[Z] of degree ≤ 1 such that P (α) = α/u and P (α2) = u2 i.e. P (a) = a2 and P (a2) = a
is P (Z) = Z+1 and the unique solution (A,B) in IF4[Z]×IF4[Z] of A

B ≡ Z+1 (mod Z2+Z+1)
is (A,B) = (Z + 1, 1). Therefore, the equation h\h = f(X2) has one solution in R \ IF4[X

2]
namely (X2 + 1) +X × 1. The set Hf is {X2 + a,X2 + a2, X2 +X + 1} and has 2δ + 1 = 3
elements.

Example 2 Consider IF4 = IF2(a), θ Frobenius automorphism, R = IF4[X, θ] and f(Y ) =
(Y 3 +Y + 1)(Y 3 +Y 2 + 1) ∈ IF2[Y ] self-reciprocal and product of two irreducible polynomials.
As δ = deg(f(Y ))/2 = 1 is odd, the equation h\h = f(X2) has two solutions in R

⋂
IF4[X

2]
namely X6 +X2 + 1 and X6 +X4 + 1. Consider β ∈ IF8 such that β3 +β2 + 1 = 0 and u such
that u2

3+1 = β for example u = v3 where v6 + v4 + v3 + v+ 1 = 0. The polynomial P ∈ IF4[Z]
monic of degree ≤ 3 such that P (β) = u and P (1/β) = −1/u is P (Z) = aZ4 + Z3 + Z2 + 1
and the unique solution (A,B) in IF4[Z] × IF4[Z] of A

B ≡ P (Z) (mod f(Z)) with A monic
is (A,B) = (Z3 + a, aZ2 + a2Z + 1). Therefore, h(X) = X6 + a + X(aX4 + a2X2 + 1) =
X6+a2X5+aX3+X+a is solution to the equation h\h = f(X2) in R\IF4[X

2]. The set Hf is
{X6+X2+1, X6+X4+1, X6+X5+aX3+a2X+a,X6+a2X5+X4+X2+aX+1, X6+aX5+
X4 +X2 +a2X+1, X6 +X5 +X4 +X3 +X2 +X+1, X6 +aX4 +aX3 +X2 +a,X6 +a2X4 +
a2X3+X2+a2, X6+aX5+a2X3+X+a2, X6+X5+a2X3+aX+a2, X6+a2X5+aX3+X+a}.
It has 2δ + 3 = 11 elements.

Remark 3 If f(Y ) is irreducible then Hf(X2) = Hf(X2) and if f(Y ) = g(Y )g\(Y ) with

g(Y ) 6= g\(Y ) irreducible, then Hf(X2) = Hf(X2) \ {g(X2), g\(X2)}. In both cases, Hf has

pδ + 1 elements.

The proposition below gives a formula for the number of self-dual θ-cyclic and θ-negacyclic
codes whose dimension is prime to p. It is deduced from Lemma 6, Lemma 2 and Proposition
2.

Proposition 4 Consider p prime number, θ : IFp2 → IFp2 , x 7→ xp the Frobenius automor-
phism, k ∈ IN∗ not divisible by p. For ε ∈ {−1, 1}, consider Fk,ε and Gk,ε defined in Lemma
2. For f(Y ) in Fk,ε

⋃
Gk,ε, denote δ = deg(f(Y ))/2 and for p = 2, Nε = 1; for p odd,

Nε =


0 if k ≡ 1 (mod 2) and ε 6= (−1)

p+1
2 or k ≡ 0 (mod 2) and ε = 1

1 if k ≡ 0 (mod 2) and ε = −1

2 if k ≡ 1 (mod 2) and ε = (−1)
p+1
2 .

The number of self-dual (θ, ε)-constacyclic codes with dimension k defined over IFp2 is

Nε ×
∏

f(Y )∈Fk,ε

(pδ + 1)×
∏

f(Y )∈Gk,ε

(pδ + 3).
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Proof. According to Lemma 2,

#HX2k−ε = Nε ×
∏

f(Y )∈Fk,ε

#Hf(X2) ×
∏

f(Y )∈Gk,ε

#Hf(X2)

The expression of Nε is deduced from Proposition 2 for p odd prime number and Remark
2 for p = 2. The expressions of the two products

∏
f(Y )∈Fk,ε #Hf(X2) and

∏
f(Y )∈Gk,ε #Hf(X2)

come from Lemma 6.

Remark 4 According to Proposition 6.2 of [14], the number of self-dual 2-quasi-cyclic codes
of dimension k over IFpr with k prime to p depends on the factorization of Y k−1 over IFpr [Y ] :

N
∏
f∈F

(prδ + 1)
∏
f∈G

(prδ + 3)

where 2δ is the degree of f ; F (resp. G) is the set of all monic factors f(Y ) = f \(Y ) in
IFpr [Y ] of Y k − 1 with degree > 1 such that f(Y ) is irreducible (resp. f(Y ) = g(Y )g\(Y )
with g(Y ) 6= g\(Y ) monic irreducible in IFpr [Y ]); N = 1 if p = 2; N = 2 if p is odd and
k ≡ 1 (mod 2); N = 4 if p is odd and k ≡ 0 (mod 2). Therefore, for k odd number, p = 2 or
p ≡ 3 (mod 4), the number of self-dual θ-cyclic codes over IFp2 with dimension k is equal to
the number of self-dual 2-quasi-cyclic codes over IFp with dimension k.

In next subsection, the construction of the sets Hf(X2)m is considered.

5.2 Construction of the sets Hf(X2)ps for s > 0

The following technical Lemma will be useful in the proof of Lemma 8. It can be deduced
from the construction given in Lemma 6.

Lemma 7 Consider R = IFp2 [X; θ] with p prime number, θ : x 7→ xp, m ∈ IN and f(Y ) in
IFp[Y ] with degree d = 2δ > 1 such that f(Y ) = f \(Y ) with f(Y ) irreducible or product of two
irreducible polynomials with degree δ. The constant coefficients of the elements of Hf(X2) are
squares in IFp2.

Proof.
Consider h ∈ Hf(X2) \ IFp2 [X2] and A(X2), B(X2) ∈ R with B 6= 0 such that h(X) =

A(X2) + XB(X2). According to (11), one gets Θ(A)(Z) × (A∗(Z)A(Z) + B∗(Z)B(Z)Z) −
(A∗(Z)Θ(B)(Z) +B∗(Z)Θ(A)(Z)) = Θ(A)(Z)λf(Z) where λ is the constant coefficient of h.
As B 6= 0, f(Z) and A(Z) have no common factor, therefore, f(Z) divides A(Z)Θ(A)(Z) −
ZB(Z)Θ(B)(Z). These two polynomials are monic with the same degree, therefore, they are
equal and A∗ = λΘ(A). One deduces that λp+1 = 1 and therefore, λ is a square in IFp2 .

The elements of Hf(X2)

⋂
IFp2 [X2] are given in proof of Lemma 6. Namely, if f(Y ) is

irreducible,

Hf(X2)

⋂
IFp2 [X2] =

{
∅ if δ ≡ 1 (mod 2)

{f̃ ,Θ(f̃)} if δ ≡ 0 (mod 2).

Denote λ the constant coefficient of f̃ . As the constant coefficient of f is equal to 1
(because f(Y ) = f \(Y ) and f is monic), one has 1 = λλp, therefore λ is a square in IFp2 .

If f(Y ) = g(Y )g\(Y ) then

Hf(X2)

⋂
IFp2 [X2] =

{
{g, g\, g̃Θ(g̃\), g̃\Θ(g̃)} if δ ≡ 1 (mod 2)

{g, g\} if δ ≡ 0 (mod 2).
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As g(Y ) and g\(Y ) belong to IFp[Y ] their constant coefficients are squares in IFp2 . Denotes
µ the constant coefficient of g̃, then the constant coefficient of g̃Θ(g̃\) is µθ( 1

µ) = 1
µp−1 which

is a square in IFp2 .

Lemma 8 generalizes Lemma 4 and uses the same type of arguments linked to the factor-
ization of skew polynomials.

Lemma 8 Consider R = IFp2 [X; θ] with p prime number, θ : x 7→ xp, m ∈ IN∗ and f(Y ) in
IFp[Y ] with degree d = 2δ > 1 in Y such that f(Y ) = f \(Y ) with f(Y ) irreducible or product
of two irreducible polynomials with degree δ. The set Hf(X2)m has (1 + pδ)pδ(m−1) elements
and is equal to(h1 1

ν1

)
· · ·
(
hm

1
νm

) m∏
j=1

νj

 | hj ∈ Hf(X2), ν
2
j = (hj)0, hj 6= νj−1h

\
j−1

1
νj−1

 .

Proof.
To simplify the presentation, the following notations will be used in this proof : h = h(X),

f = f(X2), g = g(X2) and g\ = g\(X2).

1. Assume that f(Y ) is irreducible in IFp[Y ].

Consider h ∈ R such that h\h = fm and f 6 |h. As f is irreducible in IFp[X
2] and central,

all the irreducible factors of h are bounded by f with the same degree d (Lemma 13 (2)
of [4] or [16] page 6) :

h =
m∏
i=1

Hi, Hi monic, deg(Hi) = d,B(Hi) = f.

Furthermore, f does not divide h, therefore according to Proposition 1 (or Proposition
16 of [4]), for all j ∈ {1 . . .m− 1}, HjHj+1 6= f .

According to Lemma 5, d is even therefore the order of θ divides d and part 3. of Lemma
1 enables to conclude that

h\ =

1∏
i=m

1

µi
H\
iµi

where µi = (H1 · · ·Hi−1)0. Furthermore, this factorization (into the product of irre-
ducible monic polynomials of same degree d dividing f) is unique (because the factor-
ization of h is unique).

As the factorization of fm into the product of irreducible factors is not unique (because
each factorization of f commutes), according to Proposition 1 (or Proposition 16 of
[4]), fm = h\h must have two consecutive irreducible monic factors whose product is
f . As h and h\ do not possess two consecutive factors whose product is f , necessarily,
1
µ1
H\

1µ1H1 = f and proceeding by induction, one gets

1

µj
H\
jµjHj = f and Hj+1 6=

1

µj
H\
jµj . (14)

Conversely, if h = H1 · · ·Hm with 1
µj
H\
jµjHj = f,Hj+1 6= 1

µj
H\
jµj , µj = (H1 · · ·Hj−1)0

, then h\h = fm and HjHj+1 6= f . Furthermore, the skew polynomials Hj are all
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irreducible because they are nontrivial factors of f and f(Y ) ∈ IFp[Y ] is irreducible,
therefore according to Proposition 1 (or Proposition 16 of [4]), the skew polynomial h
is not divisible by f and it belongs to Hf(X2)m .

The set Hfm is therefore equal to the set{
H1 · · ·Hm | 1

µi
H\
iµiHi = f, µi = (H1 · · ·Hi−1)0, Hi+1 6= 1

µi
H\
iµi

}
.

The conclusion follows by observing that h = H1 · · ·Hm with 1
µj
H\
jµjH = f and Hj+1 6=

1
µj
H\
jµj is equivalent to h =

(
h1

1
ν1

)
· · ·
(
hm

1
νm

) m∏
j=1

νj with h\jhj = f and hj+1 6= νjh
\
j
1
νj

where hj = (ν0 · · · νj)Hj
1

(ν0···νj) and νj is such that ν2j = (Hj)0 = (hj)0 and νj belongs

to IFp2 (according to Lemma 7).

2. Assume that f(Y ) = g(Y )g\(Y ) with g(Y ) 6= g\(Y ) irreducible in IFp[Y ]. Like in the

previous case it suffices to prove that Hfm =
{
H1 · · ·Hm | 1

µi
H\
iµiHi = f,

µi = (H1 · · ·Hi−1)0, Hi+1 6= 1
µi
H\
iµi, g, g

\
}

.

Consider h = h(X) ∈ R such that h\h = fm and g, g\ do not divide h. Let us prove
that h can be written as the product of m monic skew polynomials of degree d bounded
by f . As h divides fm, according to Theorem 4.1 of [7], h = lclm(G, G̃) where G =
gcrd(h, gm) and G̃ = gcrd(h, (g\)m). As g(Y ) (resp. g\(Y )) is irreducible in IFp[Y ], the
skew polynomial G (resp. G̃) is the product of N (resp. Ñ) monic irreducible skew
polynomials bounded by g (resp. g\). Without loss of generality, one can assume that
N ≤ Ñ . Consider G = G1 · · ·GN (resp. G̃ = G̃1 · · · G̃Ñ ) the factorization of G as the

product of N (resp. Ñ) monic irreducible factors bounded by g (resp. g\). According to
Proposition 1, as g (resp. g\) does not divide G (resp G̃), these factorizations are unique.

Therefore, according to Theorem 14 of [17], h = H1 · · ·HN where Hi = lclm(Gi, G̃i)

with R/GiR and R/GiR (resp. R/G̃iR and R/G̃iR) isomorphic modules. As Gi is
bounded by g, according to Corollary of Theorem 10 of [10], Gi is also bounded by g.

As Gi and G̃i are right coprime with same degree d/2, so are Gi and G̃i therefore Hi

is a skew polynomial of degree d which divides f . Lastly, as h has degree md one gets
N = m. Therefore

h =

m∏
i=1

Hi, Hi monic, deg(Hi) = d,B(Hi) = f.

By hypothesis h\h = fm =
∏1
i=m

1
µi
H\
iµi
∏m
i=1Hi is the product of 2m monic factors

of degree d bounded by f and as the decomposition of fm (as the product of monic
factors of degree d dividing f) is not unique, according to Proposition 1, there exists
two consecutive factors in h\h whose product is divisible by g or g\. Such a prod-
uct can be of three types : 1

µi+1
H\
i+1µi+1

1
µi
H\
iµi, HiHi+1 or 1

µ1
H\

1µ1H1. However g

and g\ do not divide HiHi+1, otherwise, they would divide h, and they do not divide
1

µi+1
H\
i+1µi+1

1
µi
H\
iµi = 1

µi
(HiHi+1)

∗µi either. Therefore g or g\ divides 1
µ1
H\

1µ1H1. Us-

ing Lemma 1, one gets that g and g\ divide 1
µ1
H\

1µ1H1, therefore f divides 1
µ1
H\

1µ1H1
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and as these two skew polynomials are monic with the same degree they are equal. By
induction, one gets

1

µi
H\
iµiHi = f,Hi+1 6=

1

µi
H\
iµi, g, g

\.

Conversely, consider h =

m∏
i=1

Hi, with
1

µi
H\
iµiHi = f , Hi+1 6= 1

µi
H\
iµi, g, g

\. Accord-

ing to Lemma 1, h\ =

1∏
i=m

1

µi
H\
iµi, therefore h\h = fm. It remains to prove that

g and g\ do not divide h. Assume that g divides h, all the factors Hi in the de-
composition of h are monic, with degree d, divide f and are distinct of g, g\, there-
fore, according to Proposition 1, there exists i such that g divides HiHi+1. Consider
u ∈ R such that HiHi+1 = gu. As both Hi and Hi+1 are bounded by f , they are
the products of two irreducible polynomials bounded by g and g\, therefore the skew
polynomial u is the product of two irreducible skew polynomials bounded by g\ and
u divides (g\)2. The relation (HiHi+1)

∗ = (g\u)∗ gives H\
i+1λiH

\
i = λiu

\g\ where
λi := (Hi)0. Multiplying on the left by µi+1Hi+1

1
µi+1

and on the right by µiHi
1
µi

yields

f2 = ( 1
λi
µi+1Hi+1

1
µi+1

λiu
\g\µi)(Hi

1
µi

). As f2 is central, the two terms of the product

commute and f2 = Hi(
1
µi

1
λi
µi+1)Hi+1(

1
µi+1

λi)u
\g\µi = HiHi+1

1
µi
u\g\µi = gu 1

µi
u\g\µi

therefore (u 1
µi
u\µi)g

\ = g(g\)2 = uvg, where v ∈ R is such that uv = (g\)2. One gets the

relation 1
µi
u\µig

\ = vg. The skew polynomials g and g\ divide vg and deg(vg) = deg(f),

therefore f = vg, v = g\ and u = g\ which is impossible because HiHi+1 6= f .

3. The number of elements ofHf(X2)m follows from the fact thatHf(X2) has 1+pδ elements.

Example 3 . Consider IF4 = IF2(a), θ : x 7→ x2 and f(Y ) = Y 2 + Y + 1 ∈ IF2[Y ]. According
to Example 1, the set Hf(X2) is {X2 +X + 1, X2 + a,X2 + a2}. The 6 = (1 + 21)× 21 skew

polynomials of Hf(X2)2 are :

X4 +X3 + a2X2 + a2X + a = (X2 +X + 1)(1/1)(X2 + a)(1/a2)a2,
X4 +X3 + aX2 + aX + a2 = (X2 +X + 1)(1/1)(X2 + a2)(1/a)a,
X4 + a2 = (X2 + a)(X2 + a) = (X2 + a)(1/a2)(X2 + a)(1/a2)a,
X4 +a2X3 +a2X2 +X+a = (X2 +a)(X2 +a2X+1) = (X2 + a)(1/a2)(X2 +X + 1)(1/1)a2,
X4 + a = (X2 + a2)(X2 + a2) = (X2 + a2)(1/a)(X2 + a2)(1/a)a2,
X4 + aX3 + aX2 +X + a2 = (X2 + a2)(X2 + aX + 1) = (X2 + a2)(1/a)(X2 +X + 1)(1/1)a.

Example 4 . Consider IF4 = IF2(a), θ : x 7→ x2 and f(Y ) = (Y 3 + Y + 1)(Y 3 + Y 2 + 1) ∈
IF2[Y ]. There are 72 = (1+23)×23 skew polynomials in Hf(X2)2. Here is one of these elements

: h = X12 + aX11 + a2X10 + a2X7 + a2X6 +X5 + a2X2 + aX + a = (h1
1
ν1

)× (h2
1
ν2

)× (ν1ν2)

where h1 = X6+X5+aX3+a2X+a, h2 = X6+X5+X4+X3+X2+X+1 are two elements
of Hf (constructed in example 2), ν1 = a2 is the square root of the constant coefficient of h1
and ν2 = 1 .

Proposition 5 Consider R = IFp2 [X; θ] with p prime number, θ : x 7→ xp, s ∈ IN and f(Y )
in IFp[Y ] with degree d = 2δ > 1 in Y such that f(Y ) = f \(Y ).
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• If f(Y ) is irreducible, the set Hf(X2)ps has
pδ(p

s+1) − 1

pδ − 1
elements.

• If f(Y ) = g(Y )g\(Y ) with g(Y ) 6= g\(Y ) irreducible in IFp[Y ], the set Hf(X2)ps has(
pδ(p

s+1) − 2ps − 3
) (

1 + pδ
)

+ 4ps + 4

(pδ − 1)
2 elements.

Proof.

Assume that f(Y ) is irreducible in IFp[Y ]. According to Lemma 3,Hf(X2)ps =

b p
s

2
c⊔

i=0

f i Hf(X2)ps−2i

and according to Lemma 8, Hf(X2)m has (1 + pδ)(pδ)m−1 if m 6= 0 and 1 element if m = 0.

Therefore Hf(X2)ps has
∑(ps−1)/2

i=0 (1 +pδ)(pδ)p
s−2i−1 elements if p is odd and 1 +

∑2s−1−1
i=0 (1 +

2δ)(2δ)2
s−2i−1 elements otherwise. In both cases one gets #Hf(X2)ps = pδ(p

s+1)−1
pδ−1 . Assume

that f(Y ) = g(Y )g\(Y ) with g(Y ) 6= g\(Y ) irreducible in IFp[Y ], then according to Lemma 3,

Hf(X2)ps =

ps⊔
i=0

ps−i⊔
j=0

g(X2)jg\(X2)
i−jHf(X2)ps−i−j . Furthermore, the set Hf(X2)m

has (pδ + 1)pδ(m−1) if m ≥ 1 and 1 element if m = 0. Therefore the number of elements of the

setHf(X2)ps is

ps∑
i=0

ps−i−1∑
j=0

(1 + pδ)(pδ)p
s−i−1−j + 1

 =

(
pδ(p

s+1) − 2ps − 3
) (

1 + pδ
)

+ 4ps + 4

(pδ − 1)
2 .

Example 5 Consider f(Y ) = Y 2 + Y + 1 defined in Example 3. The skew polynomials h
satisfying h\h = f2 are f = X4 + X2 + 1 ∈ f1 × Hf0 (whose factorization is not unique
: f = (X2 + X + 1)(X2 + X + 1) = (X2 + a)(X2 + a2) = (X2 + a2)(X2 + a)) and the
six skew polynomials, who have a unique factorization into the product of irreducible monic
polynomials and who describe f0 ×Hf(X2)2 given in Example 3.

Example 6 Consider f(Y ) = (Y 3+Y 2+1)(Y 3+Y +1) with degree d = 6 defined in Example
4. There are 93 skew polynomials h satisfying h\h = (X6 +X4 +1)2(X6 +X2 +1)2. The only
one which is divisible by X6+X4+1 and X6+X2+1 is (X6+X4+1)(X6+X2+1). There are
10 polynomials which are divisible by X6 +X4 + 1 without being divisible by X6 +X2 + 1; 10
other skew polynomials which are divisible by X6+X2+1 without being divisible by X6+X4+1
and 72 skew polynomials which are not divisible by X6 +X2 + 1 or X6 +X4 + 1.

6 Conclusion and perspectives

The following theorem gives the number of self-dual θ-cyclic and θ-negacyclic codes of any
dimension over IFp2 for θ Frobenius automorphism.

Theorem 1 Consider p prime number, θ : x 7→ xp Frobenius automorphism, k ∈ IN∗ and
s, t ∈ IN such that k = pst with t not divisible by p. For ε ∈ {−1, 1}, consider Fk,ε and
Gk,ε defined in Lemma 2. For f(Y ) in Fk,ε

⋃
Gk,ε, denote δ = deg(f(Y ))/2 and for p = 2,
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Nε =

{
1 if s = 0
3 if s > 0

; for p odd,

Nε =


0 if k ≡ 1 (mod 2) and ε 6= (−1)

p+1
2

or k ≡ 0 (mod 2) and ε = 1
1 if k ≡ 0 (mod 2) and ε = −1

2
p(p

s+1)/2 − 1

p− 1
if k ≡ 1 (mod 2) and ε = (−1)

p+1
2 .

The number of self-dual (θ, ε)-constacyclic codes of dimension k over IFp2 is

Nε ×
∏

f(Y )∈Fk,ε

pδ(p
s+1) − 1

pδ − 1
×

∏
f(Y )∈Gk,ε

(
pδ(p

s+1) − 2ps − 3
) (

1 + pδ
)

+ 4ps + 4

(pδ − 1)
2 .

Proof. According to Lemma 2,

#HX2k−ε = Nε ×
∏

f(Y )∈Fk,ε

#Hf(X2)ps ×
∏

f(Y )∈Gk,ε

#Hf(X2)ps .

The expression of Nε is deduced from Proposition 2 for p odd prime number and Remark 2
for p = 2. The expressions of the two products

∏
f(Y )∈Fk,ε #Hf(X2)ps and

∏
f(Y )∈Gk,ε #Hf(X2)ps

come from Proposition 5.

Remark 5 Proposition 2 is a particular case of Theorem 1 for t = 1 while Proposition 4 is
a particular case for s = 0.

To conclude, this formula should be generalized for self-dual (θ, ε)-codes defined over IFq
with θ automorphism of order 2. A future work would consist in studying the case when θ is
an automorphism of order > 2.

Lastly, one can hope that these constructions help for the study of the minimal distances
of self-dual skew codes. Some experimental results and observations in dimension a power of
p were made and need to be examined in more details.
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