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Abstract

In this article, we consider a discrete time economy in which we assume that the short

term interest rate follows a quadratic term structure in a regime switching asset process. The

possible non-linear structure and the fact that the interest rate can have different economic

or financial trends justify Regime Switching Quadratic Term Structure Model (RS-QTSM).

Indeed, this regime switching process depends on the values of a Markov chain with a time

dependent transition probability matrix which can capture the different states (regimes) of

the economy. We prove that under this model, the conditional zero coupon bond price

admits a quadratic term structure. Moreover, the stochastic coefficients which appear in

this decomposition satisfy an explicit system of coupled stochastic backward recursions.
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Introduction

Modeling the term structure of interest rates has long been an important topic in economics

and finance. Most of the papers on modelling of the interest rate term structure are related to

the family of the Affine Term Structure Models (ATSM). These models consider a linear rela-

tion between the log price of a zero coupon bond and its states factors. These models have first

been studied by Vasicek (1977) in [16] and Cox, Ingersoll and Ross (1985) in [4]. They have

been further developed by Duffie and Kan (1996) in [6] and Dai and Singleton (2000) in [5]. A

first extension of this class of models was to use a regime switching model. Thus, Elliott et al.

(2011) in [8] considered a discrete-time, Markov, regime-switching, affine term structure model

for valuing bonds and other interest rate securities. Recently, Goutte and Ngoupeyou (2013) in

[11] obtained explicit formulas to price a defaultable bond under this class of regime switching

models. The proposed model incorporates the impact of structural changes in economic condi-

tions on interest rate dynamics and can capture different economic (financial) levels or trends

of the economy. A second extension was to not only consider a linear model but to model the

term structure of interest rates with Quadratic Term Structure Models (QTSM). This family,

first introduced by Beaglehole and Tammey (1991) in [2] are applied to price contingent claims

(Lieppold and Wu (2002) in [14]) and to the credit risk pricing (Chen, Filipovic and Poor (2004)

in [3]). In this article, we propose to use both the previous extension and a regime switching

discrete-time version of quadratic term structure models (RS-QTSM).

The economic benefits of such extensions are the following. Firstly, if we look at a historical

path of a log price of a zero coupon bond and its states factors, we clearly see that the assump-

tion of a linear structure is too restrictive. It is then natural to consider a quadratic structure
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instead of a linear one to fit better this relation. Secondly, it is obvious that the dynamic of

the short term interest is impacted by exogenous factor of the economy such as economic state

or credit rating. A way to model these impacts is to use regime-switching models where the

parameters of the short term rate are not constant but can change their values depending on

the state of the economy. In a recession state, the parameters are different than in a standard

economic one.

An important application of term structure models is the valuation of interest rate instru-

ments, such as zero coupon bonds. We will demonstrate that under the regime switching

quadratic term structure modeling, the conditional zero coupon bond price of a regime switch-

ing asset admits a quadratic decomposition. Moreover, we find that the stochastic coefficients

which appear in this decomposition satisfy an explicit system of coupled stochastic backward

recursions.

Our article is organized as follows. In section 1, the model is presented and defined. In

section 2, the conditional zero coupon bond price is evaluated and we give the corresponding

system of coupled stochastic backward recursions.

1 The model

We consider a discrete time economy with finite time horizon and time index set T := {k|k =

0, 1, 2, . . . , T}, where T is a positive integer such that T < ∞. Let (ω,F , P ) be a filtered proba-

bility space where P is a risk neutral probability.
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1.1 Markov chain

Following Elliott et al. in [7], let (Xk)k∈T be a discrete time Markov chain on finite state space

S := {e1, e2, ..., eN}, where ei has unity in the ith position and zero elsewhere. Thus S is the set

of canonical unit column vectors of RN . In an economic point of view, Xk can be viewed as an

observable exogenous quantity which can reflect the evolution of the state of the economy. We

assume that the time dependent transition probability matrix Qk := (qijk)i,j=1,...,N of X under

P is defined by

qijk = P (Xk+1 = j|Xk = i) .

It also satisfies qijk ≥ 0, for all i 6= j ∈ S and
∑N

j=1 qijk = 1 for all i ∈ S . Let FX = (FX
k )k∈T :=

σ(Xk, k ∈ T ) which is the P augmented filtration generated by the history of the Markov chain

X and FX
k is the P -augmented σ-field generated by the history of X up to and including time

k. Moreover, following again Elliott et al. in [7] , the semi-martingale decomposition for the

Markov chain X is given by

Xk+1 = QkXk +MX
k+1, k ∈ {0, 1, 2, . . . , T − 1},

where (MX
k ) is an RN -valued martingale increment process (i.e. E

[
MX

k+1|FX
k

]
= 0).

1.2 Asset

Let (Sk)k∈T denotes the state asset process and we denote by FS = (FS
k )k∈T the P -augmented

filtration generated by the process S. Finally, we denote by Gk := FS
k ∨ FX

k the global en-

larged filtration for all k ∈ T . Let 〈., .〉 denote the inner product in RN . Then, for every k ∈

{1, 2, . . . , T}, we define the following regime dependent parameters κk := κ(k,Xk) = 〈κ,Xk〉

,µk := µ(k,Xk) = 〈µ,Xk〉 and σk := σ(k,Xk) = 〈σ,Xk〉 where κ := (κ1, κ2, . . . , κN ), µ :=
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(µ1, µ2, . . . , µN ) and σ := (σ1, σ2, . . . , σN ) are 1×N real-valued vectors. Moreover, we assume

that σi > 0, for all i ∈ {1, 2, . . . , N}. Finally, ε := (εk)k∈{1,2,...,T} are a sequence of indepen-

dent and identically distributed random variables with law N (0, 1). We assume that ε and the

Markov chain X are independent. Under the risk neutral probability measure P the dynamic

of the asset S is governed by the following discrete time, Markov switching model

Sk+1 = κk + µkSk + σkεk+1, k = {0, 1, . . . , T − 1}. (1.1)

1.3 Short term interest rate

Let (rk)k∈T denote the process of short term interest rate. We assume that the dynamic of rk is

regime dependent and is following a quadratic term structure of the asset process Sk which is

given by

rk := r(k,Xk) = a0,k + a1,kSk + a2,kS
2
k , k ∈ T . (1.2)

with rk := r(k,Xk) = 〈r,Xk〉, r := (r1, r2, . . . , rN ), a0,k := a0(k,Xk) = 〈a0, Xk〉, a1,k :=

a1(k,Xk) = 〈a1, Xk〉 and a2,k := a2(k,Xk) = 〈a2, Xk〉 where a0, a1 and a2 are real vectors of

size 1×N .

Remark 1.1. The Markov chain X can be seen as an economic impact factor. An economic interpretation

of this is that the Markov chain can represent a credit rating of a firm A. Indeed, assume that (1.1) models

the spread of a firm A, then the Markov chain can be the credit rating of this firm given by an exogenous

rating company as Standard and Poors. Therefore it is natural to consider that the dynamic of the spread

of the firm A depends on the value of this notation X (for more detail, see Goutte and Ngoupeyou [11] or

Goutte [10]).
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1.4 Zero-coupon Bond price

Let P (k, T ) be the price at time k ∈ T of a zero-coupon bond with maturity T . Since we are

under the risk neutral probability, we have that

P (k, T ) = E

[
exp

(
−

T−1∑
t=k

rt

)
|Gk

]
, k ∈ T , (1.3)

with P (T, T ) = 1 and P (T − 1, T ) = exp (−rT−1).

2 Regime switching quadratic structure formulas

2.1 Full history case

Let us first assume that we know the full history of the Markov chain X . We denote by G̃k :=

FX
T ∨FS

k , k ∈ T this enlarged information set. Then we denote by P̃ (k, T ) the conditional zero

coupon bond price at time k with maturity T given the enlarged filtration G̃k. We obtain that

P̃ (k, T ) = E

[
exp

(
−

T−1∑
t=k

rt

)
|G̃k

]
, k ∈ T , (2.4)

with P̃ (T, T ) = 1 and P̃ (T − 1, T ) = exp (−rT−1).

Theorem 2.1. The conditional bon price P̃ (k, T ) has an exponential quadratic term structure given for

all k ∈ T by

P̃ (k, T ) = exp
{
c1,k + c2,kSk + c3,kS

2
k

}
(2.5)

where the stochastic coefficients (c1,k)k∈T , (c2,k)k∈T and (c3,k)k∈T satisfy the system of coupled stochas-
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tic backward recursions given for all n ∈ {1, . . . , T − 1} by

c1,n−1 := −a0,n−1 + c1,n + c2,nκn−1 + c3,nκ
2
n−1 + log

((
1− 2c3,nσ

2
n−1
)−1/2)

+
c22,nσ

2
n−1 + 4κ2n−1σ

2
n−1

2
(
1− 2c3,nσ2n−1

) +
2c2,nσ

2
n−1κn−1(

1− 2c3,nσ2n−1
) ,

c2,n−1 := −a1,n−1 + c2,nµn−1 + c3,nκn−1µn−1 +
4κn−1µn−1σ

2
n−1 + 2c2,nσ

2
n−1µn−1(

1− 2c3,nσ2n−1
) ,

c3,n−1 := −a2,n−1 + c3,nµ
2
n−1 +

2µ2n−1σ
2
n−1(

1− 2c3,nσ2n−1
) .

with terminal conditions c1,T = c2,T = c3,T = 0

Proof. We prove this result by backward induction. Thus since P̃ (T, T ) = 1, the exponential

quadratic term structure (2.9) is true for k = T . Assume now, that the result holds for k = n, we

would like to prove that this result also holds for k = n− 1. By the Definition (2.4) and iterated

conditional expectation, we obtain

P̃ (n− 1, T ) = E

[
exp

(
−

T−1∑
t=n−1

rt

)
|G̃n−1

]
= E

[
E

[
exp

(
−

T−1∑
t=n−1

rt

)
|G̃n

]
|G̃n−1

]
,

= E

[
exp (−rn−1)E

[
exp

(
−

T−1∑
t=n

rt

)
|G̃n

]
|G̃n−1

]
,

= exp (−rn−1)E

[
E

[
exp

(
−

T−1∑
t=n

rt

)
|G̃n

]
|G̃n−1

]
.

we can use the assumption that the exponential quadratic term structure (2.9) holds for k = n.
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We get using (1.1) and (1.2)

P̃ (n− 1, T )=exp (−rn−1)E
[
exp

(
c1,n + c2,nSn + Snc3,nS

2
n

)
|G̃n−1

]
,

=exp
{
−a0,n−1 − a1,n−1Sn−1 − a2,n−1S2

n−1
}
×

E
[
exp

{
c1,n + c2,n (κn−1 + µn−1Sn−1 + σn−1εn) + c3,n (κn−1 + µn−1Sn−1 + σn−1εn)

2
}
|G̃n−1

]
,

=exp
{
−a0,n−1 − a1,n−1Sn−1 − a2,n−1S2

n−1
}
×

E
[
exp

{
c1,n + c2,n (κn−1 + µn−1Sn−1) + c2,nσn−1εn + c3,n (κn−1 + µn−1Sn−1)

2

+c3,nσ
2
n−1ε

2
n + 2 (κn−1 + µn−1Sn−1)σn−1εn

}
|G̃n−1

]
,

=exp
{
−a0,n−1 − a1,n−1Sn−1 − a2,n−1S2

n−1 + c1,n + c2,n (κn−1 + µn−1Sn−1) + c3,n (κn−1 + µn−1Sn−1)
2
}
×

E
[
exp

{
c2,nσn−1εn + c3,nσ

2
n−1ε

2
n + 2 (κn−1 + µn−1Sn−1)σn−1εn

}
|G̃n−1

]
,

=exp
{
−a0,n−1 − a1,n−1Sn−1 − a2,n−1S2

n−1 + c1,n + c2,n (κn−1 + µn−1Sn−1) + c3,n (κn−1 + µn−1Sn−1)
2
}
×

E
[
exp

{
fnεn + gnε

2
n

}
|G̃n−1

]
,

with fn := c2,nσn−1 + 2 (κn−1 + µn−1Sn−1)σn−1 and gn := c3,nσ
2
n−1.

Since ε := (εk)k∈{1,2,...,T} are a sequence of independent and identically distributed random

variables with law N (0, 1), we have

E
[
exp

(
fnεn + gnε

2
n

)
|G̃n−1

]
=

∫
R
exp

(
fnεn + gnε

2
n

) 1

(2π)1/2
exp

(
−1

2
ε2n

)
dεn,

=
1

(2π)1/2

∫
R
exp

(
fnεn + gnε

2
n −

1

2
ε2n

)
dεn. (2.6)

Moreover, we have

fnεn + gnε
2
n −

1

2
ε2n = −1

2

[(
(1− 2gn)

1/2 εn − (1− 2gn)
−1/2 fn

)2
− (1− 2gn)

−1 f2n

]
.
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Then, denoting by δn := (1− 2gn)
−1/2, we obtain

fnεn + gnε
2
n −

1

2
ε2n = −1

2

[(
δ−1n εn − δnfn

)2 − δ2nf2n] .
Replacing this formula into (2.6) gives

E
[
exp

(
fnεn + gnε

2
n

)
|G̃n−1

]
=

1

(2π)1/2

∫
R
exp

(
−1

2

[(
δ−1n εn − δnfn

)2 − δ2nf2n]) dεn
=

1

(2π)1/2

∫
R
exp

(
−1

2

(
δ−1n εn − δnfn

)2
+

1

2
δ2nf

2
n

)
dεn

=
1

(2π)1/2
exp

(
1

2
δ2nf

2
n

)∫
R
exp

(
−
(
δ−1n εn − δnfn

)2
2

)
dεn

= δn exp

(
δ2nf

2
n

2

)
1

δn(2π)1/2

∫
R
exp

(
−1

2

(
εn − δ2nfn

δn

)2
)
dεn

= δn exp

(
δ2nf

2
n

2

)
.

We obtain that

P̃ (n− 1, T )=exp
{
−a0,n−1 − a1,n−1Sn−1 − a2,n−1S2

n−1 + c1,n + c2,n (κn−1 + µn−1Sn−1)
}

× exp
{
c3,n (κn−1 + µn−1Sn−1)

2
}
δn exp

{
δ2nf

2
n

2

}
,

=exp
{
−a0,n−1 − a1,n−1Sn−1 − a2,n−1S2

n−1 + c1,n + c2,n (κn−1 + µn−1Sn−1)
}

× exp
{
c3,n (κn−1 + µn−1Sn−1)

2
}
(1− 2gn)

−1/2 exp

{
(1− 2gn)

−1 f2n
2

}
,

=exp
{
−a0,n−1 − a1,n−1Sn−1 − a2,n−1S2

n−1 + c1,n + c2,n (κn−1 + µn−1Sn−1)
}

× exp
{
c3,n (κn−1 + µn−1Sn−1)

2
}(

1− 2c3,nσ
2
n−1
)−1/2

× exp

{(
1− 2c3,nσ

2
n−1
)−1

(c2,nσn−1 + 2 (κn−1 + µn−1Sn−1)σn−1)
2

2

}
,

9



=exp
{
−a0,n−1 − a1,n−1Sn−1 − a2,n−1S2

n−1 + c1,n + c2,nκn−1 + c2,nµn−1Sn−1
}

× exp
{
c3,nκ

2
n−1 + c3,nµ

2
n−1S

2
n−1 + c3,nκn−1µn−1Sn−1

}
× exp

{
log
((

1− 2c3,nσ
2
n−1
)−1/2)}

exp

{
c22,nσ

2
n−1 + 4κ2n−1σ

2
n−1 + 4µ2n−1S

2
n−1σ

2
n−1

2
(
1− 2c3,nσ2n−1

) }

× exp

{
8κn−1µn−1Sn−1σ

2
n−1 + 4c2,nσ

2
n−1κn−1 + 4c2,nσ

2
n−1µn−1Sn−1

2
(
1− 2c3,nσ2n−1

) }
,

=exp
{
−a0,n−1 + c1,n + c2,nκn−1 + c3,nκ

2
n−1 + log

((
1− 2c3,nσ

2
n−1
)−1/2)

+
c22,nσ

2
n−1 + 4κ2n−1σ

2
n−1

2
(
1− 2c3,nσ2n−1

) +
4c2,nσ

2
n−1κn−1

2
(
1− 2c3,nσ2n−1

)}

exp

{
Sn−1

(
−a1,n−1 + c2,nµn−1 + c3,nκn−1µn−1 +

8κn−1µn−1σ
2
n−1 + 4c2,nσ

2
n−1µn−1

2
(
1− 2c3,nσ2n−1

) )}

exp

{
S2
n−1

(
−a2,n−1 + c3,nµ

2
n−1 +

4µ2n−1σ
2
n−1

2
(
1− 2c3,nσ2n−1

))} .
Thus, by identification, we get

c1,n−1 := −a0,n−1 + c1,n + c2,nκn−1 + c3,nκ
2
n−1 + log

((
1− 2c3,nσ

2
n−1
)−1/2)

+
c22,nσ

2
n−1 + 4κ2n−1σ

2
n−1

2
(
1− 2c3,nσ2n−1

) +
4c2,nσ

2
n−1κn−1

2
(
1− 2c3,nσ2n−1

) ,
c2,n−1 := −a1,n−1 + c2,nµn−1 + c3,nκn−1µn−1 +

8κn−1µn−1σ
2
n−1 + 4c2,nσ

2
n−1µn−1

2
(
1− 2c3,nσ2n−1

) ,

c3,n−1 := −a2,n−1 + c3,nµ
2
n−1 +

4µ2n−1σ
2
n−1

2
(
1− 2c3,nσ2n−1

) .
which is the expected result.

Regarding (2.4), P̃ (k, T ) is a function of the history of the Markov chain X between time k

and T − 1. Thus we can write P̃ (k, T,Xk, Xk+1, . . . , XT−1). Moreover, the coefficients c1,k, c2,k

and c3,k, k ∈ {0, 1, . . . , T − 1} are measurable with respect to the σ-algebra generated by

Xk, Xk+1, . . . , and XT−1. Consequently, they can be represented as functions of them. Hence
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we obtain for k ∈ {0, 1, 2, . . . , T − 1}

c1,k := c1(k,Xk) = c1(k,Xk, Xk+1, . . . , XT−1),

c2,k := c2(k,Xk) = c2(k,Xk, Xk+1, . . . , XT−1),

c3,k := c3(k,Xk) = c3(k,Xk, Xk+1, . . . , XT−1).

This means by given G̃k := FX
T ∨ FS

k , the conditional bond price P̃ (k, T,Xk, Xk+1, . . . , XT−1)

can be represented as follows:

P̃ (k, T,Xk, Xk+1, . . . , XT−1) = (2.7)

exp
{
c1(k,Xk, Xk+1, . . . , XT−1) + c2(k,Xk, Xk+1, . . . , XT−1)Sk + c3(k,Xk, Xk+1, . . . , XT−1)S

2
k

}
.

Remark 2.2. In the specific case of an affine term structure of interest rate (i.e. a2,k ≡ 0 in (1.2)), we

have

rk := r(k,Xk) = a0,k + a1,kSk, k ∈ T . (2.8)

And so the conditional bond price P̃ (k, T ) admits also a affine structure form

P̃ (k, T ) = exp {c1,k + c2,kSk} , k ∈ T , (2.9)

where coefficient c1,k and c2,k satisfy the system of coupled stochastic backward recursions given for all

n ∈ {1, . . . , T − 1} by

c1,n−1 := −a0,n−1 + c1,n + c2,nκn−1 +
c22,nσ

2
n−1

2
+ 2κ2n−1σ

2
n−1 + 2c2,nσ

2
n−1κn−1,

c2,n−1 := −a1,n−1 + c2,nµn−1 + 4κn−1µn−1σ
2
n−1 + 2c2,nσ

2
n−1µn−1.

with terminal conditions c1,T = c2,T = 0 (see Duffie and Kan (1996) in [6] for more details about affine
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interest rate structure).

2.2 General case

In practice, we do not know the full history of the Markov chainX . Given the imperfect and/or

incomplete information on all the future states of the economy. We need to evaluate our bond

price given only the information set Gk. Hence, following the representation (2.7) and the The-

orem 2.1 we obtain the following result:

Proposition 2.1. Under the information set Gk, the Bond price P at time k ∈ T is given by

P (k, T ) =
N∑

ik,ik+1,...,iT−1=1

[
T−1∏
l=k

qilil+1k

]
P̃ (k, T, eik , eik+1

, . . . , eiT−1) (2.10)

where P̃ is given by (2.7) and coefficients ci(k,Xk, Xk+1, . . . , XT−1) for i = {1, 2, 3} follow the recur-

sive system given in Theorem 2.1.

Proof. This result is obtained from taking the expectation of P̃ (k, T ) conditioning on Gk and by

enumerating all the transitions probabilities of the Markov chain X from time k to T − 1.

3 Conclusion

We prove that if the short term interest rate follows a quadratic term structure of a regime

switching asset process then the conditional zero coupon bond price with respect to the Markov

switching process admits a quadratic term structure. Moreover, the stochastic coefficients ap-

pearing in this quadratic decomposition satisfy an explicit system of coupled stochastic back-

ward recursions. This allows us to obtain an explicit way to evaluate this conditional zero

coupon bond price.

12



References

[1] Bansal, R. and Zhou, H. (2002). Term structure of interest rates with regime shifts. Journal of

Finance, 57 (4), 1997-2043.

[2] Beaglehole D. and Tenney, M. (1991). General Solutions of Some Interest Rate- Contingent

Claim Pricing Equations. Journal of Fixed Income 1, 69-83.

[3] Chen L., Filipovic, D. and Poor, H.V. (2004). Quadratic Term Structure Models for risk-free and

defaultable rates. Mathematical Finance, 14(4), 515-536.

[4] Cox, Ingersoll, Ross, (1985). A Theory of the Term Structure of Interest Rates. Econometrica,

53, 385-406.

[5] Dai, Q. and Singleton, K. (2000). Specification Analysis of Affine Term Structure Mod-els. Jour-

nal of Finance, 55, 1943-1978.

[6] Duffie, D. and Kan, R. (1996). A yield-Factor Model of Interest Rates. Mathematical Finance,

6 (4), 379-406.

[7] Elliott, R.J., Aggoun, L. and Moore, J.B. (1994). Hidden Markov Models: estimation and control.

Springer-Verlag, Berlin-Heidelberg- New York.

[8] Elliott, R.J, Siu, T.K. and Badescu, A. (2011). Bond valuation under a discrete-time regime-

switching term-structure model and its continuous-time extension. Managerial Finance, Vol. 37

Iss: 11,1025-1047.

[9] Goutte, S. (2013). Pricing and hedging in stochastic volatility regime switching models. Journal

of Mathematical Finance 3, 70-80.

[10] Goutte, S. (2014). Conditional Markov regime switching model applied to economic modelling.

Economic Modelling, 38, 258-269.

13



[11] Goutte, S. and Ngoupeyou, A. (2013). Defaultable Bond pricing using regime switching inten-

sity model. Journal of Applied Mathematics and Informatics, 31 (3).

[12] Kirikos, D.G. (2000). Forecasting exchange rates out of sample: random walk vs Markov Switch-

ing Regimes. Applied Economics Letters 7, 133-136.

[13] Leblon, G. and Moraux, F. (2009). Quadratic Term Structure Models: Analysis and Perfor-

mance. Paris December 2009 Finance International Meeting AFFI - EUROFIDAI.

[14] Leippold M. and Wu, L. (2002). Asset Pricing under the quadratic Class. Journal of Financial

and Quantitative Analysis 37(2), 271-294.

[15] Li-Hsueh C. (2001). Inflation, Real Short-Term Interest Rates, and the Term Structure of Interest

Rates: A Regime-Switching Approach. Applied Economics, 33, 393-400.

[16] Vasicek, O. (1977). An Equilibrium Characterization of the Term Structure. Journal of Financial

Economics 5, 177-178.

14


	The model
	Markov chain
	Asset
	Short term interest rate
	Zero-coupon Bond price

	Regime switching quadratic structure formulas
	Full history case
	General case

	Conclusion

