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Introduction

This paper is about the bar recursion operator [START_REF] Spector | Provably recursive functionals of analysis : a consistency proof of analysis by an extension of principles in current intuitionistic mathematics[END_REF], in the context of classical realizability [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF][START_REF] Krivine | Realizability algebras III: some examples[END_REF]. It is a sequel to the three papers [START_REF] Berardi | On the computational content of the axiom of choice[END_REF][START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF][START_REF] Streicher | A classical realizability model arising from a stable model of untyped λ-calculus[END_REF]. We use the definitions and notations of the theory of classical realizability as expounded in [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF][START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF][START_REF] Krivine | Realizability algebras III: some examples[END_REF]. In [START_REF] Berardi | On the computational content of the axiom of choice[END_REF], S. Berardi, M. Bezem and T. Coquand have shown that a form of the bar recursion operator can be used, in a proof-program correspondence, to interpret the axiom of dependent choice in proofs of Π 0 2 -formulas of arithmetic. Their work was adapted to the theory of domains by U. Berger and P. Oliva in [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF]. In [START_REF] Streicher | A classical realizability model arising from a stable model of untyped λ-calculus[END_REF], T. Streicher has shown, by using the bar recursion operator of [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF], that the models of ZF, associated with realizability algebras [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF][START_REF] Krivine | Realizability algebras III: some examples[END_REF] obtained from usual models of λ-calculus (Scott domains, coherent spaces, . . . ), satisfy the axiom of dependent choice. We give here a proof of this result, but for a realizability algebra which is built following the presentation of [START_REF] Berardi | On the computational content of the axiom of choice[END_REF], which we call the BBC-algebra. In section 1, we define and study this algebra ; we define also the bar recusion operator, which is a closed λ-term. In sections 2 and 3, which are very similar, we show that this operator realizes the axiom of countable choice (CC), then the axiom of dependent choix (DC). The proof is a little simpler for CC. In section 4, we deduce from this result, using results of [START_REF] Krivine | On the structure of classical realizability models of ZF[END_REF] that, in the model of ZF associated with this realizability algebra, every real (more generally, every sequence of ordinals) is constructible. The formulas "R is well ordered " and "Continuum hypothesis" are therefore realized, in these models, by closed λ c -terms (i.e. λ-terms containing the control instruction cc of Felleisen-Griffin). We show also that every true formula of analysis is realized by a closed λ c -term. In this way, we show how to obtain a program (closed λ c -term) from any proof of a Π 0 2 arithmetical formula in the theory ZF + "Dependent choice" + "Every real is constructible" (and therefore "Well ordering of R" and "Continuum hypothesis").

The BBC realizability algebra

The definition and general properties of realizability algebras are given at the beginning of [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF]. In particular, closed λ-terms are interpreted as terms in these algebras. The BBC realizability algebra B B = (Λ, Π, ⊥ ⊥) is defined as follows :

• The set of processes Λ ⋆ Π is Λ×Π.

• The set of terms Λ is the smallest set which contains the following constants of term : B, C, I, K, W (Curry's combinators), cc (Felleisen-Griffin instruction), A (abort instruction), p, q 0 , . . . , q N (variables) where N is a fixed integer ; and is such that : if ξ, η ∈ Λ then (ξ)η ∈ Λ (application) ; with each sequence ξ i (i ∈ N) of closed elements of Λ (i.e. which contain no variable p, q 0 , . . . , q N ) is associated, in a one-to-one (and well founded) way, a constant of term denoted by i ξ i . Therefore, each term ξ ∈ Λ is a finite sequence of constants of term and parentheses. Λ is defined by an induction of length ℵ 1 and is of cardinality ℵ 1 .

Notations.

The application (. . . ((ξ 1 )ξ 2 ) . . .)ξ n will be often written (ξ 1 )ξ 2 . . . ξ n or even ξ 1 ξ 2 . . . ξ n . The finite sequence q 0 , . . . , q N will be often written q.

• The set of stacks Π is defined as follows : a stack π is a finite sequence t 0 . . . . . t n-1 . π 0 with t 0 , . . . , t n-1 ∈ Λ ; it is terminated by the symbol π 0 which represents the empty stack. For each stack π, the continuation k π is a term which is defined by recurrence :

k π 0 = A ; k t .π = ℓ t k π , with ℓ t = ((C)(B)CB)t or λkλx(k)(x)t.
Thus, if the stack π is t 0 . . . . . t n-1 . π 0 , we have :

k π = (ℓ t 0 ) . . . (ℓ t n-1 )A or λx(A)(x)t 0 . . . t n-1 .
The integer n is defined as follows : 0 = (K)I or λxλy y ; n + 1 = (σ)n with σ = (BW)(C)(B)BB or λnλf λx(f )(n)f x. The relation of execution ≻ is the least preorder on Λ ⋆ Π defined by the following rules (with ξ, η, ζ ∈ Λ, π ∈ Π and n ∈ N) :

1. (ξ)η ⋆ π ≻ ξ ⋆ η . π ; (push) 2. B ⋆ ξ . η . ζ . π ≻ ξ ⋆ (η)ζ . π ; (apply) 3. C ⋆ ξ . η . ζ . π ≻ ξ ⋆ ζ . η . π ; (switch) 4. I ⋆ ξ . π ≻ ξ ⋆ π ; (no operation) 5. K ⋆ ξ . η . π ≻ ξ ⋆ π ; (delete) 6. W ⋆ ξ . η . π ≻ ξ ⋆ η . η . π ; (copy) 7. cc ⋆ ξ . π ≻ ξ ⋆ k π . π ; (save the stack) 8. A ⋆ ξ . π ≻ ξ ⋆ π 0 ; (abort) or (delete the stack) 9. i ξ i ⋆ n . π ≻ ξ n ⋆ π ; (oracle) When ξ, η ∈ Λ, we set ξ ≻ η iff (∀π ∈ Π)(ξ ⋆ π ≻ η ⋆ π).
• Proof-like terms. Let PL 0 be the countable set of terms built with the constants B, C, I, K, W, cc and the application. It is the smallest possible set of proof-like terms.

We shall also consider the set PL of closed terms (i.e. with no occurrence of p, q) which is of cardinality ℵ 1 .

• Execution of processes ; definition of ⊥ ⊥. For every process ξ ⋆ π, at most one among the rules 1 to 9 applies. By iterating these rules, we obtain the reduction or the execution of the process ξ ⋆ π. This execution stops if and only if the stack is insufficient (rules 2 to 8) or does not begin with an integer (rule 9) or else if the process has the form p ⋆ ̟ or q i ⋆ ̟. Finally, we set

⊥ ⊥ = {ξ ⋆ π ∈ Λ ⋆ Π ; (∃̟ ∈ Π)(ξ ⋆ π ≻ p ⋆ ̟)}. Lemma 1. B B is a coherent realizability algebra.
Proof. B B is a realizability algebra : It remains to check that k π ⋆ ξ . ̟ ≻ ξ ⋆ π, which is done by recurrence on π :

if π = π 0 , it is rule 8 ; if π = t . ρ we have k π ⋆ξ . ̟ = k t .ρ ⋆ξ . ̟ = ℓ t k ρ ⋆ξ . ̟ ≻ (k ρ )(ξ)t⋆̟ ≻ k ρ ⋆ξt . ̟ ≻ ξt⋆ρ (recurrence hypothesis) ≻ ξ ⋆ t . ρ. B B is coherent : If θ ∈ PL then θ ⋆ π 0 /
∈ ⊥ ⊥ ; indeed, p does not appear during the execution of θ ⋆ π 0 . q.e.d.

Models and functionals

A coherent realizability algebra is useful in order to give truth values to formulas of ZF. In fact, we use a theory called ZF ε [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF] which is a conservative extension of ZF. This theory has an additional strong membership relation symbol ε which is not extensional. For each closed formula F of ZF ε , we define two truth values, denoted F and |F |, with

F ⊂ Π and |F | ⊂ Λ, with the relation ξ ∈ |F | ⇔ (∀π ∈ F )(ξ ⋆ π ∈ ⊥ ⊥).
The relation ξ ∈ |F | is also written ξ F and reads "the term ξ realizes the formula F ". All the necessary definitions are given in [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF][START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF][START_REF] Krivine | Realizability algebras III: some examples[END_REF]. The following lemma 2 is a useful property of the BBC realizability algebra B B.

Lemma 2. For all formulas A, B of ZF ε , and all terms ξ ∈ Λ, we have :

ξ A → B iff (∀η ∈ Λ)(η A ⇒ ξη B).
Indeed, by the general definition of , we have :

(ξ A → B) ⇔ (∀η A)(∀π ∈ B )(ξ ⋆ η . π ∈ ⊥ ⊥). Now, by the above definition of ⊥ ⊥, it is clear that (ξ ⋆ η . π ∈ ⊥ ⊥) ⇔ (ξη ⋆ π ∈ ⊥ ⊥) from
which the result follows.

q.e.d. Classical realizability is an extension of forcing. As in forcing, we start with an ordinary model M of ZFC (or even ZF + V = L) which we call the ground model, and we build a realizability model N which satisfies ZF ε in the following sense : M and N have the same domain, but neither the same language, nor the same truth values. The language of N has the additional binary symbol ε of strong membership. The truth values of N are not 0, 1 as for M, but are taken in P(Π) endowed with a suitable structure of Bolean algebra [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF][START_REF] Krivine | Realizability algebras III: some examples[END_REF]. We say that N satisfies a formula F iff there is a proof-like term θ which realizes F or equivalently, if the truth value F of F is the unit of the Boolean algebra P(Π). A functional on the ground model M is a formula F ( x, y) of ZF with parameters in M, such that M |= ∀ x ∃!y F ( x, y). Denoting such a functional by f , we write y = f ( x) for F ( x, y). Since M and N have the same domain, all the functionals defined on M are also defined on N and they satisfy the same equations and even the same Horn formulas i.e. formulas of the form

∀ x(f 1 ( x) = g 1 ( x), . . . , f n ( x) = g n ( x) → f ( x) = g( x)).
A particularly useful binary functional on M (and thus also on N ) is the application, denoted by app, which is defined as follows : app(f, x) = {y ; (x, y) ∈ f }. We shall often write f [x] for app(f, x). This allows to consider each set in M (and in N ) as a unary functional.

Remark. We can define a set f in M by giving f [x] for every x, provided that there exists a set X such that f

[x] = ∅ for all x / ∈ X : take f = x∈X {x}×f [x].
In the ground model M, every function is defined in this way but in general, this is false in N .

Quantifiers restricted to N

In [START_REF] Krivine | Realizability algebras III: some examples[END_REF], we defined the quantifier ∀x int , by setting :

∀x int F [x] = n∈N {n} → F [n]} = {n . π ; n ∈ N, π ∈ F [n]
}, so that we have :

ξ ∀x int F [x] ⇔ ξn F [n]
for all n ∈ N ; and it is shown that it is a correct definition of the restricted quantifier to N. Indeed the equivalence

∀x int F [x] ↔ ∀x(int[x] → F [x]
) is realized by a closed λ-term independent of F , called a storage operator. The formula int[x] is any formula of ZF which says that x is an integer. Theorem 3. If we take PL for the set of proof-like terms, and if the ground model M is transitive and countable, then there exists a countable realizability model N which has only standard integers, i.e. which is an ω-model.

Let T be the theory formed with closed formulas, with parameters in M, which are realized by a proof-like term.

T is ω-complete : indeed, if θ n ∈ PL and θ n || -F [n] for n ∈ N, let us set c = i θ i . Then cn || -F [n] for all n ∈ N and therefore c || -∀n int F [n], i.e. ∀n int F [n] ∈ T . It follows that T has a countable ω-model.
q.e.d.

Proposition 4.

Let

f : N → 2 and θ ∈ PL, θ ∃n int (f (n) = 1). Then θ ⋆ p . π 0 ≻ p ⋆ n . ̟ with f (n) = 1.
There exists

τ ∈ Λ such that τ n ≻ p if f (n) = 1 and τ n ≻ q 0 if f (n) = 0 : set τ = λx( i ξ i )x pq 0 with ξ n = K if f (n) = 1 and ξ n = KI if f (n) = 0.
Then we have τ ∀n int (f (n) = 1) and therefore θτ ⊥. We necessarily have : θ ⋆ τ . π 0 ≻ τ ⋆ n . π for some n ; furthermore, we have τ n ≻ p, otherwise we should have τ n ≻ q 0 , and thus θ ⋆ τ . π 0 / ∈ ⊥ ⊥. Therefore f (n) = 1. q.e.d.

Remark. This shows that, from any proof-like term which realizes a given Σ 0 1 arithmetical formula, we obtain a program which computes an integer satisfying this formula. Such a realizer is given by any proof of this formula by means of axioms which have themselves such realizers. The theory of classical realizability gives realizers for the axioms of ZF. We show below that the bar recursion operator realizes the axiom of dependent choice. Finally, in section 4, we get (rather complicated) proof-like realizers for the axioms "R is well ordered" and "Continuum hypothesis".

Execution of processes

Notation. If π = t 0 . . . . . t n-1 . π 0 , we shall write π . t for t 0 . . . . . t n-1 . t . π 0 . Thus, we obtain k π .t by replacing, in k π , the last occurrence of A by ℓ t A.

Lemma 5. If ξ ⋆ π ∈ ⊥ ⊥, then ξ ′ ⋆ π ′ ∈ ⊥ ⊥ and ξ ′ ⋆ π ′ . t ∈ ⊥ ⊥
, where ξ ′ ⋆ π ′ is obtained by replacing, in ξ ⋆ π, some occurrences of A by (ℓ u )A = k u .π 0 and some occurrences of the variabless q 0 , . . . , q N by t 0 , . . . , t N ; t 0 , . . . , t N , t, u are arbitrary terms.

Remark. In particular, it follows that ξ ⋆ π 0 ∈ ⊥ ⊥ ⇒ ξ ⊥.

Proof by recurrence on the length of the execution of ξ ⋆ π ∈ ⊥ ⊥ by means of rules 1 to 9. We consider the last used rule. There are two non trivial cases :

• Rule 7 (execution of cc) ; we must show cc ⋆ ξ ′ . π ′ . t ∈ ⊥ ⊥. We apply the recurrence hypothesis to ξ ⋆ k π . π, in which we replace : -π 0 by t . π 0 (thus π becomes π . t) ; -the last occurrence of A in k π = (ℓ t 0 ) . . . (ℓ t n-1 )A by (ℓ t )A (thus k π becomes k π .t ). Then, we make the substitutions in ξ, π, which gives

ξ ′ ⋆ k π ′ .t . π ′ . t. • Rule 8 (execution of A) ; we must show (ℓ u )A ⋆ ξ ′ . π ′ . t ∈ ⊥ ⊥.
We apply the recurrence hypothesis to ξ ⋆ π 0 , which gives ξ ′ ⋆ u . π 0 ∈ ⊥ ⊥, thus ξ ′ u ⋆ π 0 ∈ ⊥ ⊥ and therefore A ⋆ ξ ′ u . π ′ . t ∈ ⊥ ⊥ (rule 8) ; finally, we obtain (ℓ u )A ⋆ ξ ′ . π ′ . t ∈ ⊥ ⊥.

q.e.d. In each process ξ ⋆ π ∈ ⊥ ⊥, we define an occurrence of p, which is called efficient, by recurrence on the length of its reduction. If ξ = p, it is this very occurrence. Otherwise, we consider the last rule used in the reduction, and the definition is clear ; for example, if it is rule 7, and if the efficient occurrence in ξ ⋆ k π . π is in k π or in π, then we take the corresponding occurrence in cc ⋆ ξ . π. Lemma 6. If ξ ⋆ π ∈ ⊥ ⊥, then :

• ξ ′ ⋆ π ′ ∈ ⊥ ⊥, where ξ ′ ⋆ π ′ is obtained by substituting arbitrary terms for the non efficient occurrences of p.

• ξ ′ ⋆ π ′ / ∈ ⊥ ⊥ and indeed ξ ′ ⋆ π ′ ≻ q 0 ⋆ ̟, where ξ ′ ⋆ π ′ is obtained by substituting q 0 for the efficient occurrence of p, and arbitrary terms for the non efficient occurrences of p.

The proof is immediate, by recurrence on the length of the reduction of ξ ⋆ π by means of rules 1 to 9 : consider the last used rule.

q.e.d.

Corollary 7.

If ξ ⊤, ⊥ → ⊥ and ξ ⊥, ⊤ → ⊥, then ξ ⊤, ⊤ → ⊥, and thus : λx(x)I I ¬∀x 2ג (x = 0, x = 1 → ⊥) and W ∀x 2ג (∀y 2ג (y = 0, y = x → y ≤ x), x = 0 → ⊥).

Remark. These two formulas express respectively that the Boolean algebra 2ג is non trivial and that it is atomless.

We apply lemma 6 to ξ ⋆ p . p . π 0 . We have ξ ⋆ q 0 . p . π 0 ∈ ⊥ ⊥ and ξ ⋆ p . q 0 . π 0 ∈ ⊥ ⊥, which shows that the efficient occurrence of p is in ξ. Therefore ξ ⋆ t . u . π 0 ∈ ⊥ ⊥ for every t, u ∈ Λ, again by lemma 6.

The last two assertions follow from the fact that :

∀x 2ג (x = 0, x = 1 → ⊥) = ⊤, ⊥ → ⊥ ∪ ⊥, ⊤ → ⊥ and therefore : |∀x 2ג (x = 0, x = 1 → ⊥)| = |⊤, ⊤ → ⊥|.
q.e.d.

Theorem 8. For every sequence ξ i ∈ Λ (i ∈ N), there exists φ ∈ Λ such that :

• φi ≻ ξ i for every i ∈ N ;

• for every U ∈ Λ such that Uφ ⊥, there exists k ∈ N such that Uψ ⊥ for every ψ ∈ Λ such that ψi ≻ ξ i for every i < k.

Remark. Theorem 8 will be used in order to show properties of the bar recursion operator. In fact, the following weaker formulation is sufficient : For every sequence ξ i ∈ Λ (i ∈ N) and every U ∈ Λ such that :

(∀k ∈ N)(∃ψ ∈ Λ){U ψ ⊥, (∀i < k)(ψi ≻ ξ i )} there exists φ ∈ Λ such that U φ ⊥ and (∀i ∈ N)(φi ≻ ξ i ).
In the particular case of forcing, this is exactly the decreasing chain condition : every decreasing sequence of (non false) conditions has a lower bound (which is non false).

We set η i = λpλ q ξ i ; thus, we have η i ∈ PL and η i p q ≻ ξ i . Let η = i η i and φ = λx(η)x p q. Thus, we have η ∈ PL and φi ≻ ξ i . We may assume that η does not appear in U.

We have Uφ ⊥ ⇔ U ⋆ φ . π 0 ∈ ⊥ ⊥ (lemma 5). During the execution of the process U ⋆φ . π 0 , the constant η arrives in head position a finite number of times, always through φ (since it is deleted each time it arrives in head position), therefore as follows :

η ⋆ i . p . q . π ≻ ξ i ⋆ π.
Let k be an integer, greater than all the arguments of η during this execution and let ψ ∈ Λ be such that ψi ≻ ξ i for all i < k. Let us set τ = λxλpλ q ψx ; thus, we have τ i p q ≻ ψi ≻ ξ i for i < k. In the process U ⋆ φ . π 0 , let us replace the constant η by the term τ ; we obtain U ⋆ ψ . π 0 . The execution is the same, and therefore U ⋆ ψ . π 0 ∈ ⊥ ⊥ and Uψ ⊥.

q.e.d.

The bar recursion operator

We define below two proof-like terms χ and Ψ (which are, in fact, closed λ-terms).

In these definitions, the variables i, k represent (intuitively) integers and the variable f represents a function of domain N, with arbitrary values in Λ.

• We want a λ-term χ such that :

χkf zi ≻ f i if i < k ; χkf zi ≻ z if i ≥ k.
Therefore, we set : χ = λkλf λzλi((i<k)(f )i)z where the boolean (i<k) is defined by : (i<k) = ((kA)λd 0)(iA)λd 1 with 0 = λxλy y or K I, 1 = λxλy x or K and A = λxλy yx or C I. The term χkf is a representation, in λ-calculus, of the finite sequence (f 0, f 1, . . . , f k -1).

• We want a λ-term Ψ such that :

Ψgukf

≻ (u)(χkf )(g)λz(Ψguk + )(χ)kf z where k + = ((BW)(C)(B)BB)k or λf λx(f )(k)f
x is the successor of the integer k. Thus, we set :

Ψ = λgλu(Y)λhλkλf (u)(χkf )(g)λz(hk + )(χ)kf z.
where Y is the Turing fix point operator :

Y = XX with X = λxλf (f )(x)xf = (W)(B)(BW)(C)B.
The term Ψ will be called the bar recursion operator.

Realizing countable choice

The axiom of countable choice is the following formula :

(CC) ∀n∃x F [n, x] → ∃f ∀n int F [n, f [n]]
where F [n, x] is an arbitrary formula of ZF ε (see [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF]), with parameters and two free variables. The notation f [n] stands for app(f, n) (the functional app has been defined above).

Remark. This is a strong form of countable choice which shows that, in the realizability model N , every countable sequence has the form n → f [n] for some f . This will be used in section 4.

Theorem 9. λgλu(Ψ)gu 0 0 CC.

The axiom of countable choice is therefore realized in the model of ZF associated with the BBC realizability algebra (in fact, it is sufficient that the realizability algebra satisfies the property formulated in the remark following theorem 8).

We write the axiom of countable choice as follows :

(CC) ∀n¬∀x¬F [n, x], ∀f ¬∀n int F [n, f [n]] → ⊥ Let G, U ∈ Λ be such that G ∀n¬∀x¬F [n, x] and U ∀f ¬∀n int F [n, f [n]].
We set H = ΨGU and we have to show that H0 0 ⊥. In fact, we shall show that H0ξ ⊥ for every ξ ∈ Λ. Lemma 10. Let k ∈ N and φ ∈ Λ be such that (∀i < k)∃a i (φi F [i, a i ]). If Hk φ ⊥, then there exist a set a k and a term ζ k, φ ∈ Λ such that :

ζ k, φ F [k, a k ] and (Hk + )(χ)k φ ζ k, φ ⊥.
Define η k, φ = λz(Hk + )(χ)k φz, so that Hk φ ≻ (U)(χk φ)(G)η k, φ . If η k, φ ∀x¬F [k, x] then, by hypothesis on G, we have Gη k, φ ⊥. Let us check that :

(χk φ)(G)η k, φ ∀n int F [n, f k [n]] where f k is defined by : f k [i] = a i if i < k (i.e. i ∈ k) ; f k [i] = ∅ if i / ∈ k. Indeed, if we set φ ′ = (χkφ)(G)η k, φ , we have : φ ′ i ≻ φi F [i, a i ] for i < k and φ ′ i ≻ (G)η k, φ ⊥ for i ≥ k, and therefore φ ′ i F [i, ∅].
By hypothesis on U, it follows that (U)(χk φ)(G)η k, φ ⊥, in other words Hk φ ⊥. Thus, we have shown that, if Hk φ ⊥, then η k, φ ∀x¬F [k, x], which gives immediately the desired result.

q.e.d. Let φ 0 ∈ Λ be such that H0φ 0 ⊥. By means of lemma 10, we define φ k+1 ∈ Λ and a k recursively on k, by setting φ k+1 = χk φ k ζ k, φ k . By definition of χ, we have

φ k+1 i ≻ ζ k,φ k for i ≥ k.
Then, we show easily, by recurrence on k :

φ k+1 i ≻ φ i+1 i ≻ ζ i,φ i F [i, a i ] for i ≤ k ; Hkφ k ⊥. Therefore, we can define : a function f of domain N such that f [i] = a i for every i ∈ N ; and, by theorem 8, a term φ ∈ Λ such that φk ≻ ζ k, φ k for all k ∈ N. Therefore, we have φi F [i, f [i]] for every i ∈ N, that is to say φ ∀n int F [n, f [n]].
By hypothesis on U, it follows that Uφ ⊥. Therefore, by theorem 8, applied to the sequence ξ i = ζ i, φ i , there exists an integer k such that Uψ ⊥, for every term ψ ∈ Λ such that ψi ≻ ζ i, φ i for i < k. Thus, in particular, we have (U)(χk φ k )ξ ⊥ for every ξ ∈ Λ. Now, by definition of H, we have Hk φ k ≻ (U)(χk φ k )ξ with ξ = (G)λz(Hk + )(χ)k φ k z, and therefore Hk φ k ⊥, that is a contradiction. Thus, we have shown that H0φ 0 ⊥ for every φ 0 ∈ Λ.

q.e.d.

Realizing dependent choice

The axiom of dependent choice is the following formula :

(DC) ∀x∃y F [x, y] → ∃f ∀n int F [f [n], f [n + 1]]
where F [x, y] is an arbitrary formula of ZF ε , with parameters and two free variables. The notation f [n] stands for app(f, n) as defined above.

Theorem 11. λgλu(Ψ)gu 0 0 DC. The axiom of dependent choice is therefore realized in the model of ZF associated with the BBC realizability algebra (or, more generally, with any realizability algebra satisfying the property formulated in the remark after theorem 8).

A well ordering on R

In this section, we use the notations and the results of [START_REF] Krivine | Realizability algebras III: some examples[END_REF] and [START_REF] Krivine | On the structure of classical realizability models of ZF[END_REF]. If F is a closed formula of ZF ε , the notation F means that there exists a proof-like term θ ∈ PL 0 (i.e. a closed λ c -term) such that θ F . In section 2, we have realized the axiom of countable choice (CC). We replace F [n, x] with int(n) → F [n, x] and we add a parameter φ ; we obtain : (∀φ ε 2 N )∃g∀n int (φ(n) = n ∈ g ). Now, in [START_REF] Krivine | On the structure of classical realizability models of ZF[END_REF], we have built an ultrafilter D : 2ג → 2 on the Boolean algebra ,2ג with the following property : the model N , equipped with the binary relations D( x ∈ y ), D( x = y ), is a model of ZF, denoted M D , which is an elementary extension of the ground model M. Moreover, M D is isomorphic to a transitive submodel of N (considered as a model of ZF), which contains every ordinal of N . M D satisfies the axiom of choice, because we suppose that M |= ZFC. If we suppose that M |= V = L, then M D is isomorphic to the class L N of constructible sets of N . For every φ : N → 2, we have obviously D(φ(n)) = φ(n). It follows that :

∀φ ∀n int ∃x F [n, x, φ] → ∃f ∀n int F [n, f [n], φ]
(∀φ ε 2 N )∃g∀n int (φ(n) = D n ∈ g ). This shows that the subset of N defined by φ is in the model M D : indeed, it is the element g of this model. We have just shown that N and M D have the same reals. Therefore, R is well ordered in N , and we have :

(R is well ordered ). Moreover, if the ground model M satisfies V = L, we have :

(every real is constructible). Therefore, the continuum hypothesis is realized. Since the models N and M D have the same reals, every formula of analysis (closed formula with quantifiers restricted to N or R) has the same truth value in M D , M or N . It follows that : For every formula F of analysis, we have M |= F if and only if F . In particular, we have F or ¬F .

  for every formula F [n, x, φ] of ZF ε . In particular, taking φ ε2 N and F [n, x, φ] ≡ (x = φ(n)) ∧ (x = 0 ∨ x = 1) (i.e. (n, x) ε φ ∧ (x = 0 ∨ x = 1)), we find : (∀φ ε 2 N )∃f ∀n int ((f [n] = φ(n)) ∧ (f [n] = 0 ∨ f [n] = 1)). For any set f in the ground model M, let g = {x ; f [x] = 1}. We have trivially I n ∈ g = f [n] = 1 . 1 It follows that : ∀f ∃g∀n ((f [n] = 0 ∨ f [n] = 1) → f [n] = n ∈ g ).We have shown that :

The notations 2ג and F where F is a closed formula of ZF, with parameters in the realizability model N , are defined in[START_REF] Krivine | Realizability algebras III: some examples[END_REF][START_REF] Krivine | On the structure of classical realizability models of ZF[END_REF]. 2ג is called the characteristic Boolean algebra of N . We have F ε .2ג

The proof of theorem 11 is almost the same as theorem 9. We write the axiom of dependent choice as follows : (DC)

We set H = ΨGU and we have to show that H0 0 ⊥. In fact, we shall show that H0ξ ⊥ for every ξ ∈ Λ.

Lemma 12. Let a 0 , . . . , a k be a finite sequence in M and φ ∈ Λ be such that

] then, by hypothesis on G, we have Gη k, φ ⊥. We check that :

Thus, we have shown that, if Hk φ ⊥, then η k, φ ∀y ¬F [a k , y], which gives immediately the desired result.

q.e.d. Let φ 0 ∈ Λ be such that H0φ 0 ⊥ and let a 0 = ∅. Using lemma 12, we define φ k+1 ∈ Λ and a k+1 in M recursively on k, by setting φ k+1 = χk φ k ζ k, φ k , where ζ k, φ k is given by lemma 12, where we set φ = φ k . By definition of χ, we have

Then, we show easily, by recurrence on k :

Therefore, we can define : a function f of domain N such that f [i] = a i for every i ∈ N ; and, by means of theorem 8, a term φ ∈ Λ such that φk ≻ ζ k, φ k for every k ∈ N. Thus, we have φi F

By hypothesis on U, it follows that Uφ ⊥. Therefore, by theorem 8, applied to the sequence ξ i = ζ i, φ i , there exists an integer k such that Uψ ⊥, for every term ψ ∈ Λ such that ψi ≻ ζ i, φ i for i < k. Thus, in particular, we have (U)(χk φ k )ξ ⊥ for every ξ ∈ Λ. But, by definition of H, we have Hk φ k ≻ (U)(χk φ k )ξ with ξ = (G)λz(Hk + )(χ)k φ k z, and therefore Hk φ k ⊥, that is a contradiction. Thus, we have shown that H0φ 0 ⊥ for every φ 0 ∈ Λ.

q.e.d.