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Introduction
Laurent Najman and Pascal Romon

The present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at
CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various
backgrounds, ranging from mathematics to computer science, with a focus on both theory and
applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all
over the world. The challenge of finding a common ground on the topic of discrete curvature was
met with success, and these proceedings are a testimony of this work.

Discrete curvature has been a fast-growing topic and common denominator in many fields in
the past decade. Indeed, many applications and theoretical constructions are related to or rely
on some notion of discrete curvature or one of its avatars, such as the Laplace-Beltrami operator.
More interestingly, new concepts and new approaches have emerged, sometimes from seemingly
disconnected fields, allowing a better understanding of curvature in the discrete realm, as well as
new ways to tackle applications. In parallel, new challenges arise in computer science that require
more sophisticated theoretical apparatus, often using the latest theoretical developments.

Discrete curvature may arise on discretized surfaces, raising the problem of convergence to the
smooth model. In that case, the curvature—or more appropriately the curvatures—need to be de-
fined, and are the goal as well as an obstacle to convergence (Morvan & Sun, Fu, Tai). Its definition
allows countless applications (Bac et al., Olsson & Boykov). Discrete curvature may also appear
as geometrically relevant quantity in a discrete space otherwise disconnected from actual smooth
geometry, such as a graph (Keller). What we have seen in this meeting are different definitions
and concepts of discrete curvature, suited to different problems and settings. However, they all
share the common trait of defining a notion according to its geometric consequences and properties.

One example of recent development is the increasing role played by optimal transportation, an
old problem with new aspects which applies particularly well to the discrete setup. The Wasser-
stein metric may be used to define curvature and deduce combinatorial, functional and topological
information (Bauer et al., Maas), but also to compare shapes (Alliez et al., Memoli). This com-
parison principle is found also on polytopes (Baird), and analogous ideas appear in deformation
and shape matching using various energies (Cremers et al., Sorkine). And it relates to the metric
approach to curvature (Saucan).

The Laplace-Beltrami operator and energy functional are linked to the curvature and play a key
role in understanding the geometry and spectrum, and of course in countless applications, such
as segmentation, inpainting (Stuehmer), curvature flows (Aflalo et al., Boykov). A more profound
approach to this operator can be achieved through exterior differential calculus (Memari, Leok),
which seeks to preserve (some of) the structural properties of the continuum. Other functionals
may intervene such as the Willmore functional or the Hilbert-Einstein functional (Izmestiev) to
characterize the geometry.

A similar albeit different approach to differential calculus comes from integrable theory, de-
veloped in particular by the German school. The choice of a particular mesh (circular, quad-
based) implies analogous properties to those of special surfaces (e.g. minimal or constant mean
curvature surfaces) or special parametrization such as conformal maps. This yields natural and
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robust definitions for the curvature (Hoffmann) and applies remarkably to architectural construc-
tions (Pottmann); at the same time, it relates to discrete complex analysis (Bobenko & Günther,
Skopenkov).

Digital geometry also leads back to curvature, which can be defined on pixels and voxels in a
very geometric way (Lachaud), and applies to topological problems (Kenmochi et al.) and flows
(Imiya). One of the crucial issues there, as in many of the above cases (but not all), is the one of
consistency or convergence properties, thus allowing to compute smooth quantities by refinement.

The success of this meeting is an encouragement to go further ahead. In addition to these
proceedings, we plan to edit in the near future a survey of the different approaches to discrete
curvature, based on what was presented here at CIRM, and reaching beyond. Such a resource will
be very valuable to both researchers and students wishing to enter this rich field, and will help to
disseminating and expanding the theory.

LIGM , ESIEE, 2, boulevard Blaise Pascal, Cité Descartes, BP 99, 93162 Noisy-le-Grand cedex, France •
l.najman@esiee.fr

Université Paris-Est, LAMA (UMR 8050), UPEMLV, F-77454, Marne-la-Vallée, France • pascal.romon@u-
pem.fr
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Curvature measures, normal cycles
and asymptotic cones
Xiang Sun and Jean-Marie Morvan

Abstract
The purpose of this article is to give an overview of the theory of the normal cycle

and to show how to use it to define a curvature measures on singular surfaces embedded in
an (oriented) Euclidean space E3. In particular, we will introduce the notion of asymptotic
cone associated to a Borel subset of E3, generalizing the asymptotic directions defined at
each point of a smooth surface. For simplicity, we restrict our singular subsets to polyhedra
of the 3-dimensional Euclidean space E3. The coherence of the theory lies in a convergence
theorem: If a sequence of polyhedra (Pn) tends (for a suitable topology) to a smooth surface
S, then the sequence of curvature measures of (Pn) tends to the curvature measures of S.
Details on the first part of these pages can be found in [6].

1. Smooth surfaces and polyhedra

1.1. Smooth surfaces. Let us deal with the local Riemannian geometry of submanifolds. We
endow E3 with its scalar product < ., . > and its associated Levi-Civita connexion ∇̃. In
our context, an (oriented) smooth surface S of the (oriented) Euclidean space E3 means a 2-
dimensional(oriented) C2-manifold embedded in E3. We will only deal with closed oriented sur-
faces bounding a compact domain in E3. Such surfaces are endowed with a Riemannian structure
induced by < ., . >. We still denote by < ., . > their metric. With such a structure, the embedding
of S in E3 becomes an isometric embedding. We denote by TS the tangent bundle of S and by ξ be
the unit normal vector field compatible with the orientation. TheWeingarten tensor A : TS → TS,
is the symmetric endomorphism defined for all X in TS by A(X) = −∇̃Xξ. The second funda-
mental form of S is the symmetric tensor defined for every X,Y in TS by h(X,Y ) =< A(X), Y >.
The real function H = 1

2 trace A is called the mean curvature of S, and the real function G = det A
is called the Gauss curvature of S.

1.2. Polyhedra. We consider here (triangulated) polyhedra as 2-dimensional piecewise linear sur-
faces embedded in E3. These polyhedra will be closed, bounding a 3-dimensional domain. The
area of the triangles, the length of the edges, the solid angle at vertices and the angle of incident
triangles describe their geometry. If P is a polyhedron, we denote by V, resp. E, resp. T the set
of its vertices, resp. edges, resp. triangles. Let us give precise definitions of angles.

Definition 1. Let P be a (triangulated) polyhedron in E3.
(1) The solid angle of a vertex p of P is defined by

αp =
∑

i

αip ,

where the αip are the angles at p of the triangles ti incident to p.

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 00X99.
Key words. curvature measure, shape operator, surfaces, normal cycle, asymptotic cones.
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αα i i−1

p

(a) The solid angle at p

e

(b) The angle between two ori-
ented triangles incident to e

(2) The angle ∠(e) between two oriented triangles t1 and t2 (with a common edge e) is the
angle angle defined by their oriented normals.

2. A global definition of the mean curvature of a convex polyhedron

As an example, we discuss here a possible definition of the global mean curvature of a convex
polyhedron, by using the well known Steiner formula of the volume of tubes (see for instance [6]).
This formula gives the behavior of the volume Vol3(Kε) of the tube Kε of radius ε of a convex
subset K of E3. By definition, Kε is the set of points at distance less or equal to ε of K. Its volume
is a polynomial in ε, whose coefficients (called the Quermassintegrale of Minkowski) depend only
on K.
Theorem 2. (1) Let K be a convex subset of E3. Then for all ε ≥ 0, there exist constants

Φk(K), 0 ≤ k ≤ 3 such that

(2.1) Vol3(Kε) =
3∑

k=0
Φk(K)εk.

In particular, the coefficients Φk(K)’s can be explicitly computed in special situations :
(2) If K is a convex domain with smooth boundary S = ∂K, then

(2.2) Vol3(Kε) = Vol3(K) +A(S)ε+ (
∫

S

Hda)ε2 + 4
3πε

3.

(3) If K is a convex domain with polyhedral boundary P = ∂K then,

(2.3) Vol3(Kε) = Vol3(K) +A(P )ε+ (
∑

a

∠(a)l(a))ε2 + 4
3πε

3.

Here, A(S) (resp. A(P )) denotes the area of S (resp. P ).

Let us compare (2.2) and (2.3). By analogy with the smooth case, one can define the global
mean curvature of a convex domain K with polyhedral boundary P as the coefficient Φ2(K), and
give the following definition, with the previous notations:

Definition 3. The global mean curvature of a convex domain with polyhedral boundary (or
simply, if there is no possible confusion, the global mean curvature of a convex polyhedron) of E3

is the real number ∑

e∈E
l(e)∠(e).

We remark that it can be proved that all the Φk satisfy the following basic properties: If A and
B are convex subsets such that A ∪B and A ∩B are convex, then for all k ∈ {0, 1, 2, 3},
(2.4) Φk(A ∪B) = Φk(A) + Φk(B)− Φk(A ∩B).
This implies that, in order to compute the curvatures of a complicated convex subset, on can
decompose it into simple convex subsets and apply (2.4). Moreover, if Cn is a sequence of convex
subsets tending to a convex subset C in the Hausdorff sense, then limn Φk(Cn) = Φk(C). In
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particular, if Pn is a sequence of convex polyhedra tending to a convex surface S in the Hausdorff
sense,

lim
n

∑

ekn∈En

l(ekn)∠(ekn) =
∫

S

Hda,

where da denotes the area form on S.

3. Invariant differential 2-forms and normal cycle

The theory of the normal cycle is still in progress. It has been introduced theory by P. Wintgen
and M. Zahle to give a general method to define curvatures of a large class of objects, without
any assumptions of smoothness or convexity, [7], [8]. It has been successfully developed by many
authors, in particular [4], [5]. Curvature measures are defined as integrals of invariant differential
forms on a generalized unit normal bundle. The normal cycle of a singular object is this generalized
unit normal bundle. Let us be more precise.

(1) First of all, one the following differential 2-forms on E3 × E3: If (x1, x2, x3, y1, y2, y3) are
the standard coordinates on E3 × E3 identified with TE3, we put

(3.1)
ωG = y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2;

ωH = y1(dx2 ∧ dy3 + dy2 ∧ dx3) + y2(dx3 ∧ dy1 + dy3 ∧ dx1)
+ y3(dx1 ∧ dy2 + dy1 ∧ dx2),

where ∧ is the exterior product of differential forms.
(2) Then, one defines the normal cycle. The theory being very general, we describe here this

construction in very special cases: closed smooth surfaces bounding a domain, compact
convex domains and closed polyhedra bounding a domain of E3.

• Let S be a (closed) surface bounding a domain D of E3, the unit normal bundle of D is
the manifold

ST⊥D = {(p, ξp), p ∈ S, ξp unit normal vector at p, }
endowed with the orientation induced by the one of D. The normal cycle N(D) of D is
nothing but the 2-current canonically associated to ST⊥D: If ω is any 2-differential form
defined on E3 × E3, the duality bracket <,> is given by < ST⊥D,ω >=

∫
ST⊥D ω.

• Let C be a compact convex domain of E3. The normal cone Cp(C) of a point p of C is the
set of unit vectors (p, ξp) such that

∀q ∈ C,−→pq · ξp ≤ 0.
The normal cone C(C) of C is the union of the Cp(C), when p runs over C. The normal
cycle N(C) of C is nothing but the 2-current associated to C(C) endowed with its canonical
orientation.

• A crucial property of the normal cycle is its the additivity: if A and B are subsets of E3

admitting a normal cycle, and such that A ∩ B admits a normal cycle, then, N(A ∪ B)
admits a normal cycle and

(3.2) N(A ∪B) = N(A) +N(B)−N(A ∩B).
Since a compact 3-polyhedron is the union of (convex) tetrahedra, triangles, edges and

vertices, we define the normal cycle of a polyhedron by decomposing it into (convex)
simplices, and we apply (3.2). Of course, the result is independent of the decomposition
into convex subsets.

We will now define curvature measures in an unified way, which will, in some sense, generalize our
previous definitions in the pointwise and global situations, described in the previous paragraphs.
These measures will be defined as measures on E3. We denote by B the set of Borel subsets of E3.

Definition 4. Let M be a compact smooth surface or a polyhedron of E3 bounding a domain D.
(1) The Gaussian curvature measure of M is defined for every B ∈ B by

ΦGM (B) =< N(D), χB×E3ωG > .

5
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(2) The mean curvature measure of M is defined for every B ∈ B by

ΦHM (B) =< N(D), χB×E3ωH >,

where χB×E3 denotes the characteristic function of B × E3 in E3 × E3.

Let us give the explicit expression of these curvature measures for smooth surfaces and for
polyhedra, (see [5] for instance).

Theorem 5. (1) Let S be a smooth closed surface of E3.
(a) The Gaussian curvature measure of S is defined for every B ∈ B by

ΦGS (B) =
∫

B∩S
Gda.

(b) The mean curvature measure of S is defined for every B ∈ B by

ΦHM (B) =
∫

B∩S
Hda.

(2) Let P be a closed polyhedron of E3.
(a) The Gaussian curvature measure of P is defined for every B ∈ B by

ΦGS (B) =
∑

v∈V∩B
αv.

(b) The mean curvature measure of P is defined for every B ∈ B by

ΦHP (B) =
∑

e∈E∩B
l(e ∩B)β(e),

where β(e) ∈ [−π, π] is the angle between the normals to the triangles incident on e.
The sign of β(e) is positive if e is convex and negative if e is concave.

In [5], J. Fu proved a theorem related to the convergence of these curvatures. Details on the
proof and extensions can be founded in [1], [3]. We cite one of these extensions. We recall that
a polyhedron is said to be closely inscribed in a surface S if its vertices belong to S, and if the
orthogonal projection of P to S is a bijection. If B be the relative interior of an union of triangles,
we denote by pr(B) the orthogonal projection of B on S.

Theorem 6. Let P be a triangulated polyhedron closely inscribed in a smooth surface S. Let B
be the relative interior of an union of triangles. Then,

|ΦGP (B)− ΦGS (pr(B))| ≤ CSKε; |ΦHP (B)− ΦHS (pr(B))| ≤ CSKε,

where CS is a constant depending on the geometry of S, and

K =
∑

t⊂B

cr(t)2 +
∑

t⊂B,t∩∂B 6=∅

cr (t), ε = max{ cr(t), t ∈ T ∩B},

cr(t) denoting the circumradius of the triangle t.

In other words, if P "approximates" S, the curvatures of P "approximate" the curvatures of S.

4. Asymptotic cones

We denote by Ξ(E3) the C∞-module of smooth vector fields on E3, and by ΞS(E3), (resp.
ΞP (E3)) the restriction to S (resp. P ) of smooth vector fields on E3.

Definition 7. If Z ∈ Ξ(E3), the asymptotic 2-form associated to Z is the differential 2-form of
E3 × E3 defined at any point (p, n) ∈ E3 × E3 by

(4.1) hZ(p,n) = (n× Z) ∧ Z,

where n× Z is the cross product in E3 of the vector field n (identified with the point n) and the
vector field Z.
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In this definition, we have used the usual identification of vectors and 1-forms by the standard
scalar product. Remark that n is always in the kernel of hZ(p,n). Using the duality between 2-forms
and 2-currents, we will evaluate hZ on the normal cycle of Borel sets of any smooth surfaces S
in E3. Let G : S → E3 × E3 be its Gauss map defined for every p ∈ S by G(p) = (p, ξp). The
following is a simple computation, (see [1] or [3] for instance). We denote by prTS the orthogonal
projection on the tangent space of S.
Theorem 8. (1) Let S be a smooth surface in E3 bounding a domain D, and p ∈ S.

(a) For every vector field Z ∈ ΞS(E3),
(4.2) G∗p(hZ) = hp(prTSZ, prTSZ)da.

(b) Let B be a Borel subset of E3. For any Z ∈ ΞS(E3),

(4.3) < N(D), χB×E3hZ >=
∫

B∩S
h(prTSZ, prTSZ)da.

(2) Let P be a polyhedron in E3 bounding a domain D. For any Borel subset B in E3 and any
constant vector field Z of E3,

(4.4)
< N(D), χB×E3hZ > =

∑

e∈E

l(e ∩B)
2 [(∠(e)− sin∠(e)) < Z, e+ >2

+ (∠(e) + sin∠(e)) < Z, e− >2],
where e+ (resp. e−) is the normalized sum (resp. difference) of the unit outward normal
vectors to the triangles incident to e.

Let M be any smooth surface or polyhedron bounding a domain D, and let Z ∈ ΞM (E3). We
give the following definition:
Definition 9. The asymptotic curvature measure µX,M associated to M and the vector field Z
is the signed Borel measure defined for any Borel subset B ⊂ E3 by:
(4.5) µZ,M (B) =< N(D), χB×E3hZ > .

Now let us generalize the notion of asymptotic directions of smooth surfaces to integral currents.
Let D2(E3 × E3) denote the space of integral 2-currents. For every C ∈ D2(E3 × E3), we define
the following quadratic function φ on the module Ξ(E3):

φC : Ξ(E3)→ R
X 7→< C,X ∧ (n×X) > .

(4.6)

Moreover, identifying the space of constant vector fields Z ∈ ΞB∩S(E3) with E3, we can define for
every C ∈ D2(E3 × E3), the quadratic function φcC as the restriction to E3 of φC . This leads to
the following
Definition 10. The asymptotic cones associated to the current C ∈ D2(E3 × E3) are the subsets
defined by:
(4.7) CC = {Z ∈ Ξ(E3), φC(Z) = 0}, and CcC = CC ∩ E3.

If M is a surface or a polyhedron bounding D, we put
CB(M) = CN(B∩D) and CcB(M) = CB(D) ∩ E3.

With the previous notations, using Theorem 8, we get

(4.8) CB(S) = {Z ∈ Ξ(E3),
∫

B∩S
h(prTSZ, prTSZ)da = 0},

where h is the second fundamental form of S. Remember that classically, one says that a vector
field X tangent to S is asymptotic if
(4.9) h(X,X) = 0.
It is then natural to define the asymptotic cone over each point p ∈ S as the cone in TpE3 defined
by:
(4.10) Cp(S) = {Z ∈ ΞS(E3), hp(prTpSZ, prTpSZ) = 0},

7
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where hp denotes the second fundamental form of S at the point p. Each Cp(S) is a degenerated
cone (the union of two planes), each one being spanned by an asymptotic direction and by the
normal of the surface at p. If P is a polyhedron and B is a Borel subset of E3, by Theorem 8, we
characterize the asymptotic cone CcB(P ) of P over B as follows:

(4.11)
CcB(P ) = {Z ∈ E3,

∑

e edge of T

l(e ∩B)
2 [(∠(e)− sin∠(e)) < Z, e+ >2

+ (∠(e) + sin∠(e)) < Z, e− >2] = 0}.
Another simpler cone associated to B demanding less computation can be given by the equation:

(4.12)
∑

e∈E
l(e ∩B)∠(e) < Z, e >2= 0.

Both of them can be used in different contexts. In the smooth case the second one (4.12) is
obtained by replacing h by h ◦ j in (4.9) where j denotes a rotation of π2 in the tangent plane.

With the same techniques as in the proof of Theorem 6, see [5], [1], [3], [2], we get the following
result. In the assumptions of the theorem, we introduce the notion of fatness of a triangulation. If
P is a triangulated polyhedron, the fatness of each of its triangle t is the real number A(t)

l2 where
A(t) denotes the area of t and l the length of its longest edge. The fatness of P is the infimum of
the fatness of its triangles. Roughly speaking, the fatness of P is not too small if the angles of its
triangles are not too small...

Theorem 11. Let S be a smooth surface of E3, let (Pn) be a sequence of (triangulated) polyhedra
closely inscribed in S, and let Z be a constant vector field. Suppose that the Hausdorff limit of Pn
is S when n tends to infinity, and the fatness of Pn is uniformly bounded from below by a strictly
positive constant. Then, for any Z ∈ E3,
(4.13) lim

n→∞
µZ,Pn

= µZ,S ,

for the weak convergence of measures.

5. Examples

Let us consider the following hyperbolic surface S given by equation:
(5.1) z = 1.1x2 − y2.

Let us draw a triangulation T on it. First of all we select 4 points p1, ..., p4 on S and build
the points q1, ..., q4 on T such that pr qi = pi, i = 1, 2, 3, 4. Then we draw 4 balls B1, ..., B4 (with
the same radius) centered at q1, ..., q4 respectively. These balls are the Borel sets from which we
deduce 4 cones C1, ..., C4 computed by formula 4.11. These cones are centered at q1, ..., q4. We get
figure 5.1.

Now we only select one point p on S, we build the point q on T such that pr q = p and we draw
the plane P spanned by the triangle containing q. Associated to some Borel subset, we build the
cone C, centered at q. The intersection of P and C is reduced to 2 lines which approximated the
asymptotic directions of S at p. We get figure 5.2.

Finally in figure 5.3, we plot some asymptotic lines of S and the approximated asymptotic
directions computed by the previous process.
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Figure 5.1. Four cones in blue in the center of their corresponding Borel sets in
yellow, computed by using the triangulation.

(a) The blue plane is the plane spanned by a
triangle of T . It approximated the tangent plane
of the smooth surface.

(b) The red lines are the intersections of the
cone with the blue plane. They approximate
the asymptotic directions of the surface.

Figure 5.2

Figure 5.3. The blue lines are some asymtotic lines of S and the red lines are the
approximation of asymptotic directions of S by the process described in 5.2.
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Piecewise linear approximation of smooth
functions of two variables

Joseph H.G. Fu

Abstract
The normal cycle of a singular subset X of a smooth manifold is a basic tool for

understanding and computing the curvature of X. If X is replaced by a singular function on
Rn then there is a natural companion notion called the gradient cycle of f , which has been
introduced by the author and by R. Jerrard. We discuss a few fundamental facts and open
problems about functions f that admit gradient cycles, with particular attention to the first
nontrivial dimension n = 2.

1. Introduction

The Federer-Fleming theory of integral currents (developed in detail in Chapter 4 of [6]) is
a mathematical tool designed to extend certain notions of differential geometry to spaces with
singularities. Typically it is used to study first order problems in the calculus of variations such
as the Plateau problem. However, it also works spectacularly well in the study of curvature
for subspaces with singularities, providing the natural setting for Federer’s theory of curvature
measures and its extensions [5, 16, 9]. The key idea here is that of the normal cycle N(X) of a
singular subspace X embedded in a smooth manifold M . The normal cycle is an integral current
living in the tangent sphere bundle of M that functions as a substitute for the manifold of unit
normals of a smooth submanifold. It has been applied effectively in surface modeling, particularly
in the problem of approximating a given surface, given either formally as a smooth submanifold
or empirically in terms of collections of data points, by a polyhedron [4].

Despite its many advantages, the natural scope of the theory remains murky in the sense that
a clear geometric characterization of the class of sets X admitting a normal cycle is unknown.
This general problem is essentially analytic. In order to study it without getting distracted by
secondary topological questions, it is convenient to consider a closely related problem in which the
singular subset X is replaced by a singular function f : Rn → R. In this case the normal cycle
N(X) is replaced by the gradient cycle D(f), an integral current living in the cotangent bundle
T ∗Rn ' Rn × Rn∗ that serves a substitute for the graph of the gradient of f (or, more correctly,
its differential, although we will conflate the two in the present note). If D(f) exists then f is
said to be a Monge-Ampère function. This class has been studied by the present author and his
collaborator Ryan Scott [8, 10, 11] as well as by R. Jerrard [12, 13]. We describe here some basic
issues and progress in the subject, with particular attention to the case n = 2.

2. The normal cycle and the gradient cycle

For simplicity let us take the ambient smooth manifold M to be Rn, and assume that X ⊂ Rn
is compact. The normal cycle N(X) is an integral current of dimension n− 1 living in Rn × Sn−1

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 00X99.
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satisfying a few inevitable conditions. Let x1, . . . , xn be standard coordinates for Rn and y1, . . . , yn
the companion coordinates for the Rn∗ ' Rn that contains the sphere Sn−1. Then

• the support of N(X) must be compact.
• N(X) has boundary zero in the sense of Stokes’ theorem, i.e. evaluation of N(X) against
any exact (n− 1)-form vanishes.

• N(X) is Legendrian, i.e. evaluation of N(X) against any (n − 1)-form expressible as a
wedge product with the canonical 1-form α =

∑
yi dxi vanishes.

• Finally, N(X) yields the expected Morse theory of height functions restricted to X.
The precise form of the last condition is somewhat awkward, so we refrain from stating it here. The
upshot is that these four conditions are enough to determine N(X) uniquely. For truly pathological
subsets X this current will not exist at all. It only exists for certain “tame" subsets X, but when
it does exist it is defined unambiguously.

2.1. Monge-Ampère functions. The companion theory for singular functions may be described
in analogous terms, with the advantage that the last condition is easier to understand. Note that
the geometric and the functional settings are closely related: if f is smooth and X := {(x, t) : x ∈
Rn, t ≤ f(x)} then N(X) is the image of graph(∇f) ⊂ Rn × Rn under the map

(x; ξ) 7→
(
x, f(x); (−ξ; 1)√

1 + ξ2

)

and conversely. Another major conjecture states that this remains true also for singular f .
In order to state the fundamental uniqueness theorem we recall that Rn ×Rn carries a natural

symplectic 2-form

ω :=
n∑

i=1
dxi ∧ dyi.

Theorem 1. [8, 12] Suppose f : Rn → R with ∇f ∈ L1
loc. Then there exists at most one closed

integral current T of dimension n in Rn × Rn such that∫

T

ω ∧ ψ = 0 for all ψ ∈ Ωn−2(Rn × Rn)(2.1)

volume(T ∩ π−1K) <∞ for all compact K ⊂ Rn(2.2)
T ∩ π−1(p) = {(p,∇f(p))} for a.e. p ∈ Rn.(2.3)

Here π : Rn×RnRn is the projection to the first factor. If it exists, the current T of Theorem 1
is the gradient cycle of f , denoted D(f), and f is said to be a Monge-Ampère (MA) function.
We denote this class by MA = MA(Rn).

Condition (2.1) says that T is Lagrangian. The point is that if V ⊂ Rn×Rn is a smooth oriented
submanifold of dimension n then V is Lagrangian in the usual sense iff the current T defined by
integration over V satisfies (2.1).

The models of MA functions are the C2 functions, with D(f) = graph(∇f) (here and elsewhere
we identify the manifold graph(∇f) with the current obtained by integration over it with respect
to the orientation induced by the standard orientation of Rn). In this case∫

D(f)
φ(x, y) dy1 ∧ · · · ∧ dyn =

∫

Rn

φ(x,∇f(x)) detD2f(x) dx.

for φ ∈ Cc(Rn×Rn), thus motivating the name of the class. The Lagrangian condition is equivalent
in this case to the calculus rule ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
. The area formula yields the approximate relation

(2.4) volume(D(f)) '
∑

#I=#J

∫ ∣∣∣∣∣det
(

∂2f

∂xi∂xj

)

i∈I,j∈J

∣∣∣∣∣ .

In the case n = 1 this class is nothing new: f ∈ MA(R) iff the derivative f ′ has locally
bounded variation. Alternatively, this class may be described as the set of all functions that may
be expressed as f = g − h where g, h are convex. Returning to the analogy with the geometry of
singular subsets of Rn, this corresponds to the fact that a curve in Rn has finite total curvature
iff its unit tangent vector has bounded variation.
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On the other hand, for n ≥ 2 the class MA does not fit neatly into any known analytic category.
For one thing, we know that MA(Rn) is not closed under addition for n ≥ 2 (cf. [10]). While
any f ∈ MA(R2) must be continuous, this is not known for n ≥ 3. While it follows directly from
the definitions that any f ∈ MA(Rn) must have gradient ∇f ∈ BVloc (the class of such functions
is sometimes denoted BV2

loc), it is easy to construct examples of f ∈ BV2
loc(Rn), n ≥ 2, that are

not MA. While D. Pokorný and J. Rataj [14] have recently shown that any function on Rn that
is expressible as the difference of two convex functions must be MA, examples [10] show that not
every MA function of two or more variables is of this type. Other known subclasses of MA include
the Sobolev classW 2,n

loc (Rn) of functions with two derivatives that are locally nth power summable,
and the class of all locally Lipschitz subanalytic functions.

2.2. Strong C2 and PL approximations. As a consequence of Theorem 1 and the Federer-
Fleming compactness theorem for integral currents, if f1, f2, · · · ∈ C2(Rn) converge in L1

loc to f0,
with volume(D(fi) ∩ π−1K) ≤ CK , i = 1, 2, . . . for all compact K ⊂ Rn, then f0 ∈ MA and
D(f) = limD(fi). Such f0 is called C2 strongly approximable. All known examples of MA
functions arise in this way. Thus another fundamental conjecture states:
(2.5) f ∈ MA =⇒ f is C2 strongly approximable.

Since piecewise linear (PL) functions are locally Lipschitz and subanalytic— in fact semialgebraic—
these are always MA (in this case the C2 strong approximability of any p ∈ PL is easy to prove
using the Tarski-Seidenberg theorem). On the other hand it is also easy to construct D(p) directly
in this case [13]. For n = 2 this process goes as follows. Let T be a triangulation of R2 with
triangles τi, edges σj and vertices ρk, such that p is affine on each of these elements. We construct
D(p) as D2 +D1 +D0, where Di is supported over the i-skeleton of T .

(1) Put D2 :=
∑
i τi × {∇(p|τi

)}. This current is Lagrangian, and satisfies (2.3), but has
nonzero boundary supported above the edges σj .

(2) For each edge σj with adjacent faces τ0, τ1, let sj be the line segment in R2 joining
∇(p|τ0

),∇(p|τ1
). Put D1 :=

∑
j σj × sj . Since the affine functions p|τ0

, p|τ1
agree

along σj , we see that σj ⊥ sj , which implies that D1 is Lagrangian. Clearly ∂D1 =∑
j ∂σj × sj − σj × ∂sj ; the latter terms cancel ∂D2.

(3) It remains to cancel the former terms. For each vertex ρk, let Pk ⊂ R2 be the bounded
polygonal region with multiplicities whose boundary is equal to the union of the oriented
segments sj corresponding to edges σj incident to ρk. Put D0 :=

∑
k ρk × Pk, whose

boundary provides the desired cancellation. Note that the addition of D1 +D0 leaves (2.3)
unchanged.

We may think of the mass of D0 (resp. D1) as the integral of the absolute value of the Hessian
of p (resp. the integral of the norm of the Hessian of p), which are in turn closely analogous to the
total absolute Gauss curvature (resp. the integral of the norm of the second fundamental form).

Thus it would also be natural to take PL, instead of C2 as the models for MA functions, and
to say that f0 is PL strongly approximable if the condition above holds with the C2 functions fi
replaced by PL functions pi. Again we conjecture
(2.6) f ∈ MA =⇒ f is PL strongly approximable.

It is difficult (at least for us) to imagine that conjectures (2.5) and (2.6) could possibly fail, but
a proof seems far away (aside from the trivial case n = 1). Finding ourselves in this position we
must ask: are the two conjectures are equivalent? Even this problem seems difficult, although it
is true for n = 2. This is a consequence of the following two facts.

Theorem 2 (Brehm-Kühnel [1]). There is a universal constant C with the following property.
Given p ∈ PL(R2) there exists a sequence C2(R2) 3 f1, f2, · · · → p locally uniformly, with

lim sup area(D(fi|U )) ≤ C area(D(p|U ))
for any relatively compact open set U ⊂ R2.

Brehm and Kühnel state this result in different language, but this is an essentially equivalent
formulation. Clearly this theorem yields: PL strongly approximable =⇒ C2 strongly approx-
imable.
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Theorem 3 (Fu-Scott [11]). Given f ∈ C2(R2) there exists a sequence PL(R2) 3 p1, p2, · · · → f
locally uniformly, with

lim sup area(D(pi|U )) ≤
∫

U

1 + 2
√

2
∥∥D2f

∥∥+
∣∣detD2f

∣∣

for any relatively compact open set U ⊂ R2.

Recall that by (2.4)
area(D(f |U )) '

∫

U

1 +
∥∥D2f

∥∥+ |detD2f |.

Thus Theorem 3 yields: C2 strongly approximable =⇒ PL strongly approximable.

2.3. Sketch of the proof of Theorem 3. The basic strategy is to pick an appropriate sequence
of fat triangulations Ti of the domain of f with mesh size → 0. For each i we set the values of
the PL function pi at the vertices of Ti equal to those of f , then extend to each triangle by linear
interpolation.

The trick lies in giving meaning to the word “appropriate". If we simply take a sequence of
triangulations Ti of the plane with mesh size → 0 and uniformly positive fatness, and let pi be the
PL function obtained by linear interpolation from the values of f at the vertices of Ti, then

(2.7) lim sup area(D(pi|U )) '
∫

U

1 +
∥∥D2f

∥∥+
∥∥D2f

∥∥2
,

the last term replacing the desired term |detD2f |. Although the first two terms are acceptable,
in general the last term is too big, as may be seen in the following simple example. Let f(x, y) =
(x − y)2 and Ti be a subdivided square grid aligned with the coordinate axes. Construct the PL
function pi as we have just described, and consider the gradient cycle D(pi) = D2 +D1 +D0 given
by the procedure above. The polygons Pk making up the summand D0 are all congruent copies of
the figure

of size comparable to the mesh size of Ti. Here the square has multiplicity +1, while the two
triangles have multiplicity −1. Thus the algebraic area of the figure is zero, in accord with the
value detD2f = 0, but the contribution to the mass of D(pi) is twice the area of the square.
Adding these contributions over all the vertices of Ti yields a term on the order of the integral of
the last summand of (2.7). The corresponding term in the estimate we want is zero.

Fortunately, if the subdivided square grid is nearly aligned with the eigenvectors ofD2f then this
bad behavior does not occur. So we construct such grids locally in regions where the eigenvectors
don’t vary too much, keeping the different grids separated by a distance proportional to the mesh
size but together covering most of U :

Then we invoke the guarantee in a mesh interpolation algorithm of Chew [2] to conclude that the
interstices can be filled in by a triangulation of the same mesh size and uniform fatness. Since the
area covered by the interpolated triangles is small, the estimate (2.7) tells us that the price we pay
here is not too great.
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The primary obstacle to extending this argument to n ≥ 3 is the absence of a Chew-type
algorithm in higher dimensions. From our (superficial) knowledge of the relevant literature this
appears to be a fundamental and poorly understood issue in the theory of mesh generation; cf.
e.g. [15].

3. Further remarks and questions

3.1. What do these questions have to do with geometric modeling? Three dimensional
modeling was one of the primary motives in the origins of surface theory in the 18th and 19th
centuries. Physical objects were supposed to look like smooth domains, once irrelevant irregularities
were ignored. The curvature (or the second fundamental form) provided an appealing mathematical
tool with serious practical applications.

In the modern era, when computers are widely available and we no longer expect nature to
behave necessarily in a smooth regular fashion, the assumption that messy natural formations can
be thought of as C2 smooth seems quaint. In this setting it is desirable to possess a more robust but
still natural mathematical model that would nonetheless retain some of the main measurements
such as curvature. The normal/gradient cycle of X or f provides such a tool. To put it another
way, objects and functions that are regular enough to be associated to such cycles provide a model
for what a natural geometric object should look like: the total volume of the cycle gives a gross
numerical measure of “total curvedness" of the object, which may be distributed either smoothly
or else in some irregular fashion. This tool seems uncannily applicable to physical configurations
over a wide range of scales. It is tempting to take the existence of this cycle as a certificate of
citizenship in the country of “geometrically valid” objects.

Conjectures (2.5) and (2.6) may be rephrased colloquially as: can we use classical mathematical
analysis (C2) or quasi-discrete computer models (PL) to survey this country to any arbitrarily
given degree of accuracy? This would be roughly analogous to some basic facts from integration
theory: a given signed Radon measure may be approximated weakly either by discrete or by
absolutely continuous measures of the same mass.

3.2. Towards a proof of (2.5) for n = 2. Can this method be adapted to construct a strong PL
approximation of a general f ∈ MA(R2)?

3.3. Is there a more natural approach to Theorem 2? The proof of Theorem 2 in [1] seems
somewhat ad hoc. A more natural proof might be possible, based on a certain well known and
alluring but almost completely unexplored smoothing strategy.

The basic idea seems to have been mentioned first in [7]: if X ⊂ Rn is a compact set, and r > 0
is a regular value in the sense of Clarke [3] of the distance function δX := dist(·, X), then the
superlevel set Xr := {δX ≥ r} has positive reach. If such r is small then for 1 � r � s > 0 the
set Xr,s := {δXr

≥ s} is a C1,1 domain that is close (with respect to the Hausdorff metric) to X.
Furthermore the mass of the normal cycle of Xr,s is close to that of Xr. It is then easy to find a
C2 (or even C∞) domain close to Xr,s whose normal cycle has almost the same mass.

Supposing X to admit a normal cycle in its own right, it is tempting to carry out this procedure
to try to construct a smooth domain close to X whose normal cycle has mass close to that of
N(X). The missing ingredient is a good estimate for the mass of N(Xr) in terms of the mass of
N(X). In certain tightly circumscribed settings, a weaker kind of estimate is available: if X is
subanalytic (e.g. a polyhedron) then the masses of the N(Xr) are uniformly bounded for small
r > 0 (this is the basis for the discussion of this subject in [9]). However, the known bound is not
geometric in nature, depending instead on the complexity of the description of X as a subanalytic
set. Thus it may behave badly with respect to the mass of N(X).

Therefore (passing from the geometric to the functional realm) at present this approach does
not yield a proof of Theorem 2. Although for each particular PL function p it yields a sequence
of smooth fi with a uniform bound on the D(fi), this bound depends on the complexity of the
description of p. For example, if D(p) is very close to the gradient cycle of a constant function, but
p consists of a great many small affine pieces, the known bound on the masses of the approximating
D(fi) will be very large. No such general bounds in terms of the mass of D(p) or N(X) in any
nontrivial instance have been given in the literature, whether proved or conjectured.
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The simplest case is that of a PL function of two variables. For this it would be enough to
prove such a bound in the neighborhood of a vertex, or in other words for PL functions that are
homogeneous. Since the question is now being phrased in terms of functions, it seems convenient
to replace the tube construction X 7→ Xr above by the functional analogue p 7→ pr, where for each
r > 0 we put

pr(x) := sup
y

p(y)− 1
r
|y − x|2

Note that each pr, r > 0, is semiconvex. Semiconvexity is the functional analogue of the positive
reach condition.

Let p ∈ PL(R2), with p(tx) = tp(x) for t ≥ 0 and x ∈ R2. Is there a universal local bound
on the area of D(pr) in terms of that of D(p), valid for r small? By homogeneity it is enough to
understand the case r = 1.
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Fast numerical schemes related to curvature
minimization: a brief and elementary review

Xue-Cheng Tai

Abstract
We will treat variational models that use Euler’s elastica and related higher order

derivatives as regularizers. These models normally lead to higher order partial differential
equations with complicated nonlinearities. It is difficult to solve these equations numerically.
Recently, some fast numerical techniques have been proposed that can solve these equations
with very good numerical speed. We will try to explain the essential ideas of these numerical
techniques and point to some central implementation details for these algorithms.

1. Introduction

Variational models are becoming essential for image processing and computer vision. A vari-
ational model normally needs to minimize an energy functional. This energy functional usually
has a "fitting" part and also a "regularizer" part. In this work, we will specially be interested in
regularizers involving higher order derivatives.

The goal of image denoising is to remove noise while keeping meaningful vision information
such as object edges and boundaries. It is a crucial step in image processing with a wide range
of applications in medical image analysis, video monitoring, and others. One of the most popular
variational models was proposed by Rudin, Osher, and Fatemi in their seminal work (ROF model)
[34]. In [34], a cleaned image is obtained by minimizing the following energy functional

E(u) =
∫

Ω
|∇u|+ η

2

∫

Ω
(f − u)2,(1.1)

where f : Ω → R is a given noisy image defined on Ω,
∫

Ω |∇u| stands for the total variation of
a function u (see [40] for a definition), and η > 0 is a positive tuning parameter controlling how
much noise will be removed. The remarkable feature of the ROF model lies in its effectiveness
in preserving object edges while removing noise. In fact, the total variation regularizer has been
widely employed in accomplishing other image processing tasks such as deblurring, segmentation,
and registration.

In order to incorporate more geometrical information into the regularizer, a number of higher
order regularization models have been proposed and used for image processing and computer
vision problems. In this work, we will mainly consider three higher models and outline some fast
algorithms to solve them, c.f. Section 2. To make the presentation clearer, we will only state these
models for simple image restoration problems with a given noisy image f . There exist extensions
of these models for more general applications related to image processing and computer vision
including deblurring, inpainting, zooming and geometry minimization.

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 00X99.
Key words. variaitonal models, curvature minimization, Augmented Lagrangian methods.
Supported by the Christian Michelsen Research (CMR), Bergen.
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2. Higher order regularizations

The ROF model has several unfavorable features. The main caveat is the stair-case effect, that
is, the resulting clean image would present blocks even though the desired image could be smooth.
Other undesirable properties include corner smearing and loss of image contrast. To remedy these
drawbacks, a very rich list of results exists in the literature, see [24, 1, 11, 49, 52]. Despite the
effectiveness of these models in removing the staircase effect, it is often a challenging issue to
minimize the corresponding functionals. Note that the models contain second order derivatives,
the related Euler-Lagrange equations are fourth-order. It is a nontrivial task to develop effective
and efficient algorithms to solve these higher order nonlinear equations.

In this section, we will first give an informal introduction to three higher order models. In the
subsequent sections, we will introduce fast algorithms to solve them.

Remark 1. We remark on a few important issues for the models and algorithms:
(1) The introduction about the higher order mathematical models is very informal in a math-

ematical sense. To define and analyze these models for proper function spaces is far more
difficult and is beyond the content of this note. Analysis of these models in the continuous
setting is still incomplete in the literature.

(2) For image processing problems, the computation domain is always a rectangle. The pixels
of an image give a ready mesh for the discretization. This leads to easy discretization with
finite difference approximations for our models and algorithms. However, this is not a
restriction for the models. The models and algorithms are valid for general domains as well.
For general domains with curved boundaries, the discrete approximation of the functions
(including primal and auxiliary functions) could be complicated near the boundaries.

(3) In the literature, discrete curvature is often used, see other publications in this proceeding.
Instead, we have chosen to present these models in a continuous setting. The algorithms
are also presented in the continuous setting. For numerical implementation, we must
discretize the continuous functions.

Both approaches ("discrete curvature" or "continuous curvature") have advantages and
disadvantages. For many discrete curvature models, it seems that the "discrete curvature"
is not converging to the "continuous curvature" when the mesh size goes to zero. For
the continuous models, it is easy to see that we are using the curvature. Standard finite
difference or finite element approximations would lead to natural approximations for the
curvature terms. However, a rigorous proof for this is still missing due to the complexity
of the models.

2.1. Regularization using TV2. In [24], Lysaker et al. directly incorporated second order
derivative information into the image denoising process. They proposed to minimize the following
energy functional to denoise an image:

E(u) =
∫

Ω

√
u2
xx + u2

xy + u2
yx + u2

yy + η

2

∫

Ω
(f − u)2.(2.1)

This higher order energy functional is much simpler than the elastic regularizer that we shall
introduce later. Numerically, this regularizer shows rather good performance with noise suppres-
sion and edge preservation. In the literature, there exists quite a number of related models, see
[13, 20, 42, 3, 12, 6, 18, 36, 31, 5, 14, 8, 19, 48, 30, 7]. The well-posedness for this energy functional
and its gradient flow equation have been studied in [27, 26, 17].

2.2. Regularization using the Euler’s Elastica energy. Given a function f : Ω 7→ R, the
Euler’s elastica model needs to find a function u to minimize the following energy functional:

E(u) =
∫

Ω

[
a+ b

(
∇ · ∇u|∇u|

)2
]
|∇u|+ η

2

∫

Ω
(f − u)2.(2.2)

The nonnegative constants a, b and η need to be chosen properly for different purposes of appli-
cations. This model comes from the Euler’s Elastca energy for curves, see [11] for some more
explanations for this energy. For a given curve Γ ⊂ R2 with curvature κ, the Euler’s elastica
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energy is defined as: ∫

Γ
(a+ bκ2)ds.

For a function u, the curvature for the level curve Γc : u(x) = c is:

κ = ∇ ·
( ∇u
|∇u|

)
.

Thus, the Euler’s elastica energy for the level curve: u(x) = c is:

`(c) =
∫

Γc

(
a+ b

[
∇ ·
( ∇u
|∇u|

)]2)
ds.

Summing up (integrating) the Euler’s elastica energy for all the level curves Γc : c ∈ (−∞,∞), we
get from the co-area formula [39] that the total Euler’s elastica energy for all the level curves is:

∫ ∞

−∞
`(c)dc =

∫ ∞

−∞

∫

Γc

(
a+ b

[
∇ ·
( ∇u
|∇u|

)]2)
dsdc =

∫

Ω

(
a+ b

[
∇ ·
( ∇u
|∇u|

)]2)
|∇u|dx.

Minimization problem (2.2) is trying to use the total Euler’s Elastica energy as a regularizer to
remove noise from the image f .

2.3. Regularization using the image surface mean curvature. In [49], the authors proposed
a variational model that uses the mean curvature of the induced image surface (x, y, f(x, y)) to
remove noise. Specifically, the model employs the L1 norm of the mean curvature of the image
surface as the regularizer and minimizes the following functional to get a clean image:

E(u) =
∫

Ω

∣∣∣∣∣∇ ·
(

∇u√
1 + |∇u|2

)∣∣∣∣∣+ η

2

∫

Ω
(f − u)2.(2.3)

Above, η is a tuning parameter. The term ∇ · ( ∇u√
1+|∇u|2

) is the mean curvature of the surface
φ(x, y, z) = u(x, y) − z = 0. The model tries to fit the given noisy image surface (x, y, f(x, y))
with a surface (x, y, u(x, y)) that is regularized by the mean curvature. This idea can be traced to
much earlier papers, see [22]. The model can sweep noise while keeping object edges, and it also
avoids the staircase effect. More importantly, as discussed in [49, 53], the model is also capable of
preserving image contrasts as well as object corners.

3. Fast numerical algorithms based on augmented Lagrangian method (ALM)

In this section, we first show the split-Bregman altorithm of Goldstein-Osher [16] for the ROF
model [34]. We then extend this idea for the three higher order models we have introduced in
Section 2 to get fast algorithms for them.

3.1. Split-Bregman for ROF. In work by Goldstein-Osher [16], fast iterative schemes were
proposed and tested for the ROF model. It is one of the most efficient numerical schemes for
solving the ROF model. Later, it was observed that the split-Bregman algorithm of Golstein-
Osher [16] is equivelent to the Augmented Lagrangian method [38, 41]. Here, we explain the ideas
in an “informal” fashion. We will present the ideas in a continuous setting. As stated in Remark
1, to make our statements precise, more precise definitions of the function spaces and the norms
need to be given. That is one of the reasons that discrete models have been used to explain these
algorithms as in [41]. We will not get into the details related to this kind of technicalities.

Let p = ∇u, then it is easy to see that the ROF model is equivalent to the following constrained
minmization problem:

(3.1) min
u,p
p=∇u

∫

Ω
|p|+ η

2 |u− f |
2dx.

Let us use the Augmented Lagrangian method (ALM) [15] to deal with the constraint p = ∇u.
Then we need to find a saddle point for the following Lagrangian functional:

(3.2) Lrof (u, p, λ) =
∫

Ω
|p|+ η

2 |u− f |
2 + λ · (p−∇u) + r

2 |p−∇u|
2dx.
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Above: u : Ω 7→ R denotes the image we need to find, p : Ω 7→ R2 is a vector valued function
related to the gradient of the function u, λ : Ω 7→ R2 denotes the Lagrangian multiplier. Due to
convexity, problem (3.1) has a unique solution (in the discrete setting as well as in a proper space
in the continuous setting). If (u∗, p∗) is a global minimizer for (3.1), then there exists a λ∗ such
that (u∗, p∗, λ∗) is a saddle point for (3.2). We propose to use Algorithm 1 to search for a saddle
point for (3.2).

Algorithm 1 Augmented Lagrangian method for the ROF model
Initialization: λ0 = 0, u0 = f ; For k=0,1,2,...:

(1) Compute pk+1 from :
(3.3) pk+1 = arg min

q
Lrof (uk, q;λk),

(2) Compute uk+1 from:
(3.4) uk+1 = arg min

v
Lrof (v, pk+1;λk),

(3) Update
(3.5) λk+1 = λk + r(pk+1 −∇uk+1).

(4) Go to the next iteration if not converged.

Minimization subproblem (3.3) has closed-form solutions and thus can be easily computed.
Minimization subproblem (3.4) can be solved by FFT (Fast Fourier Transform) or simple Gauss-
Seidel iterative solvers to get an approximate solution. See [43, 41] for more details. Theoretically,
it is necessary to have sufficiently many iterations between subproblems (3.3) and (3.4). In practice,
the above algorithm works well for most of the cases for the ROF model.

It is also easy to extend the above model for vector-valued functions and vector-TV regulariza-
tion, see [41, p.320] and [33, 32].

3.2. Split-Bregman for second order Total variation. Here, we explain how to use the fast
algorithm explained in the last section for the regularization model (2.1) related to second order
derivatives. The idea follows the work [41].

The essential idea for the fast schemes is to introduce some auxiliary variables and consider the
complicated minimization problem as a constrained minimization. We then use splitting ideas to
decompose the complicated minimization problem into some simpler minimization problems. Let

p = D2u =
(
uxx uxy
uyx uyy

)
.

Thus p is a matrix function defined on Ω, i.e. p is equal to the Hessian matrix of u over Ω. The
minimization of the energy functional given in (2.1) is equivalent to:

(3.6) min
u,p

p=D2u

∫

Ω
|p|+ η

2 |u− f |
2dx.

Above, |p| =
√∑

i,j p
2
ij stands for the Frobenius norm of the matrix p.

Again, we use the Augmented Lagrangian method (ALM) [15, 41] to deal with the constraint
p = D2u. Then we need to find a saddle point for the following Lagrangian functional:

(3.7) Lllt(u, p, λ) =
∫

Ω
|p|+ η

2 |u− f |
2 + λ : (p−D2u) + r

2 |p−D
2u|2dx.

Here u : Ω 7→ R denotes the image we need to find, p : Ω 7→ R4 is a matrix valued function related
to the Hessian of the function u, λ : Ω 7→ R4 denotes the Lagrangian multiplier. The notation
A : B denotes the elementwise inner product of two matrices A and B. We use Algorithm 2 to
search for a saddle point for (3.7).

Similar to Algorithm 1, the minimization subproblem (3.8) needs to compute a matrix-valued
function and it has closed-form solutions and thus can be easily computed. Minimization subprob-
lem (3.9) gives raise to a linear 4th order equation on a regular mesh. It can be solved by FFT

20



Fast numerical schemes related to curvature minimization

Algorithm 2 Augmented Lagrangian method for the TV2 model
Initialization: λ0 = 0, u0 = f ; For k=0,1,2,...:

(1) Compute pk+1 from
(3.8) pk+1 = arg min

q
Lllt(uk, q;λk),

(2) Compute uk+1 from:
(3.9) uk+1 = arg min

v
Lllt(v, pk+1;λk),

(3) Update
(3.10) λk+1 = λk + r(pk+1 −D2uk+1).

(4) Go to the next iteration if not converged.

(Fast Fourier Transform) or simple Gauss-Seidel iterative solvers to get an approximate solution.
See [41, p.324] for more details.

3.3. Augmented Lagrangian method for Euler’s elastica model. In order to use fast algo-
rithms related to ALM for the minimization of the Euler’s elastica given in (2.2), it is necessary
to introduce a few more auxiliary functions. The ideas presented here follow the work [37]. The
following lemma is easy to prove using Hölder’s inequality:

Lemma 2. Let n 6= 0 and p 6= 0 be two given vectors. They satisfy

|n| ≤ 1, |p| = n · p,

if and only if
n = p

|p| .

Let us define
p = ∇u, n = p

|p| .

It is easy to see that the minimization of the Euler’s elastica energy (2.2) is equivalent to the
following constrained minimization:

min
u,p,n

∫

Ω

(
a+ b(∇ · n)2) |p|+ η

2

∫

Ω
|u− f |2

with p = ∇u, |p| = n · p, |n| ≤ 1.
(3.11)

The use of n with |n| ≤ 1 can be viewed as a relaxation. Moreover, the constraint |n| ≤ 1 is
crucial to prevent the unboundedness of n when p = 0. Define the characteristic function δR(·) on
R as

δR(m) =
{

0 m ∈ R ≡ {m ∈ L2(Ω) | |m| ≤ 1 a.e. in Ω},
+∞ otherwise.(3.12)

then, the constrained minimization problem (3.11) can be rewritten as:

min
u,p,n

∫

Ω

(
a+ b(∇ · n)2) |p|+ η

2

∫

Ω
|u− f |2 + δR(n)

with p = ∇u, |p| = n · p,
(3.13)

We know that |n| ≤ 1 in Ω, thus

|p| − n · p ≥ 0 ∀x ∈ Ω.

There are two constraints in (3.13). Two different penalizations are used for these two constraints.
For constraint p = ∇u, we use the L2-norm for the penalization term; but for |p| = n · p, we use
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the L1-norm. With this special treatment for the last constraint, the corresponding Lagrangian
functional becomes:

Lelas(u, p, n, λ1, λ2) =
∫

Ω

(
a+ b(∇ · n)2) |p|+ η

2 |u− f |
2dx+ δR(n)

+
∫

Ω
λ1 · (p−∇u) + r1

2 |p−∇u|
2 + λ2(|p| − n · p) + r2(|p| − n · p)dx.

(3.14)

The meanings of the primal and dual variables are listed in the following:
• u : Ω 7→ R denotes the image we need to find,
• p : Ω 7→ R2 is a vector-valued function related to the gradient of the function u,
• n : Ω 7→ R2 is a vector-valued function related to the unit vectors of the level curves of u,
• λ1 : Ω 7→ R2 denotes the Lagrangian multiplier for constraint p = ∇u,
• λ2 : Ω 7→ R denotes the Lagrangian multiplier for constraint |p| = n · p.

We shall use Algorithm 3 to search for a saddle point of this Lagrangian functional.

Algorithm 3 Augmented Lagrangian method for the Euler’s elastica model
Initialization: λ0 = 0, u0 = f, n0 = 0; For k=0,1,2,...:

(1) Compute pk+1 from
(3.15) pk+1 = arg min

q
Lelas(uk, q, nk;λk),

(2) Compute nk+1 from
(3.16) nk+1 = arg min

m
Lelas(uk, pk+1,m;λk),

(3) Compute uk+1 from:
(3.17) uk+1 = arg min

v
Lelas(v, pk+1, nk+1;λk),

(4) Update
λk+1

1 = λk1 + r1(pk+1 −∇uk+1),(3.18)
λk+1

2 = λk2 + r2(|pk+1| − nk+1 · pk+1).(3.19)
(5) Go to the next iteration if not converged.

In the following, we give some remarks on the solutions of the subproblems and some imple-
mentation issues for Algorithm 3:

(1) Minimization subproblem (3.15) has closed-form solutions. A simple thresholding is suffi-
cient to get the solution pk+1.

(2) Minimization subproblem (3.16) can be approximated by solving a linear partial differential
equation first and then projecting the obtained solution onto the convex set R defined in
(3.12). The linear equation is:

(3.20) − b∇(|pk+1|∇ · nk+1) = (λ2 + r2)pk+1.

This equation has some similarities with the gradient-divergence equations from the Maxwell
equation for magnetic simulations or Darcy-Stokes flow, see [25]. It can be approximately
solved by a few Gauss-Seidel iterations or a coefficient freezing FFT solver, see [37] for
more details. Note that both p and n are vector-valued functions. We need to solve for all
the components of the vector functions.

(3) The minimizer uk+1 of subproblem (3.17) satisfies the following linear partial differential
equation:

uk+1 − f +∇ · λk1 + r1∇ · (pk+1 −∇uk+1) = 0.
This equation is the same as for the ROF model, c.f. Algorithm 1. It can be easily solved
by FFT or few Gauss-Seidel iterations.

(4) Theoretically, we need sufficiently many iterations between (3.15)-(3.17) to guarantee con-
vergence of the algorithm. In practice, just one iteration, as stated in Algorithm 3, is
enough to have convergence of the iterative solutions.
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(5) As the energy functional is not convex, we need to choose some of the penalization param-
eters ri sufficiently big to obtain convergence of this algorithm. Tuning the parameters ri
is a delicate issue. Fortunately, there exists an easy way to get the correct values for these
penalization parameters ri. We outline the details in section 5.

(6) Another relaxation method for the Euler’s Elastica model was proposed in [4]. It solves
the problem by means of tractable convex relaxation in higher dimensions.

The algorithm presented in [37] for the minimization of the Euler’s elastica energy has one more
auxiliary function variable. There, the following constrained minimization was considered:

min
u,p,n

∫

Ω

(
a+ b(∇ · n)2) |p|+ η

s

∫

Ω
|u− f |s + δR(m)

with p = ∇u, |p| = n · p, n = m,

(3.21)

Note that the fidelity term has also been changed and it is powered by s. Normally, the value
of s can be chosen as s = 1 or s = 2 depending on the nature of the noise contained in f . For
salt-and-pepper noise, we prefer to choose s = 1. For Gaussian noise, we choose s = 2. There
could exist cases where we need to choose s ∈ [1,∞].

In [37], the following Lagrangian functional is used for the above constrained minimization
problem (3.21):

Lelas(u, p,m, n, λ1, λ3, λ3) =
∫

Ω

(
a+ b(∇ · n)2) |p|+ η

s
|u− f |sdx+ δR(m)

+ λ1 · (p−∇u) + r1
2 |p−∇u|

2 + λ2(|p| − n · p) + r2(|p| − n · p) + λ3 · (m− n) + r3
2 |n−m|

2dx

(3.22)

An algorithm similar to Algorithm 3 can be used to find a saddle point for the above Lagrangian
functional. We will not repeat the details. We can see that the minimization subproblem for n
does not have the constraint |n| ≤ 1 and we only need to solve a linear PDE system to get the
values of nk+1 which can be done by using FFT or a few Gauss-Seidel iterations, c.f. (3.20). The
convex constraint is only imposed on m now. The solution of the minimization subproblem for m
is in fact just a simple projection to the convex set, see [37] for the details.

It is also possible to use these ideas for a generalized Euler’s elastica model with the energy
functional modified to be:

E(u) =
∫

Ω

[
a+ b

∣∣∣∣
(
∇ · ∇u|∇u|

)∣∣∣∣
s1]
|∇u|+ η

s2

∫

Ω
|f − u|s2 .(3.23)

In case that s1 = 2, s2 = 1, we could consider the following splitting:

min
u,p,n

∫

Ω

(
a+ b(∇ · n)2) |p|+ η

∫

Ω
|v − f |+ δR(n)

with v = u p = ∇u, |p| = n · p,
(3.24)

It is easy to define the corresponding Lagrangian functional and use an alternating minimization
scheme to search for its saddle point. The details of the corresponding algorithm will be omitted
and all the minimization subproblems can be easily solved or have closed-form solutions, see [37,
p.33] for the needed details.

If we consider the case that s1 = 1, s2 = 2, then it would be better to use the following splitting
idea:

min
u,p,n

∫

Ω
(a+ b|q|) |p|+ η

2

∫

Ω
|u− f |2 + δR(m)

with q = ∇ · n, p = ∇u, |p| = n · p, n = m.

(3.25)

It is easy to define the corresponding Lagrangian functional and use an alternating minimization
scheme to search for its saddle point. The details of the corresponding algorithm will be omitted
and all the minimization subproblems can be easily computed or have closed-form solutions, see
[37, p.33] for the needed details.

We want to emphasise that for the constraint |p|−m ·p = 0, we use L1-norm for the penalization
and it is true that |p| −m · p ≥ 0 due to the fact that |m| ≤ 1.
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So far, we have explained the splitting techniques needed for the cases s1 = 2, s2 = 1 and
s1 = 1, s2 = 2. For the case s1 = s2 = 1, we need to combine the splitting techniques for both
cases. These techniques can be easily extended for more general values of s1 an s2. In fact, the
algorithm given in [37] can deal with general Lp fidelity terms.

3.4. Augmented Lagrangian method for the mean curvature (MC) model. The ideas
presented in this section follow the work [53]. Let us recall the idea of introducing the mean
curvature denoising model. In this model, a 2D image f(x, y) is regarded as a surface (x, y, f(x, y))
in R3, c.f. [22, 49]. One thus considers the surface φ(x, y, z) = u(x, y) − z = 0 and the mean
curvature κ = ∇ · (∇φ/|∇φ|) = ∇ · (〈∇u,−1〉/|〈∇u,−1〉|). Here and later, 〈·, ·〉 is used to denote
the concatenation of vectors. Note that one introduces two variables p = ∇u and n = ∇u/|∇u| to
tackle the Euler’s elastica for its curvature term κ = ∇ · (∇u/|∇u|). This gives us a hint on how
to treat the curvature term in our case, that is, we may introduce a variable p = 〈∇u,−1〉 instead
of p = ∇u. Accordinlgy, we will also introduce n = 〈∇u,−1〉/|〈∇u,−1〉|.

With constraints
p = 〈∇u,−1〉,n = 〈∇u,−1〉/|〈∇u,−1〉|,

the MC model (2.3) is then transformed to the following constrained minimization problem:

minu,q,n,p
[
λ

∫

Ω
|q|+ 1

2

∫

Ω
(f − u)2

]
,

with q = ∇ · n, n = p
|p| , p = 〈∇u,−1〉.(3.26)

The associated augmented Lagrangian functional is then:

L(u, q,p,n,m;λ1,λ2, λ3,λ4) = λ

∫

Ω
|q|+ 1

2

∫

Ω
(f − u)2

+ r1

∫

Ω
(|p| − p ·m) +

∫

Ω
λ1(|p| − p ·m)

+ r2
2

∫

Ω
|p− 〈∇u,−1〉|2 +

∫

Ω
λ2 · (p− 〈∇u,−1〉)

+ r3
2

∫

Ω
(q − ∂xn1 − ∂yn2)2 +

∫

Ω
λ3(q − ∂xn1 − ∂yn2)

+ r4
2

∫

Ω
|n−m|2 +

∫

Ω
λ4 · (n−m) + δR(m),(3.27)

where r′is, i = 1, · · ·, 4, are the penalization parameters, and λ1, λ3 : Ω 7→ R and λ2,λ4 : Ω 7→ R3

are Lagrange multipliers, and p,n,m : Ω 7→ R3 are vector-valued functions. For the sake of
completeness of presentation, we make a few remarks in the following.

Introduction of the variable m aims to relax variable n that is defined as n = p/|p|. The
variable m is required to lie in the set R so that the term |p| − p ·m is always non-negative. As
discussed in [37], the benefit of this non-negativeness is that the L2 penalization is unnecessary.
Instead, we use L1-norm for the penalization. As this term is always positive, the penalization
term becomes just |p| − p ·m.

As the saddle points of the augmented Lagrangian functional (3.27) correspond to the minimizers
of the constrained minimization problem (3.26), one just needs to find the saddle points of (3.27).
Similar to algorithms for the Euler’s elastica model, we apply an iterative procedure. Specifically,
for each variable in (3.27), we fix all the other variables and seek a critical point of the induced
functional to update this variable. Once all the variables are updated, the Lagrangian multipliers
will also be updated. Then we repeat the process until the variables converge to a steady state.
The algorithm is summarized in Algorithm 4.

The sub-minimization problems (3.28)-(3.32) are very easy to solve. We list their corresponding
minimization energy functionals in the following:

ε1(u) = 1
2

∫

Ω
(f − u)2 + r2

2

∫

Ω
|p− 〈∇u,−1〉|2 +

∫

Ω
λ2 · (p− 〈∇u,−1〉),(3.33)

ε2(q) = λ

∫

Ω
|q|+ r3

2

∫

Ω
(q − ∂xn1 − ∂yn2)2 +

∫

Ω
λ3(q − ∂xn1 − ∂yn2),(3.34)
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Algorithm 4 Alternating minimization method for surface mean curvature minimization.
(1) Initialization: u0, q0, p0, n0, m0, and λ0

1, λ0
2, λ0

3, λ0
4. For k ≥ 1, loop over the following

two steps:
(2) Compute an approximate minimizer (uk, qk,pk,nk,mk) of the augmented Lagrangian

functional with the fixed Lagrangian multiplier λk−1
1 , λk−1

2 , λk−1
3 , λk−1

4 from the following
minimization problems:

uk = argmin L(u, qk−1,pk−1,mk−1,nk−1, λk−1
1 ,λk−1

2 , λk−1
3 , λ4

k−1)(3.28)
qk = argmin L(uk, q,pk−1,mk−1,nk−1, λk−1

1 ,λk−1
2 , λk−1

3 , λ4
k−1)(3.29)

pk = argmin L(uk, qk,p,mk−1,nk−1, λk−1
1 ,λk−1

2 , λk−1
3 , λ4

k−1)(3.30)
mk = argmin L(uk, qk,pk,m,nk−1, λk−1

1 ,λk−1
2 , λk−1

3 , λ4
k−1)(3.31)

nk = argmin L(uk, qk,pk,mk,n, λk−1
1 ,λk−1

2 , λk−1
3 , λ4

k−1)(3.32)
(3) Update the Lagrangian multipliers

λk1 = λk−1
1 + r1(|pk| − pk ·mk)

λk2 = λk−1
2 + r2(|p|k − 〈∇uk,−1〉)

λk3 = λk−1
3 + r3(qk − ∂xnk1 − ∂ynk2)

λk4 = λk−1
4 + r4(nk −mk),

where n = 〈n1, n2, n3〉.
(4) Stop if the given stopping criteria have been satisfied. Otherwise, go to the next iteration.

ε3(p) = r1

∫

Ω
(|p| − p ·m) +

∫

Ω
λ1(|p| − p ·m)+r2

2

∫

Ω
|p− 〈∇u,−1〉|2

+
∫

Ω
λ2 · (p− 〈∇u,−1〉),(3.35)

ε4(m) = r1

∫

Ω
(|p| − p ·m) +

∫

Ω
λ1(|p| − p ·m) + r4

2

∫

Ω
|n−m|2

+
∫

Ω
λ4 · (n−m) + δR(m),(3.36)

ε5(n) = r3
2

∫

Ω
(q − ∂xn1 − ∂yn2)2 +

∫

Ω
λ3(q − ∂xn1 − ∂yn2) + r4

2

∫

Ω
|n−m|2

+
∫

Ω
λ4 · (n−m).(3.37)

Fast solvers and closed-form solutions are available for all these subproblems, c.f. [53].

4. Euler’s elastica regularizer for interface problems

The classical snake and active contour model was given by Kass, Witkin, and Terzopoulos [21]
where they proposed minimizing the functional

E(C) = α

∫ 1

0
|C′(s)|2ds+ β

∫ 1

0
|C′′(s)|ds− η

∫ 1

0
|∇f(C(s))|2ds,(4.1)

where f : Ω → R denotes a given image and C(s) : [0, 1] → Ω is a parameterized curve and α, β,
and η are some positive tuning parameters. The first two terms impose regularity restriction on
the contour while the third one denotes the drive induced by the given image. As the image f
has large gradient along object boundaries, the functional E(C) will take a small value when the
active contour C resides on these boundaries.

Mumford and Shah [29] proposed minimizing the following functional:

E(u,K) =
∫

Ω\K
|∇u|2dx+ η

∫

Ω
(u− f)2dx+ µLength(K)(4.2)
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with respect to both the function u defined on Ω and the boundary K ⊂ Ω. η, µ are positive
tuning parameters.

The segmentation model of Chan-Vese [9] can be expressed as the minimization of the following
functional:

ECV (φ, c1, c2) =
∫

Ω
µ(f − c1)2H(φ) + (f − c2)2(1−H(φ)) + η

∫

Ω
|∇H(φ)|,(4.3)

where φ is a level set function whose zero level curve presents the segmentation boundary, H(·)
is the Heaviside function, c1, c2 are two scalars, and µ, η are positive parameters. The parameter
µ is often set to be 1 in many applications. If the minimizer of the objective functional in the
Mumford-Shah’s model is restricted to be u = c1H(φ) + c2(1−H(φ)), a "binary image", one can
easily get Chan-Vese’s model.

In Chan-Vese’s model, the first two terms are the fitting terms while the third one represents
the length of the segmentation boundary. As discussed in [29], the length term prohibits the
excessive segmentation boundaries obtained by the Chan-Vese model. Moreover, it also imposes
regularity on the boundaries. Chan-Vese model has proven to be an effective segmentation model.
However, the length regularization term is insufficient to accomplish the segmentation task under
some circumstances. For instance, as shown in Figure 4.1(A), parts of the letters "UCLA" are
erased. Even though one can easily recognize the four letters, existing segmentation models,
such as Chan-Vese’s model, might often capture the existing boundaries instead of restoring the
missing ones as illustrated in Figure 4.1(B). In inpainting problems [11], missing image information
is also recovered but within given regions assigned in advance. In contrast, we intend to have a
segmentation model that can interpolate the missing boundaries automatically without specifying
the regions.
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Figure 4.1: Incomplete letters "UCLA" and its integrate segmentation.

To this end, we employ Euler’s elastica as a new regularization for the segmentation contour to
replace the length term in Chan-Vese’s model and get the following functional:

ECV E(φ, c1, c2) =
∫

Ω
µ(f − c1)2H(φ) + (f − c2)2(1−H(φ))

+
[
a+ b

(
∇ · ∇φ|∇φ|

)2
]
|∇H(φ)|,(4.4)

where µ, a, b are positive parameters. For φ being the signed distance level set function, it can
be proven that the last term equals to the Euler’s elastica energy of the segmentation curve.
Specifically, the parameter µ has a more important role in this modified model than in Chan-
Vese’s model. It can relax the competition of the fitting term and the Euler’s elastica term, aiming
to complete missing boundaries as shown in Figure 4.1(B). The parameters a, b control the length
and curvature of segmentation boundary. This regularization was originally proposed and used
in the famous work of segmentation with depth by Nitzberg, Mumford, and Shiota [28]. It has
also been used in the inpainting problem [11] and the illusory contour problem [51, 50]. Recently,
in [35], Schoenemann et al. developed a numerical method to minimize the curvature dependent
functionals by using linear programming method. In their work, they also considered Chan-Vese’s
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model with the substitution of Euler’s elastica for the length term. In this section, we shall show
the details on using the techniques developed in the earlier sections to minimize the Euler’s elastic
energy for the CVE model (4.4).

In the current work, we use the same technique as in Section 3.3 to deal with the curvature term
in the functional (4.4). Note that the functional (4.4) involves the level set function φ, however,
only the sign of this function, H(φ), is needed for the segmentation problem. Following the ideas
of the binary level set representation of [23], we introduce a new function u = H(φ). This was
also used in [10] for finding the global minimizer of Chan-Vese’s model. More general binary level
set representations with global minimization techniques have been developed [45, 47, 44, 2, 46]
through some beautiful connections between graph cuts, binary labeling and continuous max-flow
problems. As ∇ · ∇H(φ)

|∇H(φ)| = ∇ · ∇φ|∇φ| , one can rewrite the functional (4.4) to be

E(u, c1, c2) =
∫

Ω
µ(f − c1)2u+ (f − c2)2(1− u) +

[
a+ b

(
∇ · ∇u|∇u|

)2
]
|∇u|,(4.5)

where u is supposed to take on either 0 or 1. But note that the curvature makes sense for smooth
functions. To fix this issue, as in [2, 10], one can relax the restriction on u to be 0 ≤ u ≤ 1. To
minimize the functional (4.5), one considers the following constrained minimization problem

minu,p,n,c1,c2

∫
Ω µ(f − c1)2u+ (f − c2)2(1− u) +

[
a+ b (∇ · n)2

]
|p|,

with p = ∇u, |p| = p · n, |n| ≤ 1, u ∈ [0, 1].(4.6)

We then construct the following augmented Lagrangian functional:

L(v, u,p,n,m, c1, c2;λ1,λ2, λ3,λ4) =
∫

Ω
µ(f − c1)2v + (f − c2)2(1− v) +

[
a+ b (∇ · n)2

]
|p|

+ r1

∫

Ω
(|p| − p ·m) +

∫

Ω
λ1(|p| − p ·m)

+ r2
2

∫

Ω
|p−∇u|2 +

∫

Ω
λ2 · (p−∇u)

+ r3
2

∫

Ω
(v − u)2 +

∫

Ω
λ3(v − u) + δD(v)

+ r4
2

∫

Ω
|n−m|2 +

∫

Ω
λ4 · (n−m) + δR(m),(4.7)

where D = [0, 1] and R = {m ∈ L2(Ω) : |m| ≤ 1 a.e. in Ω}, and δD(v) and δR(·) are the
characteristic functions on the sets D and R respectively:

δD(v) =
{

0, v ∈ D;
+∞, otherwise.

δR(m) =
{

0, m ∈ R;
+∞, otherwise.

Moreover, ri, i = 1, ..., 4 are positive parameters while λ1,λ2, λ3,λ4 are Lagrange multipliers. In
this augmented Lagrangian functional, as was explained in Section 3.3, the new variable m is
introduced to simplify the associated subproblem on p. As m is required to be inside R, |m| ≤ 1,
then |p| − p ·m ≥ 0 for any p, and |p| − p ·m = 0 if and only if m = p

|p| . This avoids the term∫
Ω(|p|−p ·m)2, which results in a relatively complex functional on p. Moreover, by using the new
variable m, the minimizer of the functional related to p can be obtained exactly and explicitly by
using some appropriate shrinkage.

It is well known that some saddle point of the augmented Lagrangian functional (4.7) relates
to a minimizer of the functional (4.5). Therefore, one just needs to find the saddle points of the
augmented functional. The minimization energy functional for the CVE model given in (4.6) is
very similar to the Euler’s elastica energy of Section 3.3. We could use an alternating minimization
procedure to approximately minimize the variables u, v,p,n, c1, c2 and use a simple gradient ascent
method to update the Lagrange multipliers. Algorithms and numerical performance are exposed
in [54].
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5. Tuning of the penalization parameters for ALM

The values of the penalization parameters ri are very important. They influence the convergence
as well as the speed of convergence of the proposed algorithms. Fortunately, there exist some very
easy techniques to find the proper intervals for the values of these penalization parameters. Here
we review some details.

The ROF model associated with the energy functional (3.1) is convex, thus the ALM is con-
vergent for any positive values of ri used in Algorithm 1. However, the speed of the convergence
depends on the values of ri. Choosing ri too big or too small could result in more iterations for
the solution to converge to the same stopping cretria. For the other higher order models discussed
earlier, the values of ri also influence speed of convergence. In addition, for non-covex energy
functionals, some of the penalization parameters need to be sufficiently large to guarantee the
convergence.

Fortunately, there are good numerical indicators to use for the determination of the values of
ri. This makes it very easy to tune the penalization parameters. The indicators are related to
the constraint errors and the decay of the energy functional value. Let us take Algorithm 4 as an
example. First, we need to monitor the constraint errors:

(Rk1 , Rk2 , Rk3 , Rk4) = (‖Rk1‖L1/‖R0
1‖L1 , ‖Rk2‖L1/‖R0

2‖L1 , ‖Rk3‖L1/‖R0
3‖L1 , ‖Rk4‖L1/‖R0

4‖L1),(5.1)

with

Rk1 = |pk| − pk ·mk,

Rk2 = pk − 〈∇uk, 1〉,
Rk3 = qk − ∂xnk1 − ∂ynk2 ,
Rk4 = nk −mk,

Note that all the errors are normalized by scaling the errors with their values from the first
iteration. In addition, we also need to monitor the value of the energy functional. Here are some
“troubleshooting” tips on how to tune the parameters ri:
Step 1 Take some reasonable guess for the values of all the ri and run the algorithms until the

stopping criteria are satisfied.
Step 2 Tune the values of ri so that the constraint errors Rki converge to zero with nearly the

same speed asymptotically. If Rki goes to zero slower than the others, then increase the
value of ri. If Rki goes to zero quicker than the others, then decrease the value of ri. It is
possible that these constraints errors “behave” rather chaotically in the starting phase of
the iterations. However, they shall converge to zero asymptotically with the same "speed"
if the values of the ri are chosen correctly.

Step 3 By choosing the penalization values ri sufficiently large, it is always possible to make the
constraint errors go to zero. However, the energy functional value may stay large all the
time. For ALM, it is not possible to guarantee that the energy functional will decrease
monotonically. However, the energy will decrease and then stay at a constant value if ri
are chosen correctly. Thus, if the constraint errors are decreasing correctly, but not the
energy functional value, then reduce all the ri and repeat this tuning process from step 2.

We also need to stop the iterations properly. In all our numerical experiments, we use the relative
residuals (5.1), the relative errors of Lagrange multipliers and value of E(uk) as the stopping
criteria. To check the convergence of the iteration process, we first check on Rki . As in [37], we
also check the relative errors of Lagrange multipliers:

(Lk1 , Lk2 , Lk3 , Lk4) =
(
‖λk1 − λk−1

1 ‖L1

‖λk−1
1 ‖L1

,
‖λk2 − λk−1

2 ‖L1

‖λk−1
2 ‖L1

,
‖λk3 − λk−1

3 ‖L1

‖λk−1
3 ‖L1

,
‖λk4 − λk−1

4 ‖L1

‖λk−1
4 ‖L1

)
,

(5.2)

and the relative error of the solution uk

‖uk − uk−1‖L1

‖uk−1‖L1
.(5.3)
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Besides all these quantities, we also consider how the energy (2.3) is evolving during the iter-
ations by tracking the value of E(uk). If all the residual errors Rki satisfy the stopping criteria
Rki < εr for some given small threshold εr, the relative errors for the multipliers and the solution
u have been reduced to a sufficiently small level (normally can be close to machine accuracy) and
the energy functional E(uk) has come to a steady constant value, then the algorithm has reached
a steady state and we can stop the iterations.
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Application of discrete curvatures
to surface mesh simplification
and feature line extraction
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and Marc Daniel

Abstract
We present two applications of discrete curvatures for surface mesh processing. The

first one deals withÊsimplifying a mesh while preserving its sharp features. The second
application can be considered as a dual problem, as we investigate ways to detect feature
lines within a mesh. Both applications are illustrated with valuable results.

1. Introduction

Estimating shape of discrete objets known by a triangular approximating mesh or even by a
point cloud is a relevant problem in the numerous software handling 3D objets. The problem has
rather old origins, since one finds its first elements in the works of Gauss and Legendre. The first
recent work on the subject was proposed by Alexandrov ([2]). Shape analysis are based on discrete
curvature computations and different approaches exist to obtain these second order estimators (see
for example [1] for the description of some estimators and results about convergence published in
the literature).

We present in this paper two disconnected applications of discrete curvatures for surface mesh
processing to illustrate the wide range of information which can be received from theses estimators.
The first one deals withÊsimplifying a mesh while preserving its sharp features. Through the
quadratic error metric introduced by Garland et al.,Êsuch a simplification can be performed by an
edge collapse process guided by the metric. Such an approach leads to highÊquality simplification
but remains slow and costly both in terms of space and time. We introduce a two-step method
in whichÊwe perform an initial adaptive cell segmentation guided by the curvature and direction
of each cell (computed by PCA).ÊThis pre-segmentation according to local curvatures preserves
the quality of simplified meshes while reducing computingÊtime by a factor 3 to 4. The second
application can be considered as a dual problem, as we investigate ways to detect feature lines
within a mesh. Robust extraction of the feature lines of aÊ3D surface model is a challenging
problem. Classical approaches generally rely on curvature derivatives, leading to the detection
of a salient part as multipleÊsegments despite the fact that it visually appears as a single and
fully connected element. We propose a two-step method aiming at extracting feature lines onÊ3D
meshes with connectivity preservation. First, all the mesh vertices are labeled according to their
curvature values in order to construct regions of interestÊon the discrete surface. The second step
consists in a skeletonization directly on the mesh that corresponds to a homotopic thinning of
the previouslyÊbinarized areas. Consequently, the resulting lines are highly connected due to the
topological properties of the thinning operator.

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
Key words. geometric modeling, discrete curvature, feature extraction, mesh processing.
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2. Surface Mesh Segmentation

2.1. Context. Our work originates in the study of triangular mesh surfaces originated from geol-
ogy and geologic surface modelling (as part of a collaboration with the IFP - French Institute of
Petroleum). Our data, obtained by physical measures, are typically inhomogeneous, sparse, noisy
and voluminous. Therefore, we are interested in the improvement of such surfaces and more partic-
ularly in the detection and filling of holes and faults. However, most improvement algorithms are
both time and space consuming and thus, it is fundamental to simplify, smooth and homogenize
data before any further treatment while preserving curvatures and critical areas such as faults (see
[4]).

The present work was undertaken in this context: our hybrid mesh simplification method al-
lies both vertex clustering and iterative edge collapse techniques. These approaches are actually
complementary: iterative edge contraction (based on quadratic error metrics, see [10], ([11]), com-
pared to vertex clustering approaches, leads to results of good quality but proves very costly both
in terms of time and space. Vertex clustering algorithms (see for instance [20], [7], [17]) are simple,
light and efficient methods but they hardly take into account the local geometry of the surface.
Therefore, our idea was to combine both an adaptive segmentation step followed by an iterative
edge collapse process (this last step ends when the expected simplification rate is reached).

The paper is organized as follows: in section 2.2, we introduce our two step method, while
sections 2.3 and 2.4 respectively detail each step. Section 3.4 emphasizes the very interesting
results we obtained.

2.2. Method General presentation. Our work starts from an observation: the approaches to
triangular mesh simplification are various and actually each of them is relevant in its own field. On
the one hand, vertex clustering approaches are particularly interesting in terms of time and space
consumption and will be more efficient for low simplification rates. On the other hand, iterative
edge contraction is slower and requires more memory, but produces better results (specially for
high simplification rates).

The purpose of our algorithm is to conciliate the advantages of both approaches in order to
efficiently handle models of any size while preserving the quality of the resulting approximations.

The underlying idea of our algorithm is to combine a first adaptive segmentation step with a
second iterative edge collapse step.

2.2.1. Vertex grouping: spatial adaptive clustering. The first step of our algorithm consists in a
vertices grouping step. As we have explained previously, in order to obtain satisfactory results, it
is necessary to take into account the local geometry of the surface and hence to use an adaptive
approach. However, if the original data is inhomogeneous and if some areas of the original surface
are sparse, a purely adaptive approach can lose too many informations in these areas. Therefore,
in order to avoid such problems, our algorithm starts from a rough regular grid. This initial
grid is then refined by successive approximations: splitting planes are determined by a principal
component analysis and inserted in the cells where more detail is necessary (see section 2.3.2).

In order to split cells efficiently, it is necessary to define a priority for their treatment. We chose
to estimate the absolute curvature at each vertex (we use the estimation by Meyer et al. [19], see
section 2.3.1). The indicator attached to a cell is the sum of the absolute curvatures of its vertices;
cells are processed according to this indicator.

Last, a representative vertex is computed for each cell (by minimization of the quadratic error
metric associated to the cell), and a topology is rebuilt over these vertices, inherited from the
initial topology (see section 2.3.2).

2.2.2. Iterative edge collapse. Starting from the intermediate approximation of the mesh obtained
by vertices grouping together with the quadratic error matrices previously computed, an iterative
edge collapse process is applied in order to produce a smaller and smoother simplification (see
section 2.4).

2.3. Vertex clustering : adaptive segmentation.
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2.3.1. Discrete curvatures. A triangular mesh is a piecewise linear surface. Therefore, its curvature
(in the sense of differential geometry) is null everywhere except on the edges where it is not
defined. However, it can be interesting to consider such a surface as a discrete approximation of a
continuous surface. In this perspective, one can define discrete curvature indicators; ideally these
discrete indicators should converge to the continuous ones as the mesh density increases. Several
definitions have been proposed for such discrete curvature indicators (see [8], [19], [24]). We chose
to use the definition by M. Meyer and al. ([19]) as it constitutes a good trade-off between quality
and complexity (convergence results have been formally obtained by G. Xu in [26]).

For any vertex v, we use Meyer’s estimates to compute both mean curvature H and Gaussian
curvature K at v. Let κ1 and κ2 be the principal curvatures at vertex v, then: κ1κ2 = K and
κ1 + κ2 = 2H. Therefore κ1 and κ2 are the roots of the polynomial X2 − 2H · K + K. The
absolute curvature at v is defined by: Kabs = |κ1|+ |κ2|. In our algorithm, this indicator is used
throughout the vertex clustering process. Figure 2.1 presents absolute curvature fields for both a
geological surface and the well known rocker arm model.

Figure 2.1: Discrete absolute curvature fields: left, a rocker arm - right, a geolog-
ical surface

2.3.2. Adaptive segmentation. The spatial vertex partition is technically handled using a forest of
BSP trees in order to control efficiently the size of the resulting mesh. Provided that each leaf of
the BSP trees eventually produces a vertex, the leaves of the BSP tree are subdivided until the
desired number of vertices is reached.

This process consists of three steps: initialization, adaptive segmentation, and last post-processing.
Let us now detail each of them.
Initialization. After loading the mesh, the initialization step consists both in regularly segmenting
the surface (subdividing the whole mesh by a 3D regular grid) and in computing for each vertex
the corresponding absolute curvature indicator. The number of trees created corresponds to the
number of cells of the uniform grid used for segmentation. Each root of this forest maintains a list
of vertices and an absolute curvature value (defined as the sum of the absolute curvatures at the
vertices of the cell).

Note that the size of the uniform grid does not directly control those of the resulting segmented
mesh: this control arises from the adaptive segmentation step.

When the input data are voluminous, it is important that the size of the regular grid cells be
small enough to simplify and accelerate the adaptive segmentation step. Moreover, in the sparse
areas, the initial uniform clustering step prevents that too distant vertices be grouped by adaptive
segmentation (which would result in distortions).
Adaptive segmentation of the mesh. Once the surface has been segmented by means of a regular
grid (as described previously) we obtain an array of n BSP trees (where n is the number of cells of
the initial regular grid). Moreover, these trees are sorted in a priority queue ordered by decreasing
absolute curvature value.

The BSP tree is then iteratively updated as follows (let n be the number of leaves of the forest
and let m be the number of vertices required for the simplified mesh):

While n < m:
(1) chose the leaf of maximal absolute curvature
(2) create a subdivision plane by PCA analysis
(3) subdivide the leaf according to this plane and update the BSP tree
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In order to determine a subdivision plane appropriate to the repartition of vertices in the cell
(see [11]), we use a principal component analysis of the normals of the cell (see [13]).

Let us recall the main results on principal component analysis. Let {x1, . . . , xn} be a set of
vertices. The covariance matrix of this set is defined by:

Z = 1
n− 1

n∑

i=1
(xi − x̄)(xi − x̄)>

where v̄ denotes the average of the set {x1, . . . , xn}.
The eigenvectors of this matrix give the main variation directions of the set of vectors (for a

cloud of points inscribed in a rugby ball, these directions are the axes of the ball). The eigenvector
associated to the largest (resp. smallest) eigenvalue corresponds to the direction in which vectors
spread out1 the most (resp. the least).

In our setting, at each step of the adaptive process, the strongly bent cells are split in order to
decrease their curvature as much as possible. Ideally, the subdivision plane should be orthogonal
to the direction of maximal curvature (see figure 2.2). However, contrarily to figure 2.2, we are not
interested in smooth surfaces but in cells issued from a triangular mesh. Therefore, it is necessary
to find a discrete approximation of principal directions.

Figure 2.2: Principal curvatures on smooth surfaces: (in red, direction of maximal
curvature - in blue, direction of minimal curvature)

Normal curvature in direction τ is the normal component of acceleration in this direction.
Therefore, principal directions correspond to directions (in the tangent plane) of minimal and
maximal variation of the normal vector.

In the discrete case, principal component analysis of the set of normals of the cell provides the
main spreading directions of this set. Let e1, e2 and e3 be unitary eigenvectors of the covariance
matrix, associated to eigenvalues λ1 < λ2 < λ3 (eigenvalues and eigenvectors are computed with
the Jacobi method [25]) . Direction e1 is that of minimal variance, therefore it approximates the
average normal vector of the cell. Direction e3 (orthogonal to e1) is that of maximal variance.
Thus it approaches the principal direction of maximal curvature and we will take e3 to be the
normal of the splitting plane.

Moreover, the affine subdivision plane should be inserted around the vertex of maximal curva-
ture; but in order to split the cell efficiently, this vertex should not be too close from the border.
Therefore, we insert the splitting plane at the barycenter of the vertices weighted by their
absolute curvature. The resulting clustering is quite satisfactory both for large and small cells
(see figure 2.3).

Once the subdivision plane is determined, the leaf corresponding to the considered cell in the
BSP tree is split into two new leaves. Vertices of the original cell are assigned to one of these leaves
depending on their position with respect to the splitting plane. Then, we assign each triangle to
the set of cells its vertices belong (thus, a triangle generally belongs to up to three cells). The
discrete surfaces we are studying are topologically connected. However, nodes can contain distinct
disconnected components. In such a case, replacing the vertices of the cell by a single vertex would
produce a non-manifold mesh; thus we test the connectivity of nodes and eventually split the non
connected leaves into their connected components.

1The direction in which vectors spread out the most is actually the direction of maximal variance
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Figure 2.3: Splitting planes for small cells (top) and a 300 vertices cell

The following test is applied to each leaf of the BSP tree; the algorithm uses a list L (initially
containing all the vertices of the leaf) and a queue f (initially empty).

• Get the head of L into v
• Insert v into f
• While f is not empty :

– Get the head of f into v
– For any v′ neighbor of v:

if v′ belongs to L then
∗ Insert v′ into f
∗ Remove v′ from L

At the end of this test, if L is empty, the cell contains a single connected component and thus,
the simplification process goes on normally. If L is not empty, the cell contains disconnected
components. The leaf is split into two new leaves respectively containing the vertices still present
in L and the others. The topological test goes on on the first set until all the connected components
have been identified.

In spite of its cost, this test is necessary to guarantee the topological properties of the sim-
plified surface. Figure 2.4 presents both the uniform cells and those obtained after the adaptive
subdivision process.

Figure 2.4: Results of the adaptive subdivision process: left, uniform clustering -
right, adaptive clustering
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Post-processing. Once the cells have been split and the expected decimation rate is reached, a
representative vertex must be computed for each of them (together with an appropriate topology,
inherited from the original mesh).

In order to approximate cells as precisely as possible, we use a method similar to [7], [17]
and [22]. For each cell, we define a quadratic form (called quadratic error metric) estimating the
distance between any point of space and the cell. The optimal position of the representative vertex
is obtained by minimization of this quadratic form.

Let us now define this quadratic form. For any triangle t in the cell, let Pt be the plane defined
by t, the quadratic form Qt : R3 → R associated to t is defined by Qt(v) = d(v,Pt)2. The cartesian
equation of Pt can be written: n>v + d = 0 where n denotes the unitary normal of t and d is a
constant. The distance d(v,Pt)2 can thus be written as d(v,Pt)2 = v>(nn>)v+ 2(dn>)v+d2. Let
us define:

Qt(v) = v>Atv + 2B>t v + C

with At = nn>, Bt = dn> and Ct = d2.
The quadratic form associated to a cell is the sum of the forms associated to each of its triangles.

As a consequence, it can also be written: Q(v) = v>Av+2B>v+C. Figure 2.5 presents quadratic
error metrics for different cells. The red axes represent the axes of Q; they originate at the point
vmin minimizing Q (let εmin = Q(vmin)). The isosurface Q = 1.5× εmin is represented in black.

Observe that the axes produced by the principal component analysis of the cell (represented in
blue) are quite similar to the axes of the quadratic error metric2.

Figure 2.5: Quadratic error metric for different cells - top: a saddle cell - bottom:
a convex cell

We have dQ(v).h = 0 and as matrix A is symmetric and non negative, minimizing Q comes to
solving Av + B = 0. This linear system is solved by singular values decomposition: A = UΣV >
where Σ is a diagonal matrix and U and V are orthogonal matrices. Let us define matrix Σ+ by:

(Σ+)i,j =
{

1
Σi,j

if Σi,j 6= 0
0 else

Let x̂ be the barycenter of the cell. The closest point to x̂ satisfying equation Ax+B = 0 is given
by:

x = x̂− V Σ+U>(B +Ax̂)

2Which is not so surprising as

A =
∑

t∈cell

ntn>
t whereas Z = 1

k − 1

∑

t∈cell

(nt − n̄)(nt − n̄)>

where nt denotes the normal of triangle t and n̄ the average normal of the cell.
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Once this representative vertex is determined for each cell, it remains to rebuild a topology over
these vertices, inherited from the initial topology of the surface. The algorithm is as follows:

For any face f in the initial mesh:
• if f belongs to three different cells, it is kept,
• otherwise, it is degenerate (reduced to a segment or vertex in the new mesh) and
therefore, it is removed.

The remaining faces generate the topology over the set of representative vertices and the
quadratic error metric of each cell becomes that of its representative vertex.
Let us point out that this post-processing (also used by [7], [17] and [22]) does not guarantee

the manifoldness of the result (only that generally, it is manifold). The following example (figure
2.6) illustrates such a topological problem. The initial mesh (drawn in black on the left figure) is
split into four cells and thus, the simplified mesh (in red) is not a manifold. Flipping edge (e, i)
solves the problem (see right figure).

Figure 2.6: Heuristic for the well known topological problem (non-manifoldness):
left, the original mesh - right, the corrected mesh (an edge has been flipped) which
gives rise to a manifold simplified mesh

Our idea is to detect and avoid edges causing non-manifoldness, and actually, edges of the
original mesh belonging to two triangles that will be non degenerate are one of the main cause for
such problems (as they produce crossing edges). Therefore, before building the topology of the
simplified mesh, we apply the following heuristic to the initial mesh:

(1) select the edges (v1, v2) of the initial mesh incident to two different non degen-
erate triangles ((v1, v2, v3) and (v1, v2, v4)); these edges are responsible for non-
manifoldness

(2) for each of these edges:
if (v3, v4) belongs to a single cell

flip (v1, v2) ((v1, v2) is replaced by (v3, v4)):
In the previous example, only edge (e, i) is concerned and its flip makes the simplified mesh a
manifold surface.

All this data (representative vertices, topology and quadratic error metric) is transmitted to
the second step of our simplification algorithm.

2.4. Iterative edge collapse. The second step of our algorithm consists in simplifying more
finely (by iterative edge collapse) the intermediate mesh previously obtained. We apply the method
introduced by Garland and al. ([10]) with the quadratic error metrics previously computed.

Contracting a pair of vertices (v1, v2)→ v̄ consists in replacing the vertices v1 and v2 by a new
vertex v̄ minimizing the resulting error (where error is measured with the quadratic error metric
just described). Vertex v̄ is then linked with the neighbors of v1 and v2.

Let us now come into details. The quadratic error made on the edge (v1, v2) is estimated by
Q(v1,v2)(v) = Qv1(v) +Qv2(v). The algorithm is as follows:
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• For any edge (v1, v2), compute v̄ the vertex minimizing error Q(v1,v2)(v). The cost
of contraction (v1, v2)→ v̄ is defined as Q(v1,v2)(v̄).

• Order the pairs in a stack by increasing order.
• While the desired decimation rate is not reached:

– remove the pair (v1, v2) of lower cost from the stack,
– contract this pair; the quadratic error metric associated to the new vertex v̄ is
Qv̄ = Qv1 +Qv2

– update the contractions (position of the optimal vertices) and their costs for the
1-neighbor ring of v̄

2.5. Results. The performances of the simplification process strongly depend on the following
parameters: first the size of the intermediate mesh (that is the simplified mesh obtained after the
first step), second, the size of the uniform grid.

The size of the uniform grid must not be too small, otherwise, the following adaptive subdivi-
sion makes no more sense and wouldn’t improve uniform segmentation anymore. However, this
parameter provides a control over the errors made by adaptive segmentation: at worst, after the
adaptive segmentation step, the size of the cells equals those of the grid. In practice, a good choice
for the size of the cells is to take them between 1.5 and 2 times the average length of the edges. As
for the size of the intermediate mesh, we experimentally choose a ratio between 0.5 and 0.8 of the
size of the initial mesh. Both parameters must actually be chosen in order to let enough "place"
to both steps to work over the data.

As one can observe (figure 2.7 and 2.8, the simplified surfaces are visually very satisfactory;
actually, they are very close to those obtained by a pure iterative edge contraction - this will
illustrated when studying the Hausdorff distance between the initial surface and the simplified
one. Observe that the sharp edges are well preserved. For geological surfaces, it is essential as

Figure 2.7: The rocker arm model simplified by our method: initial model, 40k
vertices (left) - simplified model, 5k vertices, Dmax = 0.00029, Davg = 0.0000345
(right) - size of the uniform grid: 41x24x78, size of the intermediate mesh: 20088
vertices

these characteristic lines are of particular interest for the geological interpretation of surfaces.

Figure 2.8: A geological surface simplified with our method: initial model, 112k
vertices (left) - simplified model, 3k vertices - size of the uniform grid: 151x188x27,
size of the intermediate mesh: 56136 vertices

In order to estimate the quality of our results, we have first compared them with those obtained
by Shaffer and Garland with their mixed approach ([11]). The tests have been performed with two
models: the “lucky lady” model (500k vertices) and the “dragon” model (437k vertices). Table 2.9
presents the numerical results obtained for this comparison.
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Figure 2.9: Numerical comparison between our algorithm and Garland and al. 2002.

Figure 2.11 and 2.10 present the related graphical results. Observe that besides the numerical
results, our method visually preserves well the sharp folds of the models and produces regular
meshes.

Figure 2.10: Comparison of our method and Garland and al. 2002 - the "venus"
model (134k vertices) - simplified model: 20K vertices

In order to estimate the quality of our simplified meshes, we have compared them with surfaces
obtained by the pure iterative edge collapse algorithm ([10]). Figure 2.12 presents running times
and error maps for both of these algorithms.

Therefore, the quality of our results is similar to [10] whereas our running time is three times
lower.

3. Feature Line Extraction

3.1. Context. The skeleton is a robust shape descriptor faithfully characterizing the topology
and the geometry of an object. This notion is widely used for various applications such as video
tracking [9], shape recognition [27], surface sketching [18], and in many other scientific domains.
Several techniques have been proposed to extract the skeleton from binary 2D images [28], 3D
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Figure 2.11: Comparison of our method and Garland and al. 2002 - the "lucky
lady" model (500k vertices) - simplified model: 100K vertices

Figure 2.12: Comparison of the map of errors for our method and Garland and
al. 1999 - the "venus" model (134k vertices)

closed meshes defining a volume [3], or 3D cubic grids [16]. However few have been dedicated to
the extraction of skeletons from a binary information located on an arbitrary triangulated mesh.
Rössl et al. [21] have presented a method in which some mathematical morphology operators have
been ported to triangulated meshes. The main interest of this approach is to combine an efficient
computation and a simple implementation. However, regarding the operator definitions and the
underlying algorithm, several drawbacks have been pointed out which mainly lead to unexpectedly
disconnected skeletons [15].

In this work, we propose a novel method to extract the skeleton of unstructured mesh patches
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by a topological thinning process. To figure out the issues of skeletonization of heterogeneous and
arbitrary triangulated meshes, we extend the concepts introduced in [21]. The presented approach
herein strictly relies on the mesh connectivity to achieve the extraction of the final skeleton. There-
fore, for the sake of understanding, the basic method of Rössl et al. is described in Section 3.2
with an assessment of its abilities and drawbacks. Section 3.3 details the proposed approach and
introduces the additional definitions and the novel algorithm. The results of our method including
tests on irregular meshes as well as on the performance of the algorithm are shown in Section 3.4.
Finally, an application to feature line detection is presented in Section 3.5.

3.2. Basic notions and definitions.

3.2.1. Position of the problem. Let S be an arbitrary manifold surface represented by an unstruc-
tured mesh patch M such as M = (V, E , T ). The sets V, E , and T correspond, respectively, to
the vertices, the edges, and the triangles composingM, the piecewise linear approximation of S.
The vertices are denoted by pi, with i ∈ [0;n[ and n = |V| being the total number of vertices of
M. The neighborhood N of a vertex pi is then defined as following:

(3.1) N (pi) = {qj | ∃ a pair (pi, qj) or (qj , pi) ∈ E}.
In such a case, mi = |N (pi)| represents the total number of neighbors of pi.

Let now consider a binary attribute F on each vertex of V. The set R ⊆ V is then written as
follows:

(3.2) ∀pi ∈ R ⇐⇒ F (pi) = 1.

The attribute F may be defined from beforehand process such as a manual selection, or a thresh-
olding based on geometrical properties (triangle area, principal curvatures, etc.). Then, an edge
e = (p, q) belongs to R if and only if p, q ∈ R. Similarly, a triangle t = (p, q, r) belongs to R if and
only if p, q, r ∈ R.

The main objective is to finally develop a technique to extract the skeleton of the set R by using
a topological thinning based on the mesh connectivity.

3.2.2. The existing approach. The skeletonization algorithm introduced by Rössl et al. consists in
an iterative constraint thinning. This relies on a classification of each vertex of R. The authors
proposed then three vertex types and c(pi), the complexity of the vertex pi such as:

(3.3) c(pi) =
mi−1∑

j=0
|F (qj)− F (qk)|,

where k = j + 1 mod mi and qj , qk ∈ N (pi).

Definition 1. A vertex pi is considered as complex if and only if c(pi) ≥ 4. The set of all complex
vertices is named C.

A complex vertex pi thus potentially corresponds to a part of a skeleton branch if c(pi) = 4, or a
connection through several branches if c(pi) > 4.

Definition 2. A vertex pi is marked as center if and only if and N (pi) ⊆ R. The set of all center
vertices is named E.

Definition 3. A vertex pi is called disk if and only if ∃qj ∈ N (pi), qj ∈ E that is a center. The
set of all disk vertices is named D.

A disk vertex corresponds to a simple point: a point that does not modify the expected skeleton
topology if it is removed [6]. We denote X the complementary of the set X in the region R.

Definition 4. The skeletonization operator of R is defined as a constrained thinning:

(3.4) skeletonize(R) = R \ (D ∩ C ∪ E).
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After applying the skeletonization operator until idempotence on R, the set of the remaining
vertices, corresponding to the final skeleton, is called SkR. During each pass, the skeletonization
operator removes the boundary disk vertices. Figure 3.1 illustrates the execution of the algorithm.
After obtaining the skeleton SkR of R, it is possible to remove the smallest branches. This last
operation is called pruning and defined as follows:
(3.5) prune(SkR) = SkR \ C.
This pruning step is shown by Figure 3.1 (d).

Figure 3.1: Illustration of the Rössl et al. algorithm. From left to right: (a) a
set of vertices R, (b) classification of R, (c) thinning until idempotence, and (d)
resulting skeleton after pruning.

3.2.3. Result assessment. Due to the simplicity of the used operators, the computational time of
the Rössl et al. method is very low, and the skeleton extraction is thus almost instantaneous on
meshes composed of 50K triangles. However, the accuracy and the continuity of the obtained
skeleton deeply depends on the mesh configuration. In other words, a same set R defined on
two different triangulations of S could lead to skeletons with two topologies drastically different.
Moreover, the lack of continuity also occurs in the case of particular configurations that are shown
in Figure 3.2 because the removal of disk vertices can modify the topology of the skeleton. Fig-
ure 3.3 illustrates the unexpected results and disconnections generated by the execution of the
skeletonization. Once the vertices P1 and P2 are removed (b), the skeleton becomes disconnected
at this location (c). However, some vertices would change to complex if a new classification step
was applied. This kind of vertices represents relevant points in a topological point of view and
thus, should not be deleted.

Another issue occurs since pruning is applied: the ending vertices of the skeleton are removed. As
a matter of fact, when the set R contains no center and no complex vertex, the pruning operator
removes all the vertices. This case is illustrated by Figure 3.4.

3.3. A skeletonization method for any arbitrary triangulated mesh. Both a new defini-
tion of particular vertices and a new algorithm have been elaborated to solve the disconnection
issues previously raised up in Section 3.2. These two key points of the approach we propose are
successively presented below.

3.3.1. Additional definitions. The different classes of vertices proposed by Rössl et al. aim at
describing the topology of R. However, they are not sufficient as there are still vertices that are
unmarked and that are then not considered in the skeletonization. For this reason, we introduce
the outer class.
Definition 5. A vertex pi is marked as outer if and only if F (pi) = 1 and pi /∈ (C ∪D ∪E). The
set of outer vertices is named O and is defined as follows:
(3.6) O = R \ (C ∪D ∪ E)
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Figure 3.2: Example of unexpected results by applying the Rössl et al. method.
From left to right: (a) the set of feature points R, (b) classification of R, (c)
skeletonization of R, (d) resulting skeleton after pruning.

Figure 3.3: Execution of the skeletonization operator [21]: (a) vertex classification,
(b) execution of the algorithm, (c) final skeleton with a broken topology.

Figure 3.4: Example of a particular configuration: while the vertices of R are not
classified, they will be deleted by the pruning operator of Rössl et al.

As it has been shown previously, a vertex may change from one class to another and, as a side-
effect, this may lead to potential disconnections during the skeletonization. To counteract this
issue, we propose to define a priority between the classes.
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Definition 6. The disk class has a lower priority over the other classes.

If a vertex is already classified as disk, it can change to complex, center or outer if necessary.

3.3.2. Algorithm. If the skeletonization operator defined by Rössl et al. is directly applied to an
unstructured patch, the final result may suffer from disconnections as some disk vertices are deleted
while they characterize the topology of the object. To correct this issue, the algorithm we propose
does not remove all the disk vertices but only those that will not be converted to a different priority
class after the operator application. This requires to add an additional step in the algorithm: at
each application of the skeletonization operator, the class of a vertex is recomputed before its
deletion. For example, if a disk vertex becomes a complex vertex, the vertex is not removed.

However, the resulting skeleton may be too thick using this technique (e.g. if it is composed of
only outer vertices). For this reason, a final cleaning step is added to obtain the expected skeleton.
At this stage, the skeleton must be composed of complex vertices (i.e. the skeleton branches or
nodes) and outer vertices, the ending points of the branches with only one complex vertex in their
neighborhood. Thus, to obtain the final skeleton, a two steps process is applied:

• the outer vertices that have more than two neighbors belonging to R are removed;
• the outer vertices with at most one neighbor belonging to R are kept.

Moreover, as for the skeletonization operator, each vertex complexity change is checked before
removing this vertex. Examples of resulting skeletons are shown in Figure 3.6 and the impact
of the algorithm modification with the update step is presented in Figure 3.7: disk vertices are
deleted (b) after checking their classes (c). During the deletion of P1 and the update step, the
class of P2 changes from disk to complex and P4 from outer to complex. Thus, these vertices are
not removed and the extracted skeleton is fully connected and faithfully characterizes the topology
of R (d). The complete method of skeleton extraction is summarized by the algorithm presented
on Figure 3.5.

3.4. Results. Some results of skeleton extraction on meshes are presented in Figures 3.8, 3.9
and 3.10. The obtained skeletons describe the geometry and the topology of the original set R.
The used meshes are relatively homogeneous in Figure 3.8 while, in Figures 3.9 and 3.10, the
algorithm has been tested on irregular meshes to show the robustness of the proposed approach
to unstructured meshes. It may be noticed that the resulting skeletons are the expected ones and
reflect correctly the topology and geometry of the original set R in a proper way.

Moreover, since the definitions and the operators used to extract the skeleton are very simple, the
computational time of the proposed approach is also very low, even if an additional checking step
has been added. It is possible to process a mesh with 100K vertices in 1 second. The tests have
been ran on an Intel Core 2 Duo 2.8 Ghz.

To complete the algorithm tests and to evaluate the robustness of the proposed approach, an
application dedicated to the feature line detection is presented in the following section.

3.5. Application to feature line detection. The detection of features within 3D models is a
crucial step in shape analysis. It is possible to extract from the surface of an object simple shape
descriptors such as lines (drawn on the surface). Generally, the methods of feature line detection
focus on the estimation of differential quantities and the research of curvature extrema. However,
these techniques are based on third-order differential properties and it leads to a common issue:
they produce disconnected feature lines because of flat and spherical areas and because of the noise
present in data sets. Thus, it is particularly difficult to generate intersections between feature lines.
To overcome these recurrent issues, we propose to apply our method to extract salient lines of a
model.

In order to define sets over triangulated 3D meshes, we use the algorithm proposed by Kudelski et
al. [14]. We compute the mean curvature H through a local polynomial fitting in the least-squares
sense [12]. The binary attribute F is then defined at each vertex pi as follows:
(3.7) Hpi > 0 =⇒ F (pi) = 1.
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repeat

forall the vertices pi 2 R do

if pi is a disk vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change then
delete pi

until idempotence

repeat

forall the vertices pi 2 R do

if pi is an outer vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change and if |N (pi)| > 2 then
delete pi

until idempotence

repeat

forall the vertices pi 2 R do

if pi is an outer vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change and if |N (pi)| > 1 then
delete pi

until idempotence

Algorithm 1: Extraction of the skeleton

11

Figure 3.5: Extraction of the skeleton.

Figure 3.6: Illustration of the proposed approach: (a) region R, (b) vertex clas-
sification, (c) execution of the thinning algorithm with update, (d) final skeleton
fully connected.

Finally, the objective is to thin the set, corresponding to potential feature parts of the mesh, in
order to obtain lines describing the geometry and the topology of the object.

Figure 3.11 illustrates the process of feature line detection. The obtained characteristic lines are
fully connected and describe accurately the topology of the sets. Then, due to the use of second-
order differential properties (i.e., the mean curvatures), the feature extraction is more robust.
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Figure 3.7: Detailed view of the thinning process: (a) vertex classification, (b) ex-
ecution of the skeletonization operator, (c) update of vertex classes after deletion,
(d) final skeleton.

Figure 3.8: Application of the skeletonization algorithm on regular triangulated
3D meshes.

Figure 3.9: Skeleton extraction on irregular 3D meshes.

Moreover, this type of approach allows to generate intersections between feature lines, which is
not possible with classical approaches (Figure 3.12).

Acknowledgments. The authors would like to thank the French Institute of Petroleum (IFP) for
their financial support of the study exposed section 2 and Jean Borgomano and Yves Guglielmi of
the Geology of Carbonate Systems and Reservoirs laboratory for their precious help and pieces of
advice for the second application (section 3). The models in section 3.4 were provided courtesy of
Caltech Multi-Res Modeling Group (Feline) and Cyberware (Dinosaur).

4. Conclusion

We illustrated the discrete curvatures concepts with two applications. In the first one, our
algorithm proposes an alternative to vertex clustering simplification methods and to iterative edge
collapse methods, by a compromise between both approaches. Regarding the results presented
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Figure 3.10: Extraction of the skeletons on meshes with mixed and unstructured meshes.

in section 2.5, this objective is reached. The main interest of this approach is to provide results
of high quality (very similar to those obtained by an iterative edge collapse method) but with
lower running times (by factors around 3 and up to 5) and memory consumption. Actually, our
algorithms behaves well as for the average errors between the original and the simplified mesh and
the maximal errors are significantly reduced compared to [11]. Moreover, the heuristic we apply in
order to avoid the well known topological problems resulting from simplification based on vertex
clustering proves quite efficient.

Our second application is an efficient and general new algorithm to extract the skeleton of a set
R defined on a triangulated mesh by topological thinning. This approach relies on the definitions
presented by Rössl et al. [21]. However, the latter generates, for some mesh configurations, unex-
pected skeletons that are generally more disconnected than they should. To overcome this issue,
an additional definition of vertex categories has been added. Then, we have improved the thinning
process by integrating a priority between vertex classes. Tests applied on different categories of
meshes illustrate the efficiency of the approach. As future work, a formal proof based on [5] and
issued from the notion of simple vertices (by analogy to simple points) may need to be considered.
The Rössl et al. article does not include formal validations because the vertices classification is
incomplete. With the changes made, the disk vertices truly correspond to simple points lying on
a discrete 2-manifold. Thus it will be possible to transpose the notion of geodesic neighborhood
to define topological numbers associated with simple vertices. A second prospect is related to the
position of the skeleton nodes. Indeed, the defined operators do not integrate any geometrical
information and the extraction of the skeleton only relies on a one-ring neighborhood. However,
as the position of the skeleton is generally easier to correct than the topology, post-processing
steps could be envisaged to optimize the skeleton position. In this way, the resulting skeleton will
describe in a better way both the topology and the geometry of the set lying on the mesh.

Even if interesting and relevant results can already be obtained, we are aware than many
theoretical works a practical experiments are still required to handle the open issues linked to
large and noisy discrete objet analysis.

47



A. Bac, J.-L. Mari, D. Kudelski, N.-V. Tran, S. Viseur and M. Daniel

Figure 3.11: Algorithm of feature lines extraction: (a) curvature estimation, (b)
definition of the set R, (c) extraction of lines from R by the proposed thinning
approach.

Figure 3.12: Comparison of results obtained from feature detection applied on Dinosaur.
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Tangential Approximation of Surfaces
Carl Olsson and Yuri Boykov

Abstract
In the Computer Vision community it is a common belief that higher order smoothness,

such as curvature, should be modeled using higher order interactions. For example, 2nd order
derivatives for deformable (active) contours are represented by triple cliques. Similarly, the
2nd order regularization methods in stereo predominantly use MRF models with scalar (1D)
disparity labels and triple clique interactions. In this paper we give an overview of an energy
minimization framework for tangential approximation of surfaces developed in [21, 22]. The
framework uses higher dimensional labels to encode second order smoothness with pairwise
interactions. Hence, many generic optimization algorithms (e.g. message passing, graph cut,
etc.) can be used to optimize the proposed regularization functionals. The accuracy of our
approach for representing curvature is demonstrated by theoretical and empirical results on
real data sets from multi-view reconstruction and stereo.

1. Introduction

Surface estimation from point measurements is an important problem in Computer Vision.
This paper gives an overview of an energy minimization framework for tangential approximation
of surfaces developed in [21, 22]. The approach assumes that we are given noisy position esti-
mates/probabilities of points sampled from the surface. To each point measurement our method
assigns a tangent plane that represents the exact surface position and orientation. The utilized
measurements are application specific and could, for example, be 3D-positions (from multiple view
geometry or laser scans), 2D projections, or photoconsistency (from image data). Our energy
includes a regularization term that encourages tangents to agree on some underlying piece-wise
smooth surface by estimating 2nd order smoothness (such as curvature or 2nd derivative).

Our framework is based on a graphical model. In general, graphical models are widely used
in vision for problems like dense stereo [30, 5], surface estimation [29], image segmentation [5],
inpainting [25], etc. Perhaps the most common regularizer is length (or area in 3D). This smooth-
ness criteria corresponds to graphical models with simple pair-wise potentials, which admit very
efficient global optimization algorithms like [5, 15].

Recently, the vision community has begun to actively explore models using curvature-based
regularization or similar second-order smoothness priors [25, 9, 26, 30]. Typically, evaluation of
the second-order smoothness properties of a curve/surface requires an interaction between three
or more points. This leads to hard-to-optimize graphical models with higher-order cliques instead
of simple pairwise potentials.

In [21, 22] we take an alternative approach. Instead of using graphical models with higher-order
interactions, we extend our label space so that the labels (tangents) encode both position and
orientation of a curve/surface. We therefore get an easier to handle pairwise interaction at the
expense of a larger search space. This makes it possible to evaluate curvature using only pairwise
interactions. Thus, standard combinatorial optimization methods, e.g. TRW-S [15], can be readily
applied. The idea of simplifying optimization problems by lifting the label space has also been
applied in the context of variational formulations for optical flow and segmentation [20, 23, 6]. To

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).

51



Carl Olsson and Yuri Boykov

demonstrate out general approach we consider two applications; Point Cloud Regularization and
Stereo Reconstruction.

1.1. Regularization of Point Clouds. Point clouds obtained from structure-from-motion type
procedures [11] typically contain significant amounts of noise. One reason for this is that there
is no regularization term that encourages point positions to agree on smooth surfaces in the final
solution. To regularize the point cloud we estimate a “true" position and a tangent plane, for each
point, such that neighboring points agree on an underlying piecewise smooth surface. The tangent
interaction that we use can be shown to estimate normal curvature of the surface. Our approach
does not assume any particular topology, nor does it have to be closed or “orientable".

Piece-wise constant regularization has previously been applied to similar geometric problems,
e.g. [13, 8]. Their labels are global geometric primitives (lines, circles, homographies). For a
general scene such an approach may require enumerating a very large number of primitives to
account for all possible surfaces in a scene. In contrast, this paper adopts an approach where
global non-parametric surfaces are formed by smoothly combining locally estimated primitives
(e.g. tangent lines/planes). As shown by [28] in the context of non-rigid structure from motion,
similar local-to-global approach may work even without regularization. In general, however, piece-
wise smooth MRF priors [3] are necessary to build global surfaces from local primitives estimated
from ambiguous data with noise and outliers.

In the graphics community surface estimation from point clouds is widely studied [12]. Popu-
lar approaches are least squares surfaces (MLS) [1], locally optimal projections (LOP) [19], and
anisotropic point cloud diffusion [16]. However, none of these methods regularize curvature. Per-
haps, the closest to our approach is [27] that uses active surface elements, a.k.a. surfels. In
principle, curvature could be estimated from pairwise potentials between the surfels. However,
this is difficult in practice since surfels correspond to a label space with six degrees of freedom
(point position and a local coordinate frame). In contrast, our labels have only three d.o.f. (tangent
plane).

1.2. Stereo Reconstruction. The goal of stereo reconstruction is to compute a depth estimate
for every pixel in an image. Doing so requires that every pixel in the image is matched to a
corresponding pixel in another image. Due to ambiguous texture this matching is rarely unique
and as a result the stereo problem is most often ill posed. Resolving these ambiguities requires
adding knowledge of what types of surfaces that we can expect to see in natural scenes, in the
form of regularization.

First order methods [5, 14, 10] often implicitly assume fronto-parallel planes. For example, stan-
dard piecewise smooth (e.g. truncated linear or quadratic) pairwise regularization potentials assign
higher cost to surfaces with larger tilt with respect to the camera [5]. To model surfaces more
accurately Birchfeld and Tomasi [2] introduced 3D-labels corresponding to arbitrary 3D planes.
However, this approach is limited to piecewise planar scenes. To address more general scenes
recent papers use 2nd derivative regularization [22, 18, 30]. There are two ways of modeling such
higher order smoothness potentials. Woodford et al. [30] retain the scalar disparity labels while
using triple-cliques to penalize 2nd derivatives of the reconstructed surface. This encourages near
planar smooth disparity maps. The optimization problem is however made more difficult due to
the introduction of non-submodular triple interactions. In contrast, [22, 18] use 3D-labels corre-
sponding to tangent planes to encode 2nd order smoothness as pairwise interactions. It is shown
in [22] that in contrast to the triple-cliques used by Woodford et al. [30] the 3D-label formulation
is often submodular (or near submodular) making fusion moves easier to solve optimally using
standard methods like Roof duality [24].

1.3. Optimization Background. In this section we briefly review the concept of fusion moves
[17]. Given two (possibly very different) solution proposals the fusion move tries to compute the
best possible combination, with respect to the objective function, by selecting the best parts from
each proposal. This allows modifying a large number of pixels simultaneously thereby escaping
poor local minima.

52



Tangential Approximation of Surfaces

Consider the optimization of an arbitrary second order pseudo-boolean function (PBF) of n
variables, usually expressed as,

(1.1) min
x∈Ln

E
(
x
)

= min
x∈Ln

∑

p∈V
Up

(
xp

)
+

∑

(p,q)∈E
Vpq

(
xp, xq

)

where L = {0, 1}. We think of the objective function as being defined on a graph G = (V, E).
To each node p ∈ V we want to assign a binary value, at a cost specified by the unary term Up.
In addition, for each edge (p, q) ∈ E there is a term Vpq that specifies a costs for combinations of
assignments to p and q. If Vpq is submodular, that is
(1.2) Vpq(0, 0) + Vpq(1, 1) ≤ Vpq(0, 1) + Vpq(1, 0),
this can be efficiently solved [5]. Even with Vpq non-submodular roof-duality (RD) [4, 24] can be
used. RD will give a partial solution where labeled variables are guaranteed to be correct for an
optimal solution and some variables are left unlabeled.

Lempitsky et al. [17] proposed a way to minimize (1.1) when L = R. Given two assignments
x0 and x1 we fuse them into a new one with lower energy by solving
(1.3) min

z∈{0,1}n
E
(
z · x0 + (1− z) · x1

)
,

where · is element-wise multiplication. If we solve (1.3) using RD and then set z = 0 for all
unlabeled variables the autarky results in [24] gives
(1.4) E (z · x0 + (1− z) · x1) ≤ min

(
E (x0) , E (x1)

)
.

Therefore we can iteratively minimize (1.1) by proposing new solutions and fusing them with the
old solution.

The possibility to decrease the energy for each fusion move is an attractive feature, however
there is no guarantee on how many variables will be labeled in each fusion move. For submodular
fusion moves we are guaranteed to label all variables. Minimizing a submodular function is also
faster in practice [24].

2. An Energy Approach to Tangential Estimation

Next we present the approach for tangent estimation. Recall the general formulation of our
problem: Given noisy point position estimates/probabilities we want to estimate the true point
positions by enforcing smoothness of the unknown underlying surface. Note that estimating 2nd
order smoothness of a surface from point samples requires at least 3 points; first derivatives are
estimated using pairs of points then second derivatives using pairs of pairs. To avoid triple inter-
actions like these our labels encode both point position and derivatives using a tangent plane. In
this way we are able to encode our smoothness using pairwise interactions at the expense of having
to search a larger label space.

We can think of the method as an energy minimization problem on a graph G = (V, E). To each
node p ∈ V we will assign a tangent tp = (np, ap), where np ∈ R3, ||np|| = 1 and ap ∈ R. Note
that we assume that each tangent also provides (a unique) estimate of the sought point position
p. For example, in Section 3 p will be the point on the tangent that has the smallest distance to
the point measurement. This limits the dimension of our labels to 3. If this is not the case then
in addition to the tangent itself we would have to estimate a position on the plane requiring 2
additional degrees of freedom.

The energy has the form

(2.1) E(t) =
∑

(p,q)∈E
Vpq(tp, tq) +

∑

p∈V
Up(tp).

The unary term Up only depends on the tangent assigned to p. This term is sometimes refereed to
as data term since it is constructed from point measurements/probabilities. In Section 3 we will
use the distance between the estimated and the measured point and in Section 4 it will be based
on photo-consistency.

The pairwise term Vpq provides the regularization. This term will encourage assignments where
neighboring nodes have similar tangents. Here the neighborhood is defined by the edge set E .
Specifically the term Vpq works by considering the effect of switching the assigned tangent at q
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Figure 3.1. Left: pairwise interaction approximating curvature corresponds to
quotient (3.12). Right: the quotient |q−q′|

|p−q|2 yields half the curvature at p under
the assumption that p and q belong to a constant curvature segment.

to its neighboring tangent tp. Intuitively, if the surface is smooth, then the tangents at nearby
nodes p and q should be similar. Therefore the point estimations should not change much when
switching tangents. An alternative way of thinking of this type of interaction is as the deviation
from the 1st order approximation at p (tangent tp) measured at q, which is a measure of the 2nd
order properties of the surface. Due to the restriction to pairwise potentials we need to measure
surface smoothness indirectly by estimating smoothness of curves on the surface. More complex
regularization terms like Gaussian curvature require higher order potentials.

Note that we do not explicitly construct any surface. It is only locally implicitly represented
using the tangents. Therefore our approach does not assume any particular surface topology,
nor does it have to be closed or “orientable". Furthermore, in contrast to methods that estimate
smoothness using explicit polygonal approximations, such as triangulations, we do not need to
know in which order the points are connected. For each node p we just compute smoothness
estimates using all points in a small neighborhood.

3. Point Cloud Regularization

We assume that points p̃ and q̃ are noisy measurements of the points p and q on a curve on
the underlying surface (see Figure 3.1). To p̃ and q̃ we assign tangents (np, ap) and (nq, aq). The
estimated “true" points p and q will be the orthogonal projections of p̃ and q̃ onto the assigned
tangents, that is

p = p̃− (n>p p̃ + ap)np(3.1)
q = p̃− (n>q q̃ + aq)nq.(3.2)

Given the estimations p and q and their tangents we would like to estimate how smooth the
underlying curve is. There are several ways of doing this. Bruckstein et al. [7] use angles between
consecutive line segments to measure curvature. While this gives an easy type of interaction it
requires an explicit representation of the estimated polygonal curve. In addition it does not seem
possible to generalize this measure to the 3-dimensional case without resorting to triple cliques.
In contrast we are seeking an implicit local estimation using tangents with pairwise interactions.
To measure the difference between the two tangent planes we therefore compute the projections
(see Fig.3.1 left)

p′ = p− (n>q p + aq)nq(3.3)
q′ = q − (n>p q + ap)np,(3.4)

that is, the estimated points projected onto the neighboring tangent plane. If the underlying
surface is smooth then

(3.5) |p′ − p|+ |q′ − q|

should be small since the tangents are close to each other. The term (3.5) is closely related to
curvature. To see this we assume that (np, ap) , (nq, aq) are the true tangent planes at the points
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p and q, and that
p = α(t1)(3.6)
q = α(t2),(3.7)

where α is a smooth curve. Furthermore, we will assume that this curve is parametrized by
arc-length. (This is however no restriction since any curve with derivative α̇ 6= 0 can be re-
parametrized.) Since n>p p + ap = 0 we have

(3.8) |q − q′| = |n>p q + ap| = |n>p (q − p)|
Using the Taylor expansion of α at t1

(3.9) α(t) = α(t1) + α̇(t1)(t− t1) + 1
2 α̈(t1)(t− t1)2 +O((t− t1)3),

together with (3.6)-(3.7), the term (3.8) can be written

(3.10) |n>p
(
α̇(t1)(t2 − t1) + 1

2 α̈(t1)(t2 − t1)2
)

+O((t− t1)3)|.

Since α̇(t1) is the tangent at p it is perpendicular to the normal np so the first term vanishes.
Furthermore, since α is parametrized by arc length, α̈ is perpendicular to the tangent α̇. Therefore
n>p α̈(t1) is only the length of α̈(t1) (plus or minus, depending on the direction of np), which is the
curvature. Hence if we divide |q − q′| by (t2 − t1)2 we get roughly half the curvature. However,
as we estimate the underlying curve (or any parametrization of it) t1 and t2 are unknown. Again
using the Taylor expansion we note that
(3.11) |p− q|2 = |α̇(t1)|(t2 − t1)2 +O((t2 − t1)3)
Since α is a unit speed curve |α̇| = 1, and therefore

(3.12) |q − q′|
|p− q|2 =

1
2 |n>p α̈(t1) +O(t2 − t1)|
|1 +O(t2 − t1)| .

This expression will tend to half of the curvature when t2 tends to t1, and therefore approximates
curvature well if p and q are close enough. Note that if we think of the normals as coming form
an underlying surface then the interaction can be interpreted as measuring normal curvature of
the surface in the direction q′ − p.

Figures 3.2 shows the computation of the quotient (3.12) for the curve
√

3 cos(t). To approximate
the integral of the absolute curvature we use

(3.13) 1
2

∫
|κ|dσ ≈

∑

i

|pi+1 − p′i+1|
|pi+1 − pi|

,

where pi are the sampled 2D points. Since the function has amplitude
√

3 the derivative is ±
√

3
in its endpoints. This gives 60 degree angles to the x-axis at the endpoints, which is very close to
what the approximations in Figures 3.2 give.

An interesting special case where the approximation turns out to be exact is when the points
are lying on a constant curvature segment, that is, a segment that is part of a circle or line. For
simplicity let us assume that p and q is on a circle with center at the origin, see Figure 3.1 right.
If we parametrize the curve by arc length the angle 2α is t/r. By the cosine theorem we get

(3.14) |p− q|2 = 2r2(1− cos( t
r

))

Since the angle α is t/2r we see from the second triangle that

(3.15) |q − q′| = |p− q′| sin( t2r )

Assuming 0 ≤ t
2r ≤ π, this gives us the quotient

(3.16) |q − q′|
|p− q|2 =

sin( t
2r )√

2r2(1− cos( t
r ))

=
sin( t

2r )
2r| sin( t

2r )| = 1
2r ,

which is half of the curvature of a circle with radius r.
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Figure 3.2. Computation of the curvature of
√

3 cos(t), −π/2 ≤ t ≤ π/2. Top:
The sample points and their tangent planes for various sampling rates. Bottom:
The computed curvature at the sample points, and the true curvature of the
function. The values of the integral approximations are 59.6265, 59.9600 and
59.9961 degrees respectively (converted from radians).

3.1. Experiments. In this section we present some experimental results. For the energy we use
(2.1) with

(3.17) Vpq(tp, tq) = min
( |q − q′|
|p− q| , τ

)
,

where τ is a threshold that ensures that we do no over penalize transitions between surfaces. Note
that we consider the edges of E to be undirected. Therefore if Vpq is present in the energy then
so is Vqp and therefore the energy is symmetric. Since all nodes do not necessarily have the same
number of neighbors we weight the pairwise interaction Vpq with one over the number of neighbors
of p.

The unary term is simply the squared distance Up(tp) = |p̃− p|2. For further details see [21].
We apply it to the two real datasets depicted in figures 3.3 and 3.4. The first one is a set of

3D points at the surface of a castle (18270 points), and the second one is one of the laser scans of
the well known Stanford bunny (40256 points) The first dataset is more noisy since it was created
using a 3D reconstruction scheme, whereas the bunny was scanned in a laboratory setting. Figure
3.3 and 3.4 shows the obtained results. The settings used where µ = 5e5, τ = 0.56 for the bunny,
and and µ = 2500, τ = 0.56 for the castle. In both cases the solution took roughly 3 hours to
compute.

To generate proposals for the fusion moves we use an approach similar to that of [8, 13]. First
candidate tangents are computed using random sampling. These are then refined using local
optimization of the energy and fused with the current solution.

For the computations we used the code available from [15] and the Matlab wrapper from [30].
Since our energy is not of any of the standard forms supported by [15], we used the general lookup
table form (which is highly inefficient according [15]) to setup our potentials. Specialized software
should therefore be able to speed up these computations considerably.

4. Stereo Reconstruction

In dense stereo the objective is to compute a depth z(p) (distance to the surface/object from
the image) for each pixel p in an images. The result is an estimate of the surface geometry for all
points on the object that are visible in the image.

The cost of assigning a particular depth to a pixel is based on comparison of pixel appear-
ances. From the pixel coordinate and the given depth it is possible to compute the position of
the corresponding point in a second image. Comparing the appearances (e.g. RGB-values) of
these two pixels gives a cost of that depth. Individual depth estimates are usually unreliable due
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Figure 3.3. Visualization of the resulting tangent planes along two planar cuts.
1st column: Image of the scene, Input 3D points (blue, 18270 in total) and points
(green) close to the two cutting planes. 2nd column: Points (green) projected onto
the plane and line segments (black) obtained when intersecting the corresponding
tangent planes with the cutting plane. 3rd and 4th columns: Two closeups.

Figure 3.4. Visualization of the resulting tangent planes along two planar cuts.
1st column: Image of the scene, Input 3D points (blue, 40256 in total) and points
(green) close to the two cutting planes. 2nd column: Points (green) projected onto
the plane and line segments (black) obtained when intersecting the corresponding
tangent planes with the cutting plane. 3rd and 4th columns: Two closeups.

to noise and ambiguous texture and we therefore need to apply regularization. However directly
penalizing 2nd derivative of the depth function is not a good idea. In general the projection of a
plane will not yield a linear depth function unless the camera is affine (which can be seen from
(4.4) below). Hence, such an energy would assign a 3D-plane a nonzero penalty. Therefore we will
instead measure the deviation from the tangent plane along the viewing ray.

Let ph and qh denote the homogeneous coordinates (with third coordinate 1) and p and q
regular Cartesian coordinates of the two pixels p and q. We will assume a pinhole camera model
where the center camera has been calibrated and normalized to be of form [I 0]. Given a function
z : I 7→ R+ that gives a depth for each pixel the 3D points P and Q corresponding to p and q can
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I qp

P = z(p)ph

Q = z(q)qh

Vpq

Q′

Figure 4.1. Left: Geometric interpretation of the stereo smoothness interaction.

be computed (in regular Cartesian coordinates) using the simple formulas

P = z(p)ph,(4.1)
Q = z(q)qh.(4.2)

By tp = (np, ap), where np ∈ R3, ‖np‖ = 1 and ap ∈ R we denote the tangent plane at p given by
the equation

(4.3) nT
p x + ap = 0.

Consider the intersection point Q′ between the viewing ray at q and the tangent plane at p (see
Figure 4.1). We let Tpz : I 7→ R+ be the depth function of the tangent plane at point p, that is,
Q′ = Tpz (q) qh. We can calculate the tangent function using

(4.4) Tpz (q) = − ap

nT
p qh

.

(Here we are assuming that the viewing ray is not completely contained in the tangent plane.)
Note that even though this function represents a plane in 3D it is usually not linear in q.

To encourage smooth assignments we use the cost

(4.5) Vpq(tp, tq) = ‖Q−Q′‖ = |Tpz (q)− z(q)| ‖qh‖.
The geometric interpretation of this expression can be seen in Figure 4.1. Given the estimated
tangent plane at p and the depth at q the interaction computes the distance between the esti-
mated 3D point and the tangent plane along the viewing ray. The smoothness term will penalize
deviations from planes and thereby encourage solutions with small second derivatives. Similarly
to the previous section it can be shown that this interaction will penalize

(4.6)
∣∣∣∣
(z′)2 − zz′′

2z

∣∣∣∣ .

The term (z′)2/z compensates for the fact that viewing rays are not parallel in the pinhole camera
model. (In case of parallel rays the interaction just approximates |z′′|.) The reason for not using
the same interaction as in Section 3 for stereo is illustrated in Figure 4.2. The interaction from
Section 3 can be interpreted as fitting a constant curvature segment between p and q with tangent
tp. This only works well if p and q are close (recall that p and q were 3D points in Section
3), since this is when the Taylor expansion is valid. As can be seen in Figure 4.2 for large depth
differences the curvature will be significantly underestimated. In contrast the interaction presented
in this section can be interpreted as an approximation with (z′)2−zz′′

2z which is a more reasonable
approximation. In addition it is valid as long as the pixel coordinates p and q are close and
therefore it is not sensitive to large depth differences between pixels.

4.1. Experiments. Next we evaluate the proposed framework on a couple of multiple view stereo
data sets. For the energy we use

(4.7) Vpq(tp, tq) = min(Q−Q′, τ).
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p

q

p q

Figure 4.2. Differences between the two interactions in Section 3 and Section 4.

Figure 4.3. Resulting surface estimations. Left: Image. Middle: Estimated sur-
face. Right: Estimated surface with texture.

For the data term Up we use normalized cross correlation (NCC) computed at different possible
depths. Quadratic interpolation is used to compute values in between the sampled depths. See
[22] for further details on implementations.

To generate proposals we use random sampling of planes and local optimization. In the sampling
step we select a pixel and a small neighborhood around it. Using the best local maximum of the
normalized cross correlation for each viewing ray in the neighborhood we create a 3D cloud and fit
a plane using RANSAC. Fusion moves with these planar proposals are particularly effective and
can in fact be shown to be submodular [22].

Figure 4.3 shows the result of applying this approach to two datasets.
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An overview of curvature bounds and spectral
theory of planar tessellations

Matthias Keller

Abstract
We give a survey about the spectral consequences of upper bounds on the curvature on

planar tessellating graphs. We first discuss spectral bounds and then put a particular focus
on uniformly decreasing curvature. This case is characterized by purely discrete spectrum
and we further present eigenvalue asymptotics and exponential decay of eigenfunctions. We
then discuss absence of compactly supported eigenfunctions and dependence of the spectrum
of the Laplacian on the underlying `p space.

1. Introduction

In this article we survey results relating curvature bounds and spectral theory. We focus on
infinite planar tessellations which can be considered as discrete analogues of non compact surfaces.
The tiles of the tessellations are all treated as regular polygons.

We study a curvature function which arises as an angular defect. This notion of curvature
is justified by the Gauß Bonnet formula. This idea goes back at least to Descartes, see [16], and
appeared since then independently at various places, see e.g. [37, 20, 25, 40]. A substantial amount
of research was conducted to study the geometric property of the tessellation in dependence of
the curvature, see e.g. [3, 4, 5, 9, 10, 11, 22, 23, 24, 26, 29, 34, 37, 39, 40, 42]. The operator
under investigation is the graph Laplacian on the tessellation with constant edge weights. First,
we show spectral bounds resulting from curvature bounds. Here, the quantitative bounds result
from estimates in [29]. Secondly, we take a closer look at the case of uniformly unbounded negative
curvature. This case characterizes discreteness of spectrum, [26], for which we present eigenvalue
asymptotics, [6, 7], and decay properties of eigenfunctions, [28]. Thirdly, unique continuation
properties of eigenfunctions are discussed, [7, 30], and, finally we summarize results on the p-
dependence of the spectrum of the Laplacian as an operator on `p, p ∈ [1,∞].

2. Set up and definitions

In this section we introduce planar tessellations, notions of curvature and the graph Laplacian.

2.1. Planar tessellations. Let (V,E) be a simple planar graph embedded into an orientable
topological surface S that is homeomorphic to R2. We assume the embedded graph is locally
finite, i.e., for every compact K ⊆ S, one has

#{e ∈ E | e ∩K 6= ∅} <∞.
In particular, this excludes the situation that a vertex has infinitely many neighbors. In the
following we do not distinguish between the graph and its embedding. Nevertheless, we stress that
we only use the combinatorial properties of the graph which do not depend on the embedding.

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
Received by the editors November 13, 2014.

61



M. Keller

The set of faces F has the connected components of

S \
⋃
E

as elements. For f ∈ F , we denote by f the closure of f in S. We denote G = (V,E, F ). Following
[3, 4], we call G = (V,E, F ) a tessellation if the following three assumptions are satisfied:
(T1) Every edge is contained in two faces.
(T2) Two faces are either disjoint or intersect in a vertex or an edge.
(T3) Every face is homeomorphic to the unit disc.

There are related definitions such as semi-planar graphs see [23, 24] and locally tessellating graphs
[27]. Indeed, most of the results presented here hold for general planar graphs on surfaces of finite
genus. However, the definition of curvature becomes more involved and some of the estimates turn
out to me more technical. Thus, we stick to the ’tame’ special case of tessellations.

2.2. Curvature. In order to define a curvature function, we first introduce the notation for the
vertex degree and the face degree. We denote the vertex degree of a vertex v ∈ V by

|v| = #edges emanating from v

and the face degree of a face f ∈ F by

|f | = #boundary edges of f = #boundary vertices of f.

The vertex curvature κ : V → R is defined as

κ(v) = 1− |v|2 +
∑

f∈F,v∈f

1
|f | .

The idea traces back at least to Descartes [16] and was later introduced in the above form by Stone
in [37] referring to ideas of Alexandrov. Since then this notion of curvature was widely used, see
e.g. [3, 4, 11, 22, 24, 26, 27, 29, 34, 40, 42]. The notion of curvature is motivated as an angular
defect: Assume a face f is a regular polygon. Then, the inner angles of f are all equal to

β(f) = 2π |f | − 2
2|f | .

This formula is easily derived as walking around f once results in an angle of 2π, while going
around the |f | corners of f one takes a turn by an angle of π − β(f) each time. In this light the
vertex curvature might be rewritten as

2πκ(v) = 2π −
∑

f∈F,v∈f

β(f), v ∈ V.

Nevertheless, it should be stressed that the mathematical nature of κ is purely combinatorial
while assuming a particular nice embedding it allows for a geometric interpretation. The notion
has its further justification in the Gauß Bonnet formula which is mathematical folklore and may
for instance be found in [3] or [27].

A finer notion of curvature arises when one asks which contribution to the total curvature at a
vertex v comes from a corner at a face f with v ∈ f . Precisely, the set of corners of a tessellation
G is given by

C(G) = {(v, f) ∈ V × F | v ∈ f}.
Define the corner curvature κC : C(G)→ R by

κC(v, f) = 1
|v| −

1
2 + 1
|f | .

One immediately infers

κ(v) =
∑

f∈F,v∈f

κC(v, f).

This notion of curvature was first introduced in [3] and further studied in [4, 27].
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2.3. The Laplacian. Next, we come to the graph Laplacian. Consider the quadratic form Q :
C(V )→ [0,∞]

Q(f) = 1
2

∑

v∼w
|f(v)− f(w)|2,

where C(V ) is the space of complex valued functions on V . Choosing the counting measure on V
yields a Hilbert space `2(V ) of complex valued functions whose absolute value square is summable.
The scalar product on `2(V ) is given by

〈f, g〉 =
∑

v∈V
f(v)g(v), f, g ∈ `2(V ),

and the norm by ‖f‖ = 〈f, f〉 1
2 . Restricting Q to the subspace

{f ∈ `2(V ) | Q(f) <∞}
yields a positive quadratic form which can seen to be closed. By general theory, there is a positive
selfadjoint operator ∆ associated to Q which acts as

∆f(v) =
∑

w∼v
(f(v)− f(w))

and has the domain

D(∆) = {f ∈ `2(V ) | ∆f ∈ `2(V )}.
The complex valued functions of compact support Cc(V ) are dense in D(∆), see [41]. It is not
hard to see that the operator ∆ is bounded if and only if

sup
v∈V
|v| <∞.

Remark 2.1. There is another common choice of a measure on V , namely the vertex degree
function. This way one determines the volume of a set by counting the number of edges (twice
the number of edges with both end vertices in the set and ones the number of edges having only
one vertex in the set) rather than by the number of vertices in the case of the counting measure.
Restricting the quadratic form Q to the corresponding `2 space yields a different positive selfadjoint
operator ∆n which is always bounded and is often referred to as the normalized Laplacian.

3. The bottom of the spectrum

In this section we turn to the bottom of the spectrum of ∆. In the case where the bottom
of the spectrum is strictly positive one speaks of existence of a spectral gap. We discuss that
non-negative curvature implies absence of a spectral gap while in the case of negative curvature
we show existence of a spectral gap for which we then present quantitative estimates.

Since the operator ∆ is a positive selfadjoint operator on the Hilbert space `2(V ), its spectrum
σ(∆) is included in the positive half axis [0,∞). We consider the bottom of the spectrum of ∆

λ0(∆) = inf σ(∆)

which, by the Rayleigh-Ritz variational characterization, is equal to

λ0(∆) = inf
f∈D(∆),‖f‖=1

〈f,∆f〉 = inf
f∈Cc(V ),‖f‖=1

〈f,∆f〉,

where the second equality follows from the density of Cc(V ) in D(∆).

3.1. Non-negative curvature. The following theorem is a rather immediate consequence of
considerations of Jost/Hua/Liu in [24, Theorem 4.1], that every non-negatively curved planar
graph has at most quadratic volume growth, and [13, 17, 35], that the bottom of spectrum of graphs
with subexponential volume is zero which holds for general graphs. An important technicality is
that a lower curvature bound implies boundedness of ∆ and, thus, [13, 17, 35] are applicable by
[26, Theorem 1].

Theorem 3.1. Assume κ ≥ 0, then λ0(∆) = 0.
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3.2. Average negative curvature. In [40], Woess showed that the isoperimetric constant of a
planar tessellation is strictly positive whenever the curvature is negative on average on large sets.
He defined

κ = lim sup
n→∞

inf
W⊆V,n≤|W |<∞

1
|W |

∑

v∈W
κ(v).

From [40, Theorem 1] and [26, Theorem 1] we infer the next result.

Theorem 3.2. Assume κ < 0, then λ0(∆) > 0.

Remark 3.3. Dodziuk proved in [12] that planar graphs with |v| ≥ 7, v ∈ V , satisfy λ0(∆) > 0.
In particular, this assumption implies κ < 0. Independently to the theorem above, but somewhat
later, Higuchi [22] showed that κ < 0 implies λ0(∆) > 0.

3.3. Negative curvature. The theorem above only yields positivity of the bottom of the spec-
trum. In the case of negative curvature, we get the following quantitative result which is a direct
consequence of [29, Theorem 1], [18, Proposition 1] and estimate [26, Theorem 1].

Theorem 3.4. Assume κ < 0 and let

K = − sup
v∈V

κ(v)
|v| and d = min

v∈V
|v|.

Then there is a constant C ≥ 1 specified below such that

λ0(∆) ≥ d(1−
√

1− 4C2K2) ≥ 2dC2K2,

where for p = supv∈V |v| and q = supf∈F |f | the constant C is given by

C :=





1 : if q =∞,
1 + 2

q−2 : if q <∞ and p =∞,
(1 + 2

q−2 )(1 + 2
(p−2)(q−2)−2 ) : if p, q <∞.

Remark 3.5. (a) The second inequality in the theorem follows simply by the Taylor expansion
of the square root.
(b) The theorem above can be considered as a discrete analogue to a theorem of McKean [32]
who proves for a n-dimensional complete Riemannian manifold M with upper sectional curvature
bound −k that the bottom of the spectrum of the Laplace-Beltrami ∆M ≥ 0 satisfies

λ0(∆M ) ≥ (n− 1)2k/4.

(c) A curious fact noted by Higuchi [22], see also [43], is that if κ < 0, then already κ ≤ −1/1806
which is the case that a triangle, a heptagon and a 43-gon meet in a vertex. Indeed, this implies
that κ < 0 yields for the constant in our theorem K > 0 and, therefore, λ0(∆) > 0.

4. Discrete spectrum, eigenvalue asymptotics and decay of eigenfunctions

In this section we study the case of uniformly decreasing curvature. That is if the quantity

κ∞ = inf
K⊆V finite

sup
v∈V \K

κ(v)

equals −∞. In this case, we discuss below that the spectrum of ∆ consists only of discrete
eigenvalues which accumulate at ∞. We denote the eigenvalues in increasing order counted with
multiplicity by λn(∆), n ≥ 0. Moreover, we discuss the asymptotics of the eigenvalues and the
exponential decay of eigenfunctions.

4.1. Discrete spectrum. The next theorem which is characterizing pure discrete spectrum is
found in [26, Theorem 3].

Theorem 4.1. The spectrum of ∆ is purely discrete if and only if κ∞ = −∞.
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Remark 4.2. (a) The theorem above can be considered as a discrete analogue of a theorem of
Donnelly/Li [15] which states that a negatively curved, complete Riemannian manifold M with
sectional curvature bound decaying uniformly to −∞ the Laplace-Beltrami operator ∆M has pure
discrete spectrum.

(b) In [18] Fujiwara proved a related statement for the normalized Laplacian on trees, namely
that spectrum is discrete except for the point 1, where the discrete eigenvalues accumulate.

(c) Wojciechowski [41] showed also discreteness of the spectrum of ∆ on general graphs in terms
of a different quantity which is sometimes referred to as a mean curvature.

4.2. Eigenvalue asymptotics. An important observation in the proof of the theorem above is
the following estimate

−|v|2 ≤ κ(v) ≤ 1− |v|6 , v ∈ V.

This inequality implies that | · | and −κ go simultaneously to ∞.
In particular, if κ∞ = −∞, then there is a bijective map N0 → V , n 7→ vn, such that

|vn| ≤ |vn+1|, n ≥ 0.

The following eigenvalue asymptotics are found in the recent work [7] improving the results for
planar graphs which were obtained in [19] for trees and for general graphs in [6] .

Theorem 4.3. If κ∞ = −∞, then

|vn| − 2
√
|vn| . λn . |vn|+ 2

√
|vn|,

that is

lim
n→∞

λn
|vn|

= 1

and

−1 ≤ lim inf
n→∞

λn − |vn|
2
√
|vn|

≤ lim sup
n→∞

λn − |vn|
2
√
|vn|

≤ 1.

Remark 4.4. The only related results we are aware of are found in [33] for the adjacency matrix
on sparse finite graphs.

4.3. Decay of eigenfunctions. After having treated eigenvalues, we next come to the decay of
eigenfunctions. It turns out that eigenfunctions decay exponentially in an `2 sense, see [28].

Theorem 4.5. If κ∞ −∞ and ϕn ∈ D(∆), n ≥ 0, are eigenfunctions, i.e.,

∆ϕn = λnϕn

then, for any β < e−1 and o ∈ V ,

|κ| 12 eβd(o,·)ϕn ∈ `2(V ),

where d(·, ·) is the natural graph distance.

Remark 4.6. The proof is based on ideas based on the work of Agmon for Schrödinger operators
in Rd. The somewhat curious constant e−1 comes in via an optimization that is caused by the
non-locality of the graph Laplacian in contrast to the strongly local Laplace operator on Rn.

5. Unique continuation of eigenfunctions

In Riemannian manifolds very strong unique continuation properties of eigenfunctions hold.
Often very subtle quantitative statements can be obtained which all have the basic corollary that
there are no eigenfunctions of compact support. However, for graphs such eigenfunctions can be
produced rather easily, see e.g. [1, 8, 14, 31] for examples. In this section we discuss that having
non-positive corner curvature excludes such eigenfunctions.
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5.1. Absence of compactly supported eigenfunctions. Klassert/Lenz/Peyerimhoff/Stollmann
[30] proved the following unique continuation result for tessellations with non-positive corner cur-
vature, κC ≤ 0, which was later generalized to planar graphs in [27] with a different proof.

Theorem 5.1. If κC ≤ 0, then there are no eigenfunctions of compact support.

We stress that the assumption κC ≤ 0 can not be relaxed to κ ≤ 0 (or κ < 0). This can be seen
by the example that contains a 2n-gon f and has triangles attached at every edge f . Now, given
a function which takes the values ±1 alternating around the vertices f and zero otherwise, can be
seen to be a compactly supported eigenfunction to the eigenvalue 6.

5.2. Finitely many compactly supported eigenfunctions. One can now ask whether the
exponentially decaying eigenfunctions of Theorem 4.5 can be compactly supported. As it can be
seen from the theorem above if κC ≤ 0 then there are no such eigenfunctions at all. However,
κ∞ = −∞ only implies κC ≤ 0 outside of a finite set. The following theorem, found in [7], tells
us that in this case there can be at most finitely many linearly independent compactly supported
eigenfunctions.

Theorem 5.2. If κ∞ = −∞, then there is a finite set such that every eigenfunction of compact
support is supported in this set.

It can be seen from the proof in [7] that κ∞ = −∞ is not necessary but it is sufficient to have
sufficiently negative curvature outside of a finite set. On the other hand, it is also shown in [7]
that κC ≤ 0 outside of a finite set is not enough.

6. The `p spectrum

Finally we come to the spectrum of the Laplacian as an operator on `p(V ), p ∈ [1,∞]. For
these Banach spaces the Laplacian ∆p acts as ∆ and has the domain

D(∆p) = {ϕ ∈ `p(V ) | ∆ϕ ∈ `p(V )}.
The operators ∆p are the generators of the extension of the semigroup e−t∆2 , t > 0, to `p(V ),
p ∈ [1,∞), and ∆∞ is the adjoint of ∆1. An important question which was initially brought up by
Simon [36] and answered by Hempel/Voigt [21] for Schrödinger operators is whether the spectrum
depends on the underlying Banach space. Sturm, [38], addressed this question in the manifold
settings in terms of uniform subexponential volume growth. A special case he considers is the
case of curvature bounds. An analogous result for graphs is proven in [2]. As a consequence of
this theorem and some geometric and functional analytic ingredients one can derive the following
theorem which is also found in [2].

Theorem 6.1. (a) If κ ≥ 0, then σ(∆2) = σ(∆p) for all p ∈ [1,∞].
(b) If −K ≤ κ < 0, then λ0(∆2) 6= λ0(∆1).
(c) If κ∞ = −∞, then σ(∆2) = σ(∆p) for all p ∈ (1,∞).
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1. Curvature

Originally, curvature was a concept of differential geometry developed with the purpose of
describing the geometry of surfaces in space in a manner analogous to those of curves. Something
is curved if it is not straight like a line or flat like a plane. Gauss [10] then realized that such
a notion of curvature of surfaces in space confused two different aspects. One is concerned with
how the surface bends in space, that is, how its normal direction changes when moving along the
surface. The other, in contrast, is concerned with the inner geometry of that surface, that is, for
instance, how slowly or fast geodesic curves emanating from the same point in different directions
move away from each other. Riemann [18] then developed an intrinsic geometry on manifolds of
arbitrary dimension built upon such an intrinsic curvature, see [12] for the current state of this
important field of mathematics. The Riemann sectional curvature measures such a divergence of
geodesics whose initial directions all lie in the same tangent plane. Averaging the curvatures over
all such planes containing a given direction v then yields the Ricci curvature in the direction v.
Finally, averaging over all directions v starting at the same point p yields the scalar curvature
at p. In this contribution, we shall mainly be concerned with the properties of Ricci curvature.
Ricci curvature characterizes the growth of the volume of distance balls as a function of their
radius. More precisely, Ricci curvature controls the cost of transporting the mass of one distance
ball to another one. When the Ricci curvature is large, the volumes of balls become smaller, but
the relative volumes of the intersection of two balls become larger. Therefore, such a transport
becomes less costly. Ricci curvature also yields lower bounds for the first nonzero eigenvalue of the
Laplace operator on a compact Riemannian manifold.

While these curvature concepts were originally developed for Riemannian manifolds, that is,
differentiable manifolds equipped with a smooth metric tensor, the characteristic properties of
curvature just described are meaningful for more general metric spaces. Therefore, notions of
generalized sectional or Ricci curvature have been developed that are meaningful for certain classes
of metric spaces that are more general than Riemannian manifolds.

In particular, such concepts then also apply to graphs. For instance, one can consider an
undirected and unweighted graph G as a metric space with each edge isometric to the unit interval,
that is, of length one. For each vertex x, one also has a natural probability measure mx on G
that assigns the weight 1

dx
to every neighbor of x, where dx is the degree of x, that is, the number

of its neighbors, the vertices connected to x by an edge. All other vertices, including x itself, get
the weight 0 under mx. Again, we can ask for the cost of transporting mx to my when x and
y are neighbors. Ollivier [16] then defined Ricci curvature bounds for graphs in terms of such
transportation costs.

In this contribution, we shall explain how the generalized Ricci curvature as defined by Ollivier
relates to other characteristic properties of graphs, like the clustering coefficient [19] that is im-
portant for the analysis of social and other networks. We also show how this generalized Ricci

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
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curvature controls the smallest as well as the largest eigenvalue of the normalized graph Lapla-
cian. In fact, we obtain nontrivial eigenvalue estimates for all graphs that are not bipartite. Our
constructions utilize the concept of the neighborhood graph [4], a geometric representation of the
concept of a random walk on a graph. Thereby, we see a natural link between Ricci curvature,
eigenvalues, and stochastic analysis.

While these principles hold in more generality, here we only explore them for graphs.

2. Generalized Ricci curvature

Ollivier’s [16, 17] definition of Ricci curvature depends on the L1-Wasserstein distance.
Definition 2.1. Let (X, d) be a metric space equipped with its Borel sigma algebra, and let
m1,m2 be probability measures on X. The L1-Wasserstein or transportation distance between the
probability measures m1 and m1 is
(2.1) W1(m1,m1) = inf

ξx,y∈
∏

(m1,m2)

∑

(x′,y′)∈V×V
d(x′, y′)ξx,y(x′, y′),

where
∏

(m1,m2) is the set of probability measures ξx,y that satisfy

(2.2)
∑

y′∈V
ξx,y(x′, y′) = m1(x′),

∑

x′∈V
ξx,y(x′, y′) = m2(y′).

The conditions (2.2) mean that we start with the measure m1 and end up with m2. When we
consider the distance d(x′, y′) as the transportation cost from x′ to y′, then W1(m1,m2) is the
minimal cost to transport the mass of m1 to that of m2. ξx,y is considered as a transfer plan
between m1 and m2, or a coupling of the two random walks governed by m1 and m2, respectively.
Those ξx,y which attain the infimum in (2.1) are called optimal couplings.

The transportation distanceW1(m1,m2) can also expressed by the Kantorovich duality formula,

(2.3) W1(m1,m2) = sup
f :Lip(f)≤1


∑

x′∈V
f(x′)m1(x′)−

∑

y′∈V
f(y′)m2(y′)


 ,

where Lip(f) := supx6=y
|f(x)−f(y)|
d(x,y) is the Lipschitz seminorm of f .

Definition 2.2. Let (X, d) be a complete and separable metric space equipped with its Borel
sigma algebra and a family of probability measueres mx, x ∈ M which depend measurably on x
and which have finite first moments, i.e.,

∫
M
d(x, y)dmx(y) < ∞. For any two distinct points

x, y ∈M , the (Ollivier-) Ricci curvature of (X, d,m) then is defined as

(2.4) κ(x, y) := 1− W1(mx,my)
d(x, y) .

The probability measures mx could also be interpreted as the probability densities associated
to a random walk, that is, mx(y) is the probability that a random walker at x jumps to y in one
time step.

Here, we shall restrict our attention to graphs considered as metric spaces with the measures
mx explained in Section 1.

3. Ricci curvature and the geometry of graphs

3.1. Basic notions from graph theory. We introduce some basic definitions and constructions
from graph theory, including the (normalized) graph Laplacian, see [13] and the references given
there.

We first consider a locally finite unweighted graph G = (V,E). V is the vertex and E the edge
set. We say that x, y ∈ V are neighbors, and write x ∼ y, when they are connected by an edge.
The degree dx of a vertex x is defined as the number of its neighbors.

We also assume that G is connected, that is, for every pair of distinct vertices x, y ∈ V , there
exists a path between them, that is, a sequence x = x0, x1, . . . , xm = y of distinct vertices such that
xν−1 ∼ xν for ν = 1, . . . ,m. (Not connected graphs can simply be decomposed into their connected
components.) A cycle in G is a closed path x0, x1, . . . , xm = x0 for which all the vertices x1, . . . , xm
are distinct. For m = 3, 4, 5, . . . , we speak of a triangle, quadrangle, pentagon,... A graph without
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cycles is called a tree. A graph is called bipartite if its vertex set can be decomposed into two
disjoint components V1, V2 such that whenever x ∼ y, then x and y are in different components.
Any tree is bipartite. More generally, a graph is bipartite iff it has no cycles of odd length. In
particular, it has no triangles.

To get a metric, for neighbors x, y, we put d(x, y) = 1. For arbitrary vertices x, y, d(x, y) is the
length of the shortest path connecting x and y, i.e. the minimal number of edges that needs to be
traversed to get from x to y.

We next introduce the (normalized) graph Laplacian operating on L2-functions on the vertex
set V , see e.g. [8, 13]. Here, we use the scalar product

(3.1) (v, u) :=
∑

x∈V
dxv(x)u(x)

to define L2(G). We then put
∆ : L2(G)→ L2(G)

(3.2) ∆v(x) := 1
dx

(
∑

y,y∼x
v(y)− dxv(x)) = 1

dx

∑

y,y∼x
v(y)− v(x).

This is a discrete analogue of the Laplace-Beltrami operator of a Riemannian manifold. We can
also consider, for neighbors x ∼ y, the discrete differential

(3.3) Du(x, y) := u(y)− u(x),

a discrete analogue of the differential of a function. D can be considered as a map from functions
on the vertices of D to functions on the edges of D. In order to make the latter space also an
L2-space, we introduce the product

(3.4) (Du,Dv) :=
∑

e=(x,y)

(u(y)− u(x))(v(y)− v(x)).

Note that we are summing here over edges, and not over vertices. If we did the latter, we would
need to put in a factor 1/2 because each edge would then be counted twice. We then have

(3.5) (∆u, v) = −(Du,Dv)

for all u, v ∈ L2(G).
We now list some basic properties of ∆.
(1) ∆ is selfadjoint w.r.t. (., .):

(3.6) (u,∆v) = (∆u, v)

for all u, v ∈ L2(G). This follows from (3.5).
(2) ∆ is nonpositive:

(3.7) (∆u, u) ≤ 0

for all u. This follows from the Cauchy-Schwarz inequality.
(3) ∆u = 0 iff u is constant. In fact, when ∆u = 0, there can neither be a vertex x with

u(x) ≥ u(y) for all y ∼ x with strict inequality for at least one such y, since ∆u(x) = 0
means that the value u(x) is the average of the values at the neighbors of x. Since G is
assumed to be connected, u then has to be a constant (if G were not connected, a solution
of ∆u = 0 would have to be constant on every connected component of G.) Of course, this
is a discrete version of the standard maximum principle argument.

We are interested in the eigenvalues of the Laplacian, that is, in those λ with

(3.8) ∆u+ λu = 0

for some nontrivial function u ∈ L2(G), called an eigenfunction for λ. From the properties of ∆
just listed, we can infer some immediate consequences for the eigenvalues.

• All eigenvalues are real, because ∆ is selfadjoint.
• All eigenvalues are nonnegative, because ∆ is a nonpositive operator.
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• The smallest eigenvalue is λ0 = 0, with a constant eigenfunction. Since we assume that Γ
is connected, this eigenvalue is simple. In other words,

(3.9) λk > 0
for k > 0 where we order the eigenvalues as

λ0 = 0 < λ1 ≤ ... ≤ λK
and put K := N − 1.

• The largest eigenvalue λN−1 is 2 iff G is bipartite and is < 2 else. (See [4] for details and
a systematic analysis of the highest eigenvalue.)

The eigenfunctions vi, vj for different eigenvalues λi, λj are orthogonal to each other,
(3.10) (vi, vj) = 0.
In particular, since the constants are the eigenfunctions for the eigenvalue λ0 = 0, for all i > 0, we
then have
(3.11)

∑

x

mxvi(x) = 0.

3.2. Ricci curvature and clustering. In this section, we essentially describe the results of [14].
As explained, in order to define Ricci curvature, we need the probability measures from Section 1

(3.12) mx(y) =
{ 1

dx
if y ∼ x;

0 otherwise.
We can interpret this in terms of a random walker that sits at x at time t ∈ N and then selects a
neighbor of x with equal probability 1

dx
as the target of his walk at time t+ 1. .

Theorem 3.1. On a locally finite graph G = (V,E), we have for any pair of neighboring vertices
x, y,

κ(x, y) ≥ −
(

1− 1
dx
− 1
dy
− ](x, y)
dx ∧ dy

)

+
−
(

1− 1
dx
− 1
dy
− ](x, y)
dx ∨ dy

)

+
+ ](x, y)
dx ∨ dy

,

where we have put
dx ∧ dy := min{dx, dy}, dx ∨ dy := max{dx, dy}.

Remark: For the case where ](x, y) = 0, this result was obtained in [15]. For our purposes,
however, the key point is to understand how the presence of triangles in a graph improves the
lower Ricci bound.

The proof of Theorem 3.1 depends on a careful transport plan, according to the definition of
Ricci curvature. We do not present the details, but the following two figures illustrate the task.
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Figure 1. Starting configuration for the transport plan; mass 0 at all vertices without number
attached.
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Figure 2. Target configuration for the transport plan
We can also recall the duality formula (2.3) and consider the following 1-Lipschitz function.

From this function, we clearly see why triangles, that is common neighbors of the vertices x and
y contribute to decreasing the transportation cost.
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Figure 3. Mass moved from vertices with larger value

In fact, not only triangles, but also quadrangles and pentagons (but not polygons with more
edges) influence Ricci curvature.

The lower bound of Theorem 3.1 is sharp both for complete graphs and for trees. On a complete
graph Kn (n ≥ 2) with n vertices, ](x, y) = n− 2 for any x, y. Hence the inequality

κ(x, y) ≥ n− 2
n− 1

is sharp. That trees also attain the lower bound of Theorem 3.1, follows from the fact that on n a
tree T = (V,E), for any neighboring x, y,

(3.13) κ(x, y) = −2
(

1− 1
dx
− 1
dy

)

+
.

We can also relate this to the above heuristic discussion of the relation between Ricci curvature
and the relative volume of the intersection of balls. In fact, ](x, y)/dx ∨ dy is mx ∧ my(G) :=
mx(G)− (mx−my)+(G), i.e. the intersection measure of mx and my. The vertices x1 that satisfy
x1 ∼ x, x1 ∼ y constitute the intersection of the unit metric spheres centered at x and y, resp.

We also have an easy upper bound for the Ricci curvature of a graph.

Theorem 3.2. On a locally finite graph G = (V,E), for any neighboring x, y, we have

(3.14) κ(x, y) ≤ ](x, y)
dx ∨ dy

.

We now consider the local clustering coefficient of Watts-Strogatz [19]

(3.15) c(x) := 1
dx(dx − 1)

∑

y,y∼x
](x, y).

c(x) measure the extent to which neighbors of x are directly connected. Expressed in words,

(3.16) c(x) = number of realized edges between neighbors of x
number of possible edges between neighbors of x.

This clustering coefficient is an important quantity in network analysis. For instance, in social
networks where the vertices represent individuals and the edges friendship relations, the question
addressed by the clustering coefficient is “How many of the friends of my friends are also my
friends?”.

We may also consider this local clustering coefficient as an average over the ](x, y) for the
neighbors of x. As such an average, we should also try to compare it to averaged Ricci curvature.
In other words, we should consider the discrete version of scalar curvature,

(3.17) κ(x) := 1
dx

∑

y,y∼x
κ(x, y).
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This scalar curvature κ(x) and the local clustering coefficient c(x) then control each other.
Indeed, from Theorems 3.1 and 3.2, with D(x) := maxy,y∼x dy, we have

dx − 1
dx

c(x) ≥ κ(x) ≥ −2 + dx − 1
dx ∨D(x)c(x).

3.2.1. Stochastic processes on graphs. We consider a graph with a lower Ricci bound
(3.18) κ(x, y) ≥ k for all x ∼ y,
or equivalently,
(3.19) W1(mx,my) ≤ (1− k)d(x, y) = 1− k for all x ∼ y.
We shall now interpret this in probabilistic terms as a path coupling criterion for random walks.
This translates a lower bound of the Ollivier-Ricci curvature into a control on the expectation
value of the distance between two coupled random walks.

By iteration, one may prove that when (3.18) and hence (3.19) holds, then for any t and any
x̄, ȳ, not necessarily neighbors,
(3.20) W1(δx̄P t, δȳP t) ≤ (1− k)td(x̄, ȳ).
In order to link this to Ricci curvature, we now consider two random walks (X̄t, Ȳt) with distribu-
tions δx̄P t, δȳP t that are coupled in the sense that the joint probabilities satisfy

p(X̄t = x̄′, Ȳt = ȳ′) = ξx̄,ȳt (x̄′, ȳ′),
where ξx̄,ȳt (·, ·) is the optimal coupling of δx̄P t and δȳP

t as in the definition of the Wasser-
stein distance W1. The term W1(δx̄P t, δȳP t) then becomes the expectation value of the distance
Ex̄,ȳd(X̄t, Ȳt) between the coupled random walks X̄t and Ȳt.

Corollary 3.1. If (3.18) holds, then for any x̄, ȳ ∈ V ,
(3.21) Ex̄,ȳd(X̄t, Ȳt) = W1(δx̄P t, δȳP t) ≤ (1− k)td(x̄, ȳ).

3.2.2. Weighted and neighborhood graphs. Following [4], we now translate the properties of random
walks into geometric structures, the neighborhood graphs. In Section 3.2.3, we shall then use this
construct to derive eigenvalue bounds in terms of lower Ricci curvature bounds on graphs.

For this purpose, we shall need to consider weighted graphs, and also allow for the possibility of
self-loops. That is, for any x, y ∈ V , not necessarily different, we have a symmetric, nonnegative
connection weight
(3.22) wxy = wyx ≥ 0.
We can then declare x and y to be neighbors, x ∼ y, iff wxy > 0. Of course, the unweighted graphs
that we have considered before constitute the special cases where wxy = 1 iff x ∼ y and wxy = 0
else. As mentioned, here, we also allow for the possibility of self-loops, that is, vertices x with
wxx > 0.

Remark: Of course, one could also allow for non-symmetric or negative weights. The spectrum
of non-symmetric graphs was systematically investigated in [2], and some results on graphs with
possibly negative connection weights can be found, for instance, in [3, 1]. For our present purposes,
however, the class of weighted graphs satisfying (3.22) suffices.

The preceding constructions and results can be extended to weighted graphs. We now define
the measure mx by

(3.23) mx(y) := wxy
dx

, where now dx :=
∑

y

wxy.

We can again consider mx(y) as the probability that a random walker starting at x moves to y in
one time step. Since now possibly mx(x) > 0, because there might be a self-loop at x, the random
walker might now be lazy and simply stay at x.

As before , the L2-product is

(3.24) (u, v) =
∑

x

dxu(x)v(x).
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The Laplacian

(3.25) ∆v(x) = 1
dx

∑

y

wxyv(y)− v(x) =
∑

y

mx(y)v(y)− v(x)

is self-adjoint and nonpositive as before. Hence, the eigenvalues are nonnegative real numbers. We
also have a version of Theorem 3.1 for weighted graphs, taken from [5].

Theorem 3.3. On a weighted graph, we have for neighbors x, y

κ(x, y) ≥−


1− wxy

dx
− wxy

dy
−

∑

x1∈Nxy

wx1x

dx
∨ wx1y

dy




+

−


1− wxy

dx
− wxy

dy
−

∑

x1∈Nxy

wx1x

dx
∧ wx1y

dy




+

+
∑

x1∈Nxy

wx1x

dx
∧ wx1y

dy
+ wxx

dx
+ wyy

dy
.

Again, this inequality is sharp.

With the notation
µP (·) =

∑

x

µ(x)mx(·),

the Dirac measure δx at x and δxP 1(·) = δxP (·) = mx(·), the distribution of a t-step random walk
starting at x with transition probability mx becomes

(3.26) δxP
t(·) =

∑

x1,...,xt−1

mx(x1)mx1(x2) · · ·mxt−1(·)

for t > 1. The probability that the random walker moves from x to y in t steps then is

(3.27) δxP
t(y) =

{ ∑
x1,...,xt−1

wxx1
dx

wx1x2
dx1

· · · wxt−1y

dxt−1
, if t > 1;

wxy

dx
, if t = 1.

We now define a family of graphs G[t] for t ≥ 1 whose weights equal the transition probabilities
of the t-step random walks on the graph G.

Definition 3.1. The neighborhood graph G[t] = (V,E[t]) of the graph G = (V,E) of order t ≥ 1
is the weighted graph with vertex set V and edge weights

(3.28) wxy[t] := δxP
t(y)dx

from (3.27).

Obviously, G = G[1]. Also, wxy[t] > 0 if and only if there exists a path of length t between x
and y in G.

We now describe the important properties of the neighborhood graph G[t], its Laplacian ∆[t]
and the eigenvalues λi[t], see [4, 5].

Lemma 3.1. (i) t even: G[t] is connected iff G is not bipartite. G[t] is not bipartite.
(ii) t odd: G[t] is always connected and G[t] is bipartite iff G is bipartite.
(iii) dx[t] = dx for all x ∈ V , and the inner product (3.24) is the same on all the G[t].
(iv) The Laplacian on G[t] is

(3.29) ∆[t] = −id + (id + ∆)t.

(v) Therefore, for even t, the eigenvalues of ∆[t] satisfy

(3.30) 0 = λ0[t] ≤ λ1[t] ≤ . . . ≤ λN−1[t] ≤ 1.

(The smaller upper bound 1 as compared with the bound 2 discussed above stems here from
the self-loops of G[t].

75



Frank Bauer, Bobo Hua, Jürgen Jost and Shiping Liu

(vi) Let d[t](x, y) be the distance on G[t] defined as the smallest number of edges needed for a
path connecting x and y (this is independent of the weights, except that vertices ξ and η
are connected by an edge iff wξη > 0). Then

(3.31) 1
t
d(x, y) ≤ d[t](x, y),

with the convention d[t](x, y) = ∞ if G[t] is not connected and x and y are in different
components. Conversely, if E ⊆ E[t], then

(3.32) d[t](x, y) ≤ d(x, y).

In [4], the relationship between the eigenvalues of the original graph G and those of its neigh-
borhood graphs was analyzed.

Proposition 3.1. (i) If λ1[t] ≥ A[t], then

(3.33) 1− (1−A[t]) 1
t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1−A[t]) 1

t

if t is even and
(3.34) 1− (1−A[t]) 1

t ≤ λ1

if t is odd.
(ii) If λN−1[t] ≤ B[t], then all eigenvalues of ∆ are contained in

[
0, 1− (1−B[t]) 1

t

]⋃[
1 + (1−B[t]) 1

t , 2
]

for even t, whereas
λN−1 ≤ 1− (1−B[t]) 1

t

for odd t.

Thus, eigenvalues bounds on G[t] translate into eigenvalue bounds on the original graph G. This
is a powerful principle for estimating the eigenvalues of G. As the neighborhood graphs constitute
a geometric representation of the random walk on G, this can be seen as a scheme for translating
properties of the random walk into eigenvalue bounds.

3.2.3. Ricci curvature and eigenvalues of graphs. In this section, we assume that the graph G is
finite, that is, it has finitely many, say N , vertices, and then also finitely many edges. Here, we
follow [5] to estimate the eigenvalues in terms of the Ricci curvature. Ollivier [16] showed

Theorem 3.4. When we have a lower Ricci curvature bound
(3.35) κ(x, y) ≥ k,
(in fact, it suffices to have this for all x ∼ y), then
(3.36) k ≤ λ1 ≤ . . . ≤ λN−1 ≤ 2− k.

A problem with this estimate is that for most graphs, k ≤ 0 in (3.35), so that (3.36) only yields
a trivial estimate. We shall therefore develop an estimate of [5] which is nontrivial for all connected
finite graphs that are not bipartite.

Lemma 3.2. Let k be a lower bound of κ on G. If E ⊆ E[t], then the curvature κ[t] of the
neighborhood graph G[t] satisfies
(3.37) κ[t](x, y) ≥ 1− t(1− k)t, ∀x, y ∈ V.

We can now see the upper bound of the largest eigenvalue in Theorem 3.4. W.l.o.g. k > 0, in
which case E ⊂ E[t]. From Lemma 3.2 and λ1 ≥ k, we know on G[t],

λ1[t] ≥ 1− t(1− k)t.
Then with Proposition 3.1 (i), for even t,

λN−1 ≤ 1 + t
1
t (1− k).

Letting t→ +∞ yields λN−1 ≤ 2− k, indeed.
The neighborhood graph technique then leads to the following generalization of Theorem 3.4,

the main result of [5].
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Theorem 3.5. Let k[t] be a lower bound of Ollivier-Ricci curvature of the neighborhood graph
G[t]. Then for all t ≥ 1 the eigenvalues of ∆ on G satisfy

(3.38) 1− (1− k[t]) 1
t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1− k[t]) 1

t .

If G is not bipartite, then for all sufficiently large t, k[t] > 0, and hence (3.38) is nontrivial in the
sense that the lower bound is positive and the upper bound is < 2.

3.3. Other curvature notions for graphs. We conclude this brief survey with some curvature
notions for graphs other than Ricci curvature.

First, combinatorial curvature: we fill faces into the graph. We therefore assume that the
(possibly infinite) graphG is embedded into a 2-manifold S(G) such that each face is homeomorphic
to a closed disk with finite edges as the boundary. For instance, G could be a planar graph, that is,
a graph embedded into the plane. Therefore, we call such a G = (V,E, F ) that can be embedded
into a 2-manifold a semiplanar graph. For each vertex x ∈ V , the combinatorial curvature at x is

(3.39) Φ(x) = 1− dx
2 +

∑

σ3x

1
deg(σ) ,

where, as before, dx is the degree of the vertex x, whereas deg(σ) is the degree of the face σ. The
sum is taken over all faces incident to x (i.e. x ∈ σ).

When we replace each face of G with a regular polygon of side lengths one and glue them along
the common edges and equip the polygonal surface S(G) with the resulting metric structure, then
(3.39) simply measures the difference of 2π and the total angle Σx at the vertex x,
(3.40) 2πΦ(x) = 2π − Σx.
Let χ(S(G)) denote the Euler characteristic of the surface S(G). We then have the Gauss-Bonnet
formula of G of [9],

(3.41)
∑

x∈G
Φ(x) ≤ χ(S(G)),

whenever Σx∈G:Φ(x)<0Φ(x) converges. Thus, the combinatorial curvature captures a topological
property of semiplanar graphs.

We can also compare the combinatorial curvature with another version of curvature naturally
obtained from the surface S(G), its generalized sectional (Gaussian) curvature. It turns out that
the semiplanar graph G has nonnegative combinatorial curvature precisely if the polygonal surface
S(G) is an Alexandrov space with nonnegative sectional curvature, i.e. Sec S(G) ≥ 0 (or Sec(G) ≥ 0
for short). This principle is systematically explored in [11].

A metric space (X, d) on which each pair of points in X can be joined by a shortest path is
called an Alexandrov space if locally satisfies the Toponogov triangle comparison. Essentially,
nonnegative curvature in the present context means that the total angles of geodesic triangles are
at least 2π. Monographs on Alexandrov spaces are [7, 6].
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Robust Shape Reconstruction
and Optimal Transportation
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Abstract
We describe a framework for robust shape reconstruction from raw point sets, based on

optimal transportation between measures, where the input point sets are seen as distribution
of masses. In addition to robustness to defect-laden point sets, hampered with noise and
outliers, our approach can reconstruct smooth closed shapes as well as piecewise smooth
shapes with boundaries.

1. Introduction

Assuming a geometric data set made out of points or slices, the process of shape reconstruction
amounts to recovering a surface or a solid that matches these samples. This problem is inherently
ill-posed as infinitely-many shapes may fit the data. One must thus regularize the problem and add
priors such as simplicity or smoothness of the inferred shape. In addition, the increasing variety
of sensors for acquiring point sets corresponds to a range of defects inherent to each sensor and
associated acquisition process. The point sets may differ in terms of sampling, noise and outliers.
In addition, the level of noise may vary within the same point set, depending on the type of noise,
acquisition condition and light-material interaction. Our quest for robustness includes the ability
to deal with variable noise.
Related Work. In past years the smooth, closed case (i.e., shapes without sharp features nor bound-
aries) has received considerable attention. Computational geometric approaches to surface recon-
struction, commonly based on Delaunay triangulations, generally provide theoretical guarantees
under specific sampling models [4, 7]. The search for increased robustness to noise led to a wide
variety of methods involving denoising, integral computations, variational formulations or scale-
space processes. Robustness to outliers has been investigated through outlier removal [16], data
clustering [15], robust norms such as the l1-sparse norm [2], spectral methods [12], or robust
distances. However, state-of-the-art methods have several shortcomings: in addition to being gen-
erally not robust to outliers and not sufficiently robust to noise, they often require additional input
attributes, such as lines of sight or oriented normal vectors [11].

Moving from the smooth, closed case to the piecewise smooth case (possibly with boundaries) is
considerably harder as the ill-posedness of the problem applies to each sub-feature of the inferred
shape. Further, very few approaches tackle the combined issue of robustness (to sampling defects,
noise and outliers) and feature reconstruction [8, 1], and none to our knowledge addresses all the
issues from heterogeneous data.
Positioning. In this work we develop shape reconstruction methods that are robust under pertur-
bations of the data in the sense of the optimal transportation distance, the input point samples
being considered as Dirac measures. Optimal transportation refers to the problem of optimizing
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the cost of transportation of resources [17]. An intuitive example of optimal transport consists in
determining the most effective way to move a pile of sand to a hole of the same volume. Most
effective herein means that the integral of the distances the sand is moved, one infinitesimal unit of
volume at a time, is minimal. This formulation of the problem, referred to as Monge’s variational
formulation, assumes that the sand is moved through a point-to-point mapping denoted by the
transport plan. This restriction was relaxed by Kantorovich who extended the formulation to deal
with transport plans between two probability measures. Optimal transportation reveals a versatile
framework for geometry processing when observing that it can robustly measure distances between
surfaces [13], and more generally between measures, be they discrete or continuous [5]. In addition
to being symmetric, this distortion measure is by construction noise and outlier robust, a highly
desirable feature when seeking robustness to defect-laden data. It has also been used for surface
comparison [13] and displacement interpolation [3].

2. Smooth Reconstruction

We first focus on shapes that are both smooth and closed (with no boundary). We describe a
recent noise-adaptive robust distance function which relies on the only assumption that the inferred
shape is a smooth submanifold of known dimension [9]. Our algorithm takes as input a raw point
set sampling the boundary of the inferred solid object.

Chazal et al. [5] introduced a robust distance function from a query point x to a measure µ in R:

d2
µ,m : Rn → R, x 7→ 1

m

∫

B(x,rµ,m(x))
‖x− y‖2dµ(y),

where m ∈ (0; 1] denotes a user-defined mass and rµ,m denotes the minimal radius such that the
ball B(x, rµ,m(x)) encloses this mass m. Considering the input point set as a distribution of n
point masses, this simplifies to a sum on the K nearest neighbors.

In our quest for robustness, this function exhibits two relevant properties that are its robustness
in the Wasserstein distance, and the 1-semiconcavity of its square. In addition, it is shown that un-
der suitable sampling conditions, the sublevel sets of this distance function provide a homotopically
correct approximation of the inferred shape, even in the presence of noise and outliers.

Mullen et al. [14] used these properties of the distance function to surface reconstruction with
robustness to noise, outliers and missing data. A major limitation of this approach comes from
the mass parameter K which must be user-specified: there is no principled way to select it au-
tomatically and it requires a trial-error process to trade robustness for accuracy. In addition, K
is a global parameter and hence can not deal with non-uniform noise. The first two curves of
Figure 2.3 show the behavior of the function on a point set with variable noise.

We now define a noise-adaptive distance function that solely relies on a dimension assumption:
the inferred shape is a smooth submanifold of known dimension k embedded in a space of dimension
d. For an input measure µ and a constant parameter α > 0, we define the adaptive distance function
as follows:

δµ,α = inf
m>0

dµ,m
mα

.

First, consider the case of an ambient noise µ in dimension d as shown on Figure 2.1 (left).
The distance function simplifies to d2

µ,m = c1m
2/d, with c1 a constant depending on k and on the

density of µ. For α > 1
d , we thus get that dµ,m/mα is decreasing with m. Therefore its minimum

is reached at a value m∗ = 1, and δ2
µ,α is, in the discrete case, the average squared distance to the

whole point set.
Consider now a uniform continuous measure µ on a k-subspace in d-dimensional space. At

distance h from this subspace, we find that

d2
µ,m(h) = c1m

2/k + h2.

Hence for α < 1
k , dµ,m(h)/mα is unimodal as a function of m, and m∗(h) = c2h

k. We obtain:
δµ,α(h) = c3h

1/k−α. Notice that this function reaches zero on the shape and grows with a vertical
tangent as we move away from it: its level sets therefore accumulate way tighter around the data
than the non-adaptive distance function which is a smooth quadratic function that never goes to
zero. We thus obtain a precise localization of the inferred shape.
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µ

q

m

m h
q

µ

Figure 2.1: Left: Ambient noise µ in a d-dimensional space. A sphere
centered on q contains the mass m. Right: Uniform measure µ on a k-
subspace. A circle centered on the orthogonal projection of q on the supporting
plane of µ contains the mass m.

Figure 2.2 depicts a realistic case of a noisy k-submanifold on a d-dimensional space. Depending
on the value of m, it boils down to one of the two previous cases. Consider a query point q lying
on the shape. At smaller scale than the noise level, the data appears as an ambient noise: for
α > 1

d , on small values of m, dµ,m(x)/mα is decreasing. As soon as the scale gets larger than the
noise level, the data appears as a k-submanifold: for α < 1

k , dµ,m(x)/mα is increasing.

Scale m = 10 nearest neighbors

• Apparent dimension = 2
• Ambient noise in a 2D space
• dµ,m(q)

mα is decreasing for α > 1
2

Scale m = 30 nearest neighbors

• Apparent dimension = 1
• 1-submanifold in a 2D space
• dµ,m(q)

mα is increasing for α < 1
dµ,m(q)

mα

m

δμ(q)

local scale

Figure 2.2: Adaptive distance function.

This means that under these conditions, the minimum m∗ reached relates to the scale of the
local noise. Consequently, the adaptive distance function provides an accurate representation of
the data on noise-free areas, while sufficiently smoothing the data in poorly sampled areas. These
properties are met as long as α ∈] 1

d ; 1
k [. We thus choose α = 3

4 for curves in 2D and α = 5
12 for

surfaces in 3D.
This parameter can also be set to deal with a curve in 3D: α = 2

3 . However, this is out of scope
in our context as we aim at reconstructing closed surfaces bounding a 3D solid.

To achieve correct topological inference similarly to the non-adaptive distance function, it is
necessary to limit the infimum over the values of m that exceed a threshold m0. Indeed, for a
single value of m, the robust distance dµ,m is 1√

m
-robust: this means that two measures µ1 and µ2
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that are ε away in the Wasserstein 2-distance will have robust distances dµ1,m and dµ2,m at most
ε√
m

away in the sup norm. For a single value of m, the robust distance is also 1-semiconcave. All
functions in the infimum are therefore m−α−1/2

0 -robust with m−2α
0 -semiconcave squares. Defining

this non-zero infimum m0 for the adaptive distance function, we preserve these properties of the
original non-adaptive function. In practice, we set a lower bound K0 = 6 for selecting the K
nearest neighbors.

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

0

2 · 10− 3

4 · 10− 3

6 · 10− 3

102

103

Figure 2.3: Distance functions. Top: input point set and segment selected to
depict function values. Red curve: robust function dµ with K = 6: small details
are captured in noise-free area, but the function is noisy on noisy area. Green
curve: robust function dµ with K = 70: noisy areas are captured, but noise-free
areas are over-smoothed and the first minimum of the function is shifted to the
right. Blue curve: adaptive function δµ: all features are captured. Orange
curve: selected value for K: notice the high dynamic of the function (log vertical
scale). The flat maximum appears when the total number of points is reached.

Figure 2.3 compares the adaptive and non-adaptive distance functions. This new function
altogether removes the need for a scale parameter and does not exhibit the defects of the globally-
scaled and non-adaptive function. A curve also depicts the local scale as value of K where the
minimum is reached.

The reconstruction algorithm consists in computing an implicit function whose 0-isolevel defines
the shape. It comprises two main steps: (i) Computing the adaptive distance function, and (ii)
Signing it by estimating the sign of a signed version of this distance function on a set of discrete
locations, and propagating the sign guesses using the adaptive distance function.
Unsigned Distance. We represent the adaptive distance function by linear interpolation on the
triangles of an isotropic triangulation. The latter is obtained through adaptive Delaunay refinement
such that the interpolated and real values are ε away from each other (see Figure 2.4). For each
vertex of the triangulation computing the adaptive distance function amounts to search for a
minimum over all possible K nearest neighbors, leading to a major scalability issue. Instead of
performing an exhaustive search, we rely on a k-d tree structure for neighbor search, combined to
a hierarchical clustering of the input point set [9].
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Figure 2.4: Delaunay refinement. Left: input point set and distance function.
Right: output triangulation.

Signing. We first guess the sign of the output implicit function on a discrete set of points. The
latter are selected as the corners of a regular grid that covers the domain of the input set (defined
as a loose bounding box). Edges are randomly picked on this grid and each of them is assigned
a sign estimate εi,j that is −1 or +1, depending if the two end nodes i and j are estimated to
be on the same side or on opposite sides of the shape. Then, by minimizing the following energy:
EG(f) =

∑
(i,j)∈G(fi + εi,jfj)2, a sign fi is estimated for all the nodes i. A confidence is derived

for each node as the ratio of sign hypothesis on edges that are matched by the output signs of the
nodes. Figure 2.5 illustrates the sign guess pipeline.

Figure 2.5: Random graph. From left to right: input point set; edges of the
graph (only 1% of edges are shown for clarity, with blue for similar signs and red
for different signs); 20% of the graph edges shown; signed function at graph nodes
after linear solve (red for inside, blue for outside).

Given the set of most confident sign guesses and the adaptive unsigned distance function,
the output signed implicit function is computed using a method inspired by the random walker
approach used for image segmentation [10]. Figure 2.6 illustrates resilience to gradually variable
noise: the reconstructed surface smoothly approximates the inferred shape on noisy area while
providing high accuracy on noise-free area. We compare to the Poisson reconstruction approach
which relies upon a single scale parameter. Both algorithms are timed on GNU/Linux with a
4-core 2.4 GHz Intel Core i7 processor with 8 GB of RAM.

Figure 2.7 depicts our algorithm at work on a point set generated by photogrammetry. To
evaluate resilience to variable noise we add a synthetic noise on the top half part of the point set.

3. Piecewise Smooth Reconstruction

For piecewise smooth shapes with boundaries we reformulated 2D shape reconstruction and
simplification in a preliminary work [6] as a transportation problem between measures (i.e., mass
distributions), where the input point samples are considered as Dirac measures and the recon-
structed shape is seen as the support of a continuous measure defined on the vertices and edges
of a 2D triangulation. Our formulation significantly differs from the common way to state the
optimal transportation problem in the sense that we do not know the target measure but instead
need to solve for it. We restrict the target measure to be defined as the sum of piecewise uni-
form measures on the simplices of a 2D triangulation. When the transport plan is restricted to
transport each input point sample to the nearest edge of the triangulation, the optimal transport
cost based on the Wasserstein-2 distance is computed in closed form. The final triangulation is
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Figure 2.6: Gradually variable noise (generated). Top: raw point set, where
noise increases linearly from top to bottom; point set & our reconstruction; our
reconstruction only (running time: 82s). Bottom: Poisson reconstruction with a
uniform octree depth of 4, 6 and 8 (running times: 1, 10 and 50s respectively).

Figure 2.7: Two levels of noise. Left: raw point set with additional noise on
the top half part. Middle: point set & reconstruction. Right: reconstruction only
(running time: 242s).

obtained through greedy decimation of an initial dense Delaunay triangulation constructed with
the input point samples, where the decimation operators are ordered so as to minimally increase
the total transport cost. This approach both reconstructs and generates a simplified shape, and
brings forth a unified treatment of noise, outliers and boundaries (Figure 3.1).

Without restricting the transport plan such that each sample point can be transported to an
arbitrary edge of the triangulation there is no closed form anymore as the structure of the transport
plan becomes a variable of the problem. As first direction we performed a pointwise discretization
of each edge of the triangulation before resorting to a dense linear program to determine the
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Figure 3.1: Robust 2D shape reconstruction and simplification. The input
shape (3K points) has sharp corners subtending small angles as well as boundaries.
The reconstruction is perfect for a noise-free input (left); as noise is added (middle,
2% and 2.5% of bounding box), the output degrades gracefully, still capturing most
of the sharp angles; after adding 4K or 4.5K outliers and 2% of noise (right), the
reconstruction remains satisfactory, although artifacts start appearing in this
regime.

point-to-point optimal transport plan and associated cost. The latter approach is very computer-
intensive but exhibits even better resilience to noise and outliers.

The linear programming approach described above applies to noise and outlier-robust recon-
struction of surfaces with sharp features and boundaries. However, and even when using the
restricted transport plan as mentioned above, there is no closed form when dealing with the facets
of a triangulated surface. Computing the optimal transport cost and plan through pointwise dis-
cretization and linear programming is thus substantially more computer-intensive than for 2D
shapes.

For surfaces we formulate the reconstruction problem as a transportation problem between
measures (i.e., mass distributions), where the input point samples are considered as Dirac measures
and the reconstructed shape is seen as the support of a piecewise uniform measure over the simplices
(vertices, edges, facets) of a surface simplicial complex. Using three different types of simplices
provides us with a means to deduce the local dimension from the optimal transport plan found by
the solver.

To obtain high robustness to noise and outliers we formulate the problem with a general trans-
port plan where each input sample point can be split into sub-masses, each transported to different
locations on the complex. We thus use a discretized formulation of the optimal transport problem,
where we approximate the optimal transport cost between the input point set S and the simplicial
complex C using quadrature intervals, which we call hereafter bins. To this end, we partition ver-
tices, edges, and facets of C into a set of bins B and evaluate the optimal cost between S and B as the
sum of squared distances between the points in S and the centroid of
the bins in B. Bins on facets are constructed as the bounded Voronoi
cells of a centroidal Voronoi tessellation (see inset). In order to accom-
modate the non-uniform distribution of bins, we assign a capacity for
each bin in B (i.e., the total amount of mass that a bin can receive).
While we set vertex bins to unit capacity, edge bins and facet bins are
respectively assigned capacities proportional to the lengths and areas of the Voronoi cells.

We use a linear programming formulation to compute the optimal transport cost between the
input point set S and the bin set B. In the following, we denote the simplices of C as {σj}j=1···L
and the bins in B as {bj}j=1···M , where L andM are the number of simplices and bins respectively.
We also define s(j) to be the index of the simplex containing the bin bj (i.e., bj ∈ σs(j)). The
capacity cj of bin bj is defined as the ratio between the bin’s area and the area of its containing
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simplex. Finally, we denote mij as the amount of mass transported from point pi ∈ S to the
centroid of bin bj .

With these definitions, we can now refer to a transport plan between S and B as a set of N ×M
variables mij such that:

∀ij : mij ≥ 0,(3.1)

∀i :
∑

j

mij = mi,(3.2)

∀j1, j2 s.t. s(j1)=s(j2) : 1
cj1

∑

i

mij1 = 1
cj2

∑

i

mij2 ,(3.3)

where Equation 3.2 ensures that the entire measure of a point gets transported onto simplices, and
Equation 3.3 ensures a uniform measure over each simplex of C. An optimal transport plan is then
defined as a transport plan π that minimizes the associated transport cost

cost(π) =
∑

ij

mij‖pi − bj‖2.

Finding a transport plan minimizing the transport cost results in a linear program with respect
to the mij , with equality (Eq. 3.2 and 3.3) as well as inequality constraints (Eq. 3.1). In order
to enforce the uniformity constraint (Eq. 3.3), we also introduce L additional variables li (one
per simplex σi) indicating the target measure density of the corresponding simplex. The final
formulation is thus:

Minimize
∑
ijmij‖pi − bj‖2

w.r.t. the variables mij and lj , and subject to:




∀i :
∑

j

mij = mi

∀j :
∑

i

mij = cj · ls(j)

∀i, j : mij ≥ 0, lj ≥ 0
Our reconstruction algorithm proceeds by iterative decimation – through half edge collapse

operators – of a 2-simplicial complex initialized as the facets of the 3D Delaunay triangulation
constructed from a subset of the input points (Figure 3.2). We also couple our decimation with an
optimization procedure in order to relocate the vertices in the reconstructed simplicial complex.
This optimization procedure further minimizes the transport cost through alternating vertex relo-
cation (with a fixed transport plan) and re-computation of the optimal transport plan. The edge
collapse operators are our means to generate a simplicial complex with anisotropic triangle facets
where relevant from the approximation point of view.

4. Conclusion

We described two recent contributions for noise and outlier robust shape reconstruction, both
derived from computing and minimizing distances between measures through optimal transporta-
tion.

For smooth, closed shapes we compute and sign a noise-adaptive distance function before ex-
tracting one its isolevel as final reconstruction. For piecewise smooth shapes with boundaries we
proceed by iterative, feature-preserving simplification of a simplicial complex constructed from the
input point set. To achieve noise and outlier robustness, an error metric driving the simplification
is derived in terms of optimal transport between the input point set and the reconstructed mesh,
both seen as mass distributions. Even when restricting the transport plan to transport input sam-
ples to local neighborhoods, our solution based on linear programming has a high computational
cost: we need to gain 4 orders of magnitude to obtain a practical algorithm. In the future we
plan to investigate how to compute an estimate of the optimal transport cost. We also plan to
perform a statistical analysis of the optimal transport plan per simplex in order to devise a more
parsimonious shape refinement algorithm. Intuitively, the transport cost will be used to decide
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Figure 3.2: Robust surface reconstruction and simplification. Top: Initial
point set; Filtered 3D Delaunay triangulation of a random subset containing 10%
of the input points and initial transport plan assigning point samples to discretiza-
tion points (green arrows); and first few decimation step. Bottom: Reconstruction
with 100, 50, and 14 vertices, respectively.

where to refine the shape, while the transport plan analysis translates into how to refine, namely
into the type and parameters of a local anisotropic refinement operator.
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The Gromov-Hausdorff distance: a brief tutorial on
some of its quantitative aspects

Facundo Mémoli

Abstract
We recall the construction of the Gromov-Hausdorff distance. We concentrate on quan-

titative aspects of the definition and on quantitative properties of the distance .

1. Introduction

Modeling datasets as metric spaces seems to be natural for some applications and concepts
revolving around the Gromov-Hausdorff distance —a notion of distance between compact metric
spaces— provide a useful language for expressing properties of data and shape analysis methods.

These notes are based on a talk given during the conference “Discrete Curvature” held in Luminy
in November 2013.

Notation and background concepts. The book by Burago, Burago, and Ivanov [2] is a valuable
source for many concepts in metric geometry. We refer the reader to that book for any concepts
not explicitly defined in these notes.

We let M denote the collection of all compact metric spaces. Recall that for a given metric
space (X, dX) ∈ M, its diameter is defined as diam (X) := maxx,x′∈X dX(x, x′). Similarly, the
radius of X is defined as rad (X) := minx∈X maxx′∈X dX(x, x′).

For a fixed metric space (Z, dZ), we let dZH denote the Hausdorff distance between (closed)
subsets of Z.

We will often refer to a metric space (X, dX) by only X, but the notation for the underlying
metric will be implicitly understood to be dX . Recall, that a map ϕ : X → Y between metric spaces
(X, dX) and (Y, dY ) is an isometric embedding if dY (ϕ(x), ϕ(x′)) = dX(x, x′) for all x, x′ ∈ X. The
map ϕ is an isometry if it is a surjective isometric embedding.

2. The definition

The goal is to measure distance between two given abstract compact metric spaces. In general,
these two spaces may not be readily given as subsets of a common metric space. In this case, the
following construction by Gromov [4] applies.

Given (X, dX) and (Y, dY ) inM one considers any “sufficiently rich” third metric space (Z, dZ)
inside which one can find isometric copies of X and Y and measures the Hausdorff distance in
Z between these copies. Finally, one minimizes over the choice of the isometric copies and Z.
Formally, let Z, φX : X → Z and φY : Y → Z be respectively a metric space and isometric
embeddings of X and Y into Z. Then, the Gromov-Hausdorff distance between X and Y is
defined as
(2.1) dGH(X,Y ) := inf

Z,φX ,φY

dZH
(
φX(X), φY (Y )

)
.

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 00X99.
Key words. metric geometry, graph theory, shape recognition, optimal transportation.
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φX
(X)

φY
(Y )

Z

X

Y

Theorem 1 ([4]). dGH is a legitimate distance on the collection of isometry classes ofM.

From the practical point of view this definition might not look appealing. As we recall below,
there are other more computational suggestive equivalent definitions whose implementation has
been explored. But now we try to interpret the definition we have given so far.

2.1. An example. Consider the metric spaces X consisting exactly of three points at distance 1
from each other, and Y consisting of exactly one point. Notice that X and Y can be simultaneously
embedded into R2 in an isometric way so that Z = R2 is a valid choice in (2.1) above. The maps
φX and φY represent the relative positions of X and Y in the plane.

By homogeneity, we can assume that the embedding of X is fixed. When choosing φY one
notices that the optimal relative position of q := φY (Y ) with respect to ∆ := φX(X) happens
when q is the center of the (equilateral) triangle ∆. In that case, the Hausdorff distance in (2.1)
is δ0 := 1√

3 and we conclude that dGH(X,Y ) ≤ δ0. One would be tempted to think that δ0 is in
fact equal to Gromov-Hausdorff distance between X and Y but this is not the case!

The same construction that we did above for R2 can in fact be done on the model hyperbolic
two-dimensional space Hκ of curvature −κ for any κ ≤ 0. As κ→ −∞, the (geodesic interpolation
of the) triangle ∆ becomes ’thinner’ and intuitively, the Hausdorff distance δκ between the optimal
embeddings in Hκ will decrease as κ decreases.

One can in fact consider the following target metric space: Z∞ consists of four points p1, p2, p3,
and p such that dZ(pi, pj) = 1 for i 6= j and dZ(pi, p) = 1

2 for all i. This metric space with four
points can be regarded as a subset of the real tree (geodesic) metric space below:

p1

p

p2p3

0.5

0.50.5
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This metric space can be regarded as an extreme case of the construction involving the Hκ that
was described above. The interesting fact is that if we let φX(X) = {p1, p2, p3} and φY (Y ) = {q},
then δ∞ := dZ∞H

(
φX(X), φY (Y )

)
= 1

2 which is strictly smaller than δ0! and thus proves that

dGH(X,Y ) ≤ 1
2 <

1√
3
.

One can in fact check that δ∞ < δκ ≤ δ0 for all κ ∈ [0,∞). In any case, as we recall in Corollary
5 below, dGH(X,Y ) is always bounded below by 1

2 |diam (X) − diam (Y ) |. Since in the present
case diam (X) = 1 and diam (Y ) = 0, we obtain that dGH(X,Y ) ≥ 1

2 which together with
the reverse inequality obtained above implies that in fact, for the example under consideration,
dGH(X,Y ) = 1

2 !

2.2. A simplification. Kalton and Ostrovskii [5] observed that one can equivalently define the
Gromov-Hausdorff distance between X and Y by considering Z in (2.1) to be the disjoint union
X tY together with any metric d such that d|X×X = dX and d|Y×Y = dY . Let D(dX , dY ) denote
the set of all such metrics on X t Y . Then, they observe that

(2.2) dGH(X,Y ) = inf
d∈D(dX ,dY )

d
(XtY,d)
H

(
X,Y

)
.

This expression for the Gromov-Hausdorff distance seems more appealing for the computation-
ally minded: imagine that X and Y are finite, then the variable d in the underlying optimization
problem can be regarded as a matrix in R|X|×|Y |. If we assume that |X| = |Y | = n then the
number of linear constraints that each d in D(dX , dY ) must satisfy is of order n3 (all triangle
inequalities). Even more explicitly, the optimization problem over D(dX , dY ) that one must solve
in practice is (cf. [7]) mind J(d) where

J(d) := max
(

max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)
)
.

The complexity from the original definition (2.1) is now hidden in the fact that J(·) is highly
non-linear.

Going back to the example discussed in 2.1, one can state that in the context of (2.2), the
optimal metric on X t Y is

d∗ :=




0 1
2

1
2 1

1
2 0 1

2 1
1
2

1
2 0 1

1 1 1 0


 .

2.3. The case of subsets of Euclidean space. Even if we saw in Section 2.1 above that when
X and Y are subsets of Rd the optimal Z in (2.1) may not be Rd, one can still relate dGH(X,Y )
with some natural notion of distance for subsets of Euclidean space. Doing this provides more
insight into as to how the Gromov-Hausdorff distance operates in situations for which we already
have a well developed intuition.

An intrinsic approach to comparing two subsets X and Y of Rd would be to regard them as
metric spaces by endowing them with the restriction of the ambient space metric: dX(·, ·) = ‖·−·‖
etc. So, one can consider dGH(X,Y ) as a possible notion of dissimilarity between X and Y .

Another notion of dissimilarity that is frequently considered in shape and data analysis arises
from the Hausdorff distance modulo rigid isometries and constitutes an extrinsic approach: let
E(d) denote the group of isometries of Rd and define

dR
d,rigid
H (X,Y ) := inf

T∈E(d)
dR

d

H
(
X,T (Y )

)
.

Since in this case, one can always choose Z = Rd in (2.1) above, one immediately sees that
dGH(X,Y ) ≤ dR

d,rigid
H (X,Y ). Even if we already saw in Section 2.1 that the equality cannot take

place in general, one could hope that for some suitable C > 0, dR
d,rigid
H (X,Y ) ≤ C · dGH(X,Y )

for all X,Y ⊂ Rd compact. Interestingly, however, this cannot happen! Consider X = [−1, 1].
Fix 0 < ε � 1 and let fε(x) := |x| · √ε. Let Yε be the set {(x, fε(x));x ∈ [−1, 1]}. Notice that
rad (X) = 1 and rad (Yε) =

√
1 + ε.
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x-3 -2 -1 0 1 2 3

Yε

X

√
ε

In any case, it is clear that for ε > 0 small enough, dR
d,rigid
H (X,Yε) =

√
ε

2 . However, since by
Proposition 6 and Corollary 4 below,

• dGH(X,Yε) ≥ 1
2 |rad (X)− rad (Yε) | = 1

2 (
√

1 + ε− 1) ≥ ε
2+2
√

2 and

• dGH(X,Yε) ≤ 1
2 sup|x|6=|x′| |x−x′|·

(√
1 + ε ·

(
|x|−|x′|
x−x′

)2
−1
)
≤ ε, since

∣∣|x|−|x′|
∣∣ ≤ |x−x′|

for all x, x′ ∈ X.
It follows that dGH(X,Yε) is of order ε and therefore no constant C > 0 will guarantee that
C · dGH(X,Yε) ≥ dR

d,rigid
H (X,Yε) for all 1� ε > 0!

What does hold for this construction is that C ·
(
dGH(X,Yε)

)1/2 ≥ dR
d,rigid
H (X,Yε) for some

constant C > 0. It turns out that this is not an isolated phenomenon:

Theorem 2 ([6]). For each natural number d ≥ 2 there exists cd > 0 such that for all X,Y ∈ Rd
one has

dGH(X,Y ) ≤ dR
d,rigid
H (X,Y ) ≤ cd ·M1/2 ·

(
dGH(X,Y )

)1/2
,

where M = max(diam (X) ,diam (Y )).

2.4. Another expression and consequences. For two sets X and Y let R(X,Y ) denote the
set of all correspondences between X and Y , that is, sets R ⊆ X × Y such that π1(R) = X and
π2(R) = Y . In general, we will refer to any non-empty set R of X × Y as a relation between X
and Y . Obviously, all correspondences are relations.

The distortion of a relation R between the metric spaces (X, dX) and (Y, dY ) is defined as the
number

dis(R) := sup
(x,y),(x′,y′)∈R

∣∣dX(x, x′)− dY (y, y′)
∣∣.

Notice that given a function ϕ : X → Y one can define the relation Rϕ := {(x, ϕ(x));x ∈ X}, and
in that case we write dis(ϕ) := dis(Rϕ) = supx,x′∈X

∣∣dX(x, x′)− dY (ϕ(x), ϕ(x′))
∣∣. Similarly, when

ψ : Y → X is given, it induces the relation Rψ := {(ψ(y), y); y ∈ Y }. Note that the structure of
Rϕ is different from the structure of Rψ.

Now, when a map ϕ : X → Y and a map ψ : Y → X are both specified, we consider the relation
Rϕ,ψ := Rϕ

⋃
Rψ and note that in fact Rϕ,ψ is actually a correspondence between X and Y .

Furthermore, one can explicitly compute that
dis(Rϕ,ψ) = max

(
dis(ϕ),dis(ψ), C(ϕ,ψ)

)
,

where C(ϕ,ψ) := supx∈X,y∈Y
∣∣dX(x, ψ(y)) − dY (ϕ(x), y)

∣∣. Notice that if C(ϕ,ψ) < η for some
η > 0, then

∣∣dX(x, ψ(y))− dY (ϕ(x), y)
∣∣ < η for all (x, y) ∈ X × Y . In particular, for x = ψ(y), it

follows that dY (ϕ ◦ ψ(y), y) < η for all y ∈ Y . Similarly one can obtain dX(x, ψ ◦ ϕ(x)) < η for
all x ∈ X. These two conditions are often interpreted as meaning that ϕ and ψ are close to being
inverses of each other. This proximity is quantified by η.

An interesting and useful characterization of the Gromov-Hausdorff distance based on optimiza-
tion over correspondences is the following:

Theorem 3 ([5]). For all X,Y ∈M one has that

dGH(X,Y ) (I)= 1
2 inf
R∈R(X,Y )

dis(R) (II)= 1
2 inf
ϕ,ψ

dis(Rϕ,ψ).
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Corollary 4. Let X be a set and d and d′ be any two metrics on X. Then,

dGH((X, d), (X, d′)) ≤ 1
2 sup
x,x′∈X

∣∣d(x, x′)− d′(x, x′)
∣∣.

The theorem above is significant for several reasons. First of all, (I) indicates that solving for
the Gromov-Hausdorff distance between two finite metric spaces is an instance of a well known
combinatorial optimization problem called the bottleneck quadratic assignment problem or bQAP.
The bQAP is NP-Hard and furthermore, computing any (1 + ε) of the optimal solution is also
NP-Hard for any ε > 0 [12]. See [9, 10, 1] for some heuristic approaches.

A second observation stemming from the equality (II) in the theorem is the fact that since the
term C(ϕ,ψ) acts as a coupling term in the optimization

dGH(X,Y ) = 1
2 inf
ϕ,ψ

max
(
dis(ϕ),dis(ψ), C(ϕ,ψ)

)
,

one could conceive of dropping it from the expression above yielding

dGH(X,Y ) ≥ 1
2 max

(
inf
ϕ

dis(ϕ), inf
ψ

dis(ψ)
)

=: d̂GH (X,Y ) .

It is important to notice that computing d̂GH (X,Y ), which we call the modified Gromov-Hausdorff
distance [8], leads to solving two decoupled optimization problems, a feature which is desirable in
applications. However, the computational complexity of the problems of the type infϕ dis(ϕ) could
still be high. We will explore some interesting structure that arises from this modified definition
in the next section but for now we will make one more observation based on the expression given
by Theorem 3.

From equality (I) it follows that the Gromov-Hausdorff distance between any compact metric
space and the metric space consisting of exactly one point is dGH(X, ∗) = 1

2 diam (X). As a
corollary from Theorem 1 and this observation one has

Corollary 5. For all X,Y ∈M, dGH(X,Y ) ≥ 1
2
∣∣diam (X)− diam (Y )

∣∣.

Proof. The inequality dGH(X,Y ) ≥
∣∣dGH(X, ∗)−dGH(Y, ∗)

∣∣ is guaranteed by the triangle inequality
for the Gromov-Hausdorff distance. The remark preceding the statement completes the proof. �

A similar lower bound for the Gromov-Hausdorff distance arises from considering the radius of
metric spaces:

Proposition 6 ([8]). For all X,Y ∈M, dGH(X,Y ) ≥ 1
2
∣∣rad (X)− rad (Y )

∣∣.

3. The modified Gromov-Hausdorff and curvature sets

It could appear plausible that by dropping the coupling term C(ϕ,ψ) in the optimization above
one might have lost some of the nice theoretical properties enjoyed by the Gromov-Hausdorff
distance. This is not the case, and in fact the modified Gromov-Hausdorff retains many of these
good properties:

Theorem 7 ([8]). The modified Gromov-Hausdorff distance satisfies:
(1) d̂GH is a legitimate metric on the isometry classes ofM.
(2) dGH(X,Y ) ≥ d̂GH (X,Y ) for all X,Y ∈M.

(3) dGH and d̂GH are topologically equivalent within dGH-precompact families ofM.

It is however interesting that the equality in item (2) does not take place in general. In fact, [8]
provides a counterexample.

3.1. Curvature sets. Gromov [4] defines for each n ∈ N the curvature sets of X ∈ M in the
following way: let Ψ(n)

X : X×n → Rn×n be the matrix valued map defined by (x1, . . . , xn) 7→
((dX(xi, xj)))ni,j=1. This map simply assigns to each n-tuple of points its distance matrix: the
matrix arising from restricting the metric on X to the given n-tuple. Then, the n-th curvature set
of X is

Kn(X) :=
{

Ψ(n)
X (x1, . . . , xn); (x1, . . . , xn) ∈ X×n

}
.
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In colloquial terms, curvature sets are just ‘bags’ containing all the possible distance matrices of a
given size arising from points sampled from X.

For example, when n = 2, K2(X) contains the same information as {dX(x, x′);x, x′ ∈ X} ⊂ R+.
In contrast, K3(X) contains all ‘triangles’ from X and this particular case suggest one possible
justification for the name ‘curvature sets’. Indeed, let X be a smooth planar curve. Consider any
three points x1, x2 and x3 on X close to each other. Then, if a = ‖x2 − x1‖, b = ‖x1 − x3‖, and
c = ‖x1 − x2‖, the inverse of the radius R of the circle circumscribed to the triangle ∆x1x2x3
admits an explicit expression in terms of a, b and c: R−1 = 4 S(a,b,c)

a b c where S(a, b, c) is the area
of the triangle as given by Heron’s formula.1 The crucial observation is that R can be computed
exclusively from the information contained in K3(X). Now, by an argument involving a series
expansion [3], as a, b, c → 0 R−1 converges to the curvature κ of X at the point of coalescence of
x1, x2, x3.

Curvature sets absorb all the information that one needs in order to determine whether two
compact metric spaces are isometric or not.

Theorem 8 ([4]). Let X,Y ∈ M. Then, X and Y are isometric if and only if Kn(X) = Kn(Y )
for all n ∈ N.

Constructions similar to curvature sets have also been considered by Peter Olver in the context
of subsets of Euclidean space [11].

An example: Curvature sets of spheres. We illustrate the definition with an example from [8].
Consider first the case of the standard circle S1 endowed with the angular distance. We will
exactly characterize K3(S1). For that purpose first consider any embedding of S1 into R2 and
observe that for any three points on S1 exactly one the following two conditions holds: (a) there
exists a line through the center of the circle such that the three points are contained on one side
of the line; (b) no such line exists.

Case (a) means that one of the three distances defined by the three points must forcibly be
equal to the sum of the other two distances. Case (b) implies that the sum of the three distances
is exactly 2π. Also note that, by symmetry, case (a) unrolls into three different cases depending on
the identity of the distance that is equal to the sum of the other two. Each of these four situations
gives a linear relation between the three distances! Thus, we obtain that K3(S1) is isomorphic to
the tetrahedron with vertices (0, 0, 0), (0, π, π), (π, 0, π), and (π, π, 0).

The case of S2, when endowed with the standard geodesic distance, is similar and one can prove
that K3(S2) is the convex hull of K3(S1).

3.2. Comparing curvature sets? An interesting property of curvature sets is that they are
isometry invariants of metric spaces which ’live’ in fixed target spaces. More precisely, for any
X,Y ∈M, Kn(X) and Kn(Y ) are both subsets of Rn×n.

With the purpose of discriminatingX and Y one may conceive of comparing Kn(X) and Kn(Y ).
Since they are both (compact) sub-sets of Rn×n one could compute the Hausdorff distance between
them. For this we first endow Rn×n with the distance d`∞(A,B) := maxi,j |ai,j−bi,j | for A = ((ai,j))
and B = ((bi,j)) in Rn×n. Then, we compute

dn(X,Y ) := 1
2 d

Rn×n

H
(
Kn(X),Kn(Y )

)
,

and use this number as an indication of how similar X and Y are. The best possible measure of
dissimilarity that this sort of idea suggests is to consider

d∞(X,Y ) := sup
n∈N

dn(X,Y ).

Theorem 8 guarantees that d∞ defines a legitimate metric onM modulo isometries.
Interestingly, one has the following ’structural theorem’ for the modified Gromov-Hausdorff

distance in terms of curvature sets:

Theorem 9 ([8]). For all X,Y ∈M, d̂GH (X,Y ) = d∞(X,Y ).

1S(a, b, c) = 1
4

(
(a + b + c)(a − b + c)(a + b − c)(−a + b + c)

)1/2.
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This theorem provides a useful path for computing estimates to the Gromov-Hausdorff dis-
tance. Furthermore, the theorem suggests a way of ’slicing’ the computation/approximation of
the Gromov-Hausdorff distance between finite metric spaces, since one might want to consider
computing dn for a fixed n and hope that this provides enough information for discriminating
spaces within a given family. For finite spaces, the computation of dn would incur a polynomial
cost, albeit of a high order. There are some known classes of metric spaces C ⊂ M that are
characterized up to isometry by Kn(·) for some finite n = n(C), see [8].

A lower bound for dGH(S1, S2). Theorems 7 item (2) and 9 then guarantee that

dGH(S1, S2) ≥ d3(S1, S2) = 1
2d

R3×3

H
(
K3(S1),K3(S2)

)
=: ξ.

Since K3(S2) is the convex hull of K3(S1), K3(S1) ⊂ K3(S2), and therefore,

ξ = 1
2 max
p∈K3(S2)

min
q∈K3(S1)

‖p− q‖∞ = min
q∈K3(S1)

‖g − q‖,

where g = π
2 (1, 1, 1) is the center of K3(S2). But now, the center c = 2π

3 (1, 1, 1) of the face of
K3(S1) determined by π (0, 1, 1), π (1, 0, 1), and π (1, 1, 0) is at minimal `∞ distance from g so that
ξ = 1

2 |π2 − 2π
3 | = π

12 , and we find the lower bound dGH(S1, S2) ≥ π
12 .

4. Discussion and outlook

The Gromov-Hausdorff distance offers a useful language for expressing different tasks in shape
and data analysis. Its origins are in the work of Gromov on synthetic geometry. For finite
metric spaces, the Gromov-Hausdorff distance leads to solving NP-Hard combinatorial optimization
problems. A related to construction is that of Gromov-Wasserstein distances which operate on
metric measure spaces [13, 7]. In contrast to the Gromov-Hausdorff distance, the computation
of Gromov-Wasserstein distances leads to solving quadratic optimization problems on continuous
variables. The space of all metric measures spaces endowed with a certain variant of the Gromov-
Wasserstein distance [7] enjoys nice theoretical properties [14]. It seems of interest to develop
provably correct approximations to these distances when restricted to some suitable subclasses of
finite metric spaces.
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Curvature on a graph via its geometric spectrum
Paul Baird

Abstract
We approach the problem of defining curvature on a graph by attempting to attach a

‘best-fit polytope’ to each vertex, or more precisely what we refer to as a configured star.
How this should be done depends upon the global structure of the graph which is reflected
in its geometric spectrum. Mean curvature is the most natural curvature that arises in this
context and corresponds to local liftings of the graph into a suitable Euclidean space. We
discuss some examples.

1. Introduction

The problem we address is one of ascribing geometry to a graph using just its combinatorial
structure. Geometry should emerge from the structure rather than being imposed upon it. Our
approach is to appeal to the way we perceive objects in the world around us. A good starting
point is what psychologists refer to as the Necker cube.

When we see this picture we generally perceive one of two possible 3-dimensional cubes. The
reasons for this are a matter of cognitive science, but also the way the graph has been drawn on
the piece of paper. With the graph so realized as a framework in 3-dimensional Euclidean space,
we can begin to do geometry: edge length is defined; the Gauss curvature is defined at each vertex
in terms of the angular deficit; other curvatures appear, such as the rotation of the Gauss map
between adjacent vertices. But how has the realization of this graph come about?

To perform this procedure on an more general graph, we attempt to produce a “best-fit polytope”
at each vertex, or rather, what we call a configured star, by lifting a vertex and its neighbours in a
natural way into a Euclidean space RN . A configured star generalizes the star framework at each
vertex of a regular polytope. More specifically, it consists of an internal vertex connected to n
external vertices that have a particularly symmetric configuration (see below). In particular, any

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 05C10,52C99,52B11,39A14.
Key words. graph theory, curvature, geometric spectrum, shape recognition.
The author would like to express his thanks to the organisers Laurent Najman and Pascal Romon for an enriching
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configured star has an axis which can be interpreted as the Gauss map at a vertex. The dimension
N of the space into which we lift is a matter of choice but must always be less than or equal to
the degree n of the vertex.

But now if we return to the cube pictured above, how do we decide whether to fit a cube to
each vertex, or a regular tetrahedron, since both have vertices of degree 3 ? The answer is the cube
because of the global combinatorial structure of the graph. In order to bring this global structure
into play, we introduce the notion of geometric spectrum in [3, 1]. The geometric spectrum is
a real-valued parameter γ defined on the vertices of a graph for which the quadratic difference
equation :
(1.1) γ(∆φ)2 = (∇φ)2

has a non-trivial solution φ (see (2.2) below for the explicit form of this equation). For technical
reasons that we explain below, we require that γ < 1. The smooth version of equation (1.1) applied
to a hypersurface in Euclidean space shows that 1/γ = −H2 where H is the mean curvature. Since
for a mesh which approximates a smooth hypersurface, equation (1.1) approximates its smooth
counterpart, it is reasonable to consider γ as corresponding to mean curvature (or more precisely
to −1/H2). It is worth noting that for regular convex polyhedra, equation (1.1) is satisfied with γ
positive in the case of a small number of vertices, for example the tetrahedron, and then becoming
negative when the number of vertices increases, for example for the icosahedron, the dodecahedron
and the 4-dimensional 600-cell, as the polyhedron approximates better a smooth round sphere.

For a complete graph on N + 1 vertices, the geometric spectrum consists of a single value
N/(N + 1) and the solution φ corresponds to the images of the vertices after an orthogonal
projection of the regular N -simplex to the complex plane. At the other extreme, for a cyclic graph
on n vertices, solutions φ to (1.1) correspond to realizations of the graph as an n-polygon in the
plane with sides of equal length. Now the geometric spectrum has continuous components with
complicated branching phenomena. An interpretation of the geometric spectrum as information
implicit in a graph which may be exploited to enact structural change is discussed in the article
[4].

Given a solution to (1.1) on a graph with γ < 1, it is shown in [5] how one has a local lifting
property at each vertex: each vertex and its neighbours can be lifted to an invariant configured
star in Euclidean space RN with 2 ≤ N ≤ n, where n is the degree of the vertex. In the case when
N = 3, except for some special cases, this lifting is unique up to a one of two possibilities (for
example, the two visualizations of the cube), as such, this dimension becomes the most interesting
when degrees are ≥ 3. How we choose from the two possible liftings is then a global matter of
correlating liftings at adjacent vertices (cf. the cube). For example, an Escher picture has local
liftings with a global inconsistency.

Given a graph and a solution to (1.1), we can now make sense of distance and curvature. In
general, provided we are only interested in relative distance between one part of the graph and
another and curvature which doesn’t depend on scale (for example Ricci curvature), these should
depend only on the geometric spectrum γ and not on the solution φ.

2. The geometric spectrum

Any regular polytope in Euclidean space satisfies the following quadratic difference equation:

(2.1) γ

n

(∑

y∼x

(
φ(y)− φ(x)

))2
=
∑

y∼x

(
φ(y)− φ(x)

)2
,

at each of its vertices x, where φ is an orthogonal projection to the complex plane, n is the
(common) degree at each vertex (the number of edges incident with x) and y ∼ x means that y
is connected to x by an edge. This fact is implicit in the work of Eastwood and Penrose [10] and
made explicit by the author in [5]. The constant γ depends on the polytope and it can be either
positive or negative but it is always < 1. For the convex regular polyhedra in R3 (the Platonic
solids), the values of γ can be calculated by expressing the angular deficit at each vertex in terms
of γ (cf. [1], Proposition 7.4) and then applying the classical theorem of Descartes: for a convex
polyhedron in R3, the sum over the vertices of their angular deficits is equal to 4π. See table 2.1.
Note that the value of γ in (2.1) is invariant by any similarity transformation of the polytope,
which suggests that the intrinsic geometry of the polytope may be characterized by three aspects:
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polyhedron γ

tetrahedron 3/4
cube 0

octahedron 1/2
icosahedron 2−

√
5

3−
√

5 < 0
dodecahedron 3(1−

√
5)

2(3−
√

5) < 0

Table 2.1: Values of γ for the Platonic solids.

(i) the fact that the underlying framework (or 1-skeleton) satisfies (2.1) ; (ii) the value of the
constant γ ; (iii) the underlying combinatorial structure. Let us therefore proceed to generalize
this construct to a more general graph.

Given a graph Γ = (V,E) with vertex set V and edge set E, together with a real-valued function
γ : V → R, we introduce the equation:

(2.2) γ(x)
n(x)

(∑

y∼x

(
φ(y)− φ(x)

))2
=
∑

y∼x

(
φ(x)− φ(y)

)2
,

at each vertex x, where φ : V → C is a complex-valued function and n(x) is the degree of Γ at
x. Solutions with γ ≡ 0 have been called holomorphic functions1 and have been used to give a
description of massless fields in a combinatorial setting [6]. Note that the equations are invariant
by the replacement of φ by the transformations
(2.3) φ 7→ λφ+ µ (λ, µ ∈ C), and φ 7→ φ.

We shall consider two solutions related in this way as equivalent.
If we set ∆φ(x) = 1

n(x)
∑
y∼x

(
φ(y)−φ(x)

)
(the Laplacian) and (∇φ)2(x) = 1

n(x)
∑
y∼x

(
φ(y)−

φ(x)
)2 (the symmetric square derivative), then equation (2.2) has the more economic expression

(1.1) given in the Introduction. The Cauchy-Schwarz inequality shows that for a given vertex x if
the values {φ(y)− φ(x) : y ∼ x} are real and not all zero, then γ(x) ≥ 1 [5].

For a given graph, we would like to know what are the admissible functions γ : V → R for
which (2.2) has a solution. Define the geometric spectrum of Γ to be the collection of equivalence
classes of functions:

Σ = {γ : V → [−∞, 1) ⊂ R : ∃ non− const. φ : V → C satisfying (2.2) } ,
where two functions are identified when they determine a common solution φ and agree on the
compliment of the set {x ∈ V : ∆φ(x) = (∇φ)2(x) = 0}. The upper bound on γ is a consequence
of the Cauchy-Schwarz inequality and our requirement of invariance with respect to similarity
transformations. We allow γ to take on the value −∞ at points where the Laplacian vanishes.

By a framework in Euclidean space, we mean a graph that is realized as a subset of Euclidean
space with edges straight line segments joining the vertices. We say that it is immersed if all vertices
are distinct and embedded if it is immersed and edges only intersect at end points. The framework
is called invariant if for a particular γ, it satisfies (2.2) with φ the restriction to the vertices of
some orthogonal projection to the complex plane independently of any similarity transformation
of the framework.

Questions that now arise are:
• For a given graph Γ, what is its geometric spectrum?
• Does a solution to (2.2) arise from an embedding of the graph as an invariant framework in

Euclidean space?
• Even if the answer to the last question is no, can we still define geometric quantities such as

edge length and curvature from a solution?
• To what extent do such quantities depend only on γ rather than on the choice of solution φ?

1A notion of holomorphic function somewhat similar to this has been introduced by S. Barré [7]; however, in
addition to (2.2) with γ ≡ 0, Barré requires that φ be harmonic.
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For an arbitrary graph, the geometric spectrum is determined by a fairly complicated set of
algebraic equations. For graphs of sufficiently small order, these can be solved by the method
of Gröbner bases with MAPLE, see [1]. The more connected a graph, the more restricted is its
geometric spectrum as discussed in the Introduction.

In order to interpret γ, we consider equation (1.1) in the smooth case of a hypersurface in
Euclidean space and find an interesting connection with mean-curvature.

Theorem 1. ([2]) Let Mn be a smooth hypersurface in Rn+1 (n ≥ 1) and let g denote the metric
onMn induced from the standard metric on Rn. Let φ : (Mn, g)→ C be any orthogonal projection;
then
(2.4) (∆φ)2 = −H2(∇φ)2 ,

where H is the mean curvature of Mn, and where in local coordinates, ∆φ = gij(φij − Γkijφk) and
(∇φ)2 = gijφiφj (summing over repeated indices).

In the case when n = 1, the theorem confirms the identity
c′′(s) = κ(s)ic′(s) ,

for a regular curve c : I ⊂ R→ C parametrized with respect to arc length. It is necessary thatMn

be a hypersurface in order to satisfy (1.1). For example, consider the surface in R4 parametrized
in the form:

(x1, x2) 7→ (x1, x2, x1x2, x1 + x2) .
Let φ : R4 → C be the projection φ(x1, x2, x3, x4) = x1 + x2i. Then is is readily checked that the
function γ defined by (1.1) is not even real.

Given the above theorem, we expect an invariant framework that closely coincides with a smooth
hypersurface to have γ approximately equal to −1/H2 modulo a scaling factor (equation (2.4) is
not scale invariant; in order to make it so, a volume term should be added).

3. Configured stars and the lifting problem

A star graph, or bipartite graph K1,n, has one internal vertex connected to n external vertices;
there are no other connections. A star framework in RN with internal vertex located at the origin
can be specified by a (N×n)–matrixW whose columns are the components of the external vertices.
We will refer to W as the star matrix. Provided the centre of mass of the external vertices does
not coincide with the origin, then it defines a line through the origin which we refer to as the axis
of the star. We are interested in a particular class of star frameworks whose external vertices form
what we call a configuration in a plane orthogonal to the axis of the star.

A collection of points {~v1, . . . , ~vn} in RN−1 forms a configuration if the ((N − 1) × n)-matrix
U = (~v1|~v2| · · · |~vn) whose columns have as components the coordinates v`j of ~v` (j = 1, . . . , N −
1; ` = 1, . . . , n), satisfies:

(3.1) UU t = ρIN−1 ,

n∑

`=1
~v` = ~0 ,

for some non-zero constant ρ (necessarily positive), where ~0 denotes the zero vector in RN−1 and
U t denotes the transpose of U . Necessarily, rank(U) = N − 1 so that n ≥ N . A star in RN
whose external vertices form a configuration in a plane not passing through the origin, is referred
to as a configured star. An invariant of such a star is a quantity that is invariant by orthogonal
transformation. The following lemma characterizes configured stars [5].

Lemma 2. Consider a configured star in RN (N ≥ 2) with internal vertex the origin connected
to n external vertices {~x1, . . . , ~xn} (n ≥ N). Let W = (~x1|~x2| · · · |~xn) be the (N ×n)-matrix whose
columns are the components x`j of ~x` (j = 1, . . . , N ; ` = 1, . . . , n). Then

(3.2) WW t = ρIN + σ~u~ut,

n∑

`=1
~x` =

√
n(σ + ρ) ~u ,

where ~u ∈ RN is a unit vector called the axis of the star, ρ > 0 and ρ+σ > 0. The quantities n, ρ, σ
are all invariants of the star; the vector ~u is normal to the affine plane containing ~x1, . . . , ~xn.
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Conversely, any matrix W = (~x1|~x2| · · · |~xn) satisfying (3.2) determines a configured star with
internal vertex the origin and external vertices ~x1, . . . , ~xn.

Corollary 3. Let W = (~x1|~x2| · · · |~xn) define a configured star and let φ : RN → C be orthogonal
projection φ(y1, y2, . . . , yN ) = y1 + iy2. Then if z` = φ(~x`) = x`1 + ix`2, we have

σ

n(σ + ρ)

(
n∑

`=1
z`

)2

=
n∑

`=1
z`

2 ,

where ρ and σ are given by (3.2). In particular, with reference to equation (2.2), γ = σ/(σ + ρ) is
real and depends only on the star invariants.

Proof. Let ~u = (u1, . . . , uN ) be the unit normal to the plane of the star. Then for each j = 1, . . . , N ,
we have

n∑

`=1
x`j =

√
n(σ + ρ)uj .

Thus
(

n∑

`=1
z`

)2

=
n∑

k,`=1
(xk1x`1 − xk2x`2 + 2ixk1x`2)

= n(σ + ρ)(u1
2 − u2

2 + 2iu1u2) = n(σ + ρ)(u1 + iu2)2 ,

whereas
n∑

`=1
z`

2 =
n∑

`=1
(x`12 − x`22 + 2ix`1x`2) = (WW t)11 − (WW t)22 + 2i(WW t)12 = σ(u1 + iu2)2 .

The formula now follows. �

To test whether a framework in Euclidean space is invariant, it suffices to see whether the star
about each of its vertices is invariant at the internal vertex. A consequence of the above corollary
is that any configured star is invariant at its internal vertex. The star framework about the vertex
of any regular polytope is configured, so that the underlying framework of a regular polytope is
invariant [5]. On the other hand, not all invariant stars are configured. For example, the star in
R3 with 2r external vertices represented by the columns of the (3× (2r)) –matrix

W =




x1 x2 · · · xr x1 x2 · · · xr
s1 s2 · · · sr −s1 −s2 · · · −sr
t1 t2 · · · tr −t1 −t2 · · · −tr


 ,

where the vectors ~s = (s1, . . . , sr) and ~t = (t1, . . . , tr) are orthogonal and of the same length, is
invariant, but it is only configured when x1 = x2 = · · · = xr. This kind of invariant star arises in
the double cone construction of the next section.

Let φ be a solution to (2.2) and consider a particular vertex x. Let y1, . . . , yn be the neighbours
of x labelled in any order. Normalize the solution so that φ(x) = 0 and then set zj = φ(yj). We
suppose that not all zj are zero. Write zj = αj + iβj in real and imaginary parts. The lifting
problem into R3 about the vertex x means finding an invariant star (whose internal vertex is
located at the origin) with matrix

W =




α1 α2 · · · αn
β1 β2 · · · βn
x1 x2 · · · xn




If we impose the further restriction that the invariant star be configured, then provided γ(x) < 1
and rankW = 3, this can always be done with just a 2-fold ambiguity which corresponds to a choice
of sign for the vector ~x := (x1, . . . , xn) [5, 3]. The 2-fold ambiguity is illustrated by the Necker
cube discussed in the Introduction. In the case when rankW < 3, then there is a 1-parameter
family of solutions. This case occurs if and only if the complex numbers z` satisfy

n

n∑

`=1
|z`|2 + (γ − 2)

∣∣∣
n∑

`=1
z`

∣∣∣
2

= 0 .
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We may lift to an invariant configured star in RN provided N ≤ n, but for N > 3, there is generally
a family of lifts [5].

Thus we find, that apart from special cases, we have a lift about each vertex of a solution to
(2.2) into R3 which is unique modulo translation along the axis of projection R3 → R2 and up
to the 2-fold ambiguity corresponding to the sign of ~x. This already enables certain geometric
quantities to be defined in an unambiguous way, for example edge length. Note that for a given
edge we may have liftings at each of its end points which endow that edge with different lengths.
In that case, we can take the average as a reasonable definition of edge length. Furthermore, the
2-fold ambiguity may sometimes be removed by a requirement of global consistency, as is the case
with the cube: a choice at one vertex imposes a choice of lift at neighbouring vertices.

The problem of when a global lifting of a given graph exists remains relatively unexplored.
An obvious geometric obstruction occurs when, as discussed in the above paragraph, the lifts
of neighbouring vertices defines a different length to the connecting edge. This is particularly
relevant when we try to lift into R3 since then, in general, edge length is unique (see, for example
[5], Example 4.4). However, in general there is a smooth family of lifts into RN when N > 3
subject to the constraint that N ≤ n (n = degree of the vertex), so that it may still be possible to
find a global lift into a higher dimension Euclidean space.

4. Examples

Given the interpretation of the parametre γ in terms of mean curvature, we now consider
the problem of constructing invariant frameworks which have constant mean curvature. The
underlying frameworks of regular polytopes provides examples, but are there others? The answer
to this question is yes. Examples were given in [2], which we now outline.

If we take a regular n-sided polygon in the plane with vertices located at the points e2kπi/n

(k = 0, 1, . . . , n−1) and construct a double cone as illustrated below, then there is a unique height
given by sin(2π/n) which makes this invariant, where by height we mean the distance from the
plane of the polygon to one of the apexes.

It is interesting to note that as n → ∞ then the height approaches zero, so the form of the
object approaches that of a disc. The value of γ at one of the lateral vertices is given by

(4.1) γlat =
2(1− 2 cos 2π

n + 2 cos2 2π
n )

(2− cos 2π
n )2 ,

whereas at one of the apexes it is given by

γapex =
2 sin2 2π

n − 1
2 sin2 2π

n

.

Invariance at either of the apexes is a consequence of Lemma 2. On the other hand, invariance
at one of the lateral vertices, that is one of the vertices of the planar polygon, now connected to
the two apexes as well as to its two polygonal neighbours, is far less obvious. The double cone
only has constant mean curvature when n = 4, in which case it corresponds to the octahedron.
However, we can remedy this by attaching another double cone along the axis of the two apexes as
illustrated below, where, for convenience, we draw the cone axis horizontally. In essence, we adjust
the length of the edge joining the double cones until the parameter γ coincides with its value at
one of the lateral vertices given by (4.1).

102



Curvature via the geometric spectrum

Such constant mean curvature frameworks are reminiscent of the period constant mean curvature
surfaces of Delaunay [8].

If we let x denote the distance along the axis at which we must attach the next cone in order
that the new value of γ at an apex coincides with the lateral value of γ, then x is determined by a
quadratic equation. In the case when n = 3, one solution is given by x = −

√
3 which is precisely the

distance between the two apexes, so we obtain the constant mean curvature framework illustrated
in the left-hand figure below, corresponding to the complete graph on 5 vertices. The value of γ
is given by 4/5.

More generally, one can embed the complete graph on N + 1 vertices in an invariant way in
RN−1 with γ constant equal to N/(N + 1). The case when N = 3, corresponding to an embedding
of the complete graph on 4 vertices in the plane, is illustrated in the right-hand figure above.
This example illustrates the need to allow equivalence classes of functions in our definition of the
geometric spectrum. Here, both ∆φ and (∇φ)2 vanish at the central vertex, so that γ is not
well-defined by equation (2.2) at this vertex. However, we can assign to it the value it takes at the
other vertices.

For n = 4 and n = 5, there are no real solutions for x (as we would expect for n = 4 since
the octahedron is already of constant mean curvature and the attachment of another cone would
destroy this). For n = 6, there is both a positive and negative root. If we take the negative
value and perform a twist and proceed similarly for successive cones, then we obtain interlaced
frameworks with quite complicated structure.

As a final construction, we can take a tiling of the plane, form double cones and stack layers
one upon the other to obtain an analogue of triply periodic constant mean curvatures [1]. Such a
tiling by dodecahedrons and triangles is illustrated below.
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In this case, we form double cones over each triangle. Since the edges which connect each
triangle (the edges of the dodecahedron) bisect the external angle, invariance is guaranteed. We
then have to adjust the height of successive layers in order to arrange for γ to be constant.

The frameworks so constructed do not form the 1-skeleton of a polytope whose underlying
topology is that of an immersed surface. We do not know if such examples exist other than the
regular polytopes.

5. Other curvatures

By analogy with the smooth case, we view the function γ as related to mean curvature, at least
when the framework is close to a smooth surface. But what about other curvatures? Various ideas
were proposed in the arXiv article [1] which we now outline.

Suppose we have a solution to equation (2.2) and a well-defined lifting to a configured star at
each vertex. For a given edge e = xy connecting vertices x and y, let θ(e) be the angle between the
axes of the configured stars over x and y, respectively. Then this is well-defined and independent
of the choice of representative solution under the equivalence (2.3). If we now let `(e) denote the
length of the edge xy as discussed at the end of Section 3, then the radius of the best-fit circle
to that edge is r(e) = `(e)/θ(e). The reciprocal k(e) := 1/r(e) = θ(e)/`(e) may be taken as an
analogue of normal curvature. This now depends on edge length and in particular on the choice
of representative solution to (2.2). We can now make an alternative definition of mean curvature
at a vertex x as the mean of the normal curvatures of edges incident with x. We do not know if
after scaling is taken into account, there is a way to relate this to the function γ.

In smooth Riemannian geometry, the sectional curvature of a plane spanned by two vectors is
the Gaussian curvature of a geodesic surface determined by the plane. In the discrete context, we
can therefore define the sectional curvature associated to two edges e and f incident with a vertex
x as Sec (e, f) := k(e)k(f).

Perhaps the most satisfying curvature in Riemannian geometry is the Ricci curvature which is
scale invariant. For a given unit vector X, Ric (X,X) is the sum

∑
j Sec (X,Yj) of the sectional

curvatures of planes spanned by X and a set of orthonormal vectors {Yj} perpendicular to X. On
a graph, for a given edge e = xy incident with a vertex x, we therefore define the Ricci curvature
by:

Ricx(e, e) :=
∑

z∼x,z 6=y
θ(xy)θ(xz) .

There seems to be no sensible way to define Ric (e, f) for distinct edges e and f incident with x. In
the smooth case, this is usually achieved by the polarization identity, but there is no way to define
the sum of two edges in the discrete context. Our definition of Ricci curvature is independent of the
choice of representative solution to (2.2) under the equivalence (2.3). However, it is conceivable
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that for a given γ there may be two distinct classes of solutions, so it is not clear if the Ricci
curvature depends only on γ.

Let us finally consider the Gaussian curvature. For a convex polyhedron in R3, the classical
theorem of Descartes affirms that the sum of the angular deficits at each vertex is equal to 4π [9].
By angular deficit δ(x) at a vertex x, we mean 2π minus the sum of the internal angles at x of the
faces which contain x. In our case, at each vertex, we have a lifting to a configured star, but we
do not a priori have any underlying polytope. Thus in order to define the Gaussian curvature in
terms of angular deficit, we require an ordering of the edges. One way to do this is to edge colour
the graph, as discussed in [1]. However, we only expect to obtain approximate global theorems
with our method for the following reason.

Suppose we have an invariant framework in R3 which projects to a solution of (2.2). When
we perform a lift at each vertex to try to recover the original framework, we lift to a configured
star, whereas the original star may not be configured. In essence, we sacrifice global lifting for
unicity of lifting (up to 2-valuedness). As an example, consider the invariant double cone on the
triangle discussed above. Now there is an underlying polytope and we can calculate angular deficit
at each vertex in the traditional way. By the theorem of Descartes, the total angular deficit is 4π.
However, let us calculate it by taking a lift to a configured star at each vertex as determined by
the corresponding solution to (2.2). In the original figure, the stars at the lateral vertices are not
configured, so an error will occur. We find:

δapex = 2π − 3 arccos 1
7 and δlat = 2π − 4 arccos 5

7 ,

to give a total curvature of

δtot = 3δlat + 2δapex = 10π − 6
(

arccos 1
7 + 2 arccos 5

7

)
∼ 4.244× π .
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Relaxations for Minimizing Metric Distortion and
Elastic Energies for 3D Shape Matching

Daniel Cremers, Emanuele Rodolà, and Thomas Windheuser

Abstract
We present two methods for non-rigid shape matching. Both methods formulate shape

matching as an energy minimization problem, where the energy measures distortion of the
metric defined on the shapes in one case, or directly describes the physical deformation relat-
ing the two shapes in the other case. The first method considers a parametrized relaxation of
the widely adopted quadratic assignment problem (QAP) formulation for minimum distor-
tion correspondence between deformable shapes. In order to control the accuracy/sparsity
trade-off a weighting parameter is introduced to combine two existing relaxations, namely
spectral and game-theoretic. This leads to an approach for deformable shape matching with
controllable sparsity. The second method focuses on computing a geometrically consistent
and spatially dense matching between two 3D shapes. Rather than mapping points to points
it matches infinitesimal surface patches while preserving the geometric structures. In this
spirit, matchings are considered as diffeomorphisms between the objects’ surfaces which are
by definition geometrically consistent. Based on the observation that such diffeomorphisms
can be represented as closed and continuous surfaces in the product space of the two shapes,
this leads to a minimal surface problem in this product space. The proposed discrete for-
mulation describes the search space with linear constraints. Computationally, the approach
results in a binary linear program whose relaxed version can be solved efficiently in a globally
optimal manner.

1. Introduction
An increasing number of digitized three-dimensional objects has become available over the last

years due to the technical progress in acquisition hardware like laser scanners or medical imaging
devices. Such objects originate from a variety of different domains including biology, medicine,
industrial design or computer animation. This rapid growth in stored data brings about the need
for reliable algorithms to organize this data. One of the cornerstone problems in this context is
the matching problem: In its most typical form, it concerns the problem of determining a map
f : X → Y among two given shapes in such a way that their geometrical properties are preserved by
the transformation. A particularly challenging instance of this problem occurs when the two shapes
undergo general non-rigid deformations. As such, matching of deformable shapes has attracted the
interest of researchers over the years and a wide variety of approaches have been proposed (see,
e.g. [3] and references therein for a recent comparison).

A prominent approach to the matching problem from a metric perspective was introduced in [17],
a concept that was explored further in [4] with the introduction of the GMDS framework, where
the minimum distortion isometric embedding of one surface onto another is explicitly sought. A
different view on the problem stems from the notion of uniformization space [14, 32]. Lipman and
Funkhouser [14] proposed to model deviations from isometry by a transportation distance between
corresponding points in a canonical domain (the complex plane); the result of this process is a

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
Key words. shape matching, metric spaces, elastic deformation.
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“fuzzy” correspondence matrix, whose values can be given the natural interpretation of confidence
levels attributed to each match. Fuzzy schemes are typically adopted to relax the point-to-point
mappings [18, 21]. Lipman and Daubechies [13] proposed to compare surfaces of genus zero
and open surfaces using optimal mass transport and conformal geometry. Computationally, this
amounts to solving a linear program in n2 variables where n is the number of vertices used in
the discretization of the surfaces. The problem with this approach is that no spatial regularity is
imposed on the matchings. In general, while methods based on uniformization theory are made
attractive by the low dimensionality of the embedding domain, they do not behave well with
different kinds of deformations (e.g., topological changes), and are subject to global inconsistencies
in the final mapping.

In this work, we consider two different approaches to deformable shape matching. The two
approaches share the common perspective of minimizing a distortion criterion, derived from the
metric information which the shapes to be matched are endowed with. In one case (Section 3),
following [23], we consider a notion of pairwise metric distortion that directly captures to what
extent two shapes can be isometrically put in correspondence. Motivated by the observation that
good correspondences often come at the price of high sparsity (in terms of number of matched
points), whereas large cardinality tends to bring distorted matches into the correspondence, we
attempt to control the accuracy/sparsity trade-off by introducing a weighting parameter on the
combination of two effective relaxations [12, 21], which we relate to their regularizer counterparts
from regression analysis. This leads us to the introduction of the elastic net penalty function [33]
into shape matching problems. Differently, our second approach [30] takes a physically motivated
view on the problem and minimizes a functional that encodes the physical deformation energy
[15, 31] necessary to deform one shape into the other. The formulation we give in Section 4 is
based on finding an optimal surface of codimension 2 in the product of the two shape surfaces. We
derive a consistent discretization of the continuous framework and show that the discrete minimal
surface problem amounts to a linear program. Compared to existing approaches, our construction
involves the boundary operator [27, 10, 25], and guarantees a geometrically consistent matching in
the sense that the surfaces are mapped into one another in a continuous and orientation preserving
manner.

2. Energy functionals for measuring the matching quality

In this section we discuss the matching energies that have been used to find correspondences
among shapes in [23] and [30] respectively.

2.1. Minimummetric distortion. Wemodel shapes as compact Riemannian manifolds endowed
with an intrinsic metric d. A point-to-point correspondence between two shapes X and Y is defined
as a subset C ⊂ X × Y satisfying: 1) for every x ∈ X, there exists at least one y ∈ Y such that
(x, y) ∈ C, and vice versa, 2) for every y ∈ Y , there exists x ∈ X such that (x, y) ∈ C. This
relation can be alternatively formulated as a binary function c : X × Y → {0, 1} satisfying the
mapping constraints

(2.1) max
x∈X

c(x, y) = max
y∈Y

c(x, y) = 1 ,

for every y ∈ Y and x ∈ X. According to this definition, clearly not all correspondences give rise
to meaningful matches among the two given shapes (consider, for instance, the full Cartesian
product given by c(x, y) = 1 for all (x, y) ∈ X ×Y ). A common requirement in this setting is that
the correspondence should represent a bijective mapping, or more typically an isometry between
the two surfaces. With this requirement in mind, in order to give a measure of quality to the
correspondence we evaluate the distortion induced by the mapping as measured on the two shapes
using the respective metrics dX and dY . In particular, given two matches (x, y), (x′, y′) ∈ C, the
absolute criterion

(2.2) ε(x, y, x′, y′) = |dX(x, x′)− dY (y, y′)|
directly quantifies to what extent the estimated correspondence deviates from isometry. Fol-
lowing [18, 21], we first relax the correspondence from a discrete to a fuzzy notion by letting
c : X × Y → [0, 1], effectively setting off the problem from its combinatorial nature and bringing
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it to a continuous optimization domain. Further, following a similar approach to the Gromov-
Wasserstein [18] family of metrics, we obtain a relaxed notion of proximity between shapes:

(2.3) D(X,Y ) = 1
2 min

C

∑

(x,y),(x′,y′)∈C
εp(x, y, x′, y′)c(x, y)c(x′, y′) .

Note from this definition that we don’t require the two shapes to have a measure defined over
them (differently from [18, 21]). Establishing a minimum distortion correspondence between the
two shapes amounts to finding a minimizer of the above distance. To this end, the problem can
be easily recast as a relaxed quadratic assignment problem (QAP) [16],

minC vec{C}TA vec{C}(2.4)
s.t. C1 = 1, CT1 = 1, C � 0 ,

where vec{C} is the |C|-dimensional column-stack vector representation of the correspondence
matrix C, A is a non-negative symmetric cost matrix containing the pairwise distortion terms
that appear in (2.3), 1 is a vector of n = |C| ones, and � denotes element-wise inequality. 1 We
emphasize that, although easier to solve, the relaxation provided above is still non-convex. Note
that in the standard QAP, function c is taken to be a binary correspondence and matrix C is thus
required to be a permutation matrix. The QAP is a NP-hard problem due to the combinatorial
complexity of this latter constraint.
2.2. Elastic deformation energies. A different approach to model a matching energy between
shapes is to restrict the class of deformations that transform one shape into another to the set of
diffeomorphisms. This gives us two benefits. First, the shapes do not get “cut” open during the
matching transformation. Second, we can assign to each diffeomorphism an elastic energy that
directly gives us a physical interpretation of the matching.

In the following, we assume that the two shapes X,Y ⊂ R3 are differentiable, oriented, closed
surfaces. Diffeomorphisms f : X → Y are bijections for which both f and f−1 are differentiable.
We formulate the shape matching problem as an optimization problem over the set of orientation
preserving diffeomorphisms between X and Y ,
(2.5) inff∈Diff+(X,Y )E(f) + E(f−1)

where E is a suitable energy on the class of all diffeomorphisms between surfaces and Diff+(X,Y )
is the set of orientation preserving diffeomorphisms between X and Y . Note that we choose a
symmetric problem formulation, penalizing at the same time deformation energy of X into Y and
of Y into X. This is necessary because usually E takes different values on f and on f−1.

The energy functional we use is borrowed from elasticity theory in physics [5], which interprets
the surfaces X and Y as “thin shells”. Now we try to find the deformation of X into Y which
requires the least stretching and bending energy. Such models usually consist of a membrane
energy Emem and a bending energy Ebend penalizing deformations in the first and in the second
fundamental forms of the surfaces. In this work we use the following formulation:

(2.6)
E(f) =

∫

X

(trgX
E)2 + µ trgX

(E2)
︸ ︷︷ ︸

Emem

+λ
∫

X

(HX(x)−HY (f(x))2

︸ ︷︷ ︸
Ebend

where E = f∗gY −gX is the difference between the metric tensors of X and Y , typically called the
Lagrange strain tensor, trgX

(E) is the norm of this tensor (see [8]), HX and HY denote the mean
curvatures and µ and λ are parameters which determine the elasticity and the bending property
of the material. This energy is a slightly simplified version of Koiter’s thin shell energy [11].

3. Minimum distortion correspondence via Elastic Net regularization

In this Section we present three different relaxations to the minimal metric distortion as formu-
lated in problem (2.4). The three approaches act by relaxing the mapping constraints imposed on
the correspondence function c(x, y). Even though originating from distinct motivations, the first
two methods share a convenient interpretation as partitioning problems in the space of potential
assignments. In Section 3.3 we provide a different view on the problem, as presented in [23, 22],
by using the language of regression analysis.
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3.1. Spectral matching. Taking the point of view of graph clustering, [12] proposed the simpli-
fied problem
(3.1) min

x
xTAx s.t.‖x‖22 = 1 ,

where x ≡ vec{C} ∈ Rn is the vector representation for the correspondence. Following Rayleigh’s
quotient theorem, this modified QAP is minimized by the eigenvector x? corresponding to the
minimum eigenvalue of A. Note that mapping constraints are not imposed in (3.1). The authors
follow a greedy algorithm to impose such constraints only after a solution has been obtained.
The method has a tendency to produce matches for each point. Nevertheless, symmetries and
structured noise in the data (indeed a characteristic of the non-rigid setting) may lead to unstable
eigenvectors [12] and thus unreliable assignments.

A useful interpretation to this approach can be given as a relaxed two-way partitioning prob-
lem [1]. Consider the set of constraints taking the form x2

i = 1 for i = 1 . . . n; these constraints
restrict the values of xi to ±1, so the problem is equivalent to finding the partitioning (as “match”
or “non-match”) on a set of n elements that minimizes the total cost xTAx. Here, the coefficients
Aij can be interpreted as the cost of having elements i and j in the same partition. Clearly, the
new constraints imply

∑n
i=1 x2

i = ‖x‖22 = n; since this actually allows the xi to take on any (small
enough) real number, optimizing over this feasible set will yield a lower bound on the optimal
value of the original partitioning problem.
3.2. Game-theoretic matching. Given the inherent difficulty to solve for a minimum distortion
correspondence under general deformations, we recently proposed to shift the focus to the search
of a group of matches having least distortion, regardless of its cardinality [21]. To achieve this, we
proposed to optimize over the probability simplex
(3.2) ‖x‖1 = 1TC1 = 1 , x � 0 .
In this formulation, the space of assignments is in a one-to-one correspondence with all possible
probability distributions of a random variable, realizing as x, modeling the concept of match. The
main benefits of adopting such L1-type constraint for the matching problem arise from its conve-
nient game-theoretical interpretation, leading to very efficient algorithms for (local) optimization
and, most remarkably, in allowing the mapping constraints to be embedded directly into the cost
matrix A. Unfortunately, the strong locality and selectivity demonstrated by the game-theoretic
approach is hardly desirable for matching problems.

Similarly to the L2 case, the game-theoretic approach can be regarded as an attempt to solve a
partitioning problem where the two partitions are represented by xi = 0 or 1 for i = 1 . . . n. This,
in turn, corresponds to imposing a bound on the “counting” norm ‖x‖0, which is relaxed here to
the continuous sparsity-inducing counterpart

∑n
i=1 |xi| = ‖x‖1 = n, with xi ≥ 0 for all i.

3.3. Matching with the Elastic Net. In practical settings, the performance of the framework
given in Section 2.1 directly depends on the definition of the metric distortion term ε. This is,
in fact, a property shared by any method attempting to minimize (2.4). Ovsjanikov et al. [20]
recently introduced the notion of shape condition number. According to this notion, the stability
of the matching can be characterized as an intrinsic property of the shape itself, and is related to
its intrinsic symmetries as well as the specific choice of a metric.

In order to incorporate a somewhat elusive notion of stability into the matching process, we
propose to change the point of view by drawing an analogy between the correspondence problem
and model-fitting. Our goal, in this context, is to determine a good approximation of the true
relationship between the two shapes: we seek to fit or approximate the optimal correspondence x?
as closely as possible, with deviation measured in the quadratic form xTAx. Problems of this kind
are often studied with the tools of regression analysis [1]. Here the interest shifts from finding a
best fit to analyzing the relationships among the several variables that build up the set of potential
assignments {xi}i=1...n. These candidate matches act as predictors for the minimum distortion
correspondence, and can be given the interpretation of explanatory variables which we observe,
while we seek to find the combination that best describes the data in the minimal distortion sense.
Since in general these variables hold a certain degree of correlation among them, it is of particular
interest to attempt to determine whole groups of highly correlated predictors, as they will likely
form consistent groups of matches in terms of the adopted measure of distortion.
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x1

x2

Figure 3.1: Contour plots of the L2 (circle), L1 (diamond), and elastic net (in
between) balls in R2. In this example we set α = 0.6. The strength of convexity
varies with α.

In this view, spectral matching can be directly related to ridge regression, whereas the game-
theoretic technique finds its equivalent in the lasso, the sparsity-inducing L1 regularizer performing
continuous shrinkage and automatic variable selection simultaneously [1, 33]; one major limitation
of the lasso is its tendency to select only one variable from a group of variables among which the
pairwise correlations are very high. In order to strike a balance between the two methods, we
adopt a family of constraints known as elastic net [33]. This regularization technique shares with
the lasso the ideal property of performing automatic variable selection, and most notably it is
able to select entire groups of highly correlated variables. The elastic net criterion is defined as a
convex combination of the lasso and ridge penalties:

(3.3) (1− α)‖x‖1 + α‖x‖22 , α ∈ [0, 1] .

This penalty function is singular at 0 and strictly convex for α > 0, thus possessing the character-
istics of both penalties (see Fig. 3.1). Strict convexity plays an important role as it guarantees the
grouping effect in the extreme situation with identical predictors (that is, whenever the distortion
between two matches is exactly 0), and provides a quantitative description of their degree of cor-
relation otherwise. Let x ∈ R|C| be the vector representation of some correspondence C ⊂ X × Y ,
we expect the elastic net-penalized solution to keep the difference |xi − xj | small whenever the
metric distortion ε(Ci, Cj) between the two matches is small. The trade-off between size of the
correspondence and matching error is regulated by the convexity parameter α, which allows to fine
tune the model complexity and balance the action of the penalty ranging from the highly selective
pure lasso for α = 0 to the more tolerant ridge behavior for α = 1. This leads to the following
family of relaxations for the QAP:

min
x

xTAx(3.4)

s.t. (1− α)‖x‖1 + α‖x‖22 = 1, x � 0 ,

with α ∈ [0, 1]. The family directly generalizes the spectral and game-theoretic techniques. Simi-
larly to the spectral approach, this formulation does not guarantee the final solution to represent
a bijective mapping, which can nevertheless be efficiently obtained a posteriori as in [12].

3.3.1. Optimization. We undertake a projected gradient approach [1] to determine a local optimum
for problem (3.4). The optimization process is governed by the equations

(3.5) x(t+1) = Πα

(
x(t) − γ(t)Ax(t)

)
,

where Ax = 1
2∇xTAx is a descent direction for the objective, γ > 0 is the step length taken in

that direction, and Πα : Rn → Rn is a projection operator taking a solution back onto the feasible
set. We initialize x(0) to the barycenter of the elastic net boundary, i.e., for all i = 1 . . . n we set
xi to the positive solution of the quadratic equation αnx2 + (1− α)nx− 1 = 0.

While efficient methods for projecting onto the L2 and L1 balls have been proposed in lit-
erature [26], projection onto their convex combination is a more involved task. Computing the
Euclidean projection Πα(x0) onto the (positive) elastic net ball boundary amounts to solving the
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Figure 3.2: Example of matchings obtained with the game-theoretic, elastic net
and spectral techniques respectively. See Section 3.3.2 for details.

following problem:
minx ‖x− x0‖22(3.6)
s.t. (1− α)1Tx + αxTx = t, x � 0 ,

with α ∈ [0, 1]. A detailed explanation of our approach on the computation of the unique minimum-
distance projection Πα in an efficient manner is given in [23]. Also note that, for practical purposes,
we adopt a more efficient alternative to the standard projected gradient descent (3.5), namely its
acceleration via vector extrapolation techniques [22].
3.3.2. Experimental results. We performed a wide range of experiments on the SHREC’10 standard
dataset [3], which includes shapes undergoing several different types of deformation, e.g. quasi-
isometric deformations, topological changes, displacement noise and changes in scale (we refer to
[23] for a detailed numerical breakdown). Differently from most existing methods, the approach
presented in this Section is quite general and not restricted to the quasi-isometric case. Indeed,
invariance to different kinds of deformations is induced by the proper choice of the metrics employed
in (2.2) (see [21] for an example). In order to make the computational task more tractable, only
a limited number of samples are considered from one shape, and then potential matches are built
with the 5 points from the other shape having similar curvature. Samples are generated via farthest
point sampling (FPS) [17, 18] using the extrinsic Euclidean metric, a technique allowing to cover
the whole surface in a sparse manner while retaining the metric information contained in the initial
shape as best as possible. Note that only one of the two shapes is subsampled, while we keep all
points in the other.

Fig. 3.2 presents an example in which the correct matches have a very small inlier ratio with
respect to the set of candidates. In this matching scenario, our method provides a means to
select only high-precision correspondences in a situation where there is huge ambiguity in most
correspondences. In this example, the set of potential assignments is constructed by taking ∼200
farthest points on one shape, and then building the whole Cartesian product with the correct
corresponding points from the other shape, after 45% of them have been moved to random positions
over the surface. This setup simulates a moderately challenging scenario in which only ∼50% of
the shape is matchable with low distortion, and the feasible set comprises all possible assignments
between the two shapes. The game-theoretic (L1) solution is highly selective and only assigns 3%
of the shape samples accurately (left image); in contrast, the spectral (L2) approach favors dense
solutions and yields matches for 93% of the points with large error (right image). Elastic net
matching (middle) allows to regulate the trade-off between size and distortion: the correspondence
is made more dense, and 53% of the points are matched while keeping the error small. Here we
set α = 0.85.

4. Minimizing the elastic energy via linear programming relaxation

In this section we will discuss the approach presented in [30] that tries to solve the elastic energy
problem
(4.1) inff∈Diff+(X,Y )E(f) + E(f−1)
already introduced in Section 2.2. The approach puts the focus on three aspects:

112



Minimizing Metric Distortion and Elastic Energies

(a1, b1)
(a2, b2)

(a3, b3)

b1

b3

b2

a1 a2
a3

X

Y X × Y

(a1, b1)
(a2, b1)

(a3, b3)

b1

b3
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Figure 4.1: The construction of product triangles that make up the discrete ver-
sion of the product space X × Y. Left image: The triangle (a1, a2, a3)T on
surface X is matched to triangle (b1, b2, b3)T on Y by assigning vertex ai to vertex
bi. This directly corresponds to the triangle with vertices (ai, bi) in the product
graph. Right image: The triangle (a1, a2, a3)T is matched to the edge (b1, b3)T ,
represented here as degenerate triangle (b1, b1, b3)T .

(1) Representation of the set of orientation-preserving diffeomorphisms Diff+(X,Y ),
(2) discretization of this set and the energy E, and
(3) optimization of the discrete version of the energy.

The main idea underlying our representation is to look at subsets of the product space X ×Y. We
will introduce constraints such that these subsets become graphs of diffeomorphisms. We will show
further how we can discretize the product space, the constraints and the energy. Interestingly, the
constraints and the energy are linear in the variables that span the discretized version of X × Y.
The resulting optimization problem is thus an integer linear program (ILP).

While we cannot find the global optimum of this optimization problem we can allow non-integer
solutions and transform the ILP into a linear program (LP). The global optimum of the linear
program can be computed in polynomial time and is a lower bound of the original optimization
problem.

4.1. Diffeomorphisms and their graph surfaces. Given an orientation preserving diffeomor-
phism f : X → Y we obtain a set Γ ⊂ X × Y in the Euclidean product of X and Y by passing to
the graph
(4.2) Γ = {(x, f(x)) | x ∈ X} ⊂ X × Y.
The set Γ comes with two natural projections πX : Γ → X, (x, f(x)) 7→ x and πY : Γ →
Y, (x, f(x)) 7→ f(x). A diffeomorphism is completely characterized by its graph:

Proposition 1 (graph surfaces). Let Γ be the graph of a diffeomorphism f : X → Y . Then
(i) Γ is a differentiable, connected, closed surface in the product space X × Y .
(ii) The projections πX and πY are both diffeomorphisms.
(iii) The two orientations which Γ naturally inherits from X and Y coincide.

Conversely, any subset Γ ⊂ X × Y which satisfies (i),(ii) and (iii) is the graph of an orientation-
preserving diffeomorphism between X and Y . We call such sets graph surfaces.

The energy E(f) can be expressed as
(4.3) E(f) = Ẽ(Γ)
where Ẽ(Γ) = E(πY ◦ (πX)−1) + E(πX ◦ (πY )−1).

The outcome of the above discussion is that the optimization problem (4.1) can be phrased as
an optimization problem over the set of subsets of X × Y , which then reads

(4.4)
inf Ẽ(Γ)
subject to Γ ⊂ X × Y is a graph surface

We remark that the idea of casting optimal diffeomorphism problems as minimal surface problems
has been applied previously in the theory of nonlinear elasticity [9]. In the setup of shape matching,
it is related to the approach that Tagare [28] proposed for the matching of 2D shapes. It was
reformulated as an orientation preserving diffeomorphism approach in [24].
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a3a4 a5
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Y X × Y

Figure 4.2: The discrete version of condition (i) includes the closeness condition
ensuring that neighboring triangles on X are matched with neighboring triangles
on Y . Left image (general case): The triangles (a1, a2, a3)T and (b1, b2, b3)T
are matched resulting in activating f2. The boundary condition ∂Γ = 0 ensures
that the matching continues with a correspondence whose triangles in X and
Y are positively incident to (a1, a3)T and (b1, b3)T respectively. This constraint
is satisfied for example by triangle f1 which is visualized here. Right image
(stretching): The stretching is achieved by matching triangle (a1, a2, a3)T to
edge (b3, b1)T . Again, the closeness condition is granted by the boundary operator
evaluated on the product edges ((a2, b1), (a3, b3))T and ((a3, b3), (a1, b1))T .

4.2. The discrete setting. We develop now a discrete counterpart of the notion of graph surfaces
in X×Y and the continuous elastic matching energy by assuming that the surfaces X,Y are given
as triangulated meshes.

4.2.1. Discrete surface patches. Let X = (VX , EX , FX) be a triangulated oriented surface mesh,
consisting of a set of vertices VX , of directed edges EX and of oriented triangles FX . A priori,
edges on X do not have a preferable orientation. Therefore, we fix an orientation for each edge on
X. Thus, whenever two vertices a1 and a2 of X are connected by an edge, either ( a1

a2 ) ∈ EX or
( a2
a1 ) = − ( a1

a2 ) ∈ EX . We extend the set of edges by degenerate edges EX = EX ∪{( aa ) | a ∈ VX}.
By assumption, the triangular faces of X are oriented. If the vertices a1, a2, a3 build an oriented
triangle on X, then

(
a1
a2
a3

)
=
(
a2
a3
a1

)
=
(
a3
a1
a2

)
∈ FX . Similarly, we extend the set of triangles by

degenerate triangles FX = FX ∪
{(

a1
a2
a2

) ∣∣ a1, a2 ∈ VX , ± ( a1
a2 ) ∈ EX

}
. Notice that degenerate

triangles can consist of only one or two vertices. The existence of these degenerate triangles will
allow stretching or compression of parts of the surface.

Next, we introduce product triangles for two triangular meshes X and Y . Define the product
of X and Y by the set of vertices V = VX × VY , the set of edges E = EX × EY and the set of
product triangles

(4.5) F :=








(a1, b1)
(a2, b2)
(a3, b3)




∣∣∣∣∣∣∣∣∣∣

f1 =
(
a1
a2
a3

)
∈ FX ,

f2 =
(
b1
b2
b3

)
∈ FY ,

f1 or f2 non-degenerate





We will call the triple (V,E, F ) the product graph as the discrete counterpart of the product space
X × Y. The product triangles in F are the basic pieces which are later glued to discrete graph
surfaces. For shape matching, a product triangle ((a1, b1), (a2, b2), (a3, b3)) ∈ F is interpreted as
setting vertex ai ∈ VX in correspondence with vertex bi ∈ VY (see Figure 4.1).

4.2.2. Discrete surfaces. Following Proposition 1 a diffeomorphism can be represented as a surface
Γ ⊂ X × Y satisfying conditions (i), (ii) and (iii). In this section we derive discrete versions of
these properties.

Definition 2. A discrete surface in X × Y is a subset Γ ⊂ F . The set of all discrete surfaces is
denoted by surf(X × Y ).

As we have seen above, a product triangle in F can be interpreted as matching a triangle onX to
a triangle on Y . Thus, the intuitive meaning of a discrete surface Γ ⊂ F is a set of correspondences
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between triangles on X and Y . Imposing the discrete counterparts of (i), (ii) and (iii) on such a
discrete surface will result in the discrete counterpart of a diffeomorphic matching.
Discrete version of (i): In the following we will find a condition which guarantees the continuity
of our matching. Recall that the boundary operator for triangle meshes [7] maps triangles to their
oriented boundary. We extend this definition to the product graph G.

As for the sets EX and EY we choose arbitrary orientations for each product edge e ∈ E. We
then define for two vertices v1, v2 ∈ V a vector O ( v1

v2 ) ∈ Z|E| whose e-th entry is given by

(4.6) O ( v1
v2 )e =





1 if e = ( v1
v2 )

−1 if e = ( v2
v1 )

0 else.

The triangles in F naturally inherit orientations from the triangles in FX and FY . This allows
us to define the boundary operator as follows.

Definition 3. The boundary operator ∂ : F → Z|E| is defined by

(4.7) ∂



a1, b1
a2, b2
a3, b3


 := O

(
a1, b1
a2, b2

)
+O

(
a2, b2
a3, b3

)
+O

(
a3, b3
a1, b1

)
,

where the ai ∈ VX and bi ∈ VY form triangles on X resp. on Y and
(
ai,bi

aj ,bj

)
is the product edge

connecting the product vertices (ai, bi) and (aj , bj). The boundary operator is linearly extended
to a map ∂ : surf(X × Y )→ Z|E|. A discrete surface Γ in X × Y is closed if ∂Γ = 0.

The closeness condition ensures that adjacent triangles onX are in correspondence with adjacent
triangles on Y and therefore guarantees a discrete notion of continuity (see Figure 4.2). The natural
discrete version of (i) is a closed, connected discrete surface in X × Y .
Discrete version of (ii): As in the continuous setting, we can project product triangles to the
surfaces X and Y by defining πX : F → Z|FX | as

(4.8) πX(f) :=
{
ea if a =

(
a1
a2
a3

)
is non-deg.

(0, . . . , 0) else

for each face f = ((a1, b1), (a2, b2), (a3, b3)) ∈ F . Here, ea is the vector with 1 in the a-entry and
0 in all other entries. We extend the projection linearly to πX : surf(X × Y )→ Z|FX |.

Let now Γ be a discrete surface in X×Y . Then we say that the projections of Γ to X and Y are
discrete diffeomorphisms if and only if πX(Γ) = (1, . . . , 1) ∈ Z|FX | and πY (Γ) = (1, . . . , 1) ∈ Z|FY |.
This gives a discrete version of (ii).

Note that in this definition we do not ask for injectivity on the vertices set. This is necessary
for modelling discretely strong compressions. However, they ensure a global bijectivity property
which is sufficient in our context.
Discrete version of (iii): By definition, the set of surfaces in X × Y only contains surface patches
which are consistently oriented. Therefore any surface in surf(X × Y ) satisfies condition (iii).

4.2.3. Discrete surface energy. Now we introduce a discrete energy on the set of product triangles
in X ×Y . For the membrane energy in (2.6) we adopt the term proposed by Delingette [6]. Given
two triangles T1, T2 ⊂ R3, Delingette computes the stretch energy Emem(T1 → T2) necessary for
deforming T1 in T2. In our framework we make the energy symmetric by associating with each
product triangle (a, b) ∈ F the membrane cost Emem(a, b) := Emem(a → b) + Emem(b → a).
For the bending term we proceed similarly associating with each product triangle (a, b) the cost
Ebend(a, b) =

∫
a
(HX−HY )2+

∫
b
(HY −HX)2. In practice we discretize the mean curvature following

[19].
Next, we extend the energy linearly from discrete surface patches to discrete surfaces in X ×Y .

Identify a discrete surface with its indicator vector Γ ∈ {0, 1}|F |, and define the vector E ∈ R|F |
whose f -th entry is Ef = Emem(f)+Ebend(f). Then the discrete energy of Γ is given by the vector
product ETΓ.
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Figure 4.3: Matchings between 3D shapes obtained by minimizing the relaxation
of energy (4.9). Since the energy can express elastic deformations such as stretch-
ing and shrinking the proposed method can find transformations that are highly
non-rigid and non-isometric. The 3D shape data is from Vlasic et al. [29] (left)
and the SHREC 2011 benchmark [2] (right).

4.2.4. Optimizing the discrete energy. The notion of discrete graph surfaces and the discrete sur-
face energy introduced in Sections 4.2.2 and 4.2.3 can be combined with the discrete version of
optimization problem (4.4) in the form of a binary linear program:

(4.9)
min

Γ∈{0,1}|F |
ETΓ

subject to
(

∂
πX
πY

)
Γ =

( 0
1
1

)
.

Similarly to what we did in (2.3), in order to solve (4.9) we relax the binary constraints to Γ ∈
[0, 1]|F |. For this relaxed version the global optimum can be computed in polynomial time. Since
the constraint matrix of the relaxed problem is not totally unimodular, we are not guaranteed
an integral solution. A simple thresholding scheme would destroy the geometric consistency of
the solution. Therefore, for obtaining an integral solution we successively fix the variable with
maximum value to 1. Typical matching results are shown in Figure 4.3. For a more detailed
experimental evaluation we refer to [30].

5. Conclusions

In this paper we discussed two approaches to non-rigid shape matching by optimizing a distortion
criterion. While for both approaches the distortion criterion is based on information derived
from the metric of the shape, it is possible to express quite different notions of similarity, i.e. a
geometrical Gromov-Wasserstein distance and a physical thin-shell energy. By following different
algorithmic strategies for both notions of similarity, we showed that it is possible to find good
matchings minimizing the distortion energies between the shapes.
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Metric Ricci Curvature and Flow for PL Manifolds
Emil Saucan

Abstract
We summarize here the main ideas and results of our papers [28], [14], as presented

at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an
application of one of our main results, namely to solving a problem regarding cube complexes.

1. Introduction

While curvature itself represents a classical notion going back at least to Newton, it was tradi-
tionally restricted to the firmly established context of smooth (at least twice differentiable) curves
and surfaces. It was however only natural that in the great furore of modernizing Mathematics,
that enveloped the mathematical community in the first half of the XXth Century would include
soon a drive of extending the notion of curvature to (quite) general metric spaces. This tendency
came to fruit mainly in the works of Menger [22], Wald [35], [36] and Haantjes [16], [17]. While
quickly falling into the desuetude (with very few, but notable exceptions, e.g. [20]), even if efforts
[6], [7] were made in correctly re-ascertaining their importance and maintaining their influence, so
to say, in other fields, a revival stated only towards the end of the previous century and metric
curvatures began to reassume their rightful place in Geometry. This is particularly true as far as
Menger’s curvature is concerned – it has by now become a rather standard and successful tool
in Analysis [24], [21], [31] (but not only - see, for instance [12]). In contrast, Haantjes curvature
has received in recent literature far lesser attention, with a very few – but notable – exceptions,
e.g. [1], where actualized, more elaborate versions of both Menger and Haantjes curvature are
discussed in a contemporary framework. On the other hand, Haantjes curvature seems singularly
well adapted for a multitude of applicative tasks – see [29], [30], [2], [28] (and perhaps even to ap-
plications in such fields as Geometric Group Theory). However, the best candidate for a successful
incorporation of the metric metric approach to curvature into the main corpus of contemporary
Mathematics, from Differential Geometry to Group Theory, is Wald curvature. Indeed, it turns
out that Wald and Alexandrov (comparison) notion of curvature are essentially equivalent (at least
for wide range of even mildly-well behaved spaces – see [25] (and also [6]). We tried to emphasize
this equivalence and exploit it two our own specific goals in both papers we are summarizing here
(and we shall further develop this theme in the the forthcoming lecture notes meant to accompany
these proceedings and fully summarize the Colloquium.

2. Wald Metric Curvature – A Brief Overview

Wald’s approach to the definition of a viable definition of curvature on (quite general) metric
spaces was to mimic Gauss’ original definition of (total) curvature. However, instead of making
appeal to the comparison of infinitesimal areas (which would be unattainable in general metric
space not endowed with a measure), he compared quadrangles. Moreover, instead in restricting
himself solely to one comparison surface (namely the unit sphere Sn), he considered the whole
gamut of possible gauge surfaces, namely the surfaces Sκ, where Sκ denotes the complete, simply

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 51K10, 53C44, 53C21, 65D18, 20F67.
Key words. Wald-Berestovskii curvature, PL manifold, Ricci curvature, surface Ricci flow, Bonnet-Myers Theorem.
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connected surface of constant Gauss curvature κ, i.e. Sκ ≡ R2, if κ = 0; Sκ ≡ S2√
κ
, if κ > 0; and

Sκ ≡ H2√−κ , if κ < 0. Here Sκ ≡ S2√
κ
denotes the sphere of radius R = 1/

√
κ, and Sκ ≡ H2√−κ

stands for the hyperbolic plane of curvature
√−κ, as represented by the Poincaré model of the

plane disk of radius R = 1/
√−κ . We will make this clear in the following sequence of definitions:

Definition 1. Let (M,d) be a metric space, and let Q = {p1, ..., p4} ⊂ M , together with the
mutual distances: dij = dji = d(pi, pj); 1 ≤ i, j ≤ 4. The set Q together with the set of distances
{dij}1≤i,j≤4 is called a metric quadruple.
Definition 2. The embedding curvature κ(Q) of the metric quadruple Q is defined to be the
curvature κ of the gauge surface Sκ into which Q can be isometrically embedded. (See Figure 1.)
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Figure 2.1: Isometric embedding of a metric quadruple in a gauge surface: S2√
κ

(left) and H2√
κ
(right) .

We are now able to bring the definition of Wald curvature [35],[36] (or, more precisely, a slight
modification of it due to Berestovskii [4]):
Definition 3. Let (X, d) be a metric space. An open set U ⊂ X is called a region of curvature
≥ κ iff any metric quadruple can be isometrically embedded in Sm, for some m ≥ κ.1

Remark 4. Evidently, in the context of polyhedral surfaces, the natural choice for the set U
required in Definition 3 is the star of a given vertex v, that is, the set {evj

}j of edges incident to
v. Therefore, for such surfaces, the set of metric quadruples containing the vertex v is finite.

Equipped with this quite simple and intuitive choice for U (and in in analogy with Alexandrov
spaces – see also [14]) it is quite natural to consider, for PL surfaces, the following definition of
the Wald curvature K(v) at the vertex v:

KW (v) = min
vi,vj ,vk∈Lk(v)

Kijk
W (v) ,

where Kijk
W (v) = κ(v; vi, vj , vk), and where Lk(v) denotes the link of the vertex v – see Footnote 2

below.
Here we consider the (intrinsic) PL distance between vertices.

1While this fact is not needed in the remainder of the paper, we mention for the sake of completeness, that a
metric space (X, d) is said to have Wald-Berestovskii curvature ≥ κ iff any x ∈ X is contained in a region U of
curvature ≥ κ.
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The definition of the Wald-Berestovskii curvature at an accumulation point of a metric space,
hence on a smooth surface, follows naturally by considering limits of the curvatures of (nondegen-
erate) regions of diameter converging to 0. Moreover, the following important and “reassuring”
result holds:

Theorem 5 (Wald [36]). Let S ⊂ R3, S ∈ Cm, m ≥ 2 be a smooth surface. Then, given p ∈ S,
κW (p) exists and κW (p) = K(p), where K(p) denotes the Gaussian curvature at p.

A further fact that makes Wald curvature attractive for Discrete Differential Geometry appli-
cations is the existence of a concrete (albeit somewhat impractical) computation formula:

Given a metric quadruple Q,

(2.1) κ(Q) =





0 if Γ(Q) = 0 ;
κ, κ < 0 if det(cosh

√−κ · dij) = 0 ;
κ, κ > 0 if det(cos

√
κ · dij) and

√
κ · dij ≤ π

and all the principal minors of order 3 are ≥ 0;

where dij = d(pi, pj), 1 ≤ i, j ≤ 4, and Γ(Q) = Γ(p1, . . . , p4) denotes the Cayley-Menger determi-
nant:

(2.2) Γ(p0, . . . , p3) =

∣∣∣∣∣∣∣∣∣

0 d2
01 · · · d2

13
d2

10 0 · · · d2
13

...
... . . . ...

d2
30 d2

31 · · · 0

∣∣∣∣∣∣∣∣∣
.

3. Metric Ricci Flow for PL Surfaces

Our approach to this problem is to pass from the discrete context to the smooth one and explore
the already classical results known in this setting, by applying Theorem 5. To this end we have
first to make a few observations: One can pass from the PL surfaces to smooth ones by employing
smoothings, defined in the precise sense of PL differential Topology (see [23]). Since, by [23],
Theorem 4.8, such smoothings are δ-approximations, and therefore, for δ small enough, also α-
approximations of the given piecewise-linear surface S2

Pol , they approximate arbitrarily well both
distances and angles on S2

Pol . (Due to space restrictions, we do not bring here these technical
definitions, but rather refer the reader to [23].) It should be noted that, while Munkres’ results
concern PL manifolds, they can be applied to polyhedral ones as well, because, by definition,
polyhedral manifolds have simplicial subdivisions (and furthermore, such that all vertex links2 are
combinatorial manifolds). Of course, for different subdivisions, one may obtain different polyhedral
metrics. However, by the Hauptvermutung Theorem in dimension 2 (and, indeed, for smooth
triangulations of diffeomorphic manifolds in any dimension, see e.g. [23] and the references therein),
any two subdivisions of the same space will be combinatorially equivalent, hence they will give rise
to the same polyhedral metric. It follows from the observations above that metric quadruples on
SPol are also arbitrarily well approximated (including their angles) by the corresponding metric
quadruples) on Sm. But, by Theorem 5, KW,m(p) – the Wald metric curvature of Sm, at a point p
– equals the classical (Gauss) curvature K(p). Hence the Gauss curvature of the smooth surfaces
Sm approximates arbitrarily well the metric one of SPL (and, as in [8], the smooth surfaces differ
from polyhedral one only on (say) the 1

m -neighbourhood of the 1-skeleton of SPol). Moreover, this
statement can be made even more precise, by assuring that the convergence is in the Hausdorff
metric. This follows from results of Gromov (see e.g. [30] for details).

We can now introduce the metric Ricci flow: By analogy with the classical flow

(3.1) dgij(t)
dt

= −2K(t)gij(t) .

2Recall that the link lk(v) of a vertex v is the set of all the faces of St(v) that are not incident to v. Here St(v)
denotes the closed star of v, i.e. the smallest subcomplex (of the given simplicial complex K) that contains St(v),
namely St(v) = {σ ∈ St(v)}∪{θ | θ 6 σ}, where St(v) denotes the star of v, that is the set of all simplices that have
v as a face, i.e St(v) = {σ ∈ K | v 6 σ}.
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we define the metric Ricci flow by

(3.2) dlij
dt

= −2Kilij ,

where lij = lij(t) denote the edges (1-simplices) of the triangulation (PL or piecewise flat surface)
incident to the vertex vi = vi(t), and Ki = Ki(t) denotes the Wald curvature at the same vertex.

Moreover, we also consider the close relative of (3.1), the normalized flow

(3.3) dgij(t)
dt

= (K −K(t))gij(t) ,

and its metric counterpart

(3.4) dlij
dt

= (K̄ −Ki)lij ,

where K, K̄ denote the average classical, respectively Wald, sectional (Gauss) curvature of the
initial surface S0: K =

∫
S0
K(t)dA

/ ∫
S0
dA, and K̄ = 1

|V |
∑|V |
i=1 Ki, respectively. (Here |V | denotes,

as usually, the cardinality of the vertex set of SPol.)
Before continuing further on, it is important to remark the asymmetry in equation 3.2, that is

caused by the fact that the curvature on two different vertices acts, so to say, on the same edge.
However, passing to the smooth case, is that the asymmetry in the metric flow that we observed
above disappears automatically via the smoothing process. (For further details see [28].)

3.1. An Approximation Result. The first result that we can bring is a metric curvature version
of classical result of Brehm and Kühnel [8] (where the combinatorial/defect definition of curvature
for polyhedral surfaces is used).
Proposition 6. Let S2

Pol be a compact polyhedral surface without boundary. Then there exists a
sequence {S2

m}m∈N of smooth surfaces, (homeomorphic to S2
Pol), such that

(1) (a) S2
m = S2

Pol outside the 1
m -neighbourhood of the 1-skeleton of S2

Pol,
(b) The sequence {S2

m}m∈N converges to S2
Pol in the Hausdorff metric;

(2) K(S2
m)→ KW (S2

Pol), where the convergence is in the weak sense.
Remark 7. As we have already noted above, the converse implication – namely that Gaussian
curvatureK(Σ) of a smooth surface Σ may be approximated arbitrarily well by the Wald curvatures
KW (ΣPol,m) of a sequence of approximating polyhedral surfaces ΣPol,m – is quite classical.

For a more in-depth discussion and analysis of the convergence rate in the proposition above,
see [28].

3.2. Main Results. As already stressed, the “good”, i.e. metric and curvature, approximations
results quoted, imply that one can study the properties of the metric Ricci flow via those of
its classical counterpart, by passing to a smoothing of the polyhedral surface. The use of the
machinery of metric curvature considered has the benefit that, by using it, the “duality” between
the combinatorics of the packings (and angles) and the metric disappears: The flow becomes purely
metric and, moreover, the curvature at each stage (i.e. for every “t”) is given – as in the smooth
setting – in an intrinsic manner, that is in terms of the metric alone.

We bring here a number of important properties that follow immediately using this approach.

3.2.1. Existence and Uniqueness. The main result that we can state here (and, in fact, in this
section) is
Proposition 8. Let (S2

Pol, gPol) be a compact polyhedral 2-manifold without boundary, having
bounded metric curvature. Then there exists T > 0 and a smooth family of polyhedral metrics
g(t), t ∈ [0, T ], such that

(3.5)
{

∂g
∂t = −2KW (t)g(t) t ∈ [0, T ] ;
g(0) = gPol .

(Here KW (t) denotes the Wald curvature induced by the metric g(t).)
Moreover, both the forwards and the backwards (when existing) Ricci flows have the uniqueness

of solutions property, that is, if g1(t), g2(t) are two Ricci flows on S2
Pol, such that there exists

t0 ∈ [0, T ] such that g1(t0) = g2(t0), then g1(t) = g2(t), for all t ∈ [0, T ].
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Beyond the theoretical importance, the existence and uniqueness of the backward flow would
allow us to find surfaces in the conformal class of a given circle packing (Euclidean or Hyperbolic).
More importantly, the use of purely metric, Wald curvature based, approach adopted, rather
than the combinatorial (and metric) approach of [11], allows us to give a preliminary and purely
theoretical at this point, answer to Question 2, p. 123, of [11], namely whether there exists a Ricci
flow defined on the space of all piecewise constant curvature metrics (obtained via the assignment
of lengths to a given triangulation of 2-manifold). Since, by the results of Hamilton [16] and Chow
[10], the Ricci flow exists for all compact surfaces, it follows that the fitting metric flow exists for
surfaces of piecewise constant curvature. In consequence, given a surface of piecewise constant
curvature (e.g. a mesh with edge lengths satisfying the triangle inequality for each triangle), one
can evolve it by the Ricci flow, either forward, as in the works discussed above, to obtain, after the
suitable area normalization, the polyhedral surface of constant curvature conformally equivalent
to it; or backwards (if possible) to find the “primitive” family of surfaces – including the “original”
surface obtained via the backwards Ricci flow, at time T – conformally equivalent to the given
one.

3.2.2. Convergence Rate. A further type of result, quite important both from the theoretical view-
point and for computer-driven applications, is that of the convergence rate (see [15], [14] for the
precise definition).

Since we already know that the solution exists and it is unique (see also the subsection below
for the nonformation of singularities), by appealing to the classical results of [16] and [10], we can
control the convergence rate of the curvature, as follows:

Theorem 9. Let (S2
Pol, gPol) be a compact polyhedral 2-manifold without boundary. Then the

normalized metric Ricci flow converges to a surface of constant metric curvature. Moreover, the
convergence rate is

(1) exponential, if K̄ = K̄W < 0 (i.e. χ(S2
Pol) < 0) ;

(2) uniform; if K̄ = 0 (i.e. χ(S2
Pol) = 0);

(3) exponential, if K̄ > 0 (i.e. χ(S2
Pol) > 0).

3.2.3. Singularities Formation. Another very important aspect of the Ricci flow, both smooth or
discrete, is that of singularities formation. Again, a certain (theoretical, at least) advantage of
the proposed method presents itself. Indeed, by [11], Theorem 5.1, for compact surfaces of genus
≥ 2, the combinatorial Ricci flow evolves without singularities. However, for surfaces of low genus
no such result exists. Indeed, in the case of the Euclidean background metric, that is the one
of greatest interest in graphics, singularities do appear. Moreover, such singularities are always
combinatorial in nature and amount to the fact that, at some t, the edges of at least one triangle do
not satisfy the triangle inequality. These singularities are removed in heuristic manner. However,
by [16], Theorem 1.1, the smooth Ricci flow exists at all times, i.e. no singularities form. From
the considerations above, it follows that the metric Ricci flow also exists at all times without the
formation of singularities.

3.2.4. Embeddability in R3. The importance of the embeddability of the flow is not merely the-
oretical (e.g. if one considers the problem of the Ricci flow for surfaces of piecewise constant
curvature), as it is essential in Imaging (see [3]), and of high importance in Graphics. Indeed, even
our very capability of seeing (grayscale) images is nothing but a translation, in the field of vision,
of the embeddability of the associated height-surface into R3. (Or, perhaps one should view the
mathematical aspect as a formalization of a physical/biological phenomenon...) We should note
here that in this respect there exists a certain (mainly theoretical, at this point in time) advantage
of our proposed metric flow over the combinatorial Ricci flow [15], [19]. Indeed, in the combina-
torial flow, the goal is to produce, via the circle packing metric, a conformal mapping from the
given surface to a surface of constant (Gauss) curvature. Since in the relevant cases (see [11]) the
surface in question is a planar region (usually a subset of the unit disk), its embeddability (not
necessarily isometric) is trivial. Moreover, in the above mentioned works, there is no interest (and
indeed, no need) to consider the (isometric) embeddability of the surfaces S2

t (see below) for an
intermediate time t 6= 0, T .
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The tool that allows us to obtain this type of results is making appeal (again) to δ-approximations,
in combination with classical results in embedding theory. Indeed, by [23], Theorem 8.8 a δ-
approximation of an embedding is also an embedding, for small enough δ. Since, as we have al-
ready mentioned, smoothing represent δ-approximations, the possibility of using results regarding
smooth surfaces to infer results regarding polyhedral embeddings is proven. (The other direction
– namely from smooth to PL and polyhedral manifolds – follows from the fact that the secant
approximation is a δ-approximation if the simplices of the PL approximation satisfy a certain
nondegeneracy condition – see [23], Lemma 9.3.) We state here the relevant facts:

Let S2
0 be a smooth surface of positive Gauss curvature, and let S2

t denote the surface obtained
at time t from S2

0 via the Ricci flow. (For all omitted background material – proofs, further results,
etc. – we refer to [18].)

Proposition 10. Let S2
0 be the unit sphere S2, equipped with a smooth metric g, such that χ(S2

0) >
0. Then the surfaces S2

t are (uniquely, up to a congruence) isometrically embeddable in R3, for
any t ≥ 0.

In fact, this results can be slightly strengthened as follows:

Corollary 11. Let S2
0 be a compact smooth surface. If χ(S2

0) > 0, then there exists some t0 ≥ 0,
such that the surfaces S2

t are isometrically embeddable in R3, for any t ≥ t0.
In stark contrast with this positive result regarding surfaces uniformized by the sphere, for

(complete) surfaces uniformized by the hyperbolic plane we only have the following negative result:

Proposition 12. Let (S2
0 , g0) be a complete smooth surface, and consider the normalized Ricci flow

on it. If χ(S2
0) < 0, then there exists some t0 ≥ 0, such that the surfaces S2

t are not isometrically
embeddable in R3, for any t ≥ t0.

4. Metric Ricci Curvature for PL Manifolds

We propose a definition of a metric Ricci curvature for PL manifolds in dimension higher than 2,
that does not appeals to smoothings, as in the previous section.

4.1. The Definition. While the results in the preceding sections might be encouraging, one would
still like to recover in the metric setting a “full” Ricci curvature, namely one that holds for 3 and
higher dimensional manifolds, and not just in the degenerate case of surfaces. Our approach (as
developed in [14]) is to start from the following classical formula:

(4.1) Ric(e1) = Ric(e1, e1) =
n∑

i=2
K(e1, ei) .

for any orthonormal basis {e1, · · · , en}, and where K(e1, ej) denotes the sectional curvature of the
2-sections containing the directions e1.

To adapt this expression for the Ricci curvature to the PL case, we first have to be able to define
(variational) Jacobi fields. In this we heavily rely upon Stones’s work [32], [33]. Note, however,
that we do not need the full strength of Stone’s technical apparatus, only the capability determine
the relevant two sections and, of course, to decide what a direction at a vertex of a PL manifold
is.

We start from noting that, in Stone’s work, combinatorial Ricci curvature is defined both for
the given simplicial complex T , and for its dual complex T ∗. For the dual complex, cells – playing
here the role of the planes in the classical setting of which sectional curvatures are to be averaged
– are considered. Unfortunately, Stone’s approach for the given complex, where one computes the
Ricci curvature Ric(σ, τ1 − τ2) of an n-simplex σ in the direction of two adjacent (n − 1)-faces,
τ1, τ2, is not natural in a geometric context (even if useful in his purely combinatorial one), except
for the 2-dimensional case, where it coincides with the notion of Ricci curvature in a direction.
However, passing to the dual complex will not restrict us, since (T ∗)∗ = T and, moreover – and
more importantly – considering thick triangulations enables us to compute the more natural metric
curvature for the dual complex and use the fact that the dual of a thick triangulation is thick (for
details, see [14]). Recall that thick (also called fat) triangulations are defined as follows:
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Definition 13. Let τ ⊂ Rn ; 0 ≤ k ≤ n be a k-dimensional simplex. The thickness (or fatness) ϕ
of τ is defined as being:

(4.2) ϕ(τ) = dist(b, ∂σ)
diam σ

,

where b denotes the barycenter of σ and ∂σ represents the standard notation for the boundary of
σ (i.e the union of the (n− 1)-dimensional faces of σ). A simplex τ is ϕ0-thick, for some ϕ0 > 0,
if ϕ(τ) ≥ ϕ0. A triangulation (of a submanifold of Rn) T = {σi}i∈I is ϕ0-thick if all its simplices
are ϕ0-thick. A triangulation T = {σi}i∈I is thick if there exists ϕ0 ≥ 0 such that all its simplices
are ϕ0-thick.

Keeping in mind the notions and facts above, we can now return to the definition of Ricci
curvature for simplicial complexes: Given a vertex v0 in the dual complex, corresponding to a
n-dimensional simplicial complex, a direction at v0 is just an oriented edge e1 = v0v1. Since there
exist precisely n 2-cells, c1, . . . , cn , having e1 as an edge and, moreover, these cells form part of n
relevant variational (Jacobi) fields (see [32]), the Ricci curvature at the vertex v, in the direction
e1 is simply

(4.3) Ric(v) =
n∑

i=1
K(ci) ,

where we define the sectional curvature of a cell c in the following manner:

Definition 14. Let c be a cell with vertex set Vc = {v1, . . . , vp}. The embedding curvature K(c)
of c is defined as:
(4.4) K(c) = min

{i,j,k,l}⊆{1,...,p}
κ(vi, vj , vk, vl) .

Remark 15. Note that by choosing to work with the dual complex we have restricted ourselves
largely to considering solely submanifolds of RN , for some N sufficiently large. However, in the
case of 2-dimensional PL manifolds this does nor represent restriction, since, by a result of Burago
and Zalgaller [9] (see also [27]) such manifolds admit isometric embeddings in R3, embeddings
that, furthermore, are unique (up to isometries of the ambient space, of course).

Remark 16. Evidently, the definition above presumes that cells in the dual complex have at least
4 vertices. However, except for some utterly degenerate (planar) cases, this condition always holds.
Still, even in this case Ricci curvature can be computed using a slightly different approach – see
the following remark.

Remark 17. It is still possible (by dualization) to compute Ricci curvature according, more or
less, to Stone’s ideas, at least for the 2-dimensional case. Indeed, according to [33],

(4.5) Ric(σ, τ1 − τ2) = 8n−
2n−1∑

j=1
{|βj | | βj < τ1 or βj < τ2; dim βj = n− 2} .

For details and implications of this alternative approach, see [14].

4.2. Main Results. The first results one wants to ascertain are those ensuring the convergence
of the newly defined Ricci curvature. These are quite straightforward, so here we content ourselves
with simply stating them (for further details, see [14]).

Theorem 18. Let T be a thick simplicial complex, and let T ∗ denote his dual. Then
(4.6) lim

mesh(T )→0
Ric(σ) = lim

mesh(T ∗)→0
C · Ric∗(σ∗) ,

where σ ∈ T and where σ∗ ∈ T ∗ is (as suggested by the notation) the dual of σ.

Theorem 19. Let Mn be a (smooth) Riemannian manifold and let T be a thick triangulation of
Mn. Then
(4.7) RicT → C1 · RicMn , as mesh(T )→ 0 ,
where the convergence is the weak convergence (of measures).
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Beyond these convergence and approximations results, one would like to address deeper issues.
Indeed, having introduced a metric Ricci curvature for PL manifolds, one naturally wishes to
verify that this represents a proper notion of Ricci curvature, and not just an approximation of the
classical notion. According to the synthetic approach to Differential Geometry, a proper notion of
Ricci curvature should satisfy adapted versions of the main, essential theorems that hold for the
classical notions. The first and foremost among such theorems is Bonnet-Myers’ Theorem and,
as expected, fitting versions for combinatorial cell complexes and weighted cell complexes were
proven by Stone [32], [33], [34].

In [14] we proved a series of increasingly more general variants of the Bonnet-Myers Theorem,
with proofs adapted to the various settings and/or notions of curvature (metric, combinatorial,
Alexandrov comparison). Here we bring only two more representative ones.
Theorem 20 (PL Bonnet-Myers – metric). LetMn

PL be a complete, n-dimensional PL, smoothable
manifold without boundary, such that

(i) There exists d0 > 0, such that mesh(Mn
PL) ≤ d0;

(ii) KW (Mn
PL) ≥ K0 > 0 ,

where KW (Mn
PL) denotes the sectional curvature of the “combinatorial 2-sections”.

Then Mn
PL is compact and, moreover

(4.8) diam(Mn
PL) ≤ π√

K0
.

Unfortunately, determining whether a general PL complex has Wald curvature bounded from
below can be, in practice, a daunting task. However, in the special case of thick complexes in RN ,
for some N one can determine a simple criterion as follows:
Theorem 21 (PL Bonnet-Myers – Thick Complexes). Let M = Mn

PL be a complete, connected
PL manifold thickly embedded in some RN , such that KW (M2) ≥ K0 > 0, where M2 denotes the
2-skeleton of M . Then Mn

PL is compact and, moreover

(4.9) diam(M2
PL) ≤ π√

K0
.

4.3. Scalar Curvature and a Comparison Theorem. Up to this point we were concerned
solely with Ricci curvature (as the very title stresses). However, since Ricci curvature is the mean
of sectional curvatures we had to consider them too (and, in fact, even more so in view of our
definition of Ricci curvature for PL complexes). We did not discuss, however, scalar curvature.
It is only fitting, therefore, for us to add a number of observation regarding this invariant, in
particular since a significant result is very easy to formulate and prove.

Of course, we first have to define the scalar curvature KW (M) of a PL manifold M . In light of
our preceding discussion and results, the following definition is quite natural:
Definition 22. Let M = Mn

PL be an n-dimensional PL manifold (without boundary). The scalar
metric curvature scalW of M is defined as
(4.10) scalW (v) =

∑

c

KW (c),

the sum being taken over all the cells of M∗ incident to the vertex v of M∗.
Remark 23. Observe that the definition of scalar curvature of M is defined, somewhat coun-
terintuitively, by passing to its dual M∗. However, this is consistent with our approach to Ricci
curvature (and also similar to Stone’s original approach – see the discussion in 4.1 above).

From this definition and our previous results (see [14]), we immediately3 obtain, the following
generalization of the classical curvature bounds comparison in Riemannian geometry:
Theorem 24 (Comparison theorem). Let M = Mn

PL be an n-dimensional PL manifold (without
boundary), such that KW (M) ≥ K0 > 0, i.e. K(c) ≥ K0, for any 2-cell of the dual manifold (cell
complex) M∗. Then
(4.11) KW S K0 ⇒ RicW S nK0 .

3and, in truth rather trivially, since the result holds, regardless of the specific definition for the curvature of a
cell.
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Moreover
(4.12) KW S K0 ⇒ scalW S n(n+ 1)K0 .

Remark 25.

(1) Inequality (4.12) can be formulated in the seemingly weaker form:

(4.13) RicW S nK0 ⇒ scalW S n(n+ 1)K0 .

(2) Note that in all the inequalities above, the dimension n appears, rather then n − 1 as in
the smooth, Riemannian case (hence, for instance one has in (4.12), n(n+1)K0, instead of
n(n−1)K0

4 as in the classical case). This is due to our definition (4.3) of Ricci (and scalar)
curvature, via the dual complex of the given triangulation, hence imposing standard and
simple combinatorics, at the price of allowing only for such weaker bounds.5

5. An Application: Smoothable Metrics on Cube Complexes

In this last section we illustrate our belief in the many possible uses of the metric Ricci flow
with only (due to space and time restrictions) one example, appertaining to the corpus of “Pure”
Mathematics. The following seemingly well known problem in the theory of cube complexes6 was
posed to the author by Joel Haas, together with the basic idea of the first part of the proof, for
which the author is deeply grateful.

Let C be a cube complex, satisfying the following conditions:
(1) C is negatively curved (i.e. such that #vQ ≥ 4, for all vertices v,where #vQ denotes the

number of cubes incident to the vertex v;
(2) The link lk(v) of any vertex is a flag complex, i.e. a simplicial complex such that any 3-arcs

closed curve bounds a triangle (2-simplex), i.e. no such curve separates without being a
boundary.7

Question 26. Does there exist a Riemannian metric g (on C) such that Kg ≡ K, where K denotes
the comparison (Alexandrov) curvature of C?

In other words: Does there exist a smoothing of (M, g) (i.e. Riemannian manifold) of a given
cube complex C (that has a manifold structure), such that K ≡ Kg? Evidently, an important
particular case would be that “cubical version of PL approximations”), i.e. that of “cubulations”
of a (given) Riemannian manifold.

Remark 27. The similar problem can be also posed, of course, for positively curved complexes
(i.e. such that #vQ ≤ 4). However, we address here only the negatively curved case.

Clearly the answer to Question 26 above is “No”, even if C is actually a manifold, since it is
not always possible to recover the Riemannian metric from the discrete (“cubical”) one. (Recall
that each edge is supposed to be of length 1.) However, in the special case of 3-dimensional cube
complexes the question has a positive answer.

We sketch below the proof:
(1) Away from the vertices, i.e. around the edges,8 one can use a method developed by Gromov

and Thurston [13] to produce a generalized type of branched cover (in any dimension).
More precisely, (a) construct negatively curved conical surfaces of revolution, with vertex
at a vertex v and with apex angle α = 2π/n, where n = #vQ. Each such cone can be
canonically mapped upon a Euclidean cone of apex angles π/2 ; then (b) glue the outcome
of this process to the result of Step (2) below.

4but, on the other hand, this holds even if n = 3!...
5without affecting the analogue of the Bonnet-Myers Theorem – see Section 2 above.
6For a formal definition and more details see, e.g. [26].
7Alternatively, this condition may be expressed either as lk(v) “has no missing simplices (M. Sageev, [26]), or as

“a nonsimplex contains a non edge” (W. Dicks, see [5]).
8obviously, in the interiors of the faces the metric is already smooth.
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(2) Around the vertices excise an ε-ball neighbourhood Bε of v. On the boundary of Bε, i.e.
on the sphere Sε one has the natural triangulation by the intersections of Sε with the cubes
of C incident with v. Moreover, the curvature of the vertices of this triangulation will be
Kε ≡ c/ε2, where c is some constant. However, while the gluing itself is trivial, one still
has to ensure that the result is indeed endowed with a Riemannian metric. For this one
has to go through Step 3 of the construction:

(3) Smoothen the ball Bε. In general dimension this represents a daunting problem. Indeed,
even in dimension 3, Ricci flow – who represents a natural candidate for smoothing with
control of curvature – is yet not attainable, since we can offer, at this point in time, no PL
(metric) Ricci flow. However, due to Perelman’s resolution of the Poincaré conjecture, in
dimension 3 suffices to smoothen the boundary Sε. It is at this point where the method
described in Section 3 is applied, producing the required smooth ball S̃ε, that has the same
curvature as the PL9 one Sε.
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Curvature in image and shape processing
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Abstract
The laplacian operator applied to the coordinates of a manifold provides the mean

curvature vector. Manipulating the metric of the manifold or interpreting its coordinates in
various ways provide useful tools for shape and image processing and representation. We will
review some of these tools focusing on scale invariant geometry, curvature flow with respect to
an embedding of the image manifold in a high dimensional space, and object segmentation
by active contours defined via the shape laplacian operator. Such generalizations of the
curvature vector and its numerical approximation as part of an image flow or triangulated
shape representation, demonstrate the omnipresence of this operator and its usefulness in
imaging sciences.

1. Introduction

The total variation [25] image selective smoothing filter, the Beltrami flow for color image
processing [28, 24, 32] and its close relative the bilateral filter [30, 27], the affine invariant flow for
images [10, 3] are all reincarnations of considering the heat flow defined by second derivative of a
manifold with respect to its associated arc length. Strictly speaking, from a differential geometry
point of view, the laplacian operator does not always defines the curvature, especially when non-
trivial invariants are involved. Yet, this geometric structure has been found to be very practical
in shape and image processing.

At the other end, the laplacian operator can be decomposed into its eigenfunctions and eigenval-
ues, which provide a generalization of the classical Fourier decomposition to non-trivial manifolds
and non-regular parameterizations. Such a bases were introduced into the shape analysis arena in
the last decade, see for example [18, 19]. The resulting eigenfunctions are sometimes referred to as
the natural basis, as it can be shown to be the optimal basis for representing smooth functions on
the given manifold [1]. Here, we will review several applications of the laplace Beltrami operator
(LBO) in which we allow ourself to define the metric according to the problem at hand. The
resulting heat operator or natural basis by decomposition of the LBO would allow us to process
images and shapes with the same framework. In a sense, this paper is more a pedagogical overview
rather than a specific contribution. To that end, let us start with a simple example of how a new
definition of a pseudo-metric could lead to a scale invariant geometry for shapes.

2. On geometries and natural eigenbases

Sochen suggested to plugged invariant metrics into the definition of the laplacian in order to
extract corresponding invariant eigenfunctions and eigenvalues for image processing [29]. Later
on, Raviv et al. [23] used this observation to construct an equi-affine invariant pseudo metric
for surfaces, while two of us and Raviv [2] introduced a scale invariant geometry and produced
a corresponding natural basis for shapes. To exemplify the properties of such a methodology,
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Figure 2.1: From left to right: A horse, Coordinates projected to the first 300
eigenfunctions (regular metric), Coordinates projected to the first 300 eigenfunc-
tions (mixed metric). Coordinates projected to the first 300 eigenfunctions (scale
invariant metric).

here, we start from an arc length construction followed by a metric definition and decompose the
corresponding LBO into a natural basis structure that we then apply to shape representation.

Let S(u, v) : Ω ⊂ R2 → R3 be a parametrized surface embedded in R3. Next, let C(p) : [0, 1]→
S be a parametrized curve in S, for which we can define the total arc length to be

length(C) =
∫ 1

0
|Cp|dp =

∫ 1

0
|Suup + Svvp|dp =

∫ 1

0

√
|Su|2u2

p + 2〈Su, Sv〉upvp + |Sv|2v2
pdp.(2.1)

Denoting the metric coefficients gij = 〈Si, Sj〉 where i, j ∈ {u, v} we readily have the arc length
on the surface defined by ds2 =

∑
i={u,v}

∑
j={u,v} gijdidj. Using Einstein summation convention,

the Laplace-Beltrami operator is given by

(2.2) ∆g ≡
1√
g
∂i
√
ggij∂j ,

where g is the determinant of the metric (g), the inverse metric coefficients are gij =
(
(g)−1)

i,j
,

and ∂i is the derivative with respect to the ith coordinate, u or v in our case.
The operator ∆g admits a spectral decomposition with an orthogonal eigenbasis {φk} and a set

of corresponding eigenvalues {λk} defined by
(2.3) ∆gφk = λkφk, 〈φk, φk〉g = 1, and 〈φk, φl〉g = 0, ∀k 6= l.

The choice of an invariant metric is obviously important in the context of shape representation,
alignment, and matching. To that end, various distances have been proposed, such as Euclidean
[12, 5], geodesic [16, 21, 17, 20], diffusion [4, 14, 9], and affine invariant versions thereof [23]. A
scale invariant geometry which is also intrinsic (embedding invariant) was introduced in [2] by
which the regular metric is multiplied by the Gaussian curvature,

g̃ij = |K|gij = |K|〈Si, Sj〉.(2.4)
Fig. 2.1 depicts the effect of representing a shape’s coordinates projected to the natural basis

with a regular metric compared to the scale invariant one. The idea is to use just the first few
eigenfunctions as an approximation for smooth functions on the manifold treating the coordinates
as such. While the regular natural basis captures the global structure of the surface, as expected,
the scale invariant basis concentrates at the fine features with effective curvature. Fig. 2.2 presents
an application of the generalized multidimensional scaling algorithm [8] using the scale invariant
diffusion distance to extract the correspondence between an armadillo and its deformed version
In these examples the LBO produced a proper basis to represent and match shapes subject to a
specific yet general enough deformations. Next we will show how the LBO can be applied as a
non-local heat operator acting as a powerful selective smoothing filter in image denoising.

3. Beltrami selective smoothing in patch space

An image I(x, y) can be thought of as a two dimensional surface embedded in the hybrid spatial-
intensity space. The laplacian operator of the image manifold can then be used to define a heat
flow applied as a filter to the image as initial condition

It = ∆gI, given I(x, y; 0) = I0.(3.1)
The time t such a flow acts on the image should somehow reflect the amount of noise in the
image, while the metric g could be the image metric. The hope is that such a curvature flow
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Figure 2.2: Matching an Armadillo and its locally scaled version using GMDS
with the scale invariant metric.

would selectively smooth the image in a desirable fashion. The Beltrami-flow [28] considers a
color image as a mapping between the spatial domain to the spatial-spectral domain, that is
I(x, y) : Ω ∈ R2 → R5. The coordinates in the embedding space are x, y,R,G,B where the last
three coordinates stand for the color space Red, Green, and Blue, respectively. The resulting heat
equation It = ∆gI defined by the metric g is usually derived from an infinitesimal arc length such
as ds2 = dx2 + dy2 + dR2 + dG2 + dB2.

One non-differential version of the Beltrami flow is known as the bilateral filter [31], in which
the short time kernel of the Beltrami flow is replaced by δ(s, s′)2 = δ(x, x′)2 +δ(y, y′)2 +δ(R,R′)2 +
δ(G,G′)2 + δ(B,B′)2, where δ(x, x′)2 = (x − x′)2. Roughly speaking, instead of convolving with

the continuous version e
−(
∫ s′

s
ds)2

in the Beltrami flow, the bilateral filter applies e−δ(s,s′)2 as a
selective smoothing kernel.

Roussos and Maragos [24] followed by [32] extended the Beltrami flow approach by treating
images as two dimensional manifolds embedded in patch-space. The superior denoising results of
these methods coupled with their computational efficiency indicated that the Beltrami flow in its
general form is well suited for dealing with image denoising. An example of the selective smoothing
property of the Beltrami flow in patch space is depicted by Fig. 3.1.

In order to simplify the construction of such filters consider a height profile I to be a two
dimensional Riemannian manifold embedded in a higher dimensional space. We define the patch-
space mapping P : Ω ∈ R2 → S ∈ Rn(2w+1)2+2 such that

(3.2) P (x, y) =
(
x, y,

{
Iki,j
})
,

for i, j = −w, .., w, k = 1, .., n ,where w ∈ N is the window size, n is the number of channels we
use, and {Iki,j} is the compact form for

{
Ik (x+ i, y + j)

}
. For the case of a single height profile or

a gray level image n = 1, where if we were provided with a set of registered scans of a particular
surface or a color image, n could represent the number of scans or colors. The manifold P is
equipped with a metric g, that defines an arc length

(3.3) ds2 = (dx dy) (g)
(
dx
dy

)
.

Specifically, the patch-space metric is given by application of chain rule dIki,j = ∂xI
k
i,jdx+ ∂yI

k
i,jdy

from which it follows that

(3.4) (g) =
(

1 +
∑
i,j,k(∂xIki,j)2 ∑

i,j,k ∂xI
k
i,j∂yI

k
i,j∑

i,j,k ∂xI
k
i,j∂yI

k
i,j 1 +

∑
i,j,k(∂yIki,j)2

)
.
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Figure 3.1: Examples of Beltrami patch denoising for images. From top to bot-
tom, left to right a) Noisy Barbara, σ = 21 b) Denoised image, PSNR = 28.4dB
c) Noisy Peppers, σ = 30 d) Denoised image, PSNR = 28.0dB

This metric allows us to measure distances and areas on the manifold P using the coordinates of
Ω. For example, the area of the embedding into a Euclidean space is given by

(3.5)
∫∫ √

det(g)dxdy.

We minimize Eq. (3.5) using variational calculus and arrive at the EL equation

(3.6) ∆gI
k
i,j = 1√

g
div
(√
g(g)−1∇Iki,j

)
= 0.

The resulting operator is indeed the LBO, and the image can thus be filtered by the corresponding
Beltrami flow in patch space
(3.7) It = ∆gI.

Point clouds and meshes are often assumed to have noise which is Gaussian and appears as an
offset along the normal direction of the surface. For that kind of noise the mean curvature flow
could produce a reasonable filter. Yet, the noise model for range scanners exhibits offsets in the
direction of the camera’s focal point. Moreover, the noise is seldom Gaussian and usually includes
regions with missing data. This presents a challenge to state of the art denoising algorithms
that are usually tuned for optimal removal of additive white noise. One of the popular denoising
methods is the BM3D [15] to which we compare the Beltrami patch denoising for a depth profile
obtained from a real scanner, as seen in Fig. 3.2. It appears that the method is able to selectively
smooth the data while preserving the important features. The usage of the LBO as a non-local
denoising filter is not our final stop. Next, we show how it can be used to formulate the geodesic
active contour model in a new and novel formulation.

4. An LBO perspective on geodesic active contours

This section links between the Laplace-Beltrami operator, the associated heat flow towards a
minimal surface, and the Geodesic Active Contours (GAC) model for image segmentation [11].
Related efforts include Bresson’s et al. [7], expressing the GAC flow as a minimizer of the weighted
Polyakov action, and the formulation by Bogdanova et al. [6]. Sochen et al. [26] reviewed the
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Figure 3.2: Far left: Original noisy scan. Top row: BM3D results for σ = 5 and
σ = 20. Bottom row: Beltrami patch denoising for σ = 5 and σ = 20.

image filtering problem, exploring the relation between the PDE geometric approaches, derived by
minimizing the Polyakov action with an appropriate metric, and non-linear robust-statistics filters.
We start by reviewing the geodesic active contour model and the evolution towards generalized
minimal surface.

4.1. Geodesic active contours. The geodesic active contour is a geometric-variational model
for boundary detection, integration, and object segmentation in images. In [13] it was shown that
contours extracted by this model are minimal geodesics in a Riemannian space whose metric is
defined by the image intensity I(x, y). We search for curves C(p) : [0, 1] → R2 that minimize the
following weighted Euclidean arc length

(4.1)
∫
f (|∇I (C(p))|) |C ′(p)| dp =

∫
f (|∇I (C(s))|) ds,

in a Riemannian space equipped with the metric tensor f (|∇I (C)|) δij . The function f(x, y)
is an edge indicator function, for example f(x, y) = (1 + |∇I|)−1, designed to stop the active
contour when it arrives at the object’s boundary. The Euclidean arc length is denoted by s, where
ds = |C ′(p)|dp. Caselles et al. used a gradient-descent method to minimize the weighted arc length
(4.1), to obtain the following curve evolution equation

(4.2) ∂C(t)
∂t

=
(
fκ−∇f · ~N

)
~N,

where κ ~N = Css, with κ is the curvature of C, and ~N its unit inward pointing normal.
The level set formulation [22] of the geodesic problem (4.2) is given by

∂u

∂t
= |∇u| div

(
f
∇u
|∇u|

)
= f |∇u|div

( ∇u
|∇u|

)
+∇f · ∇u,(4.3)

where u(x, y; t) is an implicit representation, often referred to as a level set function, of the evolving
contour C(p; t). That is, C(t) = {(x, y) : u(x, y; t) = 0}, and κ = div

(
∇u
|∇u|

)
is the curvature of the

level sets of the function u. The level set evolution formulation in Eq. (4.3) can be interpreted as
a generalized minimal surface flow. To that end, we apply the methodology provided by Sochen
et al. in [28] as described next.

4.2. Generalized minimal surface flow. Let us treat the level set function u(x, y) as a two-
dimensional surface embedded in a 3-dimensional space. It can be defined by the map X : Ω ∈
R2 → M ∈ R3, where Ω denotes a 2D coordinates manifold (σ1, σ2), and M is the embedding
space. Explicitly, X is written as X =

(
X1(σ1, σ2), X2(σ1, σ2), X3(σ1, σ2)

)
. Both manifolds Ω

and M are equipped with metric tensors, gµν(σ1, σ2) and hij(x1, x2, x3), respectively. The map X
and the metric hij can be used to construct the metric on Ω

(4.4) gµν(σ1, σ2) = hij(X)∂µXi∂νX
j ,
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where we used Einstein’s summation convention. Next, the following functional can be associated
with the map X : Ω→M ,

(4.5) S
[
Xi, gµν , hij

]
=
∫
dmσ
√
ggµν∂µX

i∂νX
jhij(X),

where gµν is the inverse of the metric gµν (that is gµγgγν = δµν), and g is the determinant of (gµν).
This functional is known as Polyakov action, and it can be viewed as a generalized area measure.
In fact, we already used a particular instance of the Polyakov action in Section 3, Eq. (3.5).

The minimal map (embedding) X can be obtained by steepest-descent. The gradient of the
Polyakov action with respect to the embedding is

(4.6) − 1
2√gh

il δS

δX l
= 1√

g
∂µ
(√
ggµν∂νX

i
)

+ Γijk∂µXj∂νX
kgµν .

In order to find the minimal embedding, Sochen et al. [28] used the gradient descent flow

(4.7) Xi
t = − 1

2√gh
il δS

δX l
= ∆gX

i + Γijk∂µXj∂νX
kgµν .

Note, that the gradient (4.6) is obtained by multiplying the Euler-Lagrange equations of (4.5) by
a strictly positive function and a positive definite matrix, that will be referred to as a pre-factor.
It could also be viewed as an indication of the metric of the variational inner product by which
the gradient descent is defined. It provides a geometric parameterization-invariant flow with the
same minimum. The pre-factor required to produce the GAC flow is different, stemming from the
different geometry of the problem. The second term at the right hand side of Eq. (4.6) involves
the Levi-Civita connection coefficients Γijk, that depict the geometry of the embedding space.
When M = R3 with Euclidean metric, hij = δij , the second term vanishes, and the flow becomes
Xt = ∆gX, as seen in the previous sections.

4.3. Back to GAC: level set formulation as a flow toward minimal surface. Next, we
show that the level set formulation for geodesic active contour evolution in Eq. (4.3) is obtained by
minimizing a generalized area measure. First, let us select X that maps the plane (σ1 = x, σ2 = y)
to a 3D Euclidean space, such that
(4.8) X = (x, y, u(x, y)) .
The functional we would like to study is

(4.9) S =
∫∫

f(|∇I(x, y)|)
√

1 + |∇u|2dxdy,

This is Polyakov action obtained by choosing the following metric tensors for the parameter and
the embedding spaces Ω and M , respectively

gµν = f(σ2, σ2) (∂µX · ∂νX) ,
hij = f(x1, x2)δij .(4.10)

Since gµν and hij are legitimate metric tensors, and as (σ2, σ2) = (x, y) and (x1, x2, x3) = (x, y, z),
Eq. (4.4) holds.

The metric tensor gµν , written in a matrix form becomes

(4.11) (gµν) = f

(
1 + u2

x uxuy
uxuy 1 + u2

y

)
.

The metric determinant is g = det (gµν) = f2 (1 + |∇u|2
)
and the inverse of the metric is

(4.12) (gµν)−1 = (gµν) = f

g

(
1 + u2

y −uxuy
−uxuy 1 + u2

x

)
.

Next, we use Eq. (4.6) to obtain the gradient-descent flow for the level set function component of
X, namely X3 = u(x, y),

(4.13) ut = X3
t = 1√

g
∂µ (√ggµν∂νu) + Γ3

jk∂µX
j∂νX

kgµν .
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Figure 4.1: Image segmentation using Geodesic Active Contours: the initial con-
tour (left) and the final segmentation (right).

Substituting the expressions for √g and gµν into the first term of the right-hand side of the flow
in Eq. (4.13) produces

(4.14) 1√
g
∂µ (√ggµν∂νu) = 1

f
√

1 + |∇u|2
div
(

∇u√
1 + |∇u|2

)
.

In order to compute the second term on the r.h.s. of Eq. (4.13) we need to first find an expression
for the Levi-Civita connection coefficients Γ3

jk. For the metric hij defined in Eq. (4.10)

Γijk = 1
2h

il (∂jhlk + ∂khjl − ∂lhjk)

=
∑

l

1
2

1
f
δil (∂j (fδlk) + ∂k (fδjl)− ∂l (fδjk))

= 1
2

1
f

(δik∂jf + δji∂kf − δjk∂if) .(4.15)

Therefore,

(4.16) Γ3
jk = 1

2f (δ3k∂jf + δj3∂kf) ,

or, in a matrix form,

(4.17) Γ3 = 1
2f




0 0 fx
0 0 fy
fx fy 0


 .

Finally, the second term of the flow from Eq. (4.13) becomes

(4.18) Γ3
jk∂µX

j∂νX
kgµν = ∇f · ∇u

f2 (1 + |∇u|2) .

Using Eq. (4.14) and Eq. (4.18) we obtain the level set evolution

(4.19) ut = 1
f
√

1 + |∇u|2
div
(

∇u√
1 + |∇u|2

)
+ ∇f · ∇u
f2 (1 + |∇u|2) .

Finally, we use our freedom of parametrization and multiply the above evolution by the pre-factor
of f2 (1 + |∇u|2

)
, to obtain

(4.20) ut = div


f ∇u√

1 + |∇u|2



√

1 + |∇u|2.

Note, that up to the additional constant 1, this formulation aligns with the level set formulation
of the geodesic active contour model given in Eq. (4.3). Since the surface definition in Eq. (4.8)
is arbitrary, we can choose the aspect ratio between du and dx, dy to be as large as we want.
Thus, the constant 1 can be regarded as an ε → 0 that vanishes upon the right selection of this
aspect ratio. We thereby demonstrated that the geodesic active contour model in its level set
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formulation, can also be viewed as a surface that minimizes the Polyakov action with a specific
selection of metric tensors for the parametrization and the embedding space. The minimizer is
obtained by application of the LBO, yet again in a gradient descent heat flow fashion.

5. Conclusions

The Laplace Beltrami operator has been shown to provide a modeling construction approach
which is useful for shape and image selective smoothing, for shape matching, and for object seg-
mentation in images. We allowed ourselves to select the relevant metric and the coordinates upon
which the operator is acting according to the problem at hand. The freedom of these settings
allowed us to link between state of the art solutions for shape and image processing and analysis.
We expect these observations and tool design methodology to pave the way for new solutions of
novel problems in the domain of imaging sciences.
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Geometric Aspects of the Space of Triangulations
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Abstract
These are the notes of my talk presented in the colloquium on discrete curvature at

the CIRM, in Luminy (France) on November 21st, 2013, in which we study the space of
triangulations from a purely geometric point of view and revisit the results presented in
[21] and [20] (joint works with Patrick Mullen, Fernando De Goes and Mathieu
Desbrun). Motivated by practical numerical issues in a number of modeling and simulation
problems, we first introduce the notion of a compatible dual complex (made out of convex
cells) to a primal triangulation, such that a simplicial mesh and its compatible dual complex
form what we call a primal-dual triangulation. Using algebraic and computational geometry
results, we show that for simply connected domains, compatible dual complexes exist only
for a particular type of triangulation known as weakly regular. We also demonstrate that
the entire space of primal-dual triangulations, which extends the well known (weighted)
Delaunay/Voronoi duality, has a convenient, geometric parameterization. We finally discuss
how this parameterization may play an important role in discrete optimization problems
such as optimal mesh generation, as it allows us to easily explore the space of primal-dual
structures along with some important subspaces.

1. Introduction

Mesh generation traditionally aims at tiling a bounded spatial domain with simplices (triangles
in 2D, tetrahedra in 3D) so that any two of these simplices are either disjoint or sharing a lower
dimensional face. The resulting triangulation provides a discretization of space through both its
primal (simplicial) elements and its dual (cell) elements. Both types of element are crucial to a va-
riety of numerical techniques, finite element (FE) and finite volume (FV) methods being arguably
the most widely used in computational science. To ensure numerical accuracy and efficiency, spe-
cific requirements on the size and shape of the primal (typically for FE) or the dual elements
(typically for FV) in the mesh are often sought after.

Towards Generalized Primal/Dual Meshes. A growing trend in numerical simulation is the si-
multaneous use of primal and dual meshes: Petrov-Galerkin finite-element/finite-volume methods
(FE/FVM, [3, 19, 24]) and exterior calculus based methods [4, 6, 13] use the ability to store quan-
tities on both primal and dual elements to enforce (co)homological relationships in, e.g., Hodge
theory. The choice of the dual, defined by the location of the dual vertices, is however not spec-
ified a priori. A very common dual to a triangulation in Rd is the cell complex which uses the
circumcenters of each d-simplex as dual vertices. The barycentric dual, for which barycenters are
used instead of circumcenters, is used for certain finite-volume computations, but it fails to satisfy
both the orthogonality and the convexity conditions on general triangulations.

While the circumcentric Delaunay-Voronoi duality [25, 8] is one of the cornerstones of meshing
methods and, as such, has been extensively used in diverse fields, more general dualities are often
desired. Building on a number of results in algebraic and computational geometry, in [20] we
present a more general primal-dual pairs of complexes, primal-dual triangulations, that we briefly
describe in the first sections of this note.

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
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In the last part of this note, we show how the Weighted-Delaunay/Laguerre duality could help
to provide lower error bounds on numerical computations [21]. While most previous meshing
methods focused on designing well-shaped primal triangulations or dual complexes, we provide a
unifying approach to mesh quality based on the placement of primal and orthogonal dual elements
with respect to each other. In an effort to provide meshes most appropriate for fast, yet reliable
computations, we propose functionals on primal-dual mesh pairs that offer formal bounds on the
numerical error induced by the use of diagonal Hodge stars. We then demonstrate that meshes
that minimize our functionals have desirable geometric and numerical properties. These resulting
Hodge-optimized meshes offer a much-needed alternative to the traditional use of barycentric or
circumcentric duals in discrete computations. Finally, the resulting set of meshing tools we intro-
duce has wide applications: even when a specific connectivity is needed, some of our contributions
can be applied to increase numerical robustness and accuracy of basic operators.

2. Preliminaries

We start by reviewing important notions that we build upon and extend in subsequent sections.

2.1. Complex, Subdivision, and Triangulation. A cell complex in Rd is a set K of convex
polyhedra (called cells) satisfying two conditions:

(1) Every face of a cell in K is also a cell in K, and
(2) If C and C ′ are cells in K, their intersection is a common face of both.

A simplicial complex is a cell complex whose cells are all simplices. The body |K| of a complex
K is the union of all its cells. When a subset P of Rd is the body of a complex K, then K is
said to be a subdivision of P ; if, in addition, K is a simplicial complex, then K is said to be a
triangulation of P . For a set X of points in Rd, a triangulation of X is a simplicial complex K
for which each vertex of K is in X. In that case the body of K is the convex hull of X. Let us note
that the triangulations we consider in this work, usually coming from a point set, they partition a
simply connected domain in Rd (corresponding to the convex hull of the point set).

Also, in the definition of a triangulation of X, we do not require all the points of X to be used
as vertices; a point xi ∈ X is called hidden if it is not used in the triangulation. A triangulation
with no hidden points is called a full triangulation.

2.2. Triangulations in Rd through Lifting in Rd+1. Let X = {x1, . . . ,xn} be a set of points
in Rd. A simple way of constructing a triangulation of X is through the following lifting procedure:
take an arbitrary function L : X −→ R called the lifting function; consider the points (xi, L(xi)) ∈
Rd+1, i.e., the points of X lifted onto the graph of L; in the space Rd+1, consider Conv(L) the
convex hull of vertical rays {(xi, l)| l ≥ L(xi), l ∈ R, xi ∈ X}; the bounded faces of Conv(L), i.e.
faces which do not contain vertical half lines, form the lower envelope of the lifting L. If the
function L is generic (see [11] Chap. 7), the orthogonal projection (onto the first d coordinates) of
the lower envelope of L partitions the convex hull of X and produces a triangulation of X.

It is clear that the above lifting procedure may produce triangulations for which not all points
of X are vertices. A triangulation of a set X of points obtained through lifting is full (i.e., has no
hidden points) if and only if all the points (xi, L(xi)) lie on the lower envelope of L (or, in other
words, if function L can be extended, through linear interpolation in the triangles, to a convex
piecewise-linear function).
Regular Triangulations : A triangulation obtained by orthogonally projecting the lower envelope of
a lifting of X in Rd+1 (onto the first d coordinates) is called a regular triangulation ([29], Definition
5.3).

2.3. Weighted Delaunay Triangulations. A special choice for the lifting function produces
the well-known and widely-used Delaunay triangulation (see [26, 22] for properties of Delaunay
triangulations, and [25] for numerous applications). Indeed, letX be a set of points in Rd. Consider
the lifting of the points in X onto the surface of the paraboloid h(x) = ‖x‖2 in Rd+1; i.e., each
xi = (a1, . . . , ad) ∈ X gets mapped to (xi, hi) ∈ Rd+1 with hi = ‖xi‖2 = a2

1 + · · · + a2
d. Then

the orthogonal projection of the lower envelope of this lifting partitions the convex hull of X and
produces a (full) triangulation coinciding with the Delaunay triangulation of X.
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A regular triangulation (of the convex hull) of a point set X can now be seen as a generalization of
the Delaunay triangulation of X as follows. We first define aweighted point set as a set (X,W ) =
(x1, w1), . . . , (xn, wn), where X is a set of points in Rd, and {wi}i∈[1,...,n] are real numbers called
weights. The weighted Delaunay triangulation of (X,W ) is then the triangulation of X
obtained by projecting the lower envelope of the points (xi, ‖xi‖2 − wi) ∈ Rd+1. Note that a
weighted Delaunay triangulation can now have hidden points.

Notice also that given a lifting function L and its values li = L(xi) at the points of X, one
can always define weights to be the difference between the paraboloid and the function L, wi =
‖xi‖2 − li. We conclude that for simply connected domains (i.e. convex hull of X), the notions of
regular triangulations and weighted Delaunay triangulations are equivalent. Let us note that as it
is shown in [5], this equivalence is no longer true for domains with non trivial topology.

2.4. Generalized Voronoi Diagrams vs. Weighted Delaunay Triangulation. Delaunay
triangulations (resp., weighted Delaunay triangulations) can also be obtained (or defined) from
their dual Voronoi diagrams (resp, power diagrams). Let (X,W ) = {(xi, wi)}i∈I be a weighted
point set in Rd. The power of a point x ∈ Rd with respect to a weighted point (xi, wi) (sometimes
referred to as the Laguerre distance) is defined as d2(x,xi) − wi, where d(., .) stands for the
Euclidean distance. Using this power definition, to each xi we associate its weighted Voronoi
region V (xi, wi) = {x ∈ Rd| d2(x,xi) − wi ≤ d2(x,xj) − wj ,∀j}. The power diagram of (X,W )
is the cell complex whose cells are the weighted Voronoi regions.

Note that when the weights are all equal, the power diagram coincides with the Euclidean
Voronoi diagram of X. Power diagrams are well known to be dual to weighted Delaunay triangu-
lations, as we review next.
The dual of the power diagram of (X,W ) is the weighted Delaunay triangulation of (X,W ). This
triangulation contains a k-simplex with vertices xa0 ,xa1 , . . . ,xak in X if and only if V (xa0 , wa0)∩
V (xa1 , wa1)∩ · · · ∩V (xak

, wak
) 6= ∅, ∀k ≥ 0. While many other generalization of Voronoi diagrams

exist, they do not form straight-edge and convex polytopes, and are thus not relevant here.

3. Compatible Dual Complexes of Triangulations

We now show that the notion of mesh duality can be extended so that the dual complex is defined
geometrically, and independently from the triangulation—while the combinatorial compatibility
between the triangulation and its dual is maintained.

Definition 1 (Simple Cell Complex). A cell complex K in Rd is called simple if every vertex
of K is incident to d + 1 edges. K is called labeled if every d-dimensional cell of K is assigned
a unique label; in this case, we write K = {C1, . . . , Cn}, where n is the number of d-dimensional
cells of K, and Ci is the i-th d-dimensional cell.

Definition 2 (Compatible Dual Complex). Let T be a triangulation of a set X = {x1, . . . ,xn} of
points in Rd; and K = {Ci1 , . . . , Cin} be a labeled simple cell complex, i.e. there is a one-to-one
correspondence between xp and Cip . K is called a compatible dual complex of T if, for every
pair of points xp and xq that are connected in T , Cip and Ciq share a face.

This compatibility between K and T is purely combinatorial, i.e., it simply states that the
connectivity between points induced by K coincides with the one induced by T . Notice that the
cell Cip associated to the point xp, does not necessarily contain xp in its interior. Moreover,
the edge [xp,xq] and its dual Cip ∩ Ciq are not necessarily orthogonal to each other, unlike most
conventional geometric dual structures. Consequently, we can generalize the notion of mesh duality
through the following definition:

Definition 3 (Primal-Dual Triangulation (PDT)). A pair (T,K) is said to form a d-dimensional
primal-dual triangulation if T is a triangulation in Rd and K is a compatible dual complex of
T . If every edge [xp,xq] and its dual Cip ∩ Ciq are orthogonal to each other, the pair (T,K) is
said to form an orthogonal primal-dual triangulation.
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Figure 3.1: Primal-Dual Triangulation: primal triangulation, dual complex, and
combinatorially equivalent regular triangulation separately displayed for clarity.

3.1. Characterization of Primal-Dual Triangulations. An immediate question is whether
any triangulation can be part of a PDT. We first characterize the triangulations that admit a
compatible dual complex through the following two definitions:

Definition 4 (Combinatorial Equivalence). Two triangulations T and T ′ are combinatorially
equivalent if there exists a labeling which associates to each point xi in T a point x′i in T ′ so that
the connectivity between xi’s induced by T matches the connectivity between the x′i’s induced by
T ′.

Definition 5 (Combinatorially Regular Triangulations (CRT)). A triangulation T of a d-dimensional
point set X is called a combinatorially regular triangulation if there exists a d-dimensional
point setX ′ admitting a regular triangulation T ′ such that T and T ′ are combinatorially equivalent.

Remark: these CRT triangulations have been introduced in [16] under the name of weakly reg-
ular triangulations, since a displacement of their vertices suffices to make them regular. Figure 3.2
(after [16]) shows an example of a combinatorially regular triangulation which is not, itself, regular.

Figure 3.2: A regular triangulation (left), once deformed (right), becomes a com-
binatorially regular triangulation which is not, itself, regular.

Existence of PDTs in 2D. The 2D case is rather simple, due to this result mainly based on a
classical theorem of Steinitz [27](see also [16] and [20]):

Proposition 6. Any 2-dimensional triangulation is combinatorially regular.

Therefore, every 2D triangulation T can be part of a PDT pair (T,K). However in higher
dimensions (three and above), as we showed in [20], the situation is rather different:

Proposition 7. For d ≥ 3, there exist d-dimensional triangulations that do not admit any com-
patible dual complex.

This is equivalent to the fact that there exist triangulations which are not combinatorially regu-
lar. The simplest non-combinatorially regular examples are the Brucker sphere and the Barnette
sphere [9].

3.2. PDT=CRT. We claim that combinatorially regular triangulations are the only ones that
admit compatible dual complexes. The proof revolves around a theorem due to Aurenhammer:

Every simple cell complex in Rd, d ≥ 3, is dual to a regular triangulation.
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This theorem was proved in [2] through an iterative construction which is valid in any dimension
d ≥ 3. In [20], we used this theorem to prove the following theorem which surprisingly implies
that in higher dimensions there are triangulations that do not admit a dual complex:

Theorem 8 (PDT Characterization). A d-dimensional triangulation T admits a compatible (not
necessarily orthogonal) dual complex if and only if T is combinatorially regular.

4. Parameterizing Primal-Dual Triangulations

We have established that primal-dual triangulations cover all dual complexes in d ≥ 3; they also
cover all 2D triangulations, but only triangulations which admit a dual in d ≥ 3. We now focus
on parameterizing the whole space of primal-dual triangulations with n points in Rd by simply
adding parameters at the points. We then explore a geometric interpretation of this intrinsic
parameterization as well as its properties.

The proof of Theorem 8 leads us very naturally to a parameterization of all the triangulations
that admit a compatible dual complex:

Definition 9. A parameterized primal-dual triangulation is a primal-dual triangulation
parameterized by a set of triplets (xi, wi,vi), where xi is the position in Rd of the ith node, wi
is a real number called the weight of xi, and vi is d-dimensional vector called the displacement
vector of xi. The triangulation associated with the triplets (xi, wi,vi) is defined such that its dual
complex K is the power diagram of weighted points (pi, wi), where pi = xi + vi, see Fig 3.1.

The dual complex K can be seen as the generalized Voronoi diagram of the xi’s for the distance
d(x,xi) = ‖x−xi−vi‖2−wi. When the vectors vi are all null, the parameterized primal-dual
triangulation T is regular, thus perpendicular to its dual K, and the pair (T,K) forms an orthog-
onal primal-dual triangulation. This proves that weighted Delaunay triangulations are sufficient
to parameterize the set of all orthogonal primal-dual triangulations of a simply connected domain
(see also [12]). The displacement vectors extend the type of triangulations and duals we can pa-
rameterize.

Characterizing the classes of equivalent triplets parameterizing the same PDT, and completed
with constraints for the parameters in order to avoid redundancy between equivalent triplets, we
find an efficient parameterization for the space of primal-dual triangulations (see [20] for details):

Theorem 10 (PDT Parametrization). There is a bijection between all primal-dual triangulations
in Rd and sets of triplets (xi, wi,vi), 1 ≤ i ≤ n, where xi,vi ∈ Rd, wi ∈ R with

∑
i wi = 0,∑

i vi = 0, and
∑
i ‖xi + vi‖2 =

∑
i ‖xi‖2.

Remark: using this parametrization, the particular case of Delaunay / Voronoi PDT of a set of
points {xi}i=1..n is naturally parameterized by triplets (xi, 0, 0). Note also that the condition∑
i wi = 0 may be replaced by mini wi = 0, by simply subtracting the constant mini wi from all

the weights of triplets (the PDT depending on weight differences will remain unchanged). This
new condition implies that all the weights are positive which may be useful in some applications.

5. Applications in Mesh Optimization

In the previous section, we derived a natural parameterization of all non-orthogonal primal-dual
structures of simply connected domains in Rd. Besides the theoretical interest of these new primal-
dual structures, we anticipate numerous applications. We believe that our results can benefit mesh
optimization algorithms as we provide a particularly convenient way to explore a large space of
primal-dual structures. We have already provided a first step in this direction by designing pairs of
primal-dual structures that optimize accuracy bounds on differential operators using our parame-
terization [21], thus extending variational approaches designed to improve either primal (Optimal
Delaunay Triangulations [28]) or dual (Centroidal Voronoi Tesselations) structures. In that work,
we introduce Hodge-optimized triangulations (HOT), a family of well-shaped primal-dual pairs of
complexes designed for fast and accurate computations in computer graphics. Other existing work
most commonly employs barycentric or circumcentric duals: while barycentric duals guarantee
that the dual of each simplex lies within the simplex, circumcentric duals are often preferred due
to the induced orthogonality between primal and dual complexes. We instead promote the use of
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weighted duals (“power diagrams”). They allow much greater flexibility in the location of dual
vertices while keeping primal-dual orthogonality, thus providing an invaluable extension to the
usual choices of dual by only adding one additional scalar per primal vertex. Furthermore, we
introduce a family of functionals on pairs of complexes that we derive from bounds on the errors
induced by diagonal Hodge stars, commonly used in discrete computations. The minimizers of
these functionals, called HOT meshes, are shown to be generalizations of Centroidal Voronoi Tes-
selations and Optimal Delaunay Triangulations, and to provide increased accuracy and flexibility
for a variety of computational purposes. This approach is detailed in the following sections.

6. Hodge Optimized Triangulations

To demonstrate the advantages of using regular/power triangulations, we focus on a particularly
relevant type of functionals measuring primal and dual properties. Recall that for an arbitrary
primal element σ, the diagonal approximation of the Hodge star ? [4] of a continuous differential
form α assumes

(6.1)
∫

∗σ
?α ≡ | ∗σ||σ|

∫

σ

α,

where |.| denotes the Lebesgue measure (length, area, volume) of a simplex or cell. In other words,
the discrete kth Hodge star is encoded as a diagonal matrix ?k with ∀i, (?k)ii := | ∗σk

i |
|σk

i
| , where σ

k
i

(resp., ∗σki ) is the ith k-simplex (resp., k-cell) of the primal-dual triangulation M = (T ,D); the
discrete Hodge star of a discrete primal k-form ωk is then computed as ?k ωk, and the extension
to dual discrete forms (with, this time, (?k)−1) is trivial (for further details see, e.g., [6]). We will
link approximation error of diagonal Hodge stars to optimal transport.

6.1. Basics of Optimal Transport. The optimal transport problem seeks to determine the
optimal way to move a pile of dirt M to a hole N of the same volume, where “optimal” means
that the integral of the distances by which the dirt is moved is minimal. The notion of “distance”
(i.e., cost of transport) may vary based on context. A common distance function defined between
probability distributions in Rd with bounded support is the q-Wasserstein metric, defined as

Wq(µ, ν) =
(

inf
π∈P(µ,ν)

∫

Rd×Rd

‖x− y‖q dπ(x, y)
)1/q
.

Let us recall here the Kantorovich-Rubinstein theorem, stating that for two distributions µ and ν
with bounded support, the 1-Wasserstein distance between µ and ν can be rewritten as:

(6.2) W1(µ, ν) = sup
continuous ϕ:S→R

Lips(ϕ)≤λ

1
λ

∫

S

ϕ(x) d(µ− ν),

where Lips(ϕ) represents the Lipschitz constant of function ϕ. This expression will be useful
shortly to link optimal transport and approximation error of diagonal Hodge stars.

6.2. Deriving Tight Bounds through Optimal Transport. While computationally conve-
nient, diagonal Hodge stars are obviously not very accurate: they are generally only exact for
constant forms. We can quantify the induced inaccuracy of ?k by defining the error density ei on
the dual of the simplex σi as the average difference between the discrete approximation and the
real Hodge star value:

ei := 1
| ∗σi|

∣∣∣∣
| ∗σi|
|σi|

∫

σi

ω −
∫

∗σi

?ω

∣∣∣∣ =
∣∣∣∣

1
|σi|

∫

σi

ω − 1
| ∗σi|

∫

∗σi

?ω

∣∣∣∣

=
∣∣∣∣
∫

σi

f(x)dσi|σi|
−
∫

∗σi

f(x) d∗σi| ∗σi|

∣∣∣∣ =
∣∣∣∣
∫

σi∪∗σi

f(x)
[
dσi
|σi|
− d ∗σi| ∗σi|

]∣∣∣∣ ,

where f(x) is the component of ω on dσi. We deduce, using Eq.(6.2), that the tightest bound one
can find on the Hodge star error density per simplex for an arbitrary λ-Lipschitz form is simply λ
times the minimum cost over all transport plans between σi (seen as a uniform distribution over
the mesh element that integrates to one) and ∗σi (also seen as a uniform distribution integrating
to one); i.e., with a slight abuse of notation,
(6.3) ei ≤ λ W1(σi, ∗σi).
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This formally establishes a link between Hodge star accuracy and optimal transport. Note that we
only required ω to be Lipschitz continuous, a reasonable assumption in most graphics applications.

6.3. Error Functionals on Meshes. From these local error densities, we can assemble a total
error by taking the Lp≥1 integral norm of the error over the mesh area by integrating the pth power
of the error density over each convex hull1 of σi and its dual ∗σi. This directly yields:

Ep(M, ?k)=



∑

σi∈Σk

∫

CH(σi∪∗σi)

ei
p




1
p

=


 ∑

σi∈Σk

|σi|| ∗σi|(
k
d

) ei
p




1
p

,

since the convex hull CH(σi ∪ ∗σi) is, up to a dimension factor, simply the product of the primal
and dual volumes due to our primal/dual orthogonality assumption of meshM. Note that these
convex hulls, coined “support volumes in" [15] and “diamonds” in [14, 6], tile the whole primal
mesh, thus providing a proper volume integral.

From Eq. (6.3), we conclude that a tight bound for the pth power of the total error is expressed
as:

(6.4) Ep(M, ?k)p ≤ λ(
k
d

)
∑

σi∈Σk

| ∗σi||σi|W1(σi, ∗σi)p.

(Notice that E∞(M, ?k) is thus, up to the Lipschitz constant, bounded by the maximum of the
minimum W1 distance between primal and dual elements of the mesh as expected.) For notational
convenience, we will denote by ?k- HOTp,1(M) the bound (with Lipschitz and dimension constants
removed) obtained in Eq. (6.4); more generally, we will define

?k- HOTp,q(M) ≡
∑

σi∈Σk

| ∗σi||σi|Wq(σi, ∗σi)p

as relevant functionals (or energies) to construct meshes, as minimizing them will control the
quality of the discrete Hodge stars. Let us note that most of our HOT energies are evaluated
by splitting simplices/cells into canonical subsimplices for which closed-forms integral expressions
W (p, T ) of simplex-T -to-point-p transport are easily found.
Discussion: Our HOT energies are archetypical, general-purpose examples of mesh quality measures
imposed on both primal and dual meshes, but they are by no means unique: from the local
error densities ei, other energies can be formulated to target more specific errors occurring in
mesh computations. Note also that the use of a 1-Wasserstein distance is notably less attractive
numerically than a 2-Wasserstein distance. Fortunately, we can also provide a bound of the Hodge
star error which, while less tight than the previously derived HOTp,1, will be particularly convenient
to deal with computationally:

E2(M, ?k)2≤
∑

σi∈Σk

| ∗σi||σi|W2(σi, ∗σi)2 ≡ ?k- HOT2,2(M).

The reader may have noticed that the functional ?0- HOT2,2(M) is, in the case of equal weights,
the well-known Centroidal Voronoi Tesselation (CVT) energy (

∑
i

∫
Vi
‖ x−xi ‖2 dV ) for which

several minimization techniques, from Lloyd iterations [7] to quasi-Newton methods [18], have been
developed. Lp variants (i.e., ?0- HOT2p,2(M) for p≥2) were also explored recently [17]. However,
these energies only correspond to ?0, and are not as tight as HOT1,p. Our HOT energies can
thus be seen as a direct generalization of the CVT-like functionals. Note finally that the Optimal
Delaunay Triangulation (ODT) energy used in [1] can also be seen as a variant of ?d- HOT2,2(M)
in Rd for which the dual mesh is restricted to be “barycentric”; alas, the resulting mesh will not
necessarily lead to an orthogonal primal-dual triangulation—even if the resulting simplices were
proven to be very close to isotropic.

1The reader may notice that when σi and ∗σi do not intersect, the integration domain is no longer a convex set,
but a signed union of subsimplices. For simplicity, we will still use the term “convex hull”.
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6.4. General Minimization Procedure. Given that both (continuous) vertex positions and
(discrete) mesh connectivity need to be optimized, the task of finding HOT meshes is seemingly
intractable. Thankfully, regular triangulations provide a good parameterization of the type of
primal-dual meshes we wish to explore: one can simply continuously optimize both positions and
associated weights to find a HOT mesh. However, HOT energies are not convex in general, and
a common downfall of non-convex optimization is its propensity to settle into local minima. In
our case, this can be nicely alleviated by starting the optimization from a mesh relatively near the
optimal solution, i.e., for which the vertices are well spread out. We thus run, after initializing the
domain with uniformly sampled vertices over the domain, a few iterations of CVT [7] or ODT [1]
to quickly disperse the vertices and get mesh elements roughly similar in size. Once a good initial
mesh has been found, we perform a gradient descent, or alternatively, an L-BFGS algorithm [23]. A
linear search is performed to adapt the step size along the gradient or the quasi-Newton direction.
This common minimization procedure works quite well without requiring anything else but an
evaluation of our HOT energies and their gradients. Note that since the positions xi and the
weights wi have very different scales, we proceed by alternatively minimizing our HOT energies
with respect to vertex positions and weights.

7. Results

HOT meshes can be beneficial in a number of contexts in modeling of surfaces and volumes, as
well as in simulation. A particularly common linear operator in mesh processing is the Laplacian
∆, be it in the plane or on a discrete surface. As its Discrete Exterior Calculus (DEC) expression
for 0-forms is ∆ = dt0 ?

1 d0, our HOT energies for ?1 should be particularly adapted to its accurate
computation: the d0 operator being exact, the only loss of accuracy rises from this particular
Hodge star. A ?1-HOT2,2 mesh indeed results, on a discretization of a simple test domain with
200 vertices, in a 5% reduction of the condition number of the Laplacian matrix with Dirichlet
boundary conditions compared to a CVTmesh. The result is much more dramatic for the Laplacian
of dual 0-forms, where the condition number drops from 254 to 90 on the same example.

To some extent, our approach can even help to deal with situations where the primal trian-
gulation is given and cannot safely be altered: for instance, moving vertices and/or changing the
connectivity of a triangle mesh in R3 is potentially harmful, as it affects the surface shape. Still,
the ability to optimize weights to drive the selection of the dual mesh is very useful. We can easily
optimize primal-dual triangulations (meshes) by minimizing a functional (energy) with respect to
weights. The connectivity is kept intact, regardless of the weights—only the position and shape
of the compatible dual is optimized. Our 2D and 3D experiments [21] show that only optimizing
the weights is particularly simple and beneficial on a number of meshes. Fig. 7.1 depicts a trian-
gle mesh of a hand and its intrinsic dual before and after weight optimization, showing a drastic
reduction in the number of negative dual edges—thus providing a practical alternative to the use
of intrinsic Delaunay meshes advocated in [10].

As another illustrative example, Fig. 8.1 shows that even an optimized Delaunay triangulation
(ODT mesh, 195K tets, 36K vertices)) with exceptionally high-quality tetrahedra [28] can be
made significantly better centered (i.e., with dual vertices closer to the inside of their associated
primal simplex) using a simple weight optimization. Note also that in this example the number of
tetrahedra with a dual vertex outside of the primal tet dropped from 17041 on the ODT mesh to
5489 on the optimized mesh—a two third reduction of outcentered tetrahedra.

8. Conclusion

We introduced the notion of compatible dual complex for a given triangulation in Rd, and
discussed the conditions under which an arbitrary triangulation of a simply connected domain
admits a compatible, possibly non-orthogonal dual complex. Note that our only requirement for
the dual is that it is made out of convex polytopes, thus reducing the space of possible primal-dual
pairs to a computationally-convenient subset for which basis functions and positive barycentric
coordinates are easily defined. We also pointed out a link to a previously-introduced notion of
weakly regular triangulation by Lee in the nineties, and that there are triangulations that do not
admit a dual complex. In addition, the parameterization we derived for all non-orthogonal primal-
dual structures, provides a particularly convenient way to explore a large space of triangulations
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Figure 7.1: Improving Dual Structure of a Surface Mesh: For a given
triangular mesh (left) there are several triangles whose circumcenter is far outside
the triangle (center, lines drawn in red). By optimizing only the weights the new
dual vertices are better placed inside the unchanged triangles (right) while keeping
primal/dual orthogonality.

for which we anticipate numerous applications. As we have shown in the last sections of this note,
our results can in particular benefit mesh optimization algorithms. In addition to applications in
mesh optimization, modeling (as in computational biology) that uses convex space tilings could
directly use our parameterization of PDTs. Clustering techniques based on k-means may also
benefit from parameterizing clusters by more than just centers, as weights and vectors add more
flexibility to the segmentation of input data.

Figure 8.1: Improving Dual Structure of 3D Meshes: A the dual of a high-
quality ODT mesh of the Bimba con Nastrino (a) can be optimized in terms
of Hodge star operator’s accuracy; by improving minimal dual edge length and
self-centeredness. (c) Weights are displayed according to sign (red/green) and
magnitude. When we single out the tetrahedra with a distance between weighted
circumcenter and barycenter greater than 0.5% of the bounding box, one can see
the optimized mesh (d) is significantly better than the original ODT (b), even if
the primal triangulations are exactly matching.
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Variational properties of the discrete
Hilbert-Einstein functional

Ivan Izmestiev

1. Introducing the functional

1.1. Smooth case. Let M be a smooth compact manifold without boundary. In Riemannian
geometry, the Hilbert-Einstein functional is a function on the space MetM of Riemannian metrics
on M which associates to a metric g the integral of half its scalar curvature:

S : MetM → R, S(g) = 1
2

∫

M

scalg dvolg

If dimM = 2, then we have scalg = 2Kg, where Kg is the Gauss curvature. Hence by the
Gauss-Bonnet theorem

S(g) = 2πχ(M)
is independent of the metric g.

Starting from dimM = 3, the functional S becomes more interesting. Denote

S′h = d

dt

∣∣∣∣
t=0

S(g + th),

where h is the field of symmetric bilinear forms on M .

Theorem 1.1. The first variation of S is given by the formula

S′h = 1
2

∫

M

〈
scalg

2 g − Ricg, h
〉

dvolg

Corollary 1.2. Let dimM ≥ 3.
a) A metric g ∈ MetM is a critical point of S if and only if g is Ricci-flat, i. e. Ricg = 0.
b) Critical points of the restriction of S to the space Met1

M of metrics of unit total volume
are Einstein metrics, i. e. metrics with Ricg = λg.

If dimM = 3, then Einstein metrics are metrics of constant sectional curvature (Euclidean,
hyperbolic or spherical).

See [4, Chapter 4C] for details.

1.2. Discrete case. Let M be a compact 3-manifold without boundary. Fix a triangulation (i. e.
simplicial face-to-face decomposition) T of M and pick a map

` : E(T )→ (0,+∞), e 7→ `e

assigning to every edge e of T a length `e. Consider only those ` for which every tetrahedron of T
can be realized as a Euclidean tetrahedron with the edge lengths `. (This set is non-empty, since
`e = 1 for all e will do.)

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
Supported by the European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC Grant agreement no. 247029-SDModels.
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The map ` introduces a Euclidean metric on each tetrahedron of T , and a Euclidean cone-metric
on M . Note that different pairs (T, `) can define the same metric; for example, we may subdivide
the triangulation T and define lengths of new edges appropriately.

The Hilbert-Einstein functional on the space of Euclidean cone-metrics is
S(T, `) =

∑

e∈E(T )

`e(2π − ωe),

where ωe is the total angle around e, see Figure 1.1. Clearly, the value of S depends only on the
metric, not on the choice of the representative (T, `).

ωe

`e

Figure 1.1: Lengths and angles in a 3-dimensional cone-manifold.

Remark 1.3. If dimM = n, then Euclidean cone-metrics on M have cone singularities around
codimension 2 faces of T , and one puts

S(T, `) = cn
∑

dimF=n−2
voln−2(F )(2π − ωF )

for some constant cn. Cheeger, Müller, and Schrader [8] have shown that the discrete Hilbert-
Einstein functional converges to the smooth one if a sequence (T (n), `(n)) of Euclidean cone-metrics
converges to a Riemannian metric g (with respect to the Lipschitz distance between metric spaces)
so that all simplices in (T (n), `(n)) stay sufficiently fat.

It is an open problem to what most general class of metric spaces (including Riemannian man-
ifolds and Euclidean cone-manifolds) the Hilbert-Einstein functional, and more generally, all total
Lipschitz-Killing curvatures can be extended.

The Hilbert-Einstein functional can also be defined for hyperbolic and spherical cone-metrics.
In this case an additional volume term appears, see [14, Sections 4.2-4.4].

1.3. Critical points in the discrete case. Call the quantity κe := 2π − ωe the curvature of a
Euclidean cone-metric at the edge e. Then we have S(T, `) =

∑
e `eκe.

Theorem 1.4. We have ∂S
∂`e

= κe

This is equivalent to the identity
∑
e `edκe = 0, which follows by adding up the Schläfli formula

for all tetrahedra of T . An independent proof was given by the physicist Tullio Regge who intro-
duced the discrete Hilbert-Einstein functional in [18]. In particular, Regge’s argument provides an
elementary proof of the Schläfli formula.
Corollary 1.5. Critical points of the discrete Hilbert-Einstein functional represent flat metrics.

Similarly, critical points of the functional on the space of hyperbolic cone-metrics (see end of
Section 1.2) correspond to hyperbolic metrics without cone singularities.

Corollary 1.5 has two applications:
• Construct a metric of constant curvature by finding a critical point of S .
• Prove rigidity of a space-form by showing non-degeneracy of the corresponding critical
point of S.

It is surely tempting to try to reprove hyperbolization theorem by showing the existence of
critical points of S under suitable topological assumptions on M . Two main difficulties arise here.
One is that the functional is neither convex nor concave, which makes existence of a critical point
difficult to prove. The other is the choice of a triangulation T , since we cannot know in advance the
combinatorial type of a geodesic triangulation. One possible solution is to start with an arbitrary
triangulation and change its combinatorial type while deforming the metric. This is what was
done in our proof of the Alexandrov theorem (Section 3) which can be viewed as a simple case of
geometrization with boundary conditions.
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In the smooth case, Blaschke and Herglotz [5] suggested to use the variational property of the
smooth Hilbert-Einstein functional for solving Weyl’s problem. Yamabe’s work [22] resulted from
an attempt to solve Poincaré’s conjecture using the same variational principle. Most recently, a
geometrization program developing Yamabe’s ideas was proposed by M. Anderson [2, 3].

The second of the above points, the infinitesimal rigidity, is more easily tractable. Variational
properties of the Hilbert-Einstein functional form the basis of Koiso’s proof of the infinitesimal
rigidity of Einstein manifolds under certain assumptions on the eigenvalues of the curvature tensor,
[16]. We used similar ideas in a new proof of the infinitesimal rigidity of convex polyhedra (Section
2) and of a class of non-convex polyhedra (Section 4).

2. Infinitesimal rigidity of convex polyhedra

2.1. The boundary term of the Hilbert-Einstein functional. If the compact manifold M
has a non-empty boundary, then the Hilbert-Einstein functional needs a boundary term, in order
to remain differentiable. In the smooth case, this is

S(g) = 1
2

∫

M

scalg dvolg +
∫

∂M

H dvol∂g ,

where H is the trace of the second fundamental form II. The variational formula becomes

S′h = 1
2

∫

M

〈
scalg

2 g − Ricg, h
〉

dvolg +1
2

∫

∂M

〈Hg − II, h〉dvol∂g

In the discrete case we have

S(T, `) =
∑

e∈Ei(T )

`e(2π − ωe) +
∑

e∈E∂ (T )

`e(π − θe),

where Ei(T ) and E∂(T ) are the sets of interior and boundary edges of T , respectively, and θe is the
dihedral angle at the boundary edge e. The variational formula is obtained again by adding up
the Schläfli formulas for individual simplices:

∂S

∂`e
=
{

2π − ωe, if e ∈ Ei(T )
π − θe, if e ∈ E∂(T )

Remark 2.1. If M ⊂ R3 is a convex body, then both of the above boundary terms appear as the
coefficients at the t2 term in the Steiner formula for M . Another common interpretation of both
is 4π times the mean width (average length of projections to lines) of M . Check ball and cube.

If we keep the metric on the boundary fixed (that is h(X,Y ) = 0 for X,Y ∈ T∂M in the smooth
case, and `e = const for e ∈ E∂(T ) in the discrete case), then the critical points of the functionals
are metrics that are flat inside M and restrict to the given metric on the boundary.

2.2. A proof of the infinitesimal rigidity of a convex polyhedron. Let P ⊂ R3 be a compact
convex polyhedron. For simplicity, assume that all faces of P are triangles. An infinitesimal
isometric deformation of P is an assignment of a vector qi to every vertex pi such that

〈pi − pj , qi − qj〉 = 0 for every edge pipj
which is equivalent to ∂

∂t

∣∣
t=0 ‖pi(t) − pj(t)‖ = 0 with pi(t) = pi + tqi. A polyhedron is called

infinitesimally rigid if every its infinitesimal isometric deformation extends to an infinitesimal
isometry of R3.

We will take another viewpoint: instead of deforming an embedded surface (the boundary of the
polyhedron) we deform the metric inside the polyhedron itself. For this, choose a point a inside P
and subdivide P into triangular pyramids with apex a and faces of P as bases. This results in a
triangulation T of P . Denote by

ri := ‖a− pi‖, `ij := ‖pi − pj‖
the lengths of interior and boundary edges, respectively. We will change ri while keeping `ij fixed
and look what happens with the curvatures κi around the interior edges (at the beginning we have
κi = 0). See Figure 2.1.
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θij

ωi

ri

Figure 2.1: Lengths and angles in the triangulation T of the polyhedron P .
Shaded triangles lie on the boundary; only a part of the triangulation is shown.

Definition 2.2. A deformation (si) of the interior edge lengths (ri) is called curvature-preserving,
if all directional derivatives

dκi
ds

=
∑

j

∂κi
∂rj

sj

vanish. In other words, if

s ∈ ker
(
∂κi
∂rj

)
= ker

(
∂2S

∂ri∂rj

)

Among curvature-preserving deformations there are trivial ones that result from a displacement
of the point a inside P . It is easy to show that they form a 3-dimensional subspace. Also it is
easy to see that the infinitesimal rigidity of P in the original sense is equivalent to the absence of
non-trivial curvature-preserving deformations:

P is infinitesimally rigid ⇔ dim ker
(

∂2S

∂ri∂rj

)
= 3

The following theorem implies that convex polyhedra are infinitesimally rigid.

Theorem 2.3. Let P be a compact convex polyhedron with triangular faces and triangulation T

as described above. Then the second variation
(

∂2S
∂ri∂rj

)
of the discrete Hilbert-Einstein functional

has the signature (+, 0, 0, 0,−, . . . ,−).

The part about the rank of the second variation is proved in [14, Section 3]. The fact that
the positive index is equal to 1 follows from the coincidence of the second variations of S and of
the volume of polar dual [14, Section 4.1], and from the signature of the second variation of the
volume, provided by the second Minkowski inequality for mixed volumes, [12, Appendix].

3. Alexandrov’s theorem

Alexandrov’s theorem [1] states the existence and uniqueness of a compact convex polyhedron in
R3 with a prescribed boundary metric. The intrinsic boundary metric is a Euclidean cone-metric
(since the surface of a polyhedron can be glued from triangles) with singular points of positive
curvature (vertices of the polyhedron). Note that the intrinsic metric does not detect the edges of
a polyhedron.

Theorem 3.1 (A. D. Alexandrov, [1]). Let g be a Euclidean cone-metric on the sphere with
singular points of positive curvature. Then there exists a unique up to congruence compact convex
polyhedron in R3 with g as the intrinsic metric on the boundary. (The polyhedron may also be a
polygon, in which case instead of the intrinsic metric on the boundary two copies of the polygon
glued along pairs of corresponding edges are taken.)
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In [6] a new proof of Alexandrov’s theorem was given, similar in the spirit to the proof of the
infinitesimal rigidity described in Section 2.2.

We start with a certain geodesic triangulation T̄ (0) of the sphere equipped with metric g, with
vertices at the singular points, and an assignment of a positive number ri(0) to every singular
point pi. This allows us to construct a Euclidean cone-manifold P (T̄ (0), r(0)) by gluing together
triangular pyramids with radial edge lengths ri(0) and triangles of T̄0 as bases. Namely, we take
the Delaunay triangulation of (S2, g) as T̄ (0), and put ri(0) = R for all i, with R sufficiently large.
This ensures that pyramids exist and that the “warped polyhedron” P (T̄ (0), r(0)) is convex at the
boundary (i. e. θij(0) ≤ π).

Then we proceed by deforming the lengths ri, thus obtaining a continuous family of warped
polyhedra P (T̄ (t), r(t)). The deformation is chosen so that

• κi(t) = (1− t)κi(0), where κi(t) is the curvature at the edge api in P (T̄ (t), r(t));
• the dihedral angles on the boundary remain ≤ π.

The second condition requires that at certain moments t1 < t2 < . . . the triangulation T̄ (t)
must be changed. The triangulation is determined uniquely (up to “flat edges”, those where the
dihedral angle is π) since the second condition is equivalent to T̄ (t) being the weighted Delaunay
triangulation of (S2, g) with weights r2

i , see [6, Section 2.5].
The existence of a deformation satisfying the first condition follows from the non-degeneracy of

the matrix
(
∂κi

∂rj

)
under certain assumptions [6, Theorem 3.11–Proposition 3.16]. In the limit as

t → 1 we have κi → 0 for all i, thus P (T̄ (1), r(1)) is a compact convex polyhedron with a given
metric on the boundary.

A corresponding numerical algorithm was implemented in a computer program by Stefan Sechel-
mann [19], see Figure 3.1.

Figure 3.1: A screenshot of [19].

4. Infinitesimal rigidity of weakly convex (co)decomposable polyhedra

Infinitesimally flexible non-convex polyhedra exist, see Figure 4.1.
In [15] the infinitesimal rigidity was proved for a wide class of non-convex polyhedra.

Definition 4.1. A non-convex polyhedron is called weakly convex, if its vertices lie in a convex
position: Vert(P ) = Vert(convP ).

A weakly convex polyhedron P is called decomposable if it can be triangulated without adding
new vertices. It is called decomposable and codecomposable if there is a triangulation T of convP
such that Vert(T ) = Vert(P ) and P is a subcomplex of T .
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Figure 4.1: Schoenhardt’s twisted octahedron and Jessen’s orthogonal icosahedron
are infinitesimally flexible.

Both polyhedra on Figure 4.1 are weakly convex but not decomposable.

Theorem 4.2 ([15], Theorem 1.7). Weakly convex decomposable and codecomposable polyhedra
are infinitesimally rigid.

This theorem is a consequence of the following property of the Hilbert-Einstein functional.

Theorem 4.3 ([15], Theorem 1.17). Let T be a triangulation of a convex polyhedron. Denote by
i the number of vertices of T in the interior of the polyhedron and by b the number of vertices in
the interiors of its faces. (The number of vertices on the edges is irrelevant.)

Consider Euclidean cone-metrics inside the polyhedron arising from deformations of the interior
edges of the triangulation. Then the matrix

(4.1)
(
∂κe
∂`f

)
=
(

∂2S

∂`e∂`f

)

where `e, `f denote the lengths of interior edges, has corank 3i+b and exactly i positive eigenvalues.

Corollary 4.4. Let T be a triangulation of a convex polyhedron that uses only vertices of this
polyhedron. Then the matrix (4.1) is negative definite.

Proof of Theorem 4.2. In the triangulation T of convP , take the subcomplex T̄ that triangulates
P . The Hessian matrix of S for T̄ is a principal minor of the Hessian of S for T . Since the latter
is negative definite, so is the former. In particular, it is non-degenerate. Hence it is impossible to
change the lengths of interior edges of T̄ without changing the curvatures in the first order. Thus
P is infinitesimally rigid. �

Remark 4.5. In the smooth case, the space of all infinitesimal deformations of a Riemannian metric
can be decomposed as a direct sum of conformal, trivial, and anti-conformal deformations. The
restriction of the second variation D2S to the space of conformal deformations is positive definite;
trivial deformations don’t change the value of S; and on the space of the anti-conformal defor-
mations D2S is negative definite, provided that the spectrum of the curvature operator satisfies
certain assumptions, [4, Chapters 4G, 12H].

In the discrete case, trivial deformations arise from arbitrary displacements of the interior
vertices and from displacements of vertices inside the faces orthogonally to those faces. This space
has dimension 3i + b. Conformal deformations should correspond in “blowing up” at each vertex
independently, thus their space has dimension i. Thus the signature of D2S as stated in Theorem
4.3 fits very well with what is known in the smooth case.

Among other works dealing with the signature of the second variation of the discrete Hilbert-
Einstein functional let us mention [9, 11].

5. Directions for future research

LetM be a closed hyperbolic 3-manifold with a geodesic triangulation T . Then the infinitesimal
rigidity of M (also known as Calabi-Weil rigidity [20, 7]) is equivalent to dim kerD2S = 3i, where
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i is the number of vertices of T . It should be possible to determine the rank of D2S (or even
better, the signature) by a sort of discrete Bochner method. This would yield a new proof of the
Calabi-Weil theorem. A similar method should work for cone-manifolds. If M is a hyperbolic
cone-manifold, then M is infinitesimally rigid (in the sense that any deformation preserving the
cone-angles is trivial) provided that ωe ≤ 2π around all edges e, [17, 21]; without this assumption
M may be infinitesimally flexible, [13].

For ideal triangulations of hyperbolic manifolds, the functional is concave. This makes cusped
manifolds the first case to try to reprove the hyperbolization theorem.

The functional is concave also for semiideal triangulations, if all finite vertices lie on the bound-
ary. This was used in [10] to prove the existence of a hyperbolic cusp with a given cone-metric on
the boundary. A generalization of this would be realizability of an arbitrary metric with curvature
bounded from below by −1 on the boundary of some hyperbolic cusp. On one hand, this should
follow from the polyhedral case by an approximation argument; on the other hand, it would be
interesting to find a variational proof that uses an extension of the Hilbert-Einstein functional to
more general metric spaces. In particular, this is related to the problem at the end of Remark 1.3.
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Discrete complex analysis – the medial graph
approach

Alexander I. Bobenko and Felix Günther

Abstract
We discuss a new formulation of the linear theory of discrete complex analysis on planar

quad-graphs based on their medial graphs. It generalizes the theory on rhombic quad-graphs
developed by Duffin, Mercat, Kenyon, Chelkak and Smirnov and follows the approach on
general quad-graphs proposed by Mercat. We provide discrete counterparts of the most
fundamental objects in complex analysis such as holomorphic functions, differential forms,
derivatives, and the Laplacian. Also, we discuss discrete versions of important fundamental
theorems such as Green’s identities and Cauchy’s integral formulae. For the first time,
Green’s first identity and Cauchy’s integral formula for the derivative of a holomorphic
function are discretized.

1. History

Discrete harmonic functions on the square lattice were studied by a number of authors in the
1920s, including Courant, Friedrichs, and Lewy [5]. Discrete holomorphic functions on the square
lattice were studied by Isaacs [10]. He proposed two different definitions for holomorphicity. One
of them was reintroduced and further investigated by Lelong-Ferrand [8]. She developed the theory
to a level that allowed her to prove the Riemann mapping theorem using discrete methods [13].
Duffin also studied discrete complex analysis on the square grid [6], and he was the first who
extended the theory to rhombic lattices [7]. Kenyon [12], and Chelkak and Smirnov [3] resumed
the investigation of discrete complex analysis on rhombic lattices, or, equivalently, isoradial graphs.

Mercat extended the theory from domains in the complex plane to discrete Riemann surfaces,
first considering cellular decompostions into rhombi [14] and later generalizing the notions to
general quadrilaterals [16]. The motivation for this theory of discrete Riemann surfaces is derived
from statistical physics, in particular, the Ising model. Mercat defined a discrete Dirac operator
and discrete spin structures, and he identifies criticality in the Ising model with rhombic quad-
graphs.

Some two-dimensional discrete models in statistical physics exhibit conformally invariant prop-
erties in the thermodynamical limit. Such conformally invariant properties were established by
Chelkak and Smirnov for the Ising model [4], and by Kenyon for the dimer model on a square
grid [11]. In both cases, linear theories of discrete analytic functions on regular grids were highly
important. Kenyon, Chelkak and Smirnov obtained important analytic results [12, 3], which were
instrumental in the proof that the critical Ising model is universal [4].

Important non-linear discrete theories of complex analysis involve circle packings, or, more
generally, circle patterns. Rodin and Sullivan first proved that the Riemann mapping of a complex
domain to the unit disk can be approximated by circle packings [17]. A similar result for isoradial
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circle patterns, even with irregular combinatorics, is due to Bücking [2]. The first author, Mercat
and Suris showed how the linear theory of discrete holomorphic functions on quad-graphs can
be obtained by linearizing the theory on circle patterns: Discrete holomorphic functions describe
infinitesimal deformations of circle patterns [1].

2. Organization of the paper

Our setup is a strongly regular cellular decompostion of the complex plane into quadrilaterals,
called quad-graph, which we assume to be bipartite. Basic notations for quad-graphs used in this
paper are introduced in Section 3. Of crucial importance for our work is the medial graph of a quad-
graph in Section 4. It provides the connection between the notions of discrete derivatives of Kenyon
[12], Mercat [15], and Chelkak and Smirnov [3], extended from rhombic to general quad-graphs,
and discrete differential forms and discrete exterior calculus. We discuss the discrete derivatives
in Sections 5 and 7. Concerning discrete differential forms in Section 6, we get essentially the
same definitions as Mercat proposed in [16]. However, our notation of discrete exterior calculus
in Sections 8, 9, and 10 is slightly more general and shows its power when considering integral
formulae. In Section 11, we discuss the discrete Laplacian introduced by Mercat [16]. In particular,
we prove discrete Green’s identities and recover the factorization of the discrete Laplacian known
from the rhombic case [12, 15]. We formulate discrete Cauchy’s integral formulae for discrete
holomorphic functions and their discrete derivatives in Section 12.

To keep the paper short, we highlight just the most instructive proofs, and omit the others.
However, the skipped proofs are usually elementary calculations or immediate consequences of
previous statements. The proofs and a more detailed discussion of discrete complex analysis on
planar quad-graphs can be found in the dissertation of the second author [9]. There, we also
investigate discrete Green’s functions, prove their existence and the existence of discrete Cauchy’s
kernels, and provide several results concerning the asymptotics of these functions in the case of
certain parallelogram-graphs.

3. Bipartite quad-graphs

We consider a strongly regular and locally finite cellular decompostion of the complex plane C
into quadrilaterals, described by a bipartite quad-graph Λ. The sets of vertices, edges, and faces,
are denoted by V (Λ), E(Λ), and F (Λ), respectively. We refer to the maximal independent sets of
vertices of Λ as black and white vertices. Let Γ and Γ∗ be the graphs defined on the black and
white vertices where the edges are exactly the diagonals of faces of Λ. It is easy to see that Γ
and Γ∗ are dual to each other. For the ease of notation, we identify the vertices of Λ with their
corresponding complex values, and to oriented edges of Λ,Γ,Γ∗ we assign the complex numbers
determined by the difference of their two endpoints.

To Λ we associate its dual ♦ = Λ∗. In this paper, we look at ♦ in an abstract way, identifying
vertices or faces of ♦ with corresponding faces or vertices of Λ, respectively. However, in the
particular case that all quadrilaterals are parallelograms, it makes sense to place the vertices of ♦
at the centers of the parallelograms [9]. If a vertex v ∈ Λ is a vertex of a quadrilateral Q ∈ ♦, we
write Q ∼ v or v ∼ Q and call v and Q incident to each other. The vertices of Q are denoted by
b−, w−, b+, w+ in counterclockwise order, where b± ∈ Γ and w± ∈ Γ∗.

Definition 1. For a quadrilateral Q ∈ V (♦) ∼= F (Λ) we define

ρ(b−, b+) = ρ(b+, b−) := −iw+ − w−
b+ − b−

=: 1
ρ(w−, w+) = 1

ρ(w+, w−) .

Let ϕQ := arccos (Re (iρ(b−, b+))) be the angle under which the diagonal lines of Q intersect.

Figure 3.1 shows a finite bipartite quad-graph together with the notation for a single quadrilat-
eral Q and the star of a vertex v, i.e., the set of all faces incident to v.

In addition, we denote by ♦0 a connected subset of ♦. It is called simply-connected if the
corresponding set of cells in C is simply-connected. Its vertices induce subgraphs Λ0 of Λ, Γ0 of Γ,
and Γ∗0 of Γ∗. For simplicity, we always assume that the induced subgraphs are connected as well.
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v′s−1
v′s

v′k

v′1v′2

w+

w−

v

v1

vsb+

v2

b−

Qs
Q
ϕQ

Figure 3.1: Bipartite quad-graph with notations

4. Medial graph

Definition 2. The medial graph X of Λ is defined as follows. Its vertex set is given by all the
midpoints of edges of Λ, and two vertices are adjacent iff the corresponding edges belong to the
same face and have a vertex in common. The set of faces of X is in bijective correspondence with
V (Λ) ∪ V (♦): The vertices of a face Fv corresponding to v ∈ V (Λ) are the midpoints of edges of
Λ incident to v, and the vertices of a quadrilateral face FQ corresponding to Q ∈ V (♦) are the
midpoints of the four edges of Λ belonging to Q.

Any edge e of X is the common edge of two faces FQ and Fv for Q ∼ v, denoted by [Q, v].
Let Q ∈ V (♦) and v0 ∼ Q. Due to Varignon’s theorem, FQ is a parallelogram, and the complex

number assigned to the edge e = [Q, v0] connecting the midpoints of edges v0v
′
− and v0v

′
+ of Λ is

just half of e = v′+ − v′−. In Figure 4.1, showing Λ with its medial graph, the vertices of FQ and
Fv, v ∈ V (Λ), are colored gray.

v

Q

Figure 4.1: Bipartite quad-graph (dashed) with medial graph (solid)

For a subgraph ♦0 ⊆ ♦, we denote by X0 ⊆ X the subgraph of X whose edges are contained in
faces of ♦0. Note that the medial graph X corresponds to a (strongly regular and locally finite)
cellular decompostion of C in a canonical way. In particular, we can talk about a topological disk
in F (X0) and about a (counterclockwise oriented) boundary ∂X0.
Definition 3. For v ∈ V (Λ) and Q ∈ V (♦), let Pv and PQ be the closed paths on X connecting
the midpoints of edges of Λ incident to v and Q, respectively, in counterclockwise direction. In
Figure 4.1, their vertices are colored gray. We call Pv and PQ discrete elementary cycles.

5. Discrete derivatives of functions on the vertices of the quad-graph

In the classical theory, holomorphic functions (with nowhere-vanishing derivative) preserve an-
gles, and at a single point, lengths are uniformly scaled. This motivates the following definition of
discrete holomorphicity [16] that was also used previously in the rhombic setting.
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Definition 4. Let Q ∈ V (♦) and f a complex function on b−, w−, b+, w+. f is called discrete
holomorphic at Q if it satisfies the discrete Cauchy-Riemann equation

f(b+)− f(b−)
b+ − b−

= f(w+)− f(w−)
w+ − w−

.

For discrete holomorphicity, only the differences on Γ and Γ∗ matter. Hence, we should not
consider constants on V (Λ), but biconstants [15] determined by each a value on V (Γ) and V (Γ∗).
We call functions that are constant on V (Γ) and constant on V (Γ∗) biconstant.

Definition 5. Let Q ∈ V (♦), and let f be a complex function on b−, w−, b+, w+. The discrete
derivatives ∂Λf , ∂̄Λf are defined by

∂Λf(Q) :=
exp

(
−i
(
ϕQ − π

2
))

2 sin(ϕQ) · f(b+)− f(b−)
b+ − b−

+
exp

(
i
(
ϕQ − π

2
))

2 sin(ϕQ) · f(w+)− f(w−)
w+ − w−

,

∂̄Λf(Q) :=
exp

(
i
(
ϕQ − π

2
))

2 sin(ϕQ) · f(b+)− f(b−)
b+ − b−

+
exp

(
−i
(
ϕQ − π

2
))

2 sin(ϕQ) · f(w+)− f(w−)
w+ − w−

.

In the case of quadrilaterals whose diagonals intersect orthogonally, ϕQ = π/2, and ∂Λf, ∂̄Λf
are exactly defined as in [3]. They naturally discretize their smooth counterparts (∂x − i∂y) /2
and (∂x + i∂y) /2. In a general quadrilateral Q, we have to take the deviation (ϕz − π/2) from
orthogonality into account, and change the factors appropriately.

Proposition 6. Let ♦0 ⊆ ♦ and f be a discrete holomorphic function on V (Λ0).
(1) If f is purely imaginary or purely real, f is biconstant.
(2) If ∂̄Λf ≡ 0 ≡ ∂Λf , f is biconstant.

6. Discrete differential forms

We mainly consider two type of functions, functions f : V (Λ)→ C and functions h : V (♦)→ C.
An example for a relevant function on the quadrilateral faces is ∂Λf .

A discrete one-form ω is a complex function on the oriented edges of the medial graph X, and
a discrete two-form Ω is a complex function on the faces of X. The evaluations of ω at an oriented
edge e of X and of Ω at a face F of X are denoted by

∫
e
ω and

∫∫
F

Ω, respectively.
If P is a directed path of edges e1, e2, . . . , en of X, the discrete integral along P is defined as∫

P
ω =

∑n
k=1

∫
ek
ω. For closed paths P , we write

∮
P
ω instead. In the case that P is the boundary

of an oriented disk in X, we call it a discrete contour. The discrete integral of Ω over several faces
of X is defined similarly.

Definition 7. The discrete one-forms dz and dz̄ are given by
∫
e
dz = e and

∫
e
dz̄ = ē for any

oriented edge e of X. The discrete two-form Ω0 is defined by
∫∫

F

Ω0 = −4iarea(F ).

Remark 8. Ω0 is the straightforward discretization of 2dz ∧ dz̄. It turns out later that several
discrete two-forms we are interested in are just defined on half of the faces of X and zero on the
other elements of F (X). In order to get results comparable to the classical theory after integration,
a factor of two enters in the definitions of Sections 8 and 9. Introducing Ω0 is a technical trick
that allows us to implement this factor of two just in Ω0. In local coordinates, we can perform our
calculations with Ω0 in the discrete setting exactly as we do with dz ∧ dz̄ in the smooth theory,
but integration of Ω0 gives twice the value dz ∧ dz̄ yields.

A discrete one-form ω is said to be of type ♦, if for any Q ∈ V (♦) there exist complex numbers
p, q, such that ω = pdz + qdz̄ on all edges e = [Q, vs], vs ∼ Q.

Definition 9. Let f : V (Λ)→ C, h : V (♦)→ C, ω a discrete one-form, and Ω a discrete two-form.
For any edge e = [Q, v] and any faces Fv, FQ of X corresponding to the vertex star of v ∈ V (Λ) or
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the Varignon parallelogram inside Q ∈ V (♦), we define the products fω, hω, fΩ, and hΩ by
∫

e

fω : = f(v)
∫

e

ω and
∫∫

Fv

fΩ := f(v)
∫∫

Fv

Ω,
∫∫

FQ

fΩ := 0;

∫

e

hω : = h(Q)
∫

e

ω and
∫∫

Fv

hΩ := 0,
∫∫

FQ

hΩ := h(Q)
∫∫

FQ

Ω.

Lemma 10. Let Q ∈ V (♦) and f be a complex function on the vertices of Q. Then,

∂Λf(Q) = −1
4iarea(FQ)

∮

PQ

fdz̄ and ∂̄Λf(Q) = 1
4iarea(FQ)

∮

PQ

fdz.

Remark 11. The additional factor of 1/2 is due to the fact that in analogy to the smooth
setup, we should not multiply f(v) with dz (or dz̄), but by the arithmetic mean of f(v) and some
intermediate value f(Q) instead. Integrating fdz would then eliminate f(Q), so the choice of the
intermediate value does not matter.

7. Discrete derivatives of functions on the faces of the quad-graph

Inspired by Lemma 10, we can now define the discrete derivatives for complex functions on
V (♦). The reason for the additional factor of 1/2 remains the same.

Definition 12. Let v ∈ V (Λ) and h be a complex function defined on all quadrilaterals Qs ∼ v.
Then, the discrete derivatives ∂♦h, ∂̄♦h at v are defined by

∂♦h(v) := −1
4iarea(Fv)

∮

Pv

hdz̄ and ∂̄♦h(v) := 1
4iarea(Fv)

∮

Pv

hdz.

h is called discrete holomorphic at v if ∂̄♦h(v) = 0.

Note that in the rhombic case, our definition coincides with the one in [3]. As an immediate
consequence of the definition, we obtain a discrete Morera’s theorem.

Proposition 13. f : V (Λ)→ C or h : V (♦)→ C is discrete holomorphic if and only if
∮
P
fdz = 0

or
∮
P
hdz = 0, respectively, for all discrete contours P .

Definition 14. Let f1, f2 : V (Λ) → C and h1, h2 : V (♦) → C. Their discrete scalar products are
defined as

〈f1, f2〉 := − 1
2i

∫∫

F (X)

f1f̄2Ω0 and 〈h1, h2〉 := − 1
2i

∫∫

F (X)

h1h̄2Ω0,

whenever the right hand side converges absolutely.

Note that both discrete two-forms f1f̄2Ω0 and h1h̄2Ω0 are zero on half of the faces of X, making
the factor of two incorporated in Ω0 necessary.

Proposition 15. −∂♦ and −∂̄♦ are the formal adjoints of ∂̄Λ and ∂Λ, respectively. That is, if
f : V (Λ)→ C or h : V (♦)→ C is compactly supported,

〈∂Λf, h〉+ 〈f, ∂̄♦h〉 = 0 = 〈∂̄Λf, h〉+ 〈f, ∂♦h〉.

Proof. Using Lemma 10 and ∂♦h̄ = ∂̄♦h, we get

−2i〈∂Λf, h〉 − 2i〈f, ∂̄♦h〉 =
∑

Q∈V (♦)

h(Q)
∮

PQ

fdz̄ +
∑

v∈V (Λ)

f(v)
∮

Pv

h̄dz̄ =
∮

P

fh̄dz̄ = 0,

where P is a large contour such that fh̄ vanishes in a neighborhood of P . The second equation is
shown in the same way. �

Remark 16. In the work of Kenyon [12] and Mercat [15] on discrete complex analysis on rhombic
quad-graphs, the discrete differentials for functions on the vertices and the faces were constructed
in such a way that they are formal adjoints to each other.
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As in the rhombic setup [3], the discrete differentials commute in the following way:

Proposition 17. Let f : V (Λ) → C. Then, ∂♦∂̄Λf ≡ ∂̄♦∂Λf. In particular, ∂Λf is discrete
holomorphic if f is discrete holomorphic.

Remark 18. Note that even in the rhombic case, ∂Λ∂̄♦h 6= ∂̄Λ∂♦h for generic h : V (♦)→ C [3].

Proposition 19. Let ♦0 ⊆ ♦ be simply-connected. Then, for any discrete holomorphic function
h on V (♦0), there is a discrete primitive f :=

∫
h on V (Λ0), i.e., f is discrete holomorphic and

∂Λf = h. f is unique up to two additive constants on Γ0 and Γ∗0.

Proof. Since h is discrete holomorphic,
∮
P
hdz = 0 for any discrete contour P . Thus, hdz can

be integrated to a well-defined function fX on V (X) that is unique up to an additive constant.
Using that hdz is a discrete one-form of type ♦, we can construct a function f on V (Λ) such
that fX ((v + w) /2) = (f(v) + f(w)) /2 for any edge (v, w) of Λ. Given fX , f is unique up to an
additive constant.

In summary, f is unique up to two additive constants that can be chosen independently on Γ0
and Γ∗0. By construction, f satisfies

f(b+)− f(b−)
b+ − b−

= h(Q) = f(w+)− f(w−)
w+ − w−

on any quadrilateral Q. It follows that f is discrete holomorphic and ∂Λf = h. �

8. Discrete exterior derivative

Our notation of discrete exterior calculus is similar to the approach of Mercat in [14, 15, 16], but
differs in some aspects. The main differences are due to our different notation of multiplication of
functions with discrete one-forms, which allows us to define a discrete exterior derivative on a larger
class of discrete one-forms. It coincides with Mercat’s discrete exterior derivative in the case of
discrete one-forms of type ♦. In contrast, our definitions are based on a coordinate representation.

Definition 20. Let f : V (Λ)→ C and h : V (♦)→ C. We define the discrete exterior derivatives
df and dh as follows:

df := ∂Λfdz + ∂̄Λfdz̄ and dh := ∂♦hdz + ∂̄♦hdz̄.

Let ω be a discrete one-form. Around faces Fv and FQ of X corresponding to vertices v ∈ V (Λ)
and Q ∈ V (♦), respectively, we write ω = pdz+ qdz̄ with functions p, q defined on faces Qs ∼ v or
vertices b±, w± ∼ Q, respectively. The discrete exterior derivative dω is given by

dω|Fv
:=
(
∂♦q − ∂̄♦p

)
Ω0 and dω|FQ

:=
(
∂Λq − ∂̄Λp

)
Ω0.

The reason why we add a factor of two in the definition of dω (hidden in Ω0) is the same as
the factor of 1/2 in the definition of ∂♦, ∂̄♦: For the definition of dω, p and q are defined on the
vertices of Λ or ♦, but ω lives halfway between two incident vertices of Λ and ♦, resulting in the
factor of 2.

The representation of ω as pdz + qdz̄ (p, q defined on edges of X) is non-unique, since we
represent one complex number as the linear combination of two other complex numbers. However,
dω is well-defined by discrete Stokes’ theorem, which also justifies our definition of df and dh.

Lemma 21. Let f : V (Λ) → C, and let ω be a discrete one-form. Then, for any directed edge e
of X starting in the midpoint of the edge vv′− and ending in the midpoint of the edge vv′+ of Λ,
and for any face F of X with counterclockwise oriented boundary ∂F we have:

∫

e

df =
f(v) + f(v′+)

2 − f(v) + f(v′−)
2 and

∫∫

F

dω =
∮

∂F

ω.

An easy consequence of the definition of the discrete exterior derivative is that
∫∫
F
dω = 0 on

any face F corresponding to a vertex of Λ, when ω is a discrete one-form of type ♦. We call a
discrete one-form ω closed, if dω ≡ 0. For example, df is closed if f is a complex function on V (Λ).

Proposition 22. Let f : V (Λ)→ C. Then, ddf = 0.
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Proof. By discrete Stokes’ theorem, ddf = 0 if
∮
P
df = 0 for any discrete elementary cycle P .

Since df is of type ♦, the statement is trivially true if P = PQ for Q ∈ V (♦). So let P = Pv for
v ∈ V (Λ). Using discrete Stokes’ theorem again,

∮

Pv

df =
∑

Qs∼v

f(v′s)− f(v′s−1)
2 = 0.

�
Remark 23. An analogous statement for functions h : V (♦) → C is not true in general, even if
h is discrete holomorphic and Λ is a rhombic quad-graph.

Note that Proposition 22 immediately implies Proposition 17 by ddf =
(
∂♦∂̄Λf − ∂̄♦∂Λf

)
Ω0.

Corollary 24. Let f : V (Λ) → C. Then, f is discrete holomorphic if and only if df = pdz is
closed for some p : V (♦)→ C. In this case, p is discrete holomorphic.
Corollary 25. Let f, g : V (Λ)→ C and h : V (♦)→ C.

(1) fdg + gdf is a closed discrete one-form.
(2) If f and h are discrete holomorphic, fhdz is a closed discrete one-form.

Proof. (1) Let ω := fdg + gdf . By Proposition 22, df and dg are closed. Thus,
∮
∂F
ω = 0 for any

face F corresponding to V (Λ). Using Lemma 10, a direct calculation shows
∮
∂F
ω = 0 for any face

F corresponding to V (♦). It follows by discrete Stokes’ theorem that dω = 0.
(2) By discrete Morera’s theorem,

∮
∂F
fhdz = 0 for any face F of X, so fhdz is closed. �

Remark 26. In particular, a product f · g : V (X)→ C can be defined by integration, and f · g is
defined up to an additive constant. Furthermore, f · h : E(X)→ C can be defined by “pointwise”
multiplication. If all these functions are holomorphic, fdg + gdf = pdz is closed (p : E(X) → C)
and so to say a discrete holomorphic one-form, meaning that f · g is discrete holomorphic in this
sense. Similarly, fhdz is closed, so f · h is kind of discrete holomorphic by a discrete Morera’s
theorem. However, f · g and f · h are generally not discrete holomorphic everywhere according to
the classical quad-based definition of discrete holomorphicity on the dual of a bipartite quad-graph
[9].

9. Discrete wedge product

Following Whitney [19], Mercat defined in [14] a discrete wedge product for discrete one-forms
living on the edges of Λ. Then, the discrete exterior derivative defined by a discretization of Stokes’
theorem is a derivation for the discrete wedge product. However, a discrete Hodge star cannot be
defined on Λ. To circumvent this problem, Mercat used an averaging map to relate discrete one-
forms on the edges of Λ with discrete one-forms on the edges of Γ and Γ∗, i.e., discrete one-forms
of type ♦. Then, he could define a discrete Hodge star; however, the discrete exterior derivative
was not a derivation for the now heteregoneous discrete wedge product anymore.

We propose a different interpretation of the discrete wedge product. It the end, we somehow
recover the definitions Mercat proposed in [14, 15, 16], but our derivation is different. Starting
with discrete one-forms of type ♦ that are defined on the edges of X, we obtain a discrete wedge
product on the faces of X that vanishes on half of the faces. This definition is different from
Whitney’s [19] and has the advantage that both a discrete wedge product and a discrete Hodge
star can be defined on the same structure. In contrast to Mercat’s work, we now can make sense
out of the statement that the discrete exterior derivative is a derivation for the discrete wedge
product, see Proposition 29. This proposition is of crucial importance to deduce discrete integral
formulae such as discrete Green’s identities.
Lemma 27. Let ω be a discrete one-form of type ♦. Then, there is a unique representation
ω = pdz+ qdz̄ with functions p, q : V (♦)→ C. On a quadrilateral Q ∈ V (♦), p and q are given by

p(Q) = 1
2 sin(ϕQ)

(
exp

(
−i
(
ϕQ −

π

2

)) ∫
e
ω

e
+ exp

(
i
(
ϕQ −

π

2

)) ∫
e∗ ω

e∗

)
,

q(Q) = 1
2 sin(ϕQ)

(
exp

(
i
(
ϕQ −

π

2

)) ∫
e
ω

ē
+ exp

(
−i
(
ϕQ −

π

2

)) ∫
e∗ ω

ē∗

)
.
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Here, e is an edge of X parallel to a (black) edge of Γ, and e∗ corresponds to an (white) edge of
Γ∗.

Definition 28. Let ω = pdz + qdz̄ and ω′ = p′dz + q′dz̄ be two discrete one-forms of type ♦,
p, p′, q, q′ : V (♦) → C given by Lemma 27. Then, the discrete wedge product ω ∧ ω′ is defined as
the discrete two-form being 0 on faces of X corresponding to vertices of Λ that equals

(pq′ − qp′) Ω0

on faces corresponding to V (♦).

By definition, the discrete wedge product vanishes on faces of X corresponding to V (Λ). Since
the faces of X corresponding to V (♦) cover exactly half of the area of the quadrilaterals, the factor
of two in the definition of Ω0 compared to dz∧dz̄ incorporates the vanishing regions of the discrete
wedge product.

Proposition 29. If f : V (Λ)→ C and ω is a discrete one-form of type ♦, d(fω) = df ∧ω+ fdω.

Proof. Let ω = pdz+ qdz̄ with p, q : V (♦)→ C given by Lemma 27. For v ∈ V (Λ) and Q ∈ V (♦),

d(fω)|Fv =
(
f(v) (∂♦q) (v)− f(v)

(
∂̄♦p

)
(v)
)

Ω0 = fdω|Fv ,

d(fω)|FQ
=
(
q(Q) (∂Λf) (Q)− p(Q)

(
∂̄Λf

)
(Q)
)

Ω0 = (df ∧ ω))|FQ
.

But (df ∧ ω)|Fv = 0 and fdω|FQ
= 0, so d(fω) = df ∧ ω + fdω. �

10. Discrete Hodge star

Definition 30. Let f : F (Λ) → C, h : V (♦) → C, ω = pdz + qdz̄ a discrete one-form of type
♦ with complex functions p, q : V (♦) → C given by Lemma 27, and Ω a discrete two-form. The
discrete Hodge star is given by

?f := − 1
2ifΩ0; ?h := − 1

2ihΩ0; ?ω := −ipdz + iqdz̄; ?Ω := −2i Ω
Ω0
.

If ω and ω′ are both discrete one-forms of type ♦, we define their discrete scalar product

〈ω, ω′〉 :=
∫∫

F (X)

ω ∧ ?ω̄′,

whenever the right hand side converges absolutely. Similarly, a discrete scalar product for discrete
two-forms is defined.

Note that ?Ω is a priori a function on F (X). However, the discrete two-forms to that we will
apply the discrete Hodge star vanish on all faces of X corresponding to faces of Λ or on all faces
corresponding to vertices of Λ. In these cases, ?Ω is a function on V (Λ) or on V (♦), respectively.

Corollary 31. (1) ?2 = Id on complex functions on V (Λ) or V (♦) and discrete two-forms.
(2) ?2 = −Id on discrete one-forms of type ♦.
(3) 〈f1, f2〉 =

∫∫
F (X) f1?f2 and 〈h1, h2〉 =

∫∫
F (X) h1?h2 for functions f1, f2 : V (Λ) → C and

h1, h2 : V (♦)→ C.
(4) f : V (Λ)→ C is discrete holomorphic if and only if ?df = −idf .

Remark 32. It can be easily checked that our definition of a discrete Hodge star on discrete
one-forms coincides with Mercat’s definition given in [16]. But on discrete two-forms and complex
functions, our definition of the discrete Hodge star includes an additional factor of the area of the
corresponding face of X. As before, the additional factor of two encoded in Ω0 reflects the fact
that the corresponding two-forms vanish on half of the faces of X.

Proposition 33. δ := − ? d? is the formal adjoint of the discrete exterior derivative d: Let
f : V (Λ) → C, ω a discrete one-form of type ♦, and Ω a discrete two-form being 0 on all faces
corresponding to vertices of ♦. Assume that all of them are compactly supported. Then,

〈df, ω〉 = 〈f, δω〉 and 〈dω,Ω〉 = 〈ω, δΩ〉.
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Proof. Using discrete Stokes’ theorem, Proposition 29, and Corollary 31 (i), we obtain

0 =
∫∫

F (X)

d(f ? ω̄) =
∫∫

F (X)

df ∧ ?ω̄ +
∫∫

F (X)

fd ? ω̄ = 〈df, ω〉+ 〈f, ?d ? ω〉.

The second equation is shown in the same manner. �

11. Discrete Laplacian

The discrete Laplacian and the discrete Dirichlet energy on general quad-graphs were first
introduced by Mercat in [16]. Later, Skopenkov reintroduced these definitions in [18], taking the
same definition in a different notation.

Definition 34. The discrete Laplacian on discrete differential forms is defined as the operator
4 := −δd− dδ = ?d ? d+ d ? d ? .

A function f : V (Λ)→ C is called discrete harmonic at v ∈ V (Λ) if 4f(v) = 0.

The following factorization of the discrete Laplacian in terms of discrete derivatives generalizes
the corresponding results given in [3] to general quad-graphs. The local representation of 4f at
v ∈ V (Λ) is, up to a factor involving the area of the face Fv, the same as in [16].

Corollary 35. Let f : V (Λ)→ C. Then, 4f = 4∂♦∂̄Λf = 4∂̄♦∂Λf . At a vertex v of Λ,

4f(v) = 1
4area(Fv)

∑

Qs∼v

1
Re (ρ(v, vs))

(
|ρ(v, vs)|2 (f(vs)− f(v)) + Im (ρ(v, vs))

(
f(v′s)− f(v′s−1)

))
.

Remark 36. In the case that the diagonals of the quadrilaterals are orthogonal to each other, ρ
is always real. Then, the discrete Laplacian splits into two discrete Laplacians on Γ and Γ∗.

Corollary 37. Let f : V (Λ)→ C.
(1) If f is discrete harmonic, ∂Λf is discrete holomorphic.
(2) If f is discrete holomorphic, f , Re f , and Im f are discrete harmonic.

For a finite subset ♦0 ⊂ ♦ and two functions f, g : V (Λ0)→ C, we denote by

〈f, g〉♦0 := − 1
2i

∫∫

F (X0)

fḡΩ0

the discrete scalar product of f and g restricted to ♦0. Similarly, the restriction of the discrete
scalar product of two discrete one-forms is defined.

In the rhombic setup, discrete versions of Green’s second identity were already stated by Mer-
cat [14], whose integrals were not well defined separately, and Chelkak and Smirnov [3], whose
boundary integral was an explicit sum involving boundary angles. We are able to provide a dis-
crete Green’s first identity out of which discrete Green’s second identity immediately follows. The
formulation and the proof is a complete analog to the smooth setting.

Theorem 38. Let ♦0 ⊂ ♦ be finite, and let f, g : V (Λ0)→ C.
(1) 〈f,4g〉♦0 + 〈df, dg〉♦0 =

∮
∂X0

f ? dḡ.

(2) 〈4f, g〉♦0 − 〈f,4g〉♦0 =
∮
∂X0

(f ? dḡ − ḡ ? df) .

Proof. By Proposition 29, d (f ? dḡ) = df ∧ ?dḡ + f ? (?d ? dḡ). Now, discrete Stokes’ theorem
yields the desired result. For the second part, just apply twice discrete Green’s first identity. �

12. Discrete Cauchy’s integral formulae

Definition 39. Functions KQ0 : V (Λ) → C and Kv0 : V (♦) → C are called discrete Cauchy’s
kernels (with respect to Q0 ∈ V (♦) or v0 ∈ V (Λ), respectively), if for all Q ∈ V (♦), v ∈ V (Λ) there
holds:

∂̄ΛKQ0(Q) = δQQ0

π

2area(FQ) and ∂̄♦Kv0(v) = δvv0

π

2area(Fv)
.
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Remark 40. In the general case, it seems to be practically impossible to speak about any as-
ymptotic behavior of certain functions, as Kenyon did for discrete Green’s functions and discrete
Cauchy’s kernels on rhombic quad-graphs [12]. For this reason, we do not require any asymptotic
behavior of discrete Cauchy’s kernels. However, we can construct discrete Cauchy’s kernels on
parallelogram graphs with appropriate asymptotics and can prove at least existence of discrete
Cauchy’s kernels with respect to Q0 ∈ V (♦) or v0 ∈ V (Λ) in the general case [9].

Theorem 41. Let f and h be discrete holomorphic functions on V (Λ) and V (♦), respectively. Let
v0 ∈ V (Λ) and Q0 ∈ V (♦), and let Kv0 : V (♦) → C and KQ0 : V (Λ) → C be discrete Cauchy’s
kernels with respect to v0 and Q0, respectively.

Then, for any discrete contours Cv0 and CQ0 on X surrounding v0 and Q0 once in counter-
clockwise order, respectively, discrete Cauchy’s integral formulae are true:

f(v0) = 1
2πi

∮

Cv0

fKv0dz and h(Q0) = 1
2πi

∮

CQ0

hKQ0dz.

Remark 42. In the case of rhombic quad-graphs, Mercat formulated a discrete Cauchy’s integral
formula for the average of a discrete holomorphic function on V (Λ) along an edge of Λ. In
[3], Chelkak and Smirnov provided a discrete Cauchy’s integral formula for discrete holomorphic
functions on V (♦) using two integrals along cycles on Γ and Γ∗.

Theorem 43. Let f : V (Λ) → C be discrete holomorphic, Q0 ∈ V (♦), and let KQ0 : V (Λ) → C
be a discrete Cauchy’s kernel with respect to Q0.

Then, for any discrete contour CQ0 in X surrounding Q0 once in counterclockwise order that
does not contain any edge inside Q0, the discrete Cauchy’s integral formula is true:

∂Λf(Q0) = − 1
2πi

∮

CQ0

f∂ΛKQ0dz.

Proof. Let D be the discrete domain in X bounded by CQ0 . Since no edge of CQ0 passes through
Q0, the discrete one-form ∂̄KQ0dz̄ vanishes on CQ0 . Therefore,∮

CQ0

f∂ΛKQ0dz =
∮

CQ0

fdKQ0 =
∫∫

D

d(fdKQ0) =
∫∫

D

df ∧ dKQ0

due to discrete Stokes’ theorem, and Propositions 22 and 29. Now, f is discrete holomorphic, so
df ∧ dKQ0 = ∂Λf∂̄ΛKQ0Ω0. But ∂̄ΛKQ0 vanishes on all vertices of ♦ but Q0. Finally,

− 1
2πi

∮

CQ0

f∂ΛKQ0dz = − 1
2πi

∫∫

FQ0

∂Λf∂̄ΛKQ0Ω0 = ∂Λf(Q0).

�

References
[1] A.I. Bobenko, C. Mercat, and Yu.B. Suris. Linear and nonlinear theories of discrete analytic functions. Inte-

grable structure and isomonodromic Green’s function. J. Reine Angew. Math., 583:117–161, 2005.
[2] U. Bücking. Approximation of conformal mappings by circle patterns. Geom. Dedicata, 137:163–197, 2008.
[3] D. Chelkak and S. Smirnov. Discrete complex analysis on isoradial graphs. Adv. Math., 228:1590–1630, 2011.
[4] D. Chelkak and S. Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observ-

ables. Invent. Math., 189(3):515–580, 2012.
[5] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differentialgleichungen der mathematischen Physik.

Math. Ann., 100:32–74, 1928.
[6] R.J. Duffin. Basic properties of discrete analytic functions. Duke Math. J., 23(2):335–363, 1956.
[7] R.J. Duffin. Potential theory on a rhombic lattice. J. Comb. Th., 5:258–272, 1968.
[8] J. Ferrand. Fonctions préharmoniques et fonctions préholomorphes. Bull. Sci. Math. Ser. 2, 68:152–180, 1944.
[9] F. Günther. Discrete Riemann surfaces and integrable systems. PhD thesis, Technische Universität Berlin,

September 2014. http://opus4.kobv.de/opus4-tuberlin/files/5659/guenther_felix.pdf.
[10] R.Ph. Isaacs. A finite difference function theory. Univ. Nac. Tucumán. Rev. A, 2:177–201, 1941.
[11] R. Kenyon. Conformal invariance of domino tiling. Ann. Probab., 28(2):759–795, 2002.
[12] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs. Invent. math., 150:409–439, 2002.
[13] J. Lelong-Ferrand. Représentation conforme et transformations à intégrale de Dirichlet bornée. Gauthier-

Villars, Paris, 1955.

168



Discrete complex analysis – the medial graph approach

[14] C. Mercat. Discrete Riemann surfaces and the Ising model. Commun. Math. Phys., 218(1):177–216, 2001.
[15] C. Mercat. Discrete Riemann surfaces. In Handbook of Teichmüller theory. Vol. I, volume 11 of IRMA Lect.

Math. Theor. Phys., pages 541–575, Zurich, 2007. Eur. Math. Soc.
[16] C. Mercat. Discrete complex structure on surfel surfaces. In Proceedings of the 14th IAPR international confer-

ence on Discrete geometry for computer imagery, DGCI’08, pages 153–164, Berlin, Heidelberg, 2008. Springer-
Verlag.

[17] B. Rodin and D. Sullivan. The convergence of circle packings to the Riemann mapping. J. Diff. Geom.,
26(2):349–360, 1987.

[18] M. Skopenkov. The boundary value problem for discrete analytic functions. Adv. Math., 240:61–87, 2013.
[19] H. Whitney. Product on complexes. Ann. Math., 39(2):397–432, 1938.

Institut für Mathematik, MA 8-4, Technische Universität Berlin, Straße des 17. Juni 136, 10623 BERLIN,
GERMANY • bobenko@math.tu-berlin.de • fguenth@math.tu-berlin.de

169





Actes des rencontres du C.I.R.M.
Vol. 3 no 1 (2013) 171-181

Multigrid-convergence of digital curvature
estimators

Jacques-Olivier Lachaud

Abstract
Many methods have been proposed to estimate differential geometric quantities like

curvature(s) on discrete data. A common characteristics is that they require (at least)
one user-given scale or window parameter, which smoothes data to take care of both the
sampling rate and possible perturbations. Digital shapes are specific discrete approximation
of Euclidean shapes, which come from their digitization at a given grid step. They are thus
subsets of the digital plane Zd. A digital geometric estimator is called multigrid convergent
whenever the estimated quantity tends towards the expected geometric quantity as the grid
step gets finer and finer. The problem is then: can we define curvature estimators that are
multigrid convergent without such user-given parameter ? If so, what speed of convergence
can we achieve ? We review here three digital curvature estimators that aim at this objective:
a first one based on maximal digital circular arc, a second one using a global optimization
procedure, a third one that is a digital counterpart to integral invariants and that works on
2D and 3D shapes. We close the exposition by a discussion about their respective properties
and their ability to measure curvatures on gray-level images.

1. Introduction

Context and objectives. In many shape processing applications, the estimation of differential
quantities on the shape boundary is usually an important step. Their correct estimation makes
easier further processing, like quantitative evaluation, feature detection, shape matching or visual-
ization. A considerable amount of approaches have been proposed to estimate curvature(s) given
only discrete data. It is often desirable to have theoretical guarantees on the given estimation.
This property is called stability in Geometry processing: given a continuous shape and a specific
sampling of its boundary, the estimated measure should converge to the Euclidean one when the
sampling become denser. Perhaps Amenta et al. [2] is one of the first work toward this goal.

When discrete data are meshes, most approaches are local and do not provide theoretical
guarantees (see [41] and [18] for comprehensive evaluations, and Desbrun et al. [13] or Bobenko
and Suris [3] for a more general theory). Results on the stability of curvature estimators are scarce.
We may quote the result [42] for Gaussian curvature, integral curvature measures [10, 11], and to
some extent integral invariants of [35, 34].

When discrete data are limited to point clouds, fitting polynomials is probably the most
common approach (e.g. the osculating jets of Cazals and Pouget [5] is representative of these
approaches), but the stability result is restricted to a perfect sampling. A more appealing family
of techniques exploits the Voronoi diagram [1, 30, 31]. Several stability results are achieved even
in presence of (Hausdorff noise), but they do not entail the stability of curvature estimations.

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 52Cxx.
Key words. Discrete geometry, digital curvature, geometric estimation.
Partially funded by DigitalSnow ANR-11-BS02-009 research grant and KIDICO ANR-2010-BLAN-0205 research
grant.
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Note that all the preceding approaches require some parameter tuning, the most important one
determining the window of computation or the scale of the estimation in the terminology of scale-
spaces.

This paper focuses on estimating the curvature (or curvature tensor) on the boundary of dig-
ital shapes. Such digital structures are subsets of the d-dimensional digital space Zd and come
generally from the digitization of some Euclidean shape. Of course, the curvature tensor esti-
mation should be as close as possible to the curvature tensor of the underlying Euclidean shape
before digitization. Digital data form a special case of discrete data with specific properties: (1)
digital data cannot sample the boundary of the Euclidean shape (i.e. they do not lie on the shape
boundary), (2) digital data are distributed around the true sample according to arithmetic noise,
which looks rather uniform over a range [−h, h] from a statistical point of view, where h is the
digitization grid step. Another (weaker) way of stating these characteristics is to say that the
Hausdorff distance between the Euclidean shape and its digitization is some O(h). Of course, the
quality of the estimation should be improved as the digitization step gets finer and finer. This
property is called the multigrid convergence [22, 9]. It is thus similar in spirit with the stability
property.

For 2D digital objects, a few approaches achieve multigrid convergence with some hypothe-
ses. We quote the ones based either on binomial convolution principles [29, 15]. Algorithms are
parametrized by the size of the support of the convolution kernel. Convergence theorem holds
when such support size is an increasing function of the grid resolution and some shape character-
istics. The polynomial fitting method of [36] is an almost parameter-free method for estimating
second derivatives on functional digital data, and could perhaps be adapted to estimate the cur-
vature along 2D contours. For 3D digital objects, several empirical methods exist for estimating
curvatures, but none achieves multigrid convergence (e.g. see [27, 17]).

We look for digital curvature estimators with the following properties: (1) provably uniformly
multigrid convergent, (2) accurate in practice, (3) computable in an exact manner, (4) efficiently
evaluable at one point or everywhere, (5) robust to perturbations (i.e. bad digitization around
the boundary, outliers), (6) parameter free. The last point is crucial since it allows the analysis
of shapes without any user supervision. Note that parameter free convergence results have been
obtained for length [40, 23] and normal vector estimation [24, 26, 12].

Paper organization. We review here three different approaches which aim at fulfilling these
goals:

2D: Maximal Digital Circular Arcs (Section 3),
2D/3D: Constrained minimization of squared curvature (Section 4),
2D/3D: digital Integral Invariants (Section 5),

and we discuss there respective qualities in the last part. Note that the presentation of the
different estimators may slightly differ from the original papers. Indeed, the intent is to homogenize
notations and properties.

2. Notations and preliminaries

Shapes, digitization, boundary. In all subsequent sections, the symbol X denotes a family of
compact simply connected subsets of Rd with continuous curvature fields. The Gauss digitization
Digh(X) of X ∈ X with grid step h is defined as the set of integer points within the dilation of X
by a factor 1

h , i.e. Digh(X) def= ( 1
h ·X) ∩ Zd. Any finite subset Z of Zd is called a digital shape.

Its digital boundary ∆(Z) is the set of d − 1-dimensional cubical cells that form the topological
border of ∪z∈ZQz, where Qz is the unit cube centered on z. The h-boundary ∂hX of a shape X
is the union of the cells of the digital boundary of Digh(X), rescaled by a factor h, i.e.

∂hX
def= h · ∪c∈∆(Digh(X))c = ∂ ∪z∈Digh(X) Qz.

Some of these notions are illustrated on Fig. 5.1, right.
Digital contour, multigrid convergence. Geometrically, the h-boundary of X is close (in

the Hausdorff sense) to the topological boundary of X, but it is combinatorially equivalent to the
digital boundary of the digitization of X with step h. In 2D, the digital boundary is often called
digital contour, since it is easy to organize its 1-cells as one or several sequences of 1-cells (called
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linels or cracks depending on authors). Of course, a pixel is a point of Z2 and voxel is a point of
Z3. The multigrid convergence property for local geometric estimators is formally defined below.

Definition 1. The estimator κ̂ is multigrid-convergent toward the geometric quantity κ for the
family X if and only if, for any X ∈ X, there exits some positive h0 such that, for any 0 < h < h0,

∀x ∈ ∂X, ∀y ∈ ∂hX with ‖y − x‖1 ≤ h, |κ̂(Digh(X), y, h)− κ(X,x)| ≤ τx(h),
where τX,x : R+∗ → R+ has null limit at 0. This function defines the speed of convergence of κ̂
toward κ at point x of X. The convergence is uniform for X when every τX,x is bounded from
above by a function τX independent of x ∈ X with null limit at 0.

Medial axis, projection, and reach. For a compact set X ⊂ Rd, let δX be the distance
function to ∂X. The medial axis MA∂X of ∂X is the subset of Rd whose points have at least two
closest points on ∂X. Any point x of Rd \ MA∂X has only one closest point on ∂X which we
denote by ξX(x). The mapping ξX is called projection and is defined for almost every point of Rd.
The reach of ∂X [16] is the infimum of {δX(y), y ∈ MA∂X}. It is denoted by ρ∂X . Note that any
shape of X has a positive reach, which is related to the inverse of the maximal curvature but also
to the gaps between shape parts.

3. Curvature by maximal digital circular arcs

The curvature estimator by maximal digital circular arcs (MDCA) was introduced in [38].
Maximal digital straight segments proved to be an excellent basis for tangent estimation. Hence
maximal digital circular arcs is an excellent candidate for curvature estimation.

Let C be some digital contour to a digital shape Z. We look only at connected contours, since
each connected component can be treated separately. In this case, the digital contour is a circular
sequence of linels. Any proper connected part C ′ of C is a sequence of linels, whose discrete length
is its number of linels. Each linel of C ′ lies between two edge-adjacent pixels, one pixel belonging
to Z and called interior to C ′, the other pixel belonging to Z2 \ Z and called exterior to C ′.

Any part C ′ of C is a digital circular arc (DCA for short) if and only if the interior and exterior
pixels of C ′ are circularly separable, i.e. there exists a (Euclidean) circle that either encloses the
interior points without enclosing any exterior points or that encloses the exterior points without
enclosing any interior points. Any map associating to a DCA A the value 0 if the interior and
exterior points of A are linearly separable and the curvature of an arbitrary separating circle
otherwise is denoted by k.

Any DCA A of C is maximal if and only if all the parts C ′ containing A, i.e. such that
A ( C ′ ⊂ C, are not a DCA. The set of all maximal DCA (MDCA for short) that lie on a given
contour is unique. Two distinct MDCA have two distinct starting linels and two distinct ending
linels. The MDCA can be ordered according to the position of their first linel in the contour. Let
us then denote by (Ai)i∈{1,...,n} the sequence of the n MDCA lying on C.

As a result, a contour C can be partitioned without ambiguity into a sequence (Vi)i∈{1,...,n}
such that Vi is the set of linels closer to m(Ai) than to any other linel m(Aj), j ∈ {1, . . . , n} and
j 6= i (the first one with respect to the clockwise orientation of the contour is assumed to be closer
in case of tie).

Definition 2. Let Z ⊂ Z2 be a digital shape of digital contour C = ∆(Z). Let p be any point
of a linel c ∈ C. Then linel c and thus point p belongs to some Vi. The parameter-free MDCA
curvature estimator κ̂?MDCA is defined as

(3.1) κ̂?MDCA(Z, p) def= k(Ai).
The rescaled MDCA curvature estimator κ̂MDCA is naturally defined for some point x̂ ∈ ∂hX as

(3.2) κ̂MDCA(Digh(X), x̂, h) def= 1
h
κ̂?MDCA(Digh(X), 1

h
x̂).

This estimator approaches the curvature at a pointel as the curvature of the most-centered
maximal digital circular arc around it (see Figure 3.1).

We have a limited multigrid convergence result for the MDCA estimator, whose validity depends
on the asymptotic length of maximal digital circular arcs.
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Figure 3.1: The set of MDCAs (12 arcs) is depicted in a) with pieces of rings
along the contour of the digitization of an ellipse having a great axis of 9 pixels
long and a small axis of 6 pixels long. The angle between the main orientation
and the x-axis is equal to 1.9 radians. The curvature plot defined from the set of
MDCAs is shown in b). The blue grid edges are those whose curvature depends
on the radius of the blue MDCA.

Theorem 3 (Theorem 1, [38]). Let X ∈ X. If the Euclidean length of MDCAs along any ∂hX
is lower bounded by Ω(ha) and upper bounded by O(hb), 0 < b ≤ a < 1/2, then the curvature
estimator κ̂MDCA is uniformly multigrid convergent to the curvature κ, with τ = O(hmin(1−2a,b)).

Although experiments indicate that the length of MDCA falls into the hypothesis of this theo-
rem, this fact is not proven. However, experiments show that this estimator is very accurate and
convergent in practice.

4. Curvature by minimization of squared curvature

A completely different approach to curvature estimation was proposed in [19, 20]. Given a digital
shape Z, the idea is to take into account all the smooth Euclidean shapes whose digitization is Z.
Then, among all these shapes, the most representative shape for curvature estimation is the one
that minimizes its total squared curvature. More precisely, the shape of reference to Z is sought
in the “compactified” family

X(Z) def= {X ∈ X,Digh(X \ ∂X) ⊂ Z and Digh(Rd \X) ⊂ Zd \ Z}.
It just means that points exactly on the shape boundary may be either digitized “in” or “out”.
The shape of reference Xref(Z) is the solution to the following minimization problem

Xref(Z) def= arg min
X∈X(Z)

∫

∂X

κ2ds,

where κ is the mean curvature field over ∂X.

Definition 4. Let Z be a digital shape. Let p be any point inside some d− 1-cell of ∆(Z). The
parameter-free MK2 curvature estimator κ̂?MK2 is defined as

(4.1) κ̂?MK2(Z, p) def= κ(Xref(Z), ξ∂Xref(Z)(p)),
where ξ∂Xref(Z) is the closest point to p on the boundary of the shape of reference to Z.

The rescaled MK2 curvature estimator κ̂MK2 is naturally defined for some point x̂ ∈ ∂hX as

(4.2) κ̂MK2(Digh(X), x̂, h) def= 1
h
κ̂?MK2(Digh(X), 1

h
x̂).

Finding this shape of reference is not a trivial task. In [20], a fast algorithm called GMC and
using digital straight segments provides an approximation with no theoretical guarantees. This
variational problem is also known as the minimization of a Willmore energy under constraints.
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Hence, in [4] two other numerical techniques were proposed to find a solution: (i) a precise one
based on convex optimization (but limited to convex shapes): (ii) a more versatile technique based
on phase field approximation which is also extensible to 3D.

It is rather clear by definition that such an estimator should be uniformly multigrid convergent,
provided one may determine the exact shape of reference. However, whatever the chosen algorithm
or numerical technique, there is yet no theoretical guarantee on this estimator. A comprehensive
2D evaluation shows that it is experimentally multigrid convergent, although it is slightly less
accurate than the MDCA estimator on perfect data. However, it is very stable and presents no
oscillations in the result. It is thus easy to find the dominant points (maxima and minima of
curvatures) and inflexion zones [21]. Another advantage of this approach is that it reconstructs a
shape of reference. We have thus more than just an estimation of the curvature field. Figure 4.1
illustrates MK2 curvature estimations and contour reconstruction for 2D digital shapes, while
Figure 4.2 gives 3D reconstruction results on a digital rabbit.

5. Curvature by digital integral invariants

Integral invariants were proposed in [35, 34] as a tool to analyze locally the geometry of trian-
gulated mesh. The idea is to define integral quantities over the intersection of the shape X with a
ball Br(x), centered on the point of interest x and of given radius r (see Fig. 5.1). These integral
quantities are thus functions of the parameter r. For instance, the mean curvature is related to
the volume of X ∩Br(x): it participates in the second term of the Taylor expansion of the volume
at r = 0. We may note that a very similar tool was proposed earlier in [6].

It is possible to adapt this approach to digital data. In [7], the authors define a curvature
estimator for 2D shapes and a mean curvature estimator for 3D shapes, based on digital integral
invariants. The full curvature tensor is estimated by means of digital integral invariants in [8].
The 2D parameter-free curvature estimator is presented in [28].

Given a digital shape Z ⊂ Zd, the discrete volume at step h is defined as V̂old(Z, h) def=
hdCard(Z).

Definition 5. Given a digital shape Z ⊂ Z2, any point x ∈ R2, some radius r > 0 and a gridstep
0 < h < r, the II curvature estimator is defined as:

(5.1) κ̂r,II(Z, x, h) def= 3π
2r −

3V̂ol2(Br/h( 1
hx) ∩ Z, h)

r3 .

The 3D extension to this estimator, when Z ⊂ Z3 and x ∈ R3, is called the II mean curvature
estimator and is written as:

(5.2) κ̂mr,II(Z, x, h) def= 8
3r −

4V̂ol3(Br/h( 1
hx) ∩ Z, h)

πr4 .

When one wishes to estimate the full curvature tensor (principal curvatures, principal direc-
tions), we must estimate the second order moments of X ∩ Br(x), also known as covariance ma-
trix. For integers i, j, k, the i, j, k-discrete moment of Z at step h is defined as m̂i,j,k(Z, h) def=
hi+j+k

∑
(x,y,z)∈Z x

iyjzk. The digital covariance matrix is naturally defined as a centered version
of the tensor of second order discrete moments:

Ĵ(Z, h) def=



m̂2,0,0(Z, h) m̂1,1,0(Z, h) m̂1,0,1(Z, h)
m̂1,1,0(Z, h) m̂0,2,0(Z, h) m̂0,1,1(Z, h)
m̂1,0,1(Z, h) m̂0,1,1(Z, h) m̂0,0,2(Z, h)




− 1
m̂0,0,0(Z, h)



m̂1,0,0(Z, h)
m̂0,1,0(Z, h)
m̂0,0,1(Z, h)


⊗



m̂1,0,0(Z, h)
m̂0,1,0(Z, h)
m̂0,0,1(Z, h)



T

.

Following the truncated Taylor expansion of [35], Theorem 2, we define estimators of curvatures
from the diagonalization of the digital covariance matrix. Note that principal direction estimators
are simply the two main eigenvectors of this matrix.
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Figure 4.1: Digital shapes (left: contour as white digital path between interior and
exterior pixels), shape of reference obtained with phase field reconstruction (left:
red curve) and comparison of curvature estimations (right) with: true curvature
(red), GMC algorithm (green) and Phase-field technique (cyan).

Definition 6. Given a digital shape Z ⊂ Z3, any point x ∈ R3, some radius r > 0 and a gridstep
0 < h < r, the II principal curvature estimators are defined as:

κ̂1
r,II(Z, x, h) = 6

πr6 (λ̂2 − 3λ̂1) + 8
5r ,(5.3)

κ̂2
r,II(Z, x, h) = 6

πr6 (λ̂1 − 3λ̂2) + 8
5r ,(5.4)

where λ̂1 and λ̂2 are the two greatest eigenvalues of Ĵ(Br/h( 1
hx) ∩ Z, h).
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iteration 0 iteration 48

Figure 4.2: Phase field reconstruction of 3D digital rabbit.
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Figure 5.1: Integral invariant computation (left) and notations (right) in dimen-
sion 2.

The II curvature estimator can be made parameter-free. The idea is to use the average discrete
length of all maximal segments of ∆(Z). Any part C ′ of a digital contour C is a digital straight
segment (DSS for short) if and only if the interior and exterior pixels of C ′ are linearly separable,
i.e. there exists a Euclidean straight line that separates interior points from exterior points. Any
DSS M of C is a maximal segment if and only if all the parts M ′ containing M , i.e. such that
M (M ′ ⊂ C, are not a DSS.

When the digital shape is the digitization of some Euclidean shape X at gridstep h, the discrete
length of maximal segments follows several asymptotic relations [12]. If we denote by LD(Z) the
average of the discrete length of all maximal segments on the contour ∆(Z), then the precise fact
used here is

Θ(h− 1
3 ) ≤ LD(Digh(X)) ≤ Θ(h− 1

3 log(h−1)).

Definition 7. Let Z ⊂ Z2 be a digital shape, and C = ∆(Z) its digital contour. Let p be any
point of a linel of C. The parameter-free II curvature estimator κ̂?II is defined as:

(5.5) κ̂?II(Z, p)
def= 3π

2ρ(Z) −
3A(Z, p)
ρ(Z)3

where ρ(Z) = (LD(Z))2 and A(Z, p) = Card(Bρ(Z)(p) ∩ Z).
The rescaled II curvature estimator κ̂II is naturally defined for some point x̂ ∈ ∂hX as

(5.6) κ̂II(Digh(X), x̂, h) def= 1
h
κ̂?II(Digh(X), 1

h
x̂).

We do have several multigrid convergence for these estimators, for the family of shapes X
(compact sets, C3-smooth boundary):
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: Illustration of 3D curvature estimation. Mean curvature on rounded
cube (a), Goursat’s surface (b), Leopold surface (c) and a bunny (d). First prin-
cipal direction and second principal direction Goursat’s surface (e and f) and
Stanford bunny (g and h) .

estimator quantity parameters convergence speed reference
κ̂r,II 2D curvature r = h

1
3 O(h 1

3 ) [7]
κ̂mr,II 3D mean curvature r = h

1
3 O(h 1

3 ) [7]
κ̂1
r,II 1st principal curvature r = h

1
3 O(h 1

3 ) [8]
κ̂2
r,II 2nd principal curvature r = h

1
3 O(h 1

3 ) [8]
κ̂?II 2D unscaled curvature parameter-free O(h 1

3 log2(h−1)) [28]
κ̂II 2D curvature scale h O(h 1

3 log2(h−1)) [28]
A very comprehensive set of experimental evaluation has been performed on II curvature estima-

tors [7, 8, 28], as well as many comparisons with other approaches (MDCA, binomial convolutions
[29, 15], jet fitting [5]). It is of course experimentally multigrid convergent. It is one of the most
accurate in practice. Furthermore it is robust to noise due to its integral form. Figure 5.2 displays
some results of estimators κ̂mr,II and directions of κ̂1

r,II and κ̂2
r,II. This has been implemented in the

open-source library DGtal [14].

6. Discussion

We have presented three families of digital curvature estimators. It is clear that the gridstep
h is necessary to get the correct unit for curvature, but we have shown above that we can define
curvature estimators requiring no parameter if we assume simply that a pixel or voxel has unit
length. Even better, we have exhibited one curvature estimator, the parameter-free II curvature
estimator κ̂?II, the multigrid convergence of which is established for the classical family X of compact
shapes with C3-boundary. Experiments show that this estimator competes with the accurate
MDCA estimator but with the advantage of theoretical guarantees as well as a robustness to
noise.

The following table summarizes the respective qualities of each curvature estimator, according
to the desired properties described in the introduction. When an estimator meets fully a property,
it is circled by a frame. The symbol n stands for the number of elements of ∆(Z). Note that
n = Θ(hd−1) if d is the dimension of the space.
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convergence accuracy exact comp. efficient robust parameters
2D estimators
κ̂?MDCA ?

�� ��O(h 1
3 )

�� ��yes
�� ��O(n 4

3 ) no
�� ��unit

κ̂?MK2 (GMC) ? ≈ O(h 1
3 ) Opt.

�� ��iter ×O(n 2
3 ) Hausdorff

�� ��≈ unit

κ̂?MK2 (PF) ?
�� ��O(h 1

3 ) Opt. iter ×O(n2) no
�� ��≈ unit

κ̂r,II

�� ��O(h 1
3 )

�� ��O(h 1
3 )

�� ��Yes O(n 5
3 )

�� ��yes need h

κ̂?II

�� ��O(h 1
3 )

�� ��O(h 1
3 )

�� ��Yes O(n 5
3 )

�� ��yes
�� ��unit

3D estimators
κ̂?MK2 (PF) ? ? Opt. iter ×O(n 3

2 ) no
�� ��≈ unit

κ̂mr,II

�� ��O(h 1
3 )

�� ��O(h 1
3 )

�� ��Yes O(n 5
3 )

�� ��yes need h

κ̂1
r,II

�� ��O(h 1
3 )

�� ��O(h 1
3 )

�� ��Yes O(n 5
3 )

�� ��yes need h

κ̂2
r,II

�� ��O(h 1
3 )

�� ��O(h 1
3 )

�� ��Yes O(n 5
3 )

�� ��yes need h

It is clear that the next step is to define parameter-free 3D principal curvature estimators, with
guaranteed multigrid convergence. For now, for this problem, only empirical solutions exist.

Relevance of digital estimators for estimating curvatures in gray-level images. An-
other natural question is the suitability of using digital curvature estimators on 2D or 3D gray-level
image data. In this case, the input data is much richer than a simple binary image, since grey-level
values could potentially be used for determining curvatures. Therefore there exists standard image
derivation techniques to estimate the curvature of isocontours or isosurfaces within images, some
involve derivative filters (e.g. [32]), specialized finite difference schemes [39, 33], or image structure
tensor [37, 25].

Since it is parameter-free, we examine here the upwind finite difference scheme used in Level-Set
(LS) techniques for estimating the mean curvature of some isosurface [39, 33], and we compare its
accuracy to the 3D Integral Invariant (II) mean curvature estimator. Given a point p of value I(p)
in image I, LS curvature estimator uses grey-level information around p and estimates the mean
curvature at p of the isosurface of value I(p). On the other hand, II estimator processes only the
binary image obtained by thresholding I at the value I(p). We have compared numerically the
respective performance of LS and II on a 3D image of a ball of radius 30, with a linear gradient of
50 at its boundary. We have also add a Gaussian noise of standard deviation σ ∈ {0, 1, 2, 3, 4, 5},
which is a very small perturbation considering that the background is 50 and the foreground is
200. Input data and experiments are illustrated on Figure 6.1. As one can see, even the noise with
deviation 5 is almost imperceptible. If we look however at the average mean curvature computed
by LS and II estimators, we see that their behaviors are dramatically different. LS estimator is
accurate if the image is perfect (average is very close with 0.8% relative error but samples have
a relative deviation of 38%). However, as soon a slight perturbation is added to the data, this
estimator becomes very unstable. On the other hand, the accuracy of II estimator is related to
a correct choice of ball radius (here r ≈ 10 gives excellent results), but this estimator is stable
whatever the noise. Note that the discussion above gives indication for the correct radius. Indeed
it is as if we are digitizing a ball of radius 1 with gridstep h = 1

30 . A correct Euclidean radius for
II estimator should follow h

1
3 , hence the corresponding discrete radius is h

1
3
h = h−

2
3 ≈ 9.65.

To conclude, the image curvature estimator of [39, 33] is too unstable for analyzing real images
coming from camera or biomedical devices. More robust techniques using image structure tensor
[37, 25] can be parameterized to address noise in a global manner. The II digital curvature
estimator gives reasonably accurate results even if the gray-level information is not reliable, and
is stable with respect to noise (with zero mean). A natural open question is to extend digital
curvature estimator to gray-level images (hence the shape is defined as a fuzzy characteristic set).
II estimator may be a good candidate since the covariance matrix can be weighted accordingly.
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Figure 6.1: Mean curvature computation in a 3D gray-level image. Left: Slices
in the input 3D 8-bit gray-level image, which represent a 3D ball of radius 30 with
gradient 50 around its isosurface 128 (top image is perfect data, bottom image is
data damaged with a Gaussian noise of deviation 5, i.e. PSNR=84.5). Middle:
Average and deviation of mean curvature computed with LS estimator. Right:
Average and deviation of mean curvature computed with II estimator, with several
radii.
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Curvature and Flow in Digital Space
Atsushi Imiya

Abstract
We first define the curvature indices of vertices of digital objects. Second, using these

indices, we define the principal normal vectors of digital curves and surfaces. These defini-
tions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce
curvature flow for isothetic polytopes defined in a digital space.

1. Introduction

A unified treatment of shape deformation is required for the intelligent editing of image contents
for multimedia technology. The deformation of image data based on curvature flow and diffusion
processes [17, 18, 29, 21] on surfaces [13, 22] provides a mathematical foundation for the unified
treatment of deformation [23].

These deformation operations for boundaries are discussed in the framework of the free bound-
ary problem in mathematics. For the construction of solutions of partial differential equations
as deformed surfaces, the numerical computation is achieved using an appropriate discretization
scheme [13, 1]. Bruckstein et al. derived a digital version of this problem for planar shapes [7].
Furthermore, Bobenko and Suris proposed a spatial version of their digital treatment [6].

In this paper, we introduce a transform [12] for a binary digital set [14], which we call Digital
Curvature Flow. Digital curvature flow describes the geometric flow [7, 10] controlled by the
curvature on the boundary of binary digital images on a plane and in a space. This flow, which
moves the boundary, can also be considered as the curvature flow on isothetic polytopes of which
all edges are parallel to axes of the orthogonal coordinate system [14].

For the numerical analysis of partial differential equations, it is required to generate grids [28] or
decompose the region of interest to small domains [27] for the discretization of equations [19, 9, 20].
Therefore, numerical analysis is achieved in discrete forms. However, these grids usually depend
on problems which we want to deal with. In contrast to this classical numerical treatment [27, 28],
in this paper, we define the digital treatment of the deformation of the boundary of an object in
a digital space which is defined as a collection of lattice points [14].

Control of the topology is an important problem for flow-based shape analysis and processing
[13, 22, 7]. Curvature flows usually cause the collapse of the topology. Therefore, we propose a
method for the examination of the topology of digital shapes and objects. Using this process we can
detect collapses of topologies and control the topology of shapes and objects during deformation
by flow-based processing.

Since the curvature of a point on curves and surfaces is defined locally [26, 24, 31, 25], the
curvature flow is basically a local operation on them. As a digital treatment of partial differential
equations, the theory of cellular automaton is proposed. In this theory, a space is also digitized
and equations are approximately expressed as rules which rewrite the configurations of 1-points in
a neighbourhood of a digital space [15, 14]. Therefore, rules for the cellular-automaton treatment
[16, 8, 30] of partial differential equations are basically local operations. These similar properties

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 52C07,65Q10,68R10.
Key words. Digital Space, Surgery, Curvature flow, Topology.
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between cellular automata and curvature suggest that our treatment of boundary deformation is
natural from the viewpoint of space discretization.

2. Connectivity and Neighbourhood

Setting R2 and R3 to be two- and three-dimensional Euclidean spaces, we express vectors in
R2 and R3 as x = (x, y)> and x = (x, y, z)>, respectively, where > is the transpose of the vector.
Setting Z to be the set of all integers, the two- and three-dimensional digital spaces Z2 and Z3 are
sets of points such that both x and y are integers and x, y and z are all integers, respectively.

On Z2 and in Z3

(2.1) N4((m,n)>) = {(m± 1, n)>, (m,n± 1)>}
and

N6((k,m, n)>) = {(k ± 1,m, n)>, (k,m± 1, n)>, (k,m, n± 1)>}
are the planar 4-neighbourhood of point (m,n)> and the spatial 6-neighbourhood of point (k,m, n)>,
respectively. In this paper, we assume 4-connectivity on Z2 and 6-connectivity in Z3.

For integers k, m and n, the collection of integer triplets (k′,m′, n′) which satisfy the equation
(2.2) (k − k′)2 + (m−m′)2 + (n− n′)2 = 1
defines points in the 6-neighbourhood of point (k,m, n)>. If we substitute k = k′, m = m′ and
n = n′ into eq. (2.2), we obtain the equations
(2.3) (m−m′)2 + (n− n′)2 = 1, (k − k′)2 + (n− n′)2 = 1, (m−m′)2 + (n− n′)2 = 1.
These equations define points in the planar 4-neighbourhoods. Therefore, setting one of x, y or z
to be a fixed integer, we obtain two-dimensional sets of lattice points such that
(2.4) Z2

1((k,m, n)>) = {(k,m, n)>|∃k, ∀m, ∀n ∈ Z},

(2.5) Z2
2((k,m, n)>) = {(k,m, n)>|∀k, ∃m,∀n ∈ Z},

and
(2.6) Z2

3((k,m, n)>) = {(k,m, n)>|∀k, ∀m,∃n ∈ Z}.
These two-dimensional digital spaces are mutually orthogonal. Denoting
(2.7) N4

1((k,m, n)>) = {(k,m± 1, n)>, (k,m, n± 1)>},

(2.8) N4
2((k,m, n)>) = {(k ± 1,m, n)>, (k,m, n± 1)>},

and
(2.9) N4

3((k,m, n)>) = {(k ± 1,m, n)>, (k,m± 1, n)>},
the relationship

N6((k,m, n)>) = N4
1((k,m, n)>) ∪N4

2((k,m, n)>) ∪N4
3((k,m, n)>)

holds since N4
i ((k,m, n)>) is the 4-neighbourhood on the plane Z2

i ((k,m, n)>) for i = 1, 2, 3 [11].
Equation (2.10) implies that the 6-neighbourhood is decomposed into three mutually orthogonal
4-neighbourhoods [11]. Figures 2.1 (a) and (b) illustrate the spatial 6-neighbourhood and planar
4-neighbourhood, respectively. The 6-neighbourfood in Z3 is decomposed into three mutually
orthogonal 4-neighbourhoods as shown in Figure 2.1 (c).

A pair of points (k,m, n)> and x ∈ N6((k,m, n)>) defines a unit line segment in Z3. Further-
more, four 6-connected points which form a circle define a unit plane segment in Z3 with respect
to the 6-connectivity. Therefore, we assume that our object is a complex of 2× 2× 2 cubes which
share at least one face with each other. Thus, the surface of an object is a collection of unit squares
which are parallel to the planes x = 0, y = 0 and z = 0.

Definition 1. For a point x ∈ Z3, the collection of eight points
(2.10) S3 = {x,x+ e1,x+ e2,x+ e3,x+ e1 + e2,x+ e2 + e3,x+ e3 + e1,x+ e1 + e2 + e2}
is a digital 3-simplex.

Definition 2. A digital object is a complex of a finite number of digital 3-simplices.
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(a) (b)

(c)

A B C

(d)

Figure 2.1: Local configuration of 2-manifold in Z3. (a) 6-neighbourhood in Z3

(b) 4-neighbourhood on Z2. (c) Decomposition of the 6-neighbourhood in the
space to 4-neighbourhoods on the three orthogonal planes. (d) Configurations of
points on the planar boundary. The spatial 6-neighbourfood in Z3 is decomposed
into three mutually orthogonal 4-neighbourhoods.

3. Digital Boundary Manifold

For a pair of setsA andB in Rn, the Minkowski additionA⊕B and the Minkowski subtraction
A	B are defined as
(3.1) A⊕B =

⋃

b∈B

A(b), A	B =
⋂

b∈B

A(b),

for A(x) = {y|y = a+ x, ∀a ∈ A}.
For the Minkowski addition and subtraction, the relations

F 	G = F ⊕G(3.2)
F ⊕ (G ∪H) = (F ⊕G) ∪ (F ⊕H)(3.3)
F 	 (G ∪H) = (F 	G) ∩ (F 	H)(3.4)

are satisfied. Furthermore, we obtain the following theorem.

Theorem 3. If F ∩G = ∅, the equality
(3.5) (F ∪G)	H = (F 	H) ∪ (G	H)
is satisfied

(Proof)

(F ∪G)	H =
⋂

x∈H

(F ∪G)(x)

= {x+ y|∀x ∈H, ∃y ∈ (F ∪G)}
= {x+ y|∀x ∈H, ∃y ∈ F } ∪ {x+ y|∀x ∈H, ∃y ∈ G}
= (F 	H) ∪ (G	H)

�
In Z3, the inner boundary of F is defined as

(3.6) ∂F = F \ (F	N6),
where N6 = N6((0, 0, 0)>). A polyhedron whose vertices are points in ∂F is a Nef polyhedron
[4, 2, 3, 5]. Therefore, the inner boundary of F is a Nef polyhedron.

Definition 4. We call a Nef polyhedron in Z3 a grid Nef polyhedron.
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In this paper, we deal with the topological and geometrical properties of grid points on the
surface of a grid Nef polyhedron.

For i = 1, 2, 3, we set

(3.7) Z2
k(i) = {x|x = z + k(i)ei, z ∈ Z2

i ((0, 0, 0)>)},

where e1 = (1, 0, 0)>, e2 = (0, 1, 0)> and e3 = (0, 0, 1)>. A slice of F perpendicular to the plane
Z2
i for i = 1, 2, 3 is

(3.8) F2
k(i) = F ∩ Z2

k(i),

Furthermore, we set

(3.9) K(i) = {k(i)|F ∩ Z2
k(i) 6= ∅},

that is, K(i) is the number of slices which are perpendicular to ei. We have the following decom-
position theorem.

Theorem 5. Setting

(3.10) ∂F2
k(i) = F2

k(i) \ (F2
k(i) 	N4

i ),

where N4
i = N((0, 0, 0)>), the relation

(3.11) ∂F =
3⋃

i=1

⋃

k(i)∈K(i)

∂F2
k(i)

is satisfied.

(Proof) Since N6 =
⋃3
i=1 N4

i , we have the relation F 	N6 =
⋃3
i=1(F 	N4

i ). Furthermore, the
decomposition F =

⋃3
i=1

{⋃
k(i)∈K(i) F2

k(i)

}
derives the relation

F \ (F	N6) =




3⋃

i=1

⋃

k(i)∈K(i)

F2
k(i)


 \





3⋃

i=1
((

⋃

k(i)∈K(i)

F2
k(i))	N4

i )





=
3⋃

i=1

⋃

k(i)∈K(i)

{
F2
k(i) \ (F2

k(i) 	N4
i )
}
.(3.12)

�
Theorem 5 implies the following properties.

Property 6. On the surface of a grid Nef polyhedron, each point lies on two or three digital planes.

Property 7. The boundary ∂F of a three-dimensional digital object F is the union of the two-
dimensional boundaries.

Therefore, it is possible to construct ∂F from {∂F2
k(i)}3

k(i)∈K(i),i=1. Using this relation recur-
sively, we can construct the boundary detection algorithm for three-dimensional digital objects
from two-dimensional boundary detection algorithms.

4. Curvature Indices of Points

4.1. Planar Curvature Indices. Since we are concerned with a binary digital object, we affix
values of 0 and 1 to points in the background and in objects, respectively. On Z2, the three types
of point configurations illustrated in Figure 2.1 (d) exist in the neighbourhood of a point × on
the boundary. In the three configurations A, B and C in Figure 2.1 (d), • and ◦ are points on the
boundary and in the background, respectively. Setting fi ∈ {0, 1} to be the value of point xi such
that

(4.1)
x3 = (m,n+ 1)>

x5 = (m− 1, n)> x0 = (m,n)> x1 = (m+ 1, n)>
x7 = (m,n− 1)>,
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the curvature of point x0 is defined by

(4.2) r(x0) = 1− 1
2
∑

k∈N
fk + 1

4
∑

k∈N
fkfk+1fk+2,

where N = {1, 3, 5, 7} and k + 8 = k [24]. The curvature indices of configurations (a), (b) and (c)
are positive, zero and negative, respectively. Therefore, we call these configurations convex, flat
and concave, and affix the indices +, 0 and −, respectively.

4.2. Spatial Curvature Indices. Using combinations of planar curvature indices on three mu-
tually orthogonal planes passing through a point x0, we define the curvature index of a point x0
in Z3 since the 6-neighbourhood is decomposed into three 4-neighbourhoods. On the boundary of
a 6-connected object, Theorem 5 implies that there exist nine configurations in the 3× 3× 3 local
neighbourhoods shown in Figure 4.1.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4.1: Local configurations of 2-manifold in Z3

Setting αi to be the planar curvature index on plane Z2
i (k(i)) for i = 1, 2, 3, the curvature

index of a point in Z3 is a triplet of two-dimensional curvature indices (α1, α2, α3) such that
αi ∈ {+,−, 0, ∅}. Here, if αi = ∅, the curvature index of a point on the plane Z2

i (k(i)) is not
defined. Therefore, for the boundary points, seven configurations,

(4.3)
(+,+,+), (+,+,−), (+, 0, 0),

(0, 0, ∅),
(−,−,−), (+,−,−), (−, 0, 0),

and their permutations are possible [11]. For a spatial curvature index α, setting n(α) to be the
number of octspaces in the 3× 3× 3 neighbourhood of a point, we have the relations

(4.4)
n((+,+,+)) = 1, n((+,+,−)) = 3, n((+, 0, 0)) = 2,

n((0, 0, ∅)) = 4,
n((−,−,−)) = 4, 7, n((+,−,−)) = 4, 5, n((−, 0, 0)) = 6.

Since there exist two configurations for (−,−,−) and (+,−,−), we set

(4.5) n((−,−,−)) = 7, n((−,−,−)−) = 4, n((+,−,−)) = 5, n((+,−,−)+) = 4.

Furthermore, since i
8 = 1− 8−i

8 , the vertex angles of the nine configurations on the boundary are

(4.6)

γ((+,+,+)) = 1
8 , γ((+, 0, 0)) = 2

8 , γ((+,+,−)) = 3
8 ,

γ((+,−,−)+) = 4
8 , γ((0, 0, ∅)) = 0, γ((−,−,−)−) = −4

8 ,

γ((+,−,−)) = −3
8 , γ(−, 0, 0) = −2

8 , γ((−,−,−)) = −1
8 .
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Definition 8. Using the nine configurations of eq. (4.6), we define the relation between the codes
and the triplet vectors α(x) for point x as

(4.7)

α(x) γ(x) α(x) γ(x)
(1, 1, 1)> (0, 0,+) (1, 1,−1)> (+,+,−)

(0,+, 0) (−,−,+)
(+, 0, 0) (1,−1, 1)> (+,−,+)
(+,+,+) (−,+,−)
(−,−,−) (−1, 1, 1)> (−,+,+)
(0, 0,−) (+,−,−)
(0,−, 0) (1, 1, 0)> (0, 0, ∅)
(−, 0, 0) (1, 0, 1)> (0, ∅, 0)

(0, 1, 1)> (∅, 0, 0).

Definition 9. Setting s(±) = ±1, s(0) = 0 and s(∅) = 0, we define the vertex indices as
(4.8) f(α1, α2, α3) = (s(α1) + s(α2) + s(α3))× (|s(α1)|+ |s(α2) + |s(α3)|)
using eq. (4.7).

This function f(·, ·, ·) takes values of {0,±1,±3,±9} according to the configurations on the
boundary. Furthermore, the sign of the function f(α1, α2, α3) indicates the direction of normal
vector n(x) at point x on the boundary. The direction of the normal vector is outward or inward
if the sign is positive or negative, respectively.

Setting ni to be the number of points whose vertex angles are i
8 , we define three vectors,

n = (n−4, n−3, n−2, n−1, n0, n1, n2, n3, n4)>(4.9)
a = (−2,−1, 0, 1, 0, 1, 0,−1,−2)>,(4.10)
k = a2 = (4, 1, 0, 1, 0, 1, 0, 1, 4)>.(4.11)

Using these vectors, we have the following theorems for the Euler characteristics of digital
objects [4, 2, 3, 5].

Theorem 10. An object F without tunnels satisfies the relationship

(4.12) a>n = 8.

Theorem 11. A collection of objects {Fi}ni=1, with gi tunnels satisfies the relationship

(4.13) a>n = 8
n∑

i=1
(1− gi).

5. Digital Curvature Flow

5.1. Normal Vectors on Digital Plane. For n = 2, 3 we define the dual set for the set lattice
points Zn as

(5.1) Zn = {x+ 1
2e|x ∈ Zn},

where e = (1, 1)> and e = (1, 1, 1)> for n = 2 and n = 3, respectively. We call Zn and Zn
the lattice and the dual lattice, respectively. Using the lattice and the dual lattice, we define the
curvature flow for surfaces defined in the lattice space.

We first deal with a closed planar curve. Setting C = {xj}Nj=1 to be the set of points on
the boundary ∂Fk(i) for fixed i and K(i), we assume that only two points xj=1 and xj+1 are
connected for each i and that the triplet xj−1, xj and xj+1 lies in the anticlockwise direction on
the boundary.

Using triplet of points xj−1, xj and xj+1, we compute the normal vector of each point. For the
planar point xj = (xj , yj)>, we express this vector as the complex number zj = xj + iyj . Setting

(5.2) αj + iβj =
(
zj+1 − zj
zj−1 − zj

) 1
2

,
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we define the outward normal vector nj as

(5.3) nj = λaj , aj = (αj , βj)>,

for point xj . From the local configurations of triplets of vectors on the boundary, there exist three
combinations for αj and βj :

(1) |αj | = 1/
√

2 and |βj | = 1/
√

2,
(2) |αj | = 0 and |βj | 6= 0,
(3) |αj | 6= 0 and |βj | = 0.

These geometrical relations imply that

(5.4) λj =
{ 1

2 if αjβj = 0,
1√
2 otherwise.

Figure 5.1 shows the directions of normal vectors on a digital curve on a plane.

Figure 5.1: Normal vectors on the corner. On the digital boundary, there exist
three configurations of the normal vectors of the point.

Using the curvature code γ(xj) of each point xj , we classify points on the boundary C := ∂Fk(i)
for fixed i and k(i) into types N+ and N−.

Definition 12. For a sequence of flat points

(5.5) N−(j) = {xβ |γ(xβ) = 0, j < β < j +m, s(γ(xj))× s(γ(xj+m)) = −1},

where s(γ(x)) = 1 and s(γ(x)) = −1 for (γ(xj)andγ(xj+m)) = (+,−) and (γ(xj)andγ(xj+m)) =
(−,+), respectively.

Each N−(j) is a sequence of flat points whose one endpoint is the concave point. Then, we set

(5.6) N− =
⋃

j

N−(j), N+ = C \N−.

Since N− is the union of sequences whose one endpoint is the concave point on the boundary, we
have the relation

(5.7) C = N+
⋃

N−, N+
⋂

N− = ∅.

Therefore, points in N+ and N− lie in convex and concave parts on the original boundary, respec-
tively.

Definition 13. If an end of a line segment is negative, we say that this line segment is a negative
line segment. Furthermore, if both ends are positive, we say that this line segment is a positive
line segment.

Using these geometrical properties of point sets N+ and N− on the boundary, we define a global
transform from point set C on Z2 to point set C on Z2 as

(5.8) xj =




xj − nj , if γ(xj) 6= 0,
xj − nj ± 1

2n
>
j , if γ(xj) = 0, xj ∈ N+,

xj + nj ± 1
2n
>
j , if γ(xj) = 0, xj ∈ N−.
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5.2. Normal Vectors in Digital Space. Point configurations on the boundary are defined by
the digital lines which lie on two or three mutually orthogonal vectors. Therefore, we define
three normal vectors n1, n2 and n3 which lie on planes perpendicular to vectors e1, e2 and e3,
respectively. According to these definitions, for n = (α, β)> on each plane, we have

(5.9) n1 = (0, α, β)>, n2 = (α, 0, β)>, n3 = (α, β, 0)>.

Using the vector nα, α = 1, 2, 3, we define the normal vector n(x) for a point x on the boundary
S in digital space Z3. There are nine types of vertex configurations in a 3× 3× 3 neighbourhood
on the boundary. Using eq. (4.7), we define the normal vector n(x) of point x.

Definition 14. The normal vector of a point x ∈ Z3 is

(5.10) n(x) = 1
2Nα(x)

for matrix N = (n1,n2,n3) on the surface of a Nef polyhedron.

5.3. Curvature-based Motion of Points. We derive a transformation using the global infor-
mation of the concavity of the digital boundary.

Definition 15. For boundary points whose two-dimensional codes are zero, we affix the same
two-dimensional curvature codes with these of line segments on which points lie.

The rule of Definition 15 derives the codes (α, β1, β2), (β1, α, β2) and (β1, β2, α), where βi ∈
{+,−}, for a point whose codes are (α, 0, 0), (0, α, 0) and (0, 0, α), where α ∈ {+,−, ∅}. These
notations lead to the codes (+,+,+), (+,+,−), (+,−,−), (−,−,−), (∅,+,+), (∅,+,−), (∅,−,−)
and their permutations. Using these codes, we define the code of the flat points and points on
edges as

(5.11) g(α, β1, β2) =
{

+, if f(α, β1, β2) = 9,
−, otherwise,

for (α, β1, β2) and its permutations.
Setting

(5.12) h(β1, β2) = (s(β1) + s(β2))× (|s(β1)|+ |s(β2)|),

we set the codes of flat points and points on edges as positive and negative if h(β1, β2) > 0 and
otherwise, respectively. For these curvature codes, the code of a flat point is defined as negative if
the number of negative codes in the curvature code is positive. Furthermore, we move flat points
outward and inward, if the codes are positive and negative, respectively.

Definition 16. For two line segments, which are mutually orthogonal, pass through flat points
with codes (∅, 0, 0), (0, ∅, 0) and (0, 0, ∅), using the codes of the end points of these two line segments
on a plane, we can affix the codes of flat points. Furthermore, If at least one end point is negative,
we assign the negative code to a point on this line.

There are six possibilities for the configurations of end points of two mutually orthogonal line
segments. These definitions for codes also conclude that the codes of points with the curvature
codes (+, 0, 0), (0,+, 0) and (0, 0,+) on an edge are negative if one end or both ends are negative.
Figure 5.2 shows examples of the signs of vertex indices on the boundary.

The normal vector on the discrete surface defined by eq. (5.10) is in the form

(5.13) n(x) = 1
2(a1e1 + a2e2 + a3e3),

where ai ∈ {−1, 0, 1}. Therefore, if ai = 1 and ai = −1, the vector (x + n(x)) determines
the transformation from x ∈ Z3 to y ∈ Z3. Moreover, if and only if the codes are (+,+,+),
(−,−,−), and (−,−,−)− and (α, β, γ) for α, β, γ ∈ {+,−}, the vector (x+n(x)) determines the
transformation from x ∈ Z3 to y ∈ Z3.
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Figure 5.2: Signs for flat points and edges.

For the codes (−,−,−), (α, 0, 0), (α, 0, 0) and (0, 0, α) for α ∈ {+,−, ∅}, the normal vectors
hold the relations

(5.14)

α(x) (∅, 0, 0) (0, ∅, 0) (0, 0, ∅) (−,−,−)
n(x) 0 0 0 aiei + ajej

α(x) (±, 0, 0) (0,±, 0) (0, 0,±)
n(x) ± 1

2 (a2e2 + a3e3) ± 1
2 (a1e1 + a3e3) ± 1

2 (a1e1 + a2e2).

However, these normal vectors do not define the transformation from points in Z3 to Z3. Therefore,
we define the transformation from x ∈ Z3 to y ∈ Z3 using g(·, ·, ·).

Definition 17. The point transformation S(·) between x ∈ Z3 and y ∈ Z3 is defined as

(5.15) y = S(x) = x+ εm(x)

for

(5.16)

α(x) (∅, 0, 0) (0, ∅, 0) (0, 0, ∅) (−,−,−)+
m(x) ± 1

2e1 n(x)± 1
2e2 n(x)± 1

2e3
1
2n(x)± 1

2ek

α(x) (±, 0, 0) (0,±, 0) (0, 0,±)
m(x) ± 1

2 (a2e2 + a3e3) ± 1
2 (a1e1 + a3e3) ± 1

2 (a1e1 + a2e2),

where

(5.17) ε =
{

1, for (+,+,+), (−,−,−), (−,−,−)−, (+,+,−), (+,−,+) and (−,+,+),
−1, for points where g(α, β1, β2) < 0.

The negative sign of ε depends on the configuration of two mutually orthogonal line segments
which pass through the points. Since the saddle points on a discrete dumbbell move inward,
our method preserves the topology of the dumbbell. However, according to the definitions of the
directions of the motion of points in the curvature flow, positive points on edges with both end
points negative move outward. This configuration defines the outward motion for points on the
bar of a dumbbell. Therefore, these definitions of the codes of flat points and edges preserve the
topology of dumbbells. The successive application of eq. (5.15) defines a transformation of point
sets between the lattice and the dual lattice.

Definition 18. The digital curvature flow is a sequence of point sets Sm for m ≥ 0 such that

(5.18) Sm =





∂F ⊂ Z3 if m = 0,
{x|x = S(x),x ∈ Z3} ⊂ Z3 if m = 2k for k ≥ 1,
{x|x = S(x),x ∈ Z3} ⊂ Z3 otherwise.

The odd and even steps of the digital curvature flow transform points on the lattice to points
on the dual lattice and points on the dual lattice to points on the lattice, respectively.

Now, we show an example.
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Example 19. Setting lattice points on a polyhedron to be

P10 =





(0, 0, 2)>, (0, 1, 2)>,
(0, 0, 1)>, (0, 1, 1)>, (0, 2, 1)>
(0, 0, 0)>, (0, 1, 0)>, (0, 2, 0)>



 ,

P11 =





(1, 0, 2)>, (1, 1, 2)>,
(1, 0, 1)>, (1, 1, 1)>, (1, 2, 1)>
(1, 0, 0)>, (1, 1, 0)>, (1, 2, 0)>



(5.19)

P12 =
{

(2, 0, 1)>, (2, 1, 1)>
(2, 0, 0)>, (2, 1, 0)>

}
,

the digital curvature flow

(5.20)

( 1
2 ,

1
2 ,

1
2 )> ← (0, 0, 0)>,

( 1
2 ,

3
2 ,

1
2 )>, ← (0, 2, 1)>, (0, 2, 0)>,

(1, 2, 1)>, (1, 2, 0)>
( 3

2 ,
3
2 ,

1
2 )> ← (1, 1, 0)>

( 3
2 ,

1
2 ,

1
2 )>, ← (1, 0, 0)>, (2, 0, 0)>, (2, 1, 0)>,

(2, 1, 1)>, (2, 0, 1)>
( 1

2 ,
1
2 ,

3
2 )>, ← (0, 0, 2)>, (0, 1, 2)>,

(1, 0, 2)>, (1, 1, 2)>,
( 1

2 ,
3
2 ,

3
2 )> ← (0, 1, 1)>,

( 3
2 ,

3
2 ,

3
2 )> ← (1, 1, 1)>,

( 3
2 ,

1
2 ,

3
2 )> ← (1, 0, 1)>

derives the cube

(5.21) P =





( 1
2 ,

1
2 ,

1
2 )> ( 1

2 ,
3
2 ,

1
2 )> ( 3

2 ,
3
2 ,

1
2 )>

( 3
2 ,

1
2 ,

1
2 )> ( 1

2 ,
1
2 ,

3
2 )> ( 1

2 ,
3
2 ,

3
2 )>

( 3
2 ,

3
2 ,

3
2 )> ( 3

2 ,
1
2 ,

3
2 )>



 .

In the next step, P converges to the point (1, 1, 1)>. Figures 5.3 (a) and (b)respectively show the
original polyhedron and a cube obtained as the result of the digital curvature flow.

(a) (b)

Figure 5.3: Example of deformation. (a) is transformed to (b). Furthermore, In
the next step, P converges the point (1, 1, 1)>

The curvature flow transforms each planar curve segment passing through lattice points on
a polyhedral boundary to a straight line segment passing through lattice points on a polyhe-
dral boundary. Furthermore, each closed curve on a plane is transformed to a rectangle. If
γ(x) = (+,+,+) at each step, the digital curvature flow eliminates 3/4 unit area from the corners.
Moreover, positive and negative parts on the boundary move outward and inward, respectively.
These considerations conclude the following theorems.

Theorem 20. For a closed surface, in each step, the digital curvature flow shrinks the boundary
on each planar 6 unit area from corners such that γ(x) = (+,+,+).

Theorem 21. The digital curvature flow preserves the topology if there is no tunnel.

Theorem 22. The digital curvature flow transforms a boundary to a cuboid.

192



Digital Flow

Theorem 23. The final form of the digital curvature flow is a spatial rectangle.

Furthermore, setting the surface energy.
(5.22) E = k>n,

we have the following theorem.

Theorem 24. On a closed two-dimensional manifold ∂F in Z3

(5.23) E = k>n ≥ 8(1 + g).

(Proof) From theorems 20, 21, 22 and 23, if F has no hole, F is topologically equivalent to a
cuboid. Since E = 8 for a cuboid, E ≥ 8 for an object without holes. Furthermore, if an object
has g holes, the object is topologically equivalent to a cuboid with g cuboid tunnels. Therefore,
for an object with g tunnels, E ≥ 8(1 + g). �

Moreover, we have the following theorem for E from theorem 20.

Theorem 25. For the surface evolution of eq. (5.15), E = k>n satisfies the relation

(5.24) ∂E

∂t
≤ 0.

6. Conclusions

We have defined curvature codes on a digital manifold in the three-dimensional digital space Z3.
A point on a 6-connected three-dimensional digital manifold lies on at least two 4-connected planar
curves, which lie on a pair of perpendicular digital planes. From this geometrical configuration of
orthogonal slices of digital manifolds, the three-dimensional curvature codes were constructed as
a combination of three planar curvature codes.

As an extension, we can define the curvature codes of points on an m-dimensional digital
manifold in the n-dimensional digital space for m ≤ n − 1. For example, if m = n − 1, the
curvature code on the digital manifold is described in the form α = (α1, α2, · · · , αn), where
αi ∈ {+1,−1, 0, ∅} and the curvature index of this point is

(6.1) f(απ(1), απ(2), · · ·απ(n)) = (
n∑

i=1
s(απ(i)))× (Πn

i=1|s(απ(i))|).

Theorem 11, which characterizes the topology of closed surfaces in the three-dimensional digital
surface, is a digital version of the Gauss-Bonnet theorem. This theorem suggests that using the
curvature codes on a higher-dimensional digital manifold, the digital version of the Chern-Gauss-
Bonnet theorem can be constructed as
(6.2) a>n = 2n(1− g),
where a and n are vectors which define the weights for the configurations of points on the surface
and the number of configurations on the surface, respectively, and g is the number of the holes of
an object. Moreover, the surface energy
(6.3) E = k>n = 2n(1 + g),
where each element of the vector k is the square of the corresponding element of a, will satisfy the
inequality ∂E

∂t ≤ 0.
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Digital shapes, digital boundaries and rigid
transformations: A topological discussion
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Abstract
Curvature is a continuous and infinitesimal notion. These properties induce geometrical

difficulties in digital frameworks, and the following question is naturally asked: “How to
define and compute curvatures of digital shapes?” In fact, not only geometrical but also
topological difficulties are also induced in digital frameworks. The – deeper – question thus
arises: “Can we still define and compute curvatures?” This latter question, that is relevant
in the context of digitization, i.e., when passing from Rn to Zn, can also be stated in Zn

itself, when applying geometric transformations on digital shapes. This paper proposes a
preliminary discussion on this topic.

1. Introduction

In the continuous domain, the computation of curvature requires that the considered shapes –
and more precisely their boundaries – present certain good properties, mostly in terms of differen-
tiability. When passing from the continuous universe (Rn) to the discrete one (Zn), the handling
of curvature becomes much more complex. It is easy to guess that the induced difficulties derive
from the necessity to model infinitesimal properties – namely the differentiability of boundaries –
into a finite framework.

However, even before considering such geometrical concerns, it is crucial to keep in mind that
there also exist topological concerns. Indeed, beyond its putative differentiability, the notion of
boundary itself often becomes ill-defined in Zn. In other words, even if we consider a continuous
shape in Rn, whose boundary is an object of dimension n−1 and also an (n−1)-manifold, it is un-
fortunately infrequent that the boundary of its digitized analogue in Zn is a discrete hypersurface,
and a fortiori a discrete (n− 1)-manifold.

During the last decades, some efforts were devoted to tackle this issue in the context of digi-
tization. More precisely, some conditions were provided to guarantee the preservation of good
geometrical and topological properties of shape boundaries, when passing from Rn to Zn. How-
ever, if we now know how to correctly handle curvature during this digitization step, it remains
challenging to also define adequate conditions for curvature definition and analysis when processing
digital shapes. In particular, it is difficult to preserve correct topological – and thus geometrical
– properties of digital shape boundaries when applying geometric transformations, even the most
simple such as rigid transformations.

In this paper – that is mainly related to the works published in [7, 8] – we expose some pre-
liminary results devoted to this question. More precisely, we focus on the specific case of digital
shapes defined on Z2, and on their behaviour under rigid transformations. Considering such a low
dimension and such simple transformations may seem meaningless and irrelevant at a time when
the hot topics are related to high-dimension objects under arbitrary deformations. Nevertheless,

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
2000 Mathematics Subject Classification. 00X99.
Key words. topology, digitization, geometric transformations.
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(a) S1 ⊂ R2 (b) S2 ⊂ R2

(c) D(S1) ⊂ Z2 (d) D(S2) ⊂ Z2

Figure 2.1: (a,b) Continuous shapes S1 and S2 in R2 (in cyan) and their bound-
aries (in blue). (c,d) The associated digital shapes D(S1) and D(S2) in Z2 (in
cyan), and their digital boundaries (in blue). (c) The digital boundary of D(S1) is
a 1-manifold. (d) The digital boundary of D(S2) is not a 1-manifold, by contrast
with that of S2.

beyond this apparent triviality, we show that the induced issues are not straightforward, and we
intend to propose sound foundations for further developments at higher dimensions and for more
general transformations.

2. Digital shapes and their boundaries

Let us consider a finite closed set S in R2 whose boundary is a (set of) 1-manifold(s) as an original
shape. Since computers handle only finite structures, such a continuous shape S is represented as
a digital image, i.e., a finite set of pixels associated to points of Z2. The induced digital shape is
denoted by D(S), referring to the digitization procedure D that allows us to pass from R2 to Z2.

There exist several models for D [2]. For instance, if we consider the Gaussian model, we obtain
D(S) = S ∩ Z2; in other words, the digital shape D(S) of S is simply obtained by “sampling” S
with respect to the regular structure of Z2. We will note D(S) the complement of D(S) in Z2.

It is mandatory to provide an explicit and sound definition for the notion of boundary of a
digital shape D(S). To this end, let us first consider the links that exist between the points of Z2

and the pixels of a digital image. A pixel P , associated to a point x of Z2, can be seen as a unit
square of R2 centered on x. In other words, we have P = x+[−1/2, 1/2]2 ⊂ R2. From a structural
point of view, the pixels of a digital image are nothing but the Voronoi cells of R2 induced by the
points of Z2. In particular, some couples of pixels share a part of their (continuous) boundaries.
More precisely, two pixels P1 and P2 associated to x1 and x2, respectively, satisfy this assertion
iff their exists an edge between x1 and x2 in the (dual) Delaunay diagram associated to the above
Voronoi diagram.

Based on these considerations, the boundary ∂D(S) of the digital shape D(S), also called the
digital boundary for short, is straightforwardly associated to the continuous boundary induced
by the pixels of D(S). Indeed, ∂D(S) can be modeled by a set of couples of points (x,x) ∈
D(S)×D(S), that share an edge in the Delaunay diagram of Z2.
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(a) (b)

Figure 3.1: (a) An r-regular shape (in cyan). Some inner and outer r-radius open
balls are depicted in magenta, with r higher than the pixel size of the “topology-
preserving” digitization grid. (b) A shape that is not r-regular (in cyan). An
example of r-radius open balls couple is depicted, where the “inner” ball (in red)
does not entirely lie into the shape.

The handling of digital boundaries can be considered from a topological point of view. To
this end, we can use the standard notion of neighbourhood stated in digital topology [3]. The
k-neighbourhood of a point x ∈ Z2 is defined by Nk(x) = {y ∈ Z2 | ‖x − y‖p = 1}, for k = 4, 8
where p = 1,∞, respectively. Then, the boundary of D(S) is defined by ∂D(S) = {(x,y) | x ∈
D(S),y ∈ D(S),y ∈ N4(x)}.

Figure 2.1 illustrates two examples of digitization procedure, where it is easily seen that the
topology of a digital shape is not always the same as that of the initial continuous shape. More
precisely, we observe that digital shape boundaries are not always guaranteed to be 1-manifolds,
even though the original shape boundaries are.

3. Digitization and topology preservation

The issue of topological alteration of shape boundaries during the digitization process has been
considered in the literature. In particular, Latecki et al. defined some conditions for guaranteeing
boundary integrity, based on two key notions, namely r-regularity and well-composedness.

Definition 1 (r-regularity [1]). A closed set S ⊂ R2 is r-regular if for each boundary point
of S, there exist two tangent open balls of radius r, lying entirely in S and its complement S,
respectively.

This definition derives from classical concepts of differential geometry, namely osculating balls
and normal vectors. By considering the class of r-regular shapes in R2, the condition for preserving
topological properties – especially in terms of boundaries – between a continuous shape and its
digital counterpart is the following.

Proposition 2 ([4]). An r-regular set S ⊂ R2 has the same topological structure as its digitized
version D(S), for pixels of size d < r.

This result is indeed an extension of the compatibility property between S and D(S), presented
by Pavlidis in [9]. In particular, Latecki et al. were driven by more pragmatic motivations, related
to some sampling devices for image acquisition, like CCD cameras. Figure 3.1 provides an example
and a counterexample of r-regular shapes.

In [4], it was also shown that the (topology-preserving) digitization process of an r-regular
shape must yield a well-composed shape [5], whose definition relies on the following concepts of
adjacency, connectedness and connected components, in digital topology [3]. Let X be a digital
shape in Z2. We say that two distinct points x,y of X are k-adjacent (for k = 4, 8) if x ∈ Nk(y)
(and – equivalently – y ∈ Nk(x)). From the induced (symmetric) k-adjacency relation on X, we
obtain, by reflexive-transitive closure, the (equivalence) k-connectedness relation. The k-connected
components of X are the equivalence classes for this relation. From these notions, we can define
the notion of well-composedness.

197



Yukiko Kenmochi, Phuc Ngo, Nicolas Passat and Hugues Talbot

(a) (b)

Figure 3.2: (a) A well-composed shape X1 of Z2 (in black). Its boundary ∂X1 (in
green) is a 1-manifold. (b) A shape X2 of Z2 (in black) that is not well-composed.
Its boundary ∂X2 (in green) is not a 1-manifold (see the red dots).

Definition 3 (Well-composedness [5]). A digital shape X in Z2 is well-composed if each 8-
connected component of X and of its complement X is also a 4-connected component.

Based on this definition, it is plain that the boundary ∂X of a digital shape X is a 1-manifold
whenever X is well-composed. Some examples and counter-examples of well-composed shapes are
provided in Figure 3.2.

As stated above, there actually exists a strong link between r-regularity and well-composedness.

Theorem 4 ([4]). If S is r-regular, then D(S) is well-composed.

Consequently, a continuous shape S of R2 that is r-regular – and whose boundary is a continuous
1-manifold that authorizes curvature analysis – still presents good properties after digitization,
since its digital counterpart D(S) is well-composed and then also presents as border ∂D(S) a
1-manifold.

4. Rigid transformations of digital shapes

As stated above, in the digital framework, curvature analysis makes sense when considering
shapes that are well-composed. In the continuity of this result, the question that we consider now
is the following: “What are the conditions for allowing curvature analysis not only on a digital
shape X but also on its image by a geometric transformation?”. In particular, we focus on the
most simple – yet non-trivial – case of rigid transformations.

In R2, a rigid transformation is a function

(4.1)
∣∣∣∣
T : R2 → R2

x 7→ R.x + t
where R is a rotation matrix, i.e., an element of the group SO(2), and t ∈ R2 is a translation
vector. The rigid transformation T is a bijection, and its inverse function T −1 is also a rigid
transformation.

Based on these definitions, the digital rigid transformations consist of composing the continuous
rigid transformations with the standard rounding operator. We note RIGZ2 the set of all the digital
rigid transformations.

Two transformation models can be considered for a digital rigid transformation T associated to
a transformation T . The Lagrangian (forwards) model consists of computing the direct image of
the digital shape X by the transformation. However, as T is often neither injective nor surjective,
this leads to topological defects. The Eulerian (backwards) model consists of computing the
transformed image XT as the shape whose image by the digital analogue T−1 of the inverse
function T −1 of T , lies into X. This is more satisfactory, since T −1 is defined on the whole
transformed space Z2. In this model, that we consider hereafter, we have
(4.2) XT = D(T (X ⊕�))
where ⊕ is the classical dilation operator defined in mathematical morphology [6, Ch. 1], and �
is the unit square of R2, centered on the origin. These relationships with well-known concepts of
mathematical morphology are actually not a coincidence, as it will be discussed later.
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Figure 4.1: A digital disk (left) and its rigid transformations (center and right).
The original digital shape is well-composed while the transformed ones are not
well-composed.

(a) (b) (c)

Figure 5.1: Forbidden patterns in regular shapes (up to π/2 rotations, symmetries
and value inversion).

Unfortunately, the Eulerian model is not exempt from topological difficulties. In particular, the
family of well-composed shapes is not stable with respect to RIGZ2 . In other words, the transformed
shape XT obtained from a well-composed shape X with respect to a digital rigid transformation
T is not necessarily well-composed itself. In that case, its topological properties are, of course,
altered, and in particular, its boundary is no longer a (set of) 1-manifold(s). See Figure 4.1 for an
example.

5. Rigid transformations and topology preservation

In this section, we summarize the main contribution of this work, that consists of defining a
subfamily of well-composed shapes that remain stable – and topologically invariant – under any
digital rigid transformations. The digital shapes forming this family are called regular, in reference
to the above notion of r-regularity for continuous shapes in R2. The set of regular digital shapes
can be defined in Z2 as follows.

Definition 5 ((Non-)singular shapes). Let X ⊂ Z2 be a digital shape. We say that X is singular
if at least one point x of X (resp. X) has its whole 4-adjacent set included in X (resp. X).

Definition 6 (Regularity [7, 8]). Let X ⊂ Z2 be a non-singular, well-composed shape. We
say that X is regular if for any 4-adjacent points x,y ∈ X (resp. X), there exists a 2 × 2 set
� = {z, z + 1} × {t, t+ 1} ⊂ Z2 such that x,y ∈ � ⊆ X (resp. X).

The regularity of a digital shape can be characterized as follows, and thus leads to a linear-time
complexity pattern-based regularity analysis.

Proposition 7 ([7, 8]). A digital shape X ⊂ Z2 is regular iff none of the configurations depicted
in Figure 5.1 (up to π

2 rotations, symmetries and value inversion) appears in X and X.

Note that the first configuration (Figure 5.1(a)) characterizes the non-well-composed shapes [5].
The main interest of regularity is to guarantee the stability of well-composed shapes – and their

topological invariance – under any rigid transformation. In particular, we have the following result.

Theorem 8 ([8]). Let X ⊂ Z2 be a well-composed shape. If X is regular, then, for any digital
rigid transformation T , the transformed digital shape XT is still well-composed, and has the same
topological structure as X.

Remark 9. This result establishes regularity as a sufficient condition for the stability of well-
composedness, together with topological invariance. Our conjecture is however that this condition
is also necessary.
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(a) (b)

Figure 5.2: (a) A regular shape (in black). (b) A non-regular shape (in black)
that is however opened and closed by a structuring element �.

Following mathematical morphology terminology [6, Ch. 1], if X is regular, then X is open and
closed by any structuring element � (see Definition 6), i.e.

γ�(X) = X 	�⊕� = X(5.1)
φ�(X) = X ⊕�	� = X(5.2)

However, the converse is not true, as illustrated in Figure 5.2. Nevertheless, it is plain that
there exist strong links between these morphological operations and the notions of regularity and
topological invariance. Our conjecture is that the regular shapes X are exactly those whose both
the dilated X ⊕� and the eroded X 	� have the same topological structure as X. This intuition
derives from the continuous analogue of this assertion for r-regular shape S of R2, where the discs
of radius r play the role of � [4].

6. Conclusion

This work constitutes a preliminary attempt to provide solutions for curvature definition and
analysis of digital shapes, not only in their initial space but also in the spaces obtained under rigid
transformations.

Some results have been proposed in the specific case of shapes in Z2 under rigid transformations.
It has been proved in [8] that these results can, of course, be interpreted in the framework of
binary digital images, but also extended to grey-level and label images, thus providing efficient
image processing and analysis strategies.

Nevertheless, many efforts remain to do towards solutions in more general cases. In particular,
the handling of (i) higher dimensions, i.e., Z3 and more generally Zn for n ≥ 3, and (ii) arbitrary
geometric transformations, still remain open issues. Moreover, it may be important to derive not
only sufficient, but also necessary conditions, for curvature analysis. It may additionally be useful
to deal with both Eulerian and Lagrangian models.

Even though this preliminary study allows us to understand and solve some topological problems
of digital shapes under their rigid transformations, geometrical problems still remain: geometry of
digital shapes is not preserved under rigid transformations in general, as exemplified in Figure 6.1.
It is expected to investigate geometry-preserving conditions of digital shapes during their rigid
transformations as well.
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(a) (b)

Figure 6.1: (a) A digital half plane, which is regular, and (b) its transformed
shape, which is still well-composed (i.e., the topology is preserved) but not a
digital half plane any more (i.e., the geometry is not preserved).
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