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Introduction

Integrated optics 1s an equivalent of microlectronics but with light. This 1s a key field in new technologies due to 1its
potential of low-cost and high-speed integrated circuits. Microresonators (MRs) are major components thanks to their
properties as filters or sensors. Whispering Gallery Modes (WGMSs) rules the MRs' physics. These modes appear near
the MRs' surface, when light is confined by total internal reflections. Polymers are well adapted materials due to their
wide range of properties. We use the UV210, which refractive index 1s tunable. Moreover, pedestals offer interestig
possibilities by improving efficiency and giving new geometries for coupling light into MRs. Fig. 1: schematic WGM

Cleanroom protocole

Process steps Parameters
Spin-coating (v, a, t) 900 rpm, 5000 rpm.s™, 30 s
Softbake (t, T) 3 min at 140°C

Exposure dose

2
(E, t at Apyy= 248 nm) 20 mJ.cm™, 10 s

Post-exposure softbake(t, T) 1 min at 120°C
Development (product, t) Microposit MF CD-26, 30s
Final softbake (t, T) 5h at 125°C

Buffer HF Improved (Transene)

etching (t) 20's

Fig. 4 : Ring microresonator (SEM imagery)

Optical characterizations and results

Spectral analysis : resonances in MRs
Optical spectrum analyser (OSA)

Optical powermeter The WGM physics only allow light to enter into the MRs only if the
A é I wavelength 1s an integer multiple of the geometrical perimeter.
laser source Polatzer_ |pwvaio | e[ cco | EEEEERES Using a broadband source, the output spectrum (after the MRs)
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j p°s't'°“ers\ range (FSR) and can be measured on spectra or calculated by :
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where P 1s the geometrical perimeter of the MR and n*? the
effective group index, relevant index for a broadband source.
Measured FSR are 2.86 nm for the ring microresonator and 2.71 nm
Propagation losses measurements determine the amount of light |for the racetrack shape. FWHM (o01) give a quality factor greater
lost during propagation in a rib waveguide on pedestal by cut-back |than 500. Those experimental values leads to an n*'" = 1.69 instead

Fig. 5 : Micro-optical injection plateform for optical losses measurements and spectral
analysis of resonances into MRs.
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Op tical I?SSGS in dB/cm. Fig. 6 : graphical measurement of optical
We obtain losses around 20 dB/cm. losses

Fig. 7 : experimental response of a red broadband source into a racetrack pedestal MR
(on the left) and aring pedestal MR (on the right)

Conclusion

> Deep UV lithography + chemical etching = polymer optical components on pedestal for integrated optics.

> Optical characterizations : losses around 20 dB/cm, FSR = 2.86 nm (ring MR), 2.71 nm (Racetrack MR), n" = 1.69.

> Building deep UV210 optical components on pedestal, from waveguides structure to MRs 1n a simple and reproductible way.

> These specific UV210 polymer family components are quite easy to produce and they can be implemented for filters or futures optical
sensors applications.



