
HAL Id: hal-01090848
https://hal.science/hal-01090848

Submitted on 4 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-linear regression algorithms for motor skill
acquisition: a comparison

Thibaut Munzer, Freek Stulp, Olivier Sigaud

To cite this version:
Thibaut Munzer, Freek Stulp, Olivier Sigaud. Non-linear regression algorithms for motor skill acqui-
sition: a comparison. 9èmes Journées Francophones de Planification, Décision et Apprentissage, May
2014, Liège, Belgium. �hal-01090848�

https://hal.science/hal-01090848
https://hal.archives-ouvertes.fr

Non-linear regression algorithms for motor skill

acquisition: a comparison

Thibaut Munzer1, Freek Stulp1,2 and Olivier Sigaud3

1 FLOWERS Research Team, INRIA Bordeaux Sud-Ouest

351, Cours de la Libération 33405 Talence. thibaut.munzer@inria.fr

2 Robotics and Computer Vision, École Nationale Supérieure de Techniques Avancées

(ENSTA-ParisTech),

32, Boulevard Victor 75015 Paris freek.stulp@ensta-paristech.fr

3 Université Pierre et Marie Curie, Institut des Systèmes Intelligents et de Robotique - CNRS UMR 7222

Pyramide Tour 55 - Boı̂te Courrier 173, 4 Place Jussieu, 75252 Paris CEDEX 5, France

olivier.sigaud@isir.upmc.fr

Abstract : Endowing robots with the capability to learn is an important goal for the robotics re-

search community. One part of this research is focused on learning skills, where usually two learning

paradigms are used sequentially. First, a robot learns a motor primitive by demonstration (or imitation).

Then, it improves this motor primitive with respect to some externally defined criterion. In this paper,

we study how the representation used in the demonstration learning step can influence the performance

of the policy improvement step. We provide a conceptual survey of different demonstration learning al-

gorithms and perform an empirical comparison of their performance when combined with a subsequent

policy improvement step.

1 Introduction

Autonomous skill acquisition is a process endowing a robot with a capability to learn new tasks and to

improve the corresponding behaviours through interactions with its environment. A common approach to

skill learning is the following:

Representation Choose a parametric control policy representation for the skill, e.g. based on dynamical

systems (Khansari-Zadeh and Billard, 2011) or Dynamical Movement Primitives (DMPs) (Ijspeert

et al., 2013).

Imitation Initialize the policy from demonstration(s) with imitation learning, based on regression (Hersch

et al., 2008). Regression approximates a latent function by setting the open parameters of the policy

so that it convincingly reproduces the demonstrated trajectories.

Optimization Since imitation alone often does not suffice to solve the task (Kober and Peters, 2008),

a further step is optimize the policy parameters with respect to a utility function with Reinforce-

ment Learning (RL) (Kober and Peters, 2008; Theodorou et al., 2010) or Black-Box Optimization

(BBO) (Rubinstein, 1999; Hansen et al., 2003).

So far, research on motor skill acquisition has focused on 1) developing and comparing policy representa-

tions that capture relevant aspects of the demonstration(s) during imitation, whilst also enabling generaliza-

tion on the robot. 2) developing and comparing policy improvement algorithms for the optimization step.

On the other hand, comparisons of regression methods have been more confined to learning mechanical

models of robots (e.g. (Sigaud et al., 2011; Droniou et al., 2012)) or learning from demonstration per se

(e.g. (Khansari-Zadeh and Billard, 2011)). Although these research lines have made progress mostly in iso-

lation, in principle there should be a strong interdependency between the regression algorithm used during

the imitation stage, the initial parametric policy representation obtained as a result, and the capability of an

RL or BBO algorithm to improve the performance of this initial policy.

JFPDA 2014

Intuitively, this interdependency is mainly characterized by two factors. First, and most obviously, the

number of parameters used to represent the policy matters a great deal: more parameters to optimize result

in a slower improvement, but too few parameters constrain the improvement capability. Second, whether

the policy representation is local1 or not should matter too, even if the impact of this property is more

difficult to anticipate.

The main contribution of this paper consists in empirically investigating the above interdependency. Thus,

we consider the effect of different latent function representations and meta-parameters setting within the

entire Representation-Imitation-Optimization process. In particular, we compare the performance after op-

timization when using different regression algorithms for imitation learning. The second main contribution

of this paper is to propose one general, unified latent function representation for a variety of regression

algorithms (RBFNs, iRFRLS, LWR, LWPR, GMR).

The paper is organized as follows. In the next section, we describe the policy Representation used

throughout this paper. In Section 3, we review the regression algorithms used for the regression in the

Imitation step. The Optimization phase, i.e. policy improvement, is presented in Section 4. The experi-

mental evaluation, including results and discussion, is presented in Section 5. A conclusion summarizes the

achievements and suggests directions for future work.

2 Representation: Dynamical Movement Primitives

In RL, a policy π maps states to actions. An optimal policy π∗ chooses the action that optimizes the

cumulative discounted reward over time. In RL problems with continuous state and action spaces, a policy

cannot be represented by enumerating all actions, so parametric policy representations πθ are required,

where θ ∈ Θ is a vector of parameters. Thus, finding the optimal policy π∗ corresponds to finding optimal

policy parameters θ∗. This process is known as direct policy search or policy improvement. Because policy

improvement algorithms are almost always local methods, they require a good initialization, i.e. θinit ≈ θ∗.

This initialization thus corresponds to the Imitation phase, and the subsequent policy improvement to the

Optimization phase.

For parameterized policy representations, one must distinguish between approaches where a feedback

controller is represented directly as a parametric dynamical system (Khansari-Zadeh and Billard, 2011) and

approaches based on Dynamical Movement Primitives (DMPs) (Ijspeert et al., 2002).

The latter representation, which we use in this paper, combines a non-parametric closed-loop spring-

damper system that drives the system to the goal, and a parametric open-loop term which allows arbitrary

(smooth) movements to be represented (Ijspeert et al., 2013).

A DMP is a learnable controller that combines a fixed spring-damper system with known convergence

and stability properties (as well as generalization w.r.t. the goal) and a learnable part that can be optimized

through trial-and-error. A DMP is represented by the following dynamical system:

τ ẍ(t) = α(β(x(t)− g(t))− ẋ(t))︸ ︷︷ ︸
spring-damper system

+h(t)fθ(φ(t))︸ ︷︷ ︸
forcing term

. (1)

By (numerically) integrating this dynamical system over time, it generates a trajectory [x(t), ẋ(t), ẍ(t)]Tt=0.

When several of such systems are coupled, the output trajectories can be used to represent, for instance, joint

angles or end-effector positions of a robotic arm.

The symbols α and β are the spring-damper system coefficients, they are commonly set such that the

system is critically damped (β = α
4). The g system represents the goal of the spring-damper system, i.e.

the value to which x will converge. The h function, called the gating system, must be close to zero at the

end of the movement and monotonically tend to zero, so that, after some time, the system tends to a simple

spring-damper system which is known to converge. In the original framework, the same system is used for

the gating and the phase (φ = h), so h is computed by integrating ḣ = −αph (Ijspeert et al., 2002).

In this paper, we use a slighly modified version of DMPs (Kulvicius et al., 2012), where:

φ̇(t) =

{
1
T

if t ≤ T
0 otherwise

, (2)

1We say that a representation is local if the represented space is partitioned into a set of local models and if the output to a point in

that space is computed mostly from the corresponding local model.

ḣ(t) = −
αhe

αh

∆t
(T−t)

(1 + e
αh

∆t
(T−t))2

(3)

with, h(0) = 1 and φ(0) = 0 (∆t is the number of time step). This modified representation leads to more

regularized input/target data for fθ (Kulvicius et al., 2012).

The φ system, called the phase system, is used to decouple the produced movement from time. For all

practical purposes, it may be considered as an alternative representation of time. Since this time signal is

the only input to fθ(φ(t)), called the forcing term, is open-loop.

The fθ function deforms the spring-damper trajectory to allow the system to generate arbitrary (smooth)

trajectories. If DMPs are used as a parameterized policies πθ , their only open parameters θ are the param-

eters of the latent function fθ , so searching for a good policy πθ boils down to searching for a good latent

function fθ by exploring the space Θ.

During the Imitation phase, the input/target data for the latent function is acquired by taking a given

demonstration trajectory [x(t), ẋ(t), ẍ(t)]Tt=0, and solving (1) for f with regression:

fθ(φ(t)) =
ẍ(t)− α(β(x(t)− g(t))− ẋ(t))

h(t)
. (4)

Thus, the input data for the latent function fθ is the 1D phase signal φ(t) (acquired by integrating the

phase system over time), and the target is the right-hand term in (4). Since both input and targets are

continuous, approximating the latent function fθ corresponds to a regression. This concludes our discussion

of the Representation of the parameterized policy. The next section presents several algorithms which can

be used to perform the regression to acquire θ. Section 4 then shows how these parameters are then used as

an initialization of the Optimization phase, whose goal it is to find the optimal policy parameters θ∗.

3 Imitation: Regression methods

Given a set of continuous input/output datapoints, the purpose of function approximation, also called re-

gression, is to determine from a family of model functions a latent function fθ that best matches this set of

points.

To define notations, we assume that the data consists of N examples. Each example i is composed of an

input vector xi of dimension m and an output scalar yi. The collection of all input can be seen as a m×N
matrix X = (x1,x2, ...,xN) and the collection of output as a vector y = (y1, y2, ..., yN).

In this section, we describe two families of function approximation representations (Sigaud et al., 2011).

In the first family, the function is represented as a weighted sum of basis functions, e.g. Radial Basis

Function Networks (RBFNs) (Park and Sandberg, 1993) and iRFRLS (Gijsberts and Metta, 2011; Gijsberts

and Metta, 2012). In the second, the function is represented as a Gaussian mixture of linear models, i.e.

a weighted sum of local linear models where the weights depend on the input space through Gaussian

basis functions, e.g. Locally Weighted Regression (LWR) (Atkeson and Schaal, 1995), Locally Weighted

Projection Regression (LWPR) (Vijayakumar and Schaal, 2000) and Gaussian Mixture Regression (GMR)

(Hersch et al., 2008; Calinon, 2009). We conclude that both the output model of both these families can be

unified into a single more general latent function representation.

3.1 Least Square regression of the weights of basis functions

In the first family of regression methods, the latent function is represented as a weighted sum of basis

functions. We first explain the basics about the Least Square and Regularized Least Square methods as well

as their incremental variants and then explain how they are used to approximate through a weighted sum of

basis functions.

3.1.1 Least Square and Regularized Least Square

In the case of linear regression, the family of model functions is linear, which means that the latent function

f is such that f(x) = wTx, where w is a vector of weights. A popular method for choosing w is the Least

JFPDA 2014

Squares algorithm (LS). With this algorithm, the chosen w is the one that minimizes the squared errors, i.e.

w∗ = arg min
w

‖y −XTw‖2. (5)

Minimizing the Least Square errors is a continuously differentiable unconstrained optimization problem

that can be solved analytically. Its solution is

w∗ = (XTX)−1XTy. (6)

However, potential singularities in XTX may make it difficult to invert and can result in very large

weigths w. A solution to this issue consists in including a penalization for large weigths in the optimiza-

tion criterion, resulting in Regularized Least Square (RGLS) also called Ridge Regression (RR) (see e.g.

(Schmidt, 2005) for a detailed presentation).

So (5) becomes

w∗ = arg min
w

λ

2
‖w‖2 +

1

2
‖y −XTw‖2, (7)

where λ is a trade-off parameter balancing between large weights and error. This minimization problem

has an analytical solution

w∗ = (λI +XTX)−1XTy. (8)

Computing w∗ requires the inversion of the (λI +XTX) matrix, which is in O(N3). This complexity

can be reduced to O(N2) by using the Sherman-Morrisson formula, giving rise to an incremental update

of the inverse, but this method is sensitive to rounding errors. A numerically more stable option consists

in updating the Cholesky factor of the matrix using the QR algorithm (see (Gijsberts and Metta, 2012) for

details).

3.1.2 Kernel Regularized Least Square

Least Square and RGLS methods can be used to approximate a linear function. When the latent function is

non-linear, one approach consists in paving the input space with non-linear basis functions and representing

the latent function as a weigthed sum of these basis functions. This transforms non-linear regression into

linear regression in a different space, using the basis functions to project from one space to the other. The

basis functions used in this approach are generally Radial Basis Functions (RBFs), called “kernels” in

this context. These functions are such that their output is maximal for a given input and decreases with

the distance to this input, which provides a locality property. Gaussian functions are the most often used

kernels.

Kernel Regularized Least-Squares (KRGLS) is the extension of RGLS to non-linear functions using this ap-

proach, which is known as the kernel trick in classification (Saunders et al., 1998) and has been popularized

in SVMs (Rifkin et al., 2003).

The standard method consists in adding for each datapoint xi a kernel function k(x,xi). The latent

function is then defined as

f(x) =

N∑

i=1

wi.k(x,xi). (9)

Defining the m×N kernel matrix as K = [k(x,xi)], the optimal vector of coefficients is given by

w∗ = (K + λI)−1y. (10)

Unfortunately, the size of this matrix increases with the number of samples, giving rise to the kernel

expansion problem. Indeed, like RGLS, the cost of KRGLS is cubic in the number of samples. Here again,

the complexity can be reduced using the QR algorithm.

Several additional methods can be used to reduce this complexity, giving rise to a suboptimal estimation

of the latent function. One can limit the number of considered samples (Dekel et al., 2008; Engel et al.,

2002), or replace the analytical computation of w∗ by a gradient-like method. Finally, one can also replace

the expanding set of kernel functions by a fixed set of such functions. This is the approach taken in the next

sections.

3.1.3 Radial Basis Function Networks

A widely used algorithm in this context is Radial Basis Function Networks. It consists in using KRGLS with

a fixed set of D radial basis functions. If Gaussians are used as basis functions, the dth Gaussian function

gd is defined for any state x as

gd(x) = e−
1
2 (x−xd)

T
Σ

−1

d
(x−xd) (11)

where xd is the center of the Gaussian and the Σd covariance matrix defines an ellipsoid related to the

variance of the Gaussian function in all dimensions.

The latent function is then computed as

f(x) =

D∑

d=1

wd.gd(x). (12)

These functions can be either regularly placed to pave the input space or drawn randomly. The first option

is the most often used, though the algorithm presented in the next section suggests that random placement

might be more efficient.

3.1.4 IRFRLS

In (Rahimi and Recht, 2008), the authors propose to approximate the kernel matrix K with a set of random

features, giving rise to Random Features Regularized Least Squares (RFRLS), an algorithm that converges to

KRGLS in O
(

1√
D

)
, where D is the number of features on which the kernel is projected. The computation

time for prediction being linearly dependent on the number of training samples, random features are used

to approximate the kernel and keep the prediction time constant.

In (Gijsberts and Metta, 2011), the authors present an incremental version of RFRLS (named iRFRLS

hereafter) that introduces the incremental estimation method of RGLS into RFRLS. With respect to RBFNs,

the key idea behind iRFRLS is that any function can be approximated arbitrarily well as a weighted sum

of cosine functions, as outlined by the theory underlying the Fourier Transform. Thus, instead of using

Gaussian kernels as in RBFNs, the latent function is approximated as a set of D cosine functions using

ỹ = f(x) =

D∑

d=1

wd.cos(ω
Tx+ φ). (13)

The basis functions are defined by randomly drawing their multidimensional period 1/ω and phase b using

ω ∼ N (0, 2γI) and φ ∼ U(0, 2π).
As in RBFNs, the weights wd of these basis functions are tuned so as to approximate the latent function f

by the incremental version of the KRGLS algorithm described above.

The accuracy versus time complexity trade-off can be easily tuned by changing the number of features D.

Furthermore, the complexity of this method is in O
(
D2

)
, thus it is independent of the number of samples.

The other two meta-parameters of iRFRLS are λ, the regularization parameter and γ, the variance over the

period of the random cosine features. Experiments on several databases confirm that RFRLS and iRFRLS

can be set close to KRGLS with a small enough processing time. Indeed, iRFRLS shows interesting practical

performances (Droniou et al., 2012) and its computation time is independent of the learning data.

3.1.5 Summary and Intermediate Discussion

The same regression algorithm, namely the incremental version of RLS, can be applied to the RBFN repre-

sentation and to the iRFRLS representation. Thus these approaches only differ in the basis functions they

use (local Gaussian kernels in RBFNs versus global cosine functions in iRFRLS) and in the way these basis

functions are organized (regularly distributed in RBFNs versus drawn randomly in iRFRLS). As a conse-

quence, any difference in performance between these algorithms can be explained by a difference in the

corresponding representations. An open question is whether replacing the local kernels used in RBFNs by

non-local basis functions in iRFRLS makes the global model harder to optimize or not.

JFPDA 2014

3.2 Locally Weighted Regression methods

Locally Weighted Regression methods are a family of methods that all rely on the same model for function

approximation. The way a function is approximated with such a model is explained in Figure 1.

A B C D E

a

b

c

a

b
c a b c

Figure 1: Function approximation in Locally Weighted Regression models. A: The latent function to be

approximated. For the sake of clarity, we focus on approximating it in one dimension along the green line.

B: A view from above, showing 3 basis functions (a, b and c) along the green line. C: the linear model along

the green line corresponding to each basis function. D: The relative importance of each basis function along

the green line. E: The model output is obtained by weighting each linear model with the relative importance

of the corresponding basis function. It matches the green line shown in A.

More formally, each basis function d defines for any state x a weight wd(x) that is represented as a

Gaussian function gd(x) as defined in (11).

A local linear model Ψd(x) = Adx+ bd is associated to this basis function. The approximated output ỹ

is computed as a weigthed sum of all linear models where the weight is given by the relative importance of

the corresponding basis function, that is

ỹ =

∑D

d=1 wd(x)Ψd(x)∑D

d=1 wd(x)
. (14)

This Gaussian mixture of linear models is used in diverse algorithms listed below.

3.2.1 The Locally Weighted Regression algorithm

The Locally Weighted Regression algorithm (LWR) (Atkeson and Schaal, 1995) is the ancestor of the whole

family, but is still a competitive algorithm. In LWR, the number of basis functions, their position and

variance is left to the user and is not adapted over training sessions. The linear models are adapted with an

LS algorithm or its incremental variant, Recursive Least Square (RLS). In the case of RLS, the corresponding

algorithm is called RFWR, see (Sigaud et al., 2011) for more information.

3.2.2 Locally Weighted Projection Regression

The Locally Weighted Projection Regression algorithm (LWPR) (Vijayakumar and Schaal, 2000) has been

often used to learn mechanical models of robots (see (Sigaud et al., 2011) for a survey). LWPR is an im-

provement over LWR mainly in four ways: the algorithm is incremental; new basis functions are added

automatically by the algorithm when needed; the shape of basis functions is adapted online; and low di-

mensional projection is realized before fitting the linear models (using an incremental version of Partial

Least Squares called NIPALS (Geladi and Kowalski, 1986)). LWPR suffers from its many non intuitive

meta-parameters. In this paper we only tune w gen, which is responsible for adding new basis functions

online and init d, their initial shape.

3.2.3 Gaussian Mixture Regression

Gaussian Mixture Regression (GMR) is a batch method based on the unsupervised Expectation-Maximization

(EM) (Dempster et al., 1977) algorithm. It learns a Gaussian Mixture Model (GMM) of the latent function

f such that yi = f(xi)+ ǫi where ǫi is a Gaussian noise. Given the set of input xi and output yi, the GMM

builds a model of the density of the vectors Zi = [xT
i yi]

T using a weigthed sum of D Gaussian functions

p(Zi) =

D∑

d=1

πdN (Zi;µd,Σd), with

D∑

d=1

πd = 1. (15)

This model is in the input×output space, as illustrated in Figure 2.

X

y

Figure 2: Gaussian Mixture Regression. Upper part: the density of datapoints is approximated as a Gaussian

Mixture Model with Gaussian functions in the input × output space. In order to estimate the expectation of

the output given an input, these Gaussian functions are projected in the input space, as shown in the lower

part of the figure. The Gaussian Mixture Model can then be seen as performing a weighted combination of

local linear models exactly as LWR methods do.

The EM algorithm adjusts the priors πd and the parameters µd and Σd of the Gaussian functions that

define this model (see (Ghahramani and Jordan, 1994) for details).

As noted in (Ghahramani and Jordan, 1994), the learned density can be exploited in several ways, since

we can estimate ỹ = f(x), x̃ = f−1(y), or any other relation between two subsets of the elements of the

concatenated vector (xT y). As a Bayesian method, an advantage of GMR over other regression methods is

that it can easily be used in an active learning framework. However, GMR is not an iterative algorithm, so it

is less applicable in a robotic context where on-line learning is more appealing.

Here, we are interested in evaluating ỹ = E(y|x), the expectation of y given x. To do so, µd and Σd can

be separated in input and output components using

µd = [µT
d,X , µT

d,Y]
T and Σd =

(
Σd,X Σd,XY

Σd,Y X Σd,Y

)
, (16)

and then compute the expected output y given an input x using

ỹ =
D∑

d=1

hd(x)(µd,Y +Σd,Y XΣ−1
d,Y (x− µd,X)), (17)

with:

hd(x) =
πdN (x;µd,X ,Σd,X)

∑D

l=0 πlN (x;µl,X ,Σl,X)
. (18)

Furthermore, we can reformulate (17) as a Gaussian mixture of linear models

ỹ =

D∑

d=1

hd(x)(Adx+ bd), (19)

with Ad = Σd,Y XΣ−1
d,Y and bd = µd,Y − Σd,Y XΣ−1

d,Y µd,X .

By equating hd(x) to
wd(x)

∑

D

d=1 wd(x)
in (14), one can recognize that this model is strictly equivalent to the

one of LWR methods. The only meta-parameter of GMR is the number D of Gaussian features.

3.2.4 Summary and Intermediate Discussion

A Gaussian mixture of linear models is used in LWR, LWPR and GMR. Thus these algorithms only differ in

the way they tune the basis functions and the linear models, and in the meta-parameters that are used for this

tuning. At one extreme, in LWR, all the parameters of the basis functions are predetermined by the user and

the local linear models are learned with a batch Least Square method. GMR is also a batch method whose

only meta-parameter is the number D of basis functions. Being batch, it can perform accurate regression

with fewer basis functions than incremental methods. At the other extreme, in LWPR the number of basis

functions is adaptive but constrained through meta-parameters. Other algorithms like XCSF (Butz et al.,

2004; Butz and Herbort, 2008) or ILO-GMR (Cederborg et al., 2010) are not treated in this paper, but the

representation is essentially the same.

JFPDA 2014

3.3 A unified representation for non-linear regression

In the previous section, we have presented two families of models: weighted combination of basis func-

tions and Gaussian mixture of linear models. Actually, as outlined in Table 1, a weighted combination of

Gaussian features is a particular case of Gaussian mixture of linear models where the linear models are all

constant.

Algorithm basis function local model

LWR
gd(x)

∑

D

k=1 gk(x)
Adx + bd

LWPR
gd(x)

∑

D

k=1 gk(x)
Adx + bd

GMR
gd(x)

∑

D

k=1 gk(x)
Adx + bd

RBFN gd(x) bd (= wd)
iRFRLS cos(ωTx+ φ) bd (= wd)

Table 1: Representational elements for all algorithms (with gd(x) = e−
1
2 (x−xd)

T
Σ

−1

d
(x−xd))

So the whole list of non-linear regression algorithms studied in this paper can be seen as working on the

same representation, feature-based mixture of linear models, where most of the used features are Gaus-

sian functions, the only exception being iRFRLS which uses cosine features, and some representations are

constrained to A = 0.

The optimization criterion of non-linear regression algorithms is a function of the distance2 to the demon-

strated trajectories. By contrast, in the stochastic optimization stage, there is no constraint on the nature

of the optimization criterion. Thus non-linear regression and stochastic optimization are complementary:

non-linear regression cannot address all criteria and stochastic optimization needs to be bootstrapped from

a good enough starting point. Furthermore, if the optimized controller remains close enough to the demon-

strated trajectories, its behavior may satisfy some task-related criteria that are not explicitely embedded in

the cost function but that the demonstrator may enforce when providing such trajectories.

In Section 5 we compare several function approximator implementations, when used for the function fθ
in the context of regression for Imitation when using DMPs as a parameterized policy Representation.

4 Optimization: Policy Improvement with PIBB

After the Imitation step, which in DMPs corresponds to determining θinit with regression as in (4), the

Optimization step optimizes θ with respect to a utility (reward or cost) function. The basic idea behind

policy improvement is that a robot executes the parameterized policy with slight variations of the policy

parameters (θ + ǫ) and observes the rewards/costs. One such execution is known as a rollout. Given such

rollouts, the parameters are updated so as to yield lower future costs.

Since the parameters θ of DMPs correspond only to the open-loop term of the dynamical system, the

costs/rewards accumulated during a rollout are not relevant to updating the parameters (Stulp and Sigaud,

2013). Therefore, policy improvement with DMPs can be treated as a black-box optimization problem,

to which a variety of general purpose optimization algorithms are applicable (Stulp and Sigaud, 2012;

Stulp and Sigaud, 2013). In this work we use the PIBBalgorithm – Policy Improvement through Black Box

optimization – described in detail in (Stulp and Sigaud, 2013).

The PIBBevolution strategy is explained and visualized in Figure 3, where the cost function is simply

J(θ) = ||θ||, i.e. the distance to the origin. The algorithm alternates between an exploration phase and

a parameter update phase. Exploration: K policy parameter vectors θk=1...K are sampled from a normal

distribution with mean θµ and covariance matrix Σ (20). The cost function J is then evaluated for each of

these vectors; in policy improvement this corresponds to executing the policy, and computing the return by

summing over the costs at each time step (21). The K resulting rollouts are together called an epoch.

2Generally a quadratic function for algorithms based on Least-Square methods, i.e. using an L2-norm, as is the case in this paper,

but one may also use L1-norm methods, see e.g. (Schmidt, 2005).

θk=1...K∼N (θµ,Σ) sample (20)

∀k Jk = J(θk) cost function (21)

∀k Pk = e

(

−h(Jk−min(Jk))

max(Jk)−min(Jk)

)

cost-to-weight (22)

(“lower cost ⇒ higher weight”)

θ
new
µ =

K∑

k=1

Pkθk weighted averaging (23)

Σ
new =

K∑

k=1

Pk(θk − θµ)(θk − θµ)
⊺

weighted averaging (24)

Figure 3: Visualization of PIBB. Left: distributions in parameter space before (blue) and after (red) updating.

The image in the background shows the mapping from costs Jk to weights Pk. Right: Iterative updating

towards the minimum θ∗, which lies at the origin. The covariance matrix shrinks, once the mean of the

distribution (θµ) is at the optimum (θ∗).

Parameter Update: Given the scalar cost of each rollout, the costs are then converted into weights with an

exponential mapping, which assigns higher weights to samples with lower costs (this function is visualized

in the lower left corner of Figure 3). Then, the mean is computed by taking the weighted average over

the samples (23). Because of the mapping from cost to weights, low-cost samples contribute more to the

new mean then high-cost samples, and the the mean θµ (on average) moves closer to θ∗. The same is

done for the covariance matrix (24). Figure 3 (left) visualizes such an update of the distribution. Updating

the distribution is iterated until the costs converge, or a fixed number of iterations has been completed,

as visualized in Figure 3 (right). The most important open parameters of PIBBis the initial mean of the

distribution θinit which is determined in the Imitation phase, and the initial covariance matrix Σ
init. We

study the effect of choosing Σ
init in Section 5.

5 Experimental Evaluation

We now investigate Imitation and Optimization phases in skill learning within one coherent experimental

framework. Our experiments are designed explicitely to determine potential interdependencies between

Imitation and Optimization, in terms of convergence speed and sensitivity to changes in algorithmic meta-

parameters.

We study the influence of four independent variables, which are summarized in Table 2.

• The regression algorithm (LWR, LWPR, GMR, RBFN, iRFRLS) used for Imitation

• The meta-parameters of the different algorithms (e.g. D for LWR) used for Imitation

JFPDA 2014

• The subset of model-parameters that are optimized (explained below) during Optimization

• The initial exploration magnitude (Σinit) for PIBBat the beginning of Optimization, labelled var.

Imitation Optimization

1. FA 2. algorithm 3. boolean parameter 4. optimization

used meta-parameters subset selectors meta-parameter

LWR D = 1 . . . 23 offsets, slopes, positions, shapes Σ
init

= 10
−{2,3,4}

LWPR wgen = {0.2, 0.5, 0.75} offsets, slopes, positions, shapes Σ
init

= 10
−{2,3,4}

initd = {200, 500, 1000, 1200}

GMR D = 1 . . . 15 offsets, slopes, positions, shapes, priors Σ
init

= 10
−{2,3,4}

iRFRLS D = {10, 15, 20} offsets, positions, shapes Σ
init

= 10
−{2,3,4}

γ = {2, 5, 10}
λ = {0.01, 0.05, 0.10}

Table 2: Independent variables used in the experiments

A grid search over all the possible meta-parameter values is performed for all regression algorithms. The

specific values used in the grid search are also listed in Table 2 (we actually explored a wider scope but

decided not to report them for figure clarity issues). Each Imitation and Optimization process is run four

times for each combination of parameters, and we compute the average over the results.

Further optimization meta-parameters that are set to constant values are that 15 rollouts/update are used,

and the eliteness parameter h is set to 10.

Optimization of different model-parameter subsets

Policy improvement consists of optimizing the parameters of a policy θ. As explained in Section 2, when a

DMP is used as the policy representation, θ corresponds to the parameters of a latent function. When using

LWR, one might let θ correspond to the slopes and offsets of the linear model, i.e. θ = 〈Ad, bd〉. This

choice is quite arbitrary, as for LWR, one might also optimize the centers of the Gaussian basis functions,

i.e. θ = 〈Ad, bd,xd〉, or just the centers θ = 〈xd〉. Our aim is to determine which subsets of parameters

of different representations lead to the best optimization result. Whether a particular parameter type is

included in the parameter vector θ is determined by a set of boolean variable (which we denote with this

font). For our unified representation, this leads to the following boolean options:

• slopes: whether the slopes of the linear models are included in θ

• offsets: whether the offsets b of the linear models are included in θ. b is the value of the line

segment at the center of the basis function, not at the origin.

• positions: whether the positions of the basis functions are included in θ. For Gaussian basis

functions these positions correspond to the centers. For iRFRLS they correspond to the phase φ of the

cosine functions.

• shapes: whether the shapes of the basis functions are included in θ. For Gaussian basis functions

the shapes correspond to the values in the covariance matrices. For iRFRLS it corresponds to the

frequency ω of the cosine functions.

• priors: whether the priors are included in θ. For GMR only.

In our experiments, each combination of model-parameters subsets is optimized during the grid search.

Task

Similarly to (Theodorou et al., 2010), we use a viapoint task as a basis for our comparisons. The DMP

generates a trajectory in 2D space. The initial state is (0, 0.1) and the goal state is g = (1, 0.9). The DMP is

numerically integrated for 1s with a integration step of dt = 0.01. The aim of the task is to pass through a

viapoint at v = (0.3, 0.7), as visualized in Figure 4. The cost function penalizes the distance to the viapoint,

the squared acceleration and the distance to the goal after T (see (25)).

J(τ) = 100× min
i
(‖Xi − v‖) + 0.0001×

∞∑

i=0

‖Ẍi‖
2 +

∞∑

i=T×dt

‖Xi − g‖2 (25)

Figure 4: Viapoint task. The demonstration trajectory differs significantly from the one that is optimal with

respect to the criterion given in (25)

Demonstrations are provided as cubic polynomials and of duration 0.5s points. These demonstrations

are not optimal, i.e. see Figure 4 for a comparison of a demonstration and an optimal trajectory. If the

demonstration would be optimal, we would not be able to measure as well the contribution that the Op-

timization phase makes to finding the optimal movement. In real robotics problems, the demonstration is

often suboptimal also (Kober and Peters, 2008).

For each regression algorithm, many Imitation +Optimization learning sessions are run. For LWR for

instance, we ran 4140=23×15×3×4 learning sessions. 23 for D = 1 . . . 23, 15 for all true/false combi-

nations of the 4 parameter subset selectors (with at least one being true), 3 for Σinit = 10−{2,3,4}, and 4

learning sessions for each of these combinations.

5.1 Results

In this study we consider three questions:

1. does using a non-linear regression algorithm rather than another make a difference in terms of the

optimization performance?

2. how sensitive are the different non-linear regression algorithms to meta-parameter setting?

3. are there combinations of function approximation meta-parameters, boolean parameters and opti-

mization meta-parameters that result in more efficient searches than others?

5.1.1 Learning curves

Figure 5 shows the learning curves (µ ± σ) for the best 10% of these experiments. For instance, for LWR

these are the 41 learning curves with the best performance. The single best experiment parameters for each

algorithm are listed in Table 3.

From these results, we conclude that GMR achieves the best performance, that LWPR is competitive for

a small number of optimization iterations and that iRFRLS has a larger variance than other algorithms. All

algorithms seem to converge at a similar rate and LWR, LWPR and iRFRLS converge to a similar performance,

whereas GMR does significantly better.

The fact that GMR outperforms LWR is not surprising, since it generates latent functions where the basis

function placement has been optimized whereas they are fixed in LWR. This performance gain comes at the

price of a higher computational cost.

JFPDA 2014

Imitation Optimization

1. FA 2. function approx. 3. boolean parameter 4. optimization 5. final

used meta-parameters subset selectors meta-parameter cost

slopes offsets positions shapes priors var

LWR D = 22 false true true false N/A Σ
init

= 10
−2

0.0416

LWPR wgen = 0.2, initd = 1200 true false false true N/A Σ
init

= 10
−3

0.0460

GMR D = 13 true true false false true Σ
init

= 10
−4

0.0413

iRFRLS D = 15, γ = 10, λ = 0.01 N/A false true false N/A Σ
init

= 10
−3

0.0448

Table 3: Values of experiment parameters with the best performance for each algorithm.

Figure 5: Optimization performance through iterations: for each algorithm, the best 10 percent of the

used meta-parameters were selected and their mean and standard deviation are shown. The y axis uses a

logarithmic scale.

5.1.2 Influence of optimizing different model-parameter subsets

The boolean parameter subset selectors determine which types of model-parameters are included in the

parameter space Θ that is used for optimization. For LWR for instance, θ may contain only the line slopes,

or the line slopes and offset, or just the basis function centers, etc.

To investigate which parameter subsets leads to the best optimization performance for which algorithms,

we split the learning sessions of each algorithm into two classes: the best 10% (as above), and the rest, i.e.

90% ’underperformers’. We then predict which class a learning session belongs with the C4.5 decision tree

learning algorithm, where the input features are the experiment parameters in Table 2. The results for the

four regression algorithms are shown in Figure 6.

These trees nicely condense the wealth of information contained in the 1000s of learning sessions. They

provide recommendations about how to set meta-parameters of the function approximators, the initial ex-

ploration magnitude Σ for optimization, as well as which model-parameter subsets should be used for

optimization.

For instance, although LWR and LWPR belong to the same family, we see here that best optimization

results are obtained for LWR when both offsets and slopes are optimized, whereas for LWPR it is better

not to include the slopes in the optimization. Another interesting observation is that the number of basis

functions D appears in all trees (except LWPR, which does not have this meta-parameter), and that all

decisions nodes specify upper bounds for D, e.g. D ≤ 10, or D ≤ 12. Apparently, for optimization it is

better to have fewer basis functions, which corresponds to our intuition that smaller search spaces lead on

average to faster optimization.

(a) LWR (b) LWPR

(c) IRFRLS (d) GMR

Figure 6: Decision trees for meta-parameter selection. For each algorithm, a dataset was created where the

positive class contains the meta-parameters that give rise to the best 10% of the optimization performance.

Then decision tree were grown with c4.5 and truncated at a depth of four decision nodes. Left branch means

that the test is true, right that it is false. The color shows how many instances in the leafs belong to the best

10% of the used meta-parameters, green means all positive, red means all negative. The size is related to

the number of instances in each leaf.

5.1.3 Sensitivity to meta-parameters tuning

Figure 7: Sensitivity of each algorithm to meta-parameter tuning: for each algorithm, for N experiments,

the average cost of the N best instances is plotted using a logarithmic scale. Thus, we can see how fast the

performance degrades as more sub-optimal meta-parameter sets are added.

Figure 7 shows the sensitivity of these non-linear regression algorithms to meta-parameter tuning. A curve

JFPDA 2014

that grows quicker means a greater sensitivity. One can see that LWR is the most robust to meta-parameter

tuning, whereas iRFRLS is very sensitive, this may explain the greater standard deviation in Figure 5. The

fact that iRFRLS is the only non-local algorithm may explain this higher sensitivity.

6 Conclusion and Future work

Motor skill acquisition is a central concern for robot learning. This problem requires efficient methods

and representations because it involves a costly optimization step. In this work, in the search for the most

efficient Representation, we have studied the relation between the Imitation stage and the Optimization stage

when trying to acquire new motor skills using Dynamical Movement Primitives as policy representation.

The general finding is that the simplest algorithms like GMR and LWR are good enough for a task as simple

as learning the forcing term of a DMP parametrized with time, which is a one dimensional problem. More

sophisticated methods like LWPR and iRFRLS do not make a positive difference in this context, for iRFRLS

because of the sensitivity resulting from non-local approximation and for LWPR because it is designed to

perform non-linear regression in high-dimensional domains which is not the case when learning DMPs

parametrized through just time.

The choice between GMR and LWR should mostly be driven by potential constraints on incrementality or

computational complexity. If there are such constraints, LWR should be preferred to GMR, otherwise GMR

should generally provide a better performance.

One may argue that the task studied here is too simple for this comparison. But the same applies to all

cases where DMPs are parametrized through time, which is the case in most applications of these techniques

to robotics.

Actually, there are many other applications of these optimization techniques where the chosen non-linear

regression algorithm may make a difference. In the near future, we will perform a similar study in a context

where the training trajectories are recorded from noisy human movements. On a longer term, we should also

study the impact of the non-linear regression algorithm on learning contextual DMPs3 (Stulp et al., 2013)

which require to search a potentially much larger space. So it is unclear whether the results we obtained

on standard DMPs should also hold for the case of contextual DMPs and controllers based on dynamical

systems.

Another concern is that using Imitation before Optimization is based on the insight that, if the demon-

strated trajectories are close enough to optimal trajectories, Imitation should provide a starting point for

Optimization leading to a good local optimum, hence a good controller. However, if demonstrated trajec-

tories are too far away from the optimal ones, the benefit resulting from using them in the first stage as

a bootstrap may vanish. In such a context, one may compare all the performances in our work to perfor-

mances obtained from using random representations as initial controllers for the stochastic search process.

Actually, in this study we did not vary the distance between the demonstration trajectories and the optimal

trajectories with respect to the optimization criterion. This is left for future work.

Acknowledgments

This work was supported by the MACSi Project (ANR-BLAN-0216), more at http://macsi.isir.upmc.fr and

the 3rdHand Project (FP7-ICT-2013-10-610878).

References

Atkeson, C. G. and Schaal, S. (1995). Memory-based neural networks for robot learning. Neurocomputing,

9(3):243–269.

Butz, M. V. and Herbort, O. (2008). Context-dependent predictions and cognitive arm control with XCSF.

In Conference on Genetic and Evolutionary Computation, pages 1357–1364. ACM.

Butz, M. V., Kovacs, T., Lanzi, P. L., and Wilson, S. W. (2004). Toward a theory of generalization and

learning in XCS. IEEE Transactions on Evolutionary Computation, 8(1):28–46.

3They are called “parametrized DMPs” in (Stulp et al., 2013) but this name is unfortunate.

Calinon, S. (2009). Robot programming by demonstration. EPFL/CRC Press.

Cederborg, T., Li, M., Baranes, A., and Oudeyer, P.-Y. (2010). Incremental local online Gaussian mixture

regression for imitation learning of multiple tasks. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 267–274.

Dekel, O., Shalev-Shwartz, S., and Singer, Y. (2008). The forgetron: A kernel-based perceptron on a budget.

SIAM Journal on Computing, 37(5):1342–1372.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the

EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), pages 1–38.

Droniou, A., Ivaldi, S., Padois, V., and Sigaud, O. (2012). Autonomous online learning of velocity kine-

matics on the icub: A comparative study. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on, pages 3577–3582.

Engel, Y., Mannor, S., and Meir, R. (2002). Sparse online greedy support vector regression. In ECML 2002,

pages 84–96. Springer.

Geladi, P. and Kowalski, B. (1986). Partial least squares regression:a tutorial. Analytica Chimica Acta,

185:1–17.

Ghahramani, Z. and Jordan, M. I. (1994). Supervised learning from incomplete data via an em approach.

In Advances in Neural Information Processing Systems 6.

Gijsberts, A. and Metta, G. (2011). Incremental learning of robot dynamics using random features. In IEEE

International Conference on Robotics and Automation, pages 951–956.

Gijsberts, A. and Metta, G. (2012). Real-time model learning using incremental sparse spectrum gaussian

process regression. Neural Networks.

Hansen, N., Muller, S., and Koumoutsakos, P. (2003). Reducing the time complexity of the derandomized

evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation, 11(1):1–

18.

Hersch, M., Guenter, F., Calinon, S., and Billard, A. (2008). Dynamical system modulation for robot

learning via kinesthetic demonstrations. IEEE Transactions on Robotics, 24(6):1463–1467.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013). Dynamical movement primi-

tives: learning attractor models for motor behaviors. Neural computation, 25(2):328–373.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002). Movement imitation with nonlinear dynamical systems

in humanoid robots. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA).

Khansari-Zadeh, S. M. and Billard, A. (2011). Learning stable non-linear dynamical systems with gaussian

mixture models. IEEE Transactions on Robotics.

Kober, J. and Peters, J. (2008). Policy search for motor primitives in robotics. In NIPS, pages 1–8.

Kulvicius, T., Ning, K., Tamosiunaite, M., and Worgötter, F. (2012). Joining movement sequences: Modi-

fied dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Trans-

actions on Robotics, 28(1):145–157.

Park, J. and Sandberg, I. W. (1993). Approximation and radial-basis-function networks. Neural computa-

tion, 5(2):305–316.

Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines. In Advances in neural

information processing systems, pages 1177–1184.

Rifkin, R., Yeo, G., and Poggio, T. (2003). Regularized least-squares classification. Nato Science Series

Sub Series III Computer and Systems Sciences, 190:131–154.

JFPDA 2014

Rubinstein, R. Y. (1999). The cross-entropy method for combinatorial and continuous optimization.

Methodology and Computing in Applied Probability, 1(2):127–190.

Saunders, C., Gammerman, A., and Vovk, V. (1998). Ridge regression learning algorithm in dual variables.

In (ICML-1998) Proceedings of the 15th International Conference on Machine Learning, pages 515–

521. Morgan Kaufmann.

Schmidt, M. (2005). Least squares optimization with l1-norm regularization. Technical report, CS542B

Project Report.

Sigaud, O., Salaün, C., and Padois, V. (2011). On-line regression algorithms for learning mechanical models

of robots: a survey. Robotics and Autonomous Systems, 51:1117–1125.

Stulp, F., Raiola, G., Hoarau, A., Ivaldi, S., and Sigaud, O. (2013). Learning compact parameterized

skills with expanded function approximators. In Proceedings of the IEEE International Conference on

Humanoids Robotics, pages 1–7.

Stulp, F. and Sigaud, O. (2012). Path integral policy improvement with covariance matrix adaptation. In

Proceedings of the 29th International Conference on Machine Learning (ICML’2012), pages 1–8,

Edinburgh, Scotland.

Stulp, F. and Sigaud, O. (2013). Robot skill learning: From reinforcement learning to evolution strategies.

Paladyn Journal of Behavioral Robotics, 4(1):49–61.

Theodorou, E., Buchli, J., and Schaal, S. (2010). Reinforcement learning of motor skills in high dimensions:

a path integral approach. In International Conference on Robotics and Automation, pages 2397–2403.

IEEE.

Vijayakumar, S. and Schaal, S. (2000). Locally weighted projection regression: An O(n) algorithm for

incremental real time learning in high dimensional space. In Proceedings of the Seventeenth Interna-

tional Conference on Machine Learning (ICML 2000), volume 1, pages 288–293.

