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Abstract

This paper discusses the issue of the Persistent Excitation (PE) conditions in the context of identification for dynamical
systems defined over a finite field. The work is motivated by the fact that the asymptotical property of the PE conditions for
dynamical systems defined over the field of real numbers is no longer valid in the case of systems defined over finite fields.
The special class of switched linear discrete-time systems for which the mode is assumed to be unknown is considered. A
necessary and sufficient condition that provides the minimum amount of data required for the identification is first proposed.
Next, a necessary condition is derived that gives the structural condition the system must satisfy, regardless of the availability
of data. Finally, some computational aspects are discussed and examples are given to illustrate the validity of the proposed
results.
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Discrete Dynamical Systems (DDSs), whereby both time and state space are discrete, are encountered in various
practical applications ranging from communication networks to biological systems. These systems, with a countable
number of states, are known to be appropriate models in computer science for specification, verification and resource
allocation problems on software and hardware systems [1–3]. Typically, manufacturing systems, communication net-
works, traffic networks, transportation systems and logistic systems can be reasonably modelled under a discrete
dynamical framework. In addition, DDSs can be employed in life sciences to model population growth (humans,
genes, molecules, neurons). In such areas, discrete models are usually a discrete abstraction of continuous dynamics.
This is typically the case in immunology and virology [4], and in applications in biological networks [5–8]. One of
the important areas where models over finite fields find its importance is in applications like secure communication
and cryptography. Here, DDSs defined over finite fields are used to cipher and decipher data that are intrinsically of
a discrete nature. Ciphers can take the form of cellular automata being either autonomous (see [9] for a pioneering
work on the topic) or non-autonomous [10].

There exists a variety of formal models to describe DDSs. A detailed classification of DDSs is given in [11] whereby
a distinction between the various tools employed for their representation is highlighted; namely graphical tools
(state transition diagrams or finite-automata, Petri net, Grafcet, state charts, ladder logic diagrams), algebraic tools
(Boolean algebra, algebraic expressions over state space, max-plus algebra) and formal languages. It is also important
to note that any one of these representations can be mapped to another. In effect, mappings between finite state
automata, Boolean systems and Grafcets to systems described by polynomial expressions over the Galois field are
detailed in [12–14].
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Apart from modeling, control issues have also been addressed for discrete systems in the literature. The issues of
controllability, reachability and state feedback control have been investigated using different approaches such as
the theory of polynomial dynamical systems [15], graph theory [16,17], max-plus algebra [18,19], finite field theory
[14,20], discrete abstraction and state transition graphs [5], linear modular systems [21] to name a few. Observability
for DDSs has also been the subject of a number of research works. For instance, one can refer to the interesting work
in [22] which deals with Boolean networks or to [20] where the observability issue is treated for finite multi-agent
systems.

Identification plays a centrol role for modeling purposes. An important property in the context of identification is
identifiability. Identifiability is related to the notion of uniqueness of solution. Such a notion is important since the
estimation of the parameters of a model, with a prescribed structure and based on experimental data, can lead to
several solutions. Hence, before proceeding with identification, it is necessary to check whether uniqueness of solution
is guaranteed. Uniqueness of solution depends both on the a priori structure of the model and on the richness of
the data, known as Persistent Excitation (PE) conditions. An exhaustive list of papers dealing with identifiability
can be found in [23,24]. However, none of these papers addresses the problem of identifiability for DDSs whereby
identifiability may still play a central role and the values of the model parameters may capture some important
physical meanings. As mentioned before, cryptography is one of the areas where identification can be applied under
a DDS framework. In this context, the parameters of the dynamical system are expected to act as the secret key.
Hence, identification can be viewed as an attack which is generally referred to as an algebraic attack. In this case,
uniqueness of the solution is a necessary condition for security. Indeed, the larger the key space, the weaker the
probability of recovering the secret key by means of an exhaustive search.

Beside discrete dynamical systems, Switched Dynamical Systems (SDSs) are valuable models regardless of whether
we consider systems defined over the field of real numbers or over finite fields. Recall that a switch is an event which
entails a change in the dynamics of the system. For instance, in circuit theory, that may correspond to a switched
capacitor in a digital filter or an electronic switch in a power converter. For an interesting work on finite fields
in the context of circuit theory and their applications, the reader may refer to the book [25]. On the other hand,
switches may also reflect changes of modes of operation in a plant [19]. More generally, switches may correspond
to any transition rule that determines the mode of the system. The mode can be an external event or can depend
on the input and/or the state of the system. This is precisely the case of cellular automata [26]. Indeed, a cellular
automaton is a discrete dynamical system that consists of an arrangement of basic components, called cells, together
with a transition rule based on the states of neighboring cells.

This paper aim to provide a contribution toward the identification of switched dynamical systems over finite fields
and to the underlying notion of identifiability. We investigate the case when the discrete mode of the switching rule
is not accessible. By being not accessible, it is meant that, for an input-output pair of the data set used for the
identification, the corresponding mode is unknown. The purpose of the paper is two-fold: i) to provide a procedure
for identifying the parameters of a switched linear discrete system and ii) to reconsider the PE conditions in such a
case. Indeed, the PE conditions deserve a special investigation over finite fields because they can no longer be stated
similarly to the case of the field of real numbers. The main reason lies in that the PE conditions in the field of real
numbers are based on an underlying asymptotic property that does not hold over finite fields. In this regards, two
conditions are established. First, we establish a necessary and sufficient condition on the minimum amount of data
set required for the identification. Secondly, we establish a necessary condition that gives the system’s structural
requirement (given the underlying finite field); involving the dimension and the number of modes of the system.

This paper is organized as follows. In Section 1, a background on algebra over finite fields is first recalled. Next, the
general principle of the identification procedure for switched linear systems and the associated PE conditions are
provided. In Section 2, a structural condition that the dynamical system must fulfill in order to meet the PE conditions
is proposed. Finally, in Section 3, computational issues regarding the operations required for the identification over
finite fields are addressed. Two simple examples are given to illustrate the approach and to highlight the uniqueness
of solution issue.
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1 Preliminaries

1.1 Algebra over finite fields - definitions

In this section, we recall some basic and classical definitions that are employed throughout the paper.

Commutative ring:
A commutative ring R is a set of elements and two operations, + and ·, that are both commutative, associative,
distributive and closed in R. Operations + and · have identity elements 0 and 1 respectively. For every element
a ∈ R, there exists an element b ∈ R such that a+ b = 0, i.e. + has an inverse.

Field:
A field F is a commutative ring where every element except 0 has a multiplicative inverse, i.e. for every element
a ∈ F\{0}, there exists an element ā ∈ F\{0} such that a · ā = 1.

Finite field:
A finite field is a field that contains a finite number of elements, which is also referred to as the order of the field. A
field of order p will be denoted with Fp.

In this paper, the finite field Fp under consideration will be the set {0, 1, · · · , p− 1} together with the addition and
the multiplication modulo p, with p being a prime number.

Polynomial ring:
A polynomial ring denoted by Fp[z] or Fp[z

(1), . . . , z(i), . . . , z(n)] is a ring whose elements are polynomials. The

indeterminates are the vector components z(i) and the coefficients are in Fp.

1.2 Switched systems over Fp

We consider the switched linear dynamical system:

{

xk+1 = Aσ(k)xk +Bσ(k)uk

yk = Cσ(k)xk +Dσ(k)uk

(1)

where uk ∈ Fp, yk ∈ Fp and xk ∈ F
n
p . The switching function σ

σ : k ∈ N 7→ j = σ(k) ∈ {1, . . . , J}

is arbitrary with J being the number of modes. In other words, at a specific discrete time k, the index j corresponds
to the mode of the system given by the switching function σ. No specific dwell time is imposed. The terminology
’dwell time’ is used here in accordance with the definition given in [27] for the discrete-time case. Alternatively,
the terminology ’dwell iteration’ could be used instead. All the matrices, namely Aσ(k) ∈ F

n×n
p , Bσ(k) ∈ F

n×1
p ,

Cσ(k) ∈ F
1×n
p and Dσ(k) ∈ Fp belong to the finite sets (Aj)1≤j≤J , (Bj)1≤j≤J , (Cj)1≤j≤J and (Dj)1≤j≤J respectively.

A sequence of modes over the interval of time [k1, k2] is a sequence of k2 − k1 + 1 integers in the set {1, . . . , J}.
An admissible sequence of modes is a (k2 − k1 + 1)-tuple of integers (i1, . . . , ik2−k1+1) which corresponds to a
realization (σ(k1), . . . , σ(k2)). The maximum number of admissible sequences is N = Jk2−k1+1. In what follows, the
N sequences of modes will be simply denoted by σ1, . . . , σN . We assume that it is possible to derive an equivalent
input/output (I/O) model for the above system. The reader may refer to [28][29] for a detailed explanation of this
I/O equivalence problem. In particular, it is shown in [29] that at least all observable systems admit an equivalent
I/O model. Furthermore, for s = 1, . . . , N , the I/O model assigned to the state space form (1) can be rewritten, for
any discrete-time k, as

yk =

K1
∑

j=1

aj(σs)yk−j +

K2
∑

j=0

cj(σs)uk−j (2)

where aj(σs) and cj(σs) are coefficients depending on the entries of the matrices (Aj)1≤j≤J , (Bj)1≤j≤J , (Cj)1≤j≤J

and (Dj)1≤j≤J of (1). The quantities K1 and K2 correspond to the maximum number of monomials involving the
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outputs and the inputs taken over all the submodels respectively. The coefficients aj(σs) and cj(σs) of the I/O model
(2) can be expressed in terms of the matrices of the state space model (1) by solving a set of linear equations. To this
end, the reader may refer to [30] for the case when the system (1) is flat (see [31,32] for general notions on flatness)
or to [29] for the general case. In the sequel, we set K = K1 +K2.

Proposition 1 The maximum number of input/output relations, N = NI/O, regardless of the number J of modes,

is finite and equal to NI/O = pK+1.

Proof 1 The proof is a direct consequence of the fact that i) the input/output relation (2) involves K+1 coefficients
and ii) each of the coefficient takes its value in the set Fp, which is of finite cardinality p.

If σs is accessible, then the corresponding sequence of modes σ(k), σ(k+1), . . . over the horizon [k, k+max(K1,K2)]
is known. Hence, for every s ∈ [1, N ], an input-output pair of the data set can be assigned to a sequence σs. As a
result, the identification is easy since for every σs (s ∈ [1, N ]), the parameters cj(σs) and aj(σs) appear in a linear
fashion in the I/O relation (2). Indeed, for a given sequence of modes σs, the identification can be performed by
iterating the relation (2) until a set of linear independent equations is obtained and which can then be solved.

In this work, the problem under consideration corresponds to the case where σs is not accessible. In such a case, it
is impossible to assign the I/O data with the sequence of modes σs. The identification procedure employed here is
inspired from that suggested in [33] for ARX models over the field of real numbers. Since this procedure constitutes
a prerequisite for the main result of the present paper, its main steps are recalled for the sake of clarity.

Each I/O relation (2) can be rewritten, for s = 1, . . . , N , as

zTk bs = 0 (3)

with

zk = [yk, · · · , yk−K1
, uk, · · · , uk−K2

]T ∈ F
K+2
p

bs = [1,−a1(σs), . . . ,−aK1
(σs),−c0(σs), . . . ,−cK2

(σs)]
T ∈ F

K+2
p

Here, zk is the regressor vector while bs is the parameter vector corresponding to the mode sequence σs.

Remark 1 The size of the regressor and of the parameter vector can be clearly reduced if some of the coefficients
aj(σs) and cj(σs) are known or are zero. Indeed, in such a case, the coefficients that are always zero are not
incorporated into bs.

We define N hyperplanes Ss, s = 1 . . . , N as

Ss = {zk : zTk bs = 0}

1.3 Identification procedure and the PE conditions

The following equation holds regardless of the switching sequences

pN (zk) =

N
∏

s=1

(zTk bs) = νN (zk)
ThN = 0 (4)

where hN ∈ F
MN is the vector whose components are the coefficient of pN and νN : zk ∈ F

K+2
p 7→ ξk ∈ F

MN
p is a

map of degree N , the components of ξk corresponding to all the MN monomials (product of the components z
(i)
k

of zk) sorted in the degree-lexicographic order 1 . By definition, the map νN is a so-called Veronese map and the
quantity MN is given by

MN (K) =
(N +K + 1)!

N !(K + 1)!
(5)

1 A lexicographic order is a ranking according to the names of the variables and their iterates such that:
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In the sequel, MN (K) will be sometimes simply written as MN when no possible confusion can arise.

Remark 2 The first component h
(1)
N of hN is equal to 1.

In [33], the polynomial pN is referred to as the Hybrid Decoupling Constraint Polynomial while the equality (4) as
the Hybrid Decoupling Constraint equation. It must be stressed that the constraint (4) is still valid in the context
of this present study. Indeed, since the multiplication is closed in the ring Fp[z], the product pN (zk) is also in Fp[z].

For the identification of the parameters bs in (3), it is first required to compute the coefficients hN of (4).

Computation of hN

Let LN denote the embedded data matrix involving N ′ mapped regressor vectors zk through νN

LN =















νN (zk1
)

νN (zk2
)

...

νN (zkN′
)















T

∈ F
N ′×MN
p (6)

The following relation applies:
LNhN = 0 (7)

The following proposition gives a necessary and sufficient condition that must be fulfilled by the regressors. It allows
to assess the minimum amount of data that is required for the identification to guarantee uniqueness of solutions.

Proposition 2 The solutions space of (7) is of dimension one and the uniqueness of hN is ensured if and only if
the integer N ′ is large enough so that the νN (zki) (i = 1, . . . , N ′) satisfies

rank(LN ) = MN − 1 (8)

Proof 2 The rank condition (8) guarantees that the νN (zki
) (i = 1, . . . , N ′) span a MN−1 dimensional vector space.

Since LN is of dimension N ′ ×MN , the solution of (7) is one-dimensional. In addition, hN is unique according to
Remark 2 and can be calculated by

hN ∈ Ker(LN ) such that h
(1)
N = 1 (9)

The lower bound of N ′ is clearly MN − 1. Recall that over R, the assumption that the mapped regressor vectors
νN (zki) are sufficiently exciting is known as the Persistent Excitation (PE) conditions [34]. Over a finite field such
as Fp, the number of possible regressors zki is finite, and thus, the definition used over R no longer holds. The PE
conditions are expressed in terms of the rank condition (8).

Computation of bs
Let us first recall the following definition:

Definition 1 [35] A derivative D on the field Fp is a mapping D : Fp 7→ Fp which is linear and satisfies the ordinary
rule for derivatives, i.e., for every element x, y in Fp, D(x+ y) = D(x) +D(y) and D(x · y) = xD(y) + yD(x).

As a result, the derivative DpN (zk) of pN (zk) in (4) is also in the polynomial ring Fp[z] and is given by

DpN (zk) =
∂pN (zk)

∂zk
=

∂

∂zk

N
∏

s=1

(zk
T bs) =

N
∑

s=1

bs

N
∏

l 6=s

(zk
T bl). (10)

• z
(i)
k < z

(i)
k+l, ∀l ∈ N,

• z
(i)
m < z

(j)
l ⇒ z

(i)
m+t < z

(j)
l+t, ∀m ∈ N, ∀l ∈ N, ∀t ∈ N,

• z
(i)
k < z

(j)
k ⇒ (z

(i)
k )α < (z

(j)
k )β , ∀α ∈ N, ∀β ∈ N

5



We rewrite (10) as

DpN (zk) = bs

N
∏

l 6=s

(zk
T bl) +

N
∑

i 6=s

bi

N
∏

j 6=i

(zk
T bj). (11)

Now, consider an arbitrary vector ws ∈ F
K+2
p such that wT

s bs = 0. Replacing ws (s = 1, . . . , N) into (11) yields

DpN (ws) = bs

N
∏

l 6=s

(wT
s bl) (12)

One could be concerned by the fact that the quantity bs is defined up to the scalar
∏N

l 6=s(w
T
s bl), which is actually

unknown. Indeed, its computation would require the knowledge of all vectors bs, l 6= s. However, since DpN (ws) is
known and the first component of bs is equal to 1, the true parameter vector bs is obtained by merely normalizing
DpN (ws). Hence, whenever the solution hN is guaranteed to be one-dimensional, its uniqueness, as well as the
uniqueness of the bs, is also guaranteed.

2 Structural conditions

In this section, a necessary condition is established. It gives a structural condition that the system needs to satisfy
in order for the kernel hN to be one-dimensional, regardless of whether the data is available or not. Note that the
system can be characterized by the triplet (p,K,N). Consequently, we can state the following proposition:

Proposition 3 In order for the kernel hN to be one-dimensional, it is necessary that the triplet (p,K,N) satisfies

p(K+1) ≥ MN (K)− 1 (13)

Proof 3 First, let note that the maximum number N ′ = N ′
max of regressors zki

that (1) can generate, regardless of
the number J of modes, is N ′

max = pK+1.
Indeed, the number of components of the regressor vector zk is K+2. On the other hand, regarding (2), the component
yk is linearly congruent to the other ones that are yk−1, . . . , yk−K1

, uk, . . . , uk−K2
. These K+1 components take value

in the set Fp which is of finite cardinality p.

Moreover, the Veronese map in (4)
νN : zk ∈ F

K+2
p 7→ ξk ∈ F

MN
p

is surjective over the finite field Fp. Thus, the cardinality of the sets {zk} and {ξk} satisfies:

card ({ξk}) ≤ card ({zk}) ≤ N ′
max = p(K+1)

It follows that
rank(LN ) ≤ N ′

max = p(K+1) (14)

Finally, by considering the relations (8) and (14), we obtain the condition of the proposition and which completes
the proof of the latter.

The following proposition allows to assess the influence of the triplet (p,K,N) on the uniqueness of the kernel.

Proposition 4 For every pair (p,Kc) with p ≥ 2, there exists an integer N ∈ [1, NI/O] such that

MN (K)− 1 ≤ N ′
max = p(K+1)

for K ≥ Kc

Proof 4 First, let us recall the expression (5) of MN (K):

MN (K) =
(N +K + 1)!

N !(K + 1)!
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On one hand, since M1(K)− 1 = K + 1, it is clear that, for all p ≥ 2 and for all K

p(K+1) > M1(K)− 1 (15)

On the other hand, for all p ≥ 2 and for all K

p(K+1) < MNI/O
(K)− 1 (16)

Next, for all p ≥ 2 and all l ∈ {2, . . . ,K + 1}, we have

pK+1 + l > l

Hence,
K+1
∏

i=2

(pK+1 + i) > (K + 1)!

Multiplying both sides by (p(K+1) + 1)! yields

(p(K+1) + 1)!
∏K+1

i=2 (pK+1 + i) > (p(K+1) + 1)!(K + 1)!

⇔ (p(K+1) +K + 1)! > (p(K+1) + 1)!(K + 1)!

Dividing both sides by (p(K+1))!(K + 1)!, we get

(p(K+1) +K + 1)!

(p(K+1))!(K + 1)!
− 1 > p(K+1)

Now, from (5) and taking into account that NI/O = pK+1, the following equality holds:

MNI/O
(K) =

(p(K+1) +K + 1)!

(p(K+1))!(K + 1)!

which proves (16).

Finally, it is easy to see that the functions K → pK+1 and K → MN (K) − 1, for any N , are monotonically
increasing with respect to K. As a result, for all pairs (p,K) with p ≥ 2, there exists an integer N ∈ [1, NI/O] so

that the functions K → pK+1 and K → MN (K) − 1 intersect each other. Then, for all pairs (p,Kc) with p ≥ 2,
there exists an integer N so that p(K+1) > MN (K)− 1 for K ≥ Kc. This completes the proof of Proposition 4.

In other words, Proposition 4 gives, for a given cardinality p of the set Fp and a prescribed integer K (related to
the dimension n of the system), a bound on the number N of I/O relations (related to the number J of modes)
so that (13) is satisfied. However, although (13) holds, owing to the dynamics of the system, the number N ′ of
independent regressors zki

may be lower than the maximum number N ′
max. Indeed, the trajectory of the state vector

does not necessarily visit all the possible states over Fp. Hence, the maximum rank of the embedded data matrix
may not attain MN (K) − 1, thereby preventing the uniqueness of hN . A graphical interpretation of Proposition 4
is illustrated in Fig. 1. For a prescribed p, all the pairs (K,N) with K > Kc for which the curve pK+1 is above the
curve MN (K) − 1 satisfy (13). Therefore, it turns out that the larger the distance between pK+1 and MN (K) − 1,
the higher the chance of getting sufficient independent regressors to guarantee uniqueness of the solution.

Remark 3 It is worth pointing out that the result still holds for dynamical systems with state-transition functions
and output functions with polynomial nonlinearities, including Boolean functions. Indeed, for such systems, the I/O
relations take the form of a linear combination of monomials, involving the products of inputs and outputs which are
generically written as yp0

k · · · y
pK1

k−K1
ur0
k · · ·u

pk2

k−K2
. It is clear that switched linear systems constitute a special case with

monomials of degree no greater than 1. Such an I/O relation can be obtained by resorting to standard elimination
techniques (for example see the Gröbner basis approach [36]). As a result, equation (3), on which all the remaining
reasoning is based, still applies whenever the regressor vector zk = [yk, · · · , yk−K1

, uk, · · · , uk−K2
]T is replaced by the

vector whose components are the monomials yp0

k · · · y
pK1

k−K1
ur0
k · · ·u

pk2

k−K2
.
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Fig. 1. Graphical interpretation of Proposition 4

3 Practical considerations and examples

3.1 Computation of the kernel

To calculate the kernel in (9), we can resort to a Gaussian elimination over Fp. However, compared with the
computation over R, the method must be slightly modified by replacing the division operation by the multiplication
with the inverse over the finite field Fp. Among the efficient procedures for inversion over a finite field like Fp, the
Extended Euclidean Algorithm [37] is particularly interesting. It is based on the computation of a greatest common
divisor.

3.2 Calculating the points ws

To calculate the N distinct points ws that lie on the N hyperplanes Ss, the following algebraic procedure can be
followed.

Consider a parametrized random line with direction v and base point w0:

D : µv + w0 ∀µ ∈ Z

The line D intersects with all the hyperplanes at N distinct points under the condition that it is not parallel with
any hyperplanes. In other words, the equation of degree N

pN (µv + w0) = 0 (17)

admits N distinct integer roots {µs}
N
s=1 under the constraint pN (v) 6= 0 (or equivalently v /∈ Ss). Therefore, the

intersection of D with all of the hyperplanes are given by

ws = µsv + w0 ∀s ∈ {1, .., N}

Since ws belongs to a finite field, an exhaustive search for the recovery of µs could be effective and could act as an
alternative to solving (17).

3.3 Examples

The aim of this subsection is to illustrate, with two simple examples, the identification procedure over finite fields
and to highlight the influence of the triplets {p,N,K} on the uniqueness of the solution.
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3.3.1 Example 1

Consider a one-dimensional switched dynamical system over the finite field F251 (p = 251) of the form (1) with
Aσ(k) = qσ(k) ∈ F251 , Bσ(k) = 5 , Cσ(k) = 1 , Dσ(k) = 0. The switching function σ(k) is assumed to be
inaccessible and defined by:

σ : k ∈ N 7→ σ(k) = j ∈ {1, 2}

and finally qσ(k) = {q1, q2} = {38, 213}.

The I/O model is given by:
yk = qσ(k−1)yk−1 + 5uk−1 (18)

The two parameter vectors are b1 = [1,−q1,−5]T and b2 = [1,−q2,−5]T . Since 213 = −38 (mod 251) and 246 =
−5 (mod 251), it results that b1 = [1, 213, 246]T and b2 = [1, 38, 246]T . For this example K = 1.

The regressor vector is given by zk = [yk, yk−1, uk−1]
T and, according to the proof of Proposition 3, the maximum

number of regressors is N ′
max = pK+1 = 2511+1 = 63001. On the other hand, there exist two input/output relations

according to the value of qσ(k). Hence, N = 2.

For N = 2 and K = 1, we have MN (K)− 1 = 5. Thus, the necessary condition (13) is fulfilled but hN may be not
unique.

Computation of hN

After applying a sufficiently long input sequence to (1), it turns out that the embedded data matrix LN reaches
its maximal rank. After a Gaussian elimination, a kernel of dimension one is obtained and, after normalization (see
Remark 2), is given as:

hN = [1, 0, 241, 62, 0, 25]T

Computation of bs
First, we compute N = 2 points ws so that wT

s bs = 0. Now, consider a random line D with a direction v =
[25, 181, 61]T and a base point w0 = [42, 155, 208]T . Solving (17) gives the solution µ1 = 59, µ2 = 197 with two
corresponding intersections w1 = [11, 41, 42]T , w2 = [198, 170, 177]T .

Finally, the parameter vectors bs according to (12) are given by:

b1 = [1, 213, 246]T

b2 = [1, 38, 246]T

As expected, the correct parameter vectors bs are obtained. This result can be explained by the fact that not only
the necessary condition (13) is fulfilled but also because the number of independent regressor vectors is large enough.

3.3.2 Example 2

Consider a one-dimensional switched dynamical system over the finite field F2 (p = 2) of the form (1) with Aσ(k) =
qσ(k) ∈ {0, 1}, Bσ(k) = Cσ(k) = 1 and Dσ(k) = 0. The corresponding I/O model is given by:

yk = qσ(k−1)yk−1 + uk−1

For this example, K = 1. The regressor vector is given by zk = [yk, yk−1, uk−1]
T and, according to the proof of

Proposition 3, the maximum number of regressors is N ′
max = pK+1 = 21+1 = 4. Also, there exist two input/output

relations according to the value of qσ(k−1). Hence, N = 2.

For N = 2 and K = 1, we have MN (K)− 1 = 5. Thus, the necessary condition (13) is not fulfilled. Consequently, it
is impossible for the kernel hN to be one-dimensional. This is explained by the fact that, regardless of the dynamics,
the number of independent regressor vectors cannot be large enough.
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The embedded data matrix LN cannot reach its maximum rank. A Gaussian elimination yields, precisely, four
possible vectors hN for the kernel of LN :

hN ∈ ( [1, 1, 1, 0, 0, 0]T , [1, 1, 0, 0, 1, 1]T ,

[1, 0, 0, 1, 0, 1]T , [1, 0, 1, 1, 1, 0]T )

For each vector of the kernel hN , the corresponding parameter vector bs can be assigned. Only the vector [1, 1, 0, 0, 1, 1]T

of hN gives the correct solution for bs: b1 = [1, 1, 1]T and b2 = [1, 0, 1]T .

Remark 4 The maximum number of regressors is N ′
max = pK+1 = 21+1 = 4 but actually, only two independent

regressors are obtained. This explains why hN involves four distinct vectors since MN (K)− 2 = 6− 2 = 4.

4 Concluding remarks

In this paper, the persistent excitation conditions that guarantee the uniqueness of the solution for identification
problems have been revisited in order to treat dynamical systems defined over finite fields. Special emphasis has
been placed on switched linear discrete-time systems. First, a necessary and sufficient condition that provides the
minimum amount of data required for the identification has been proposed. Next, a necessary condition that gives
the structural constraint the system must satisfy, regardless of the availability of the data, is derived. The necessary
condition involves the dimension and the number of modes of the system. Some examples are given to illustrate the
validity of the results.
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