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Abstract: Given two graphs, the supply and the demand graphs, we analyze the mass trans-
portation problem between their vertices, under connectivity constraints. More precisely, for every
subset of supply nodes inducing a connected component of the supply graph, we require that the
set of demand nodes receiving non-zero flow from this subset induces a connected component of
the demand graph. As opposed to the classical problem, a.k.a the earth mover distance (EMD),
which is amenable to linear programming (LP), this new problem is very difficult to solve, and we
make four contributions.
First, we formally introduce two optimal transportation problems, namely minimum-cost flow
under connectivity constraints problem (EMD-CC) and maximum-flow under cost and connectivity
constraints problem (EMD-CCC). Second, we prove that the decision version of EMD-CC is NP-
complete even for very simple classes of instances. We deduce that the decision version of EMD-CCC
is NP-complete, and also prove that EMD-CC is not in APX even for simple classes of instances.
Third, we develop a greedy heuristic algorithm returning admissible solutions, of time complexity
O(n3m2) with n and m the numbers of vertices of the supply and demand graphs, respectively.
Finally, on the experimental side, we compare the transport plans computed by our greedy method
against those produced by the aforementioned LP. Using synthetic landscapes (Voronoi landscapes),
we show that our greedy algorithm is effective for graphs involving up to 1000 nodes. We also
show the relevance of our algorithms to compare energy landscapes of biophysical systems (protein
models).

Key-words: Multi-commodity flow, optimal transportation, connectivity constraints, bipartite
graphs, NP-hardness, not in APX, Polynomial Time Approximation Scheme (PTAS), bio-physics,
energy landscapes, protein models, meta-stable states.



Transport de masse avec contraintes de connectivité, et

applications à la comparaison de paysages énergétiques

Résumé : Dans ce travail, nous analysons le problème de multi-commodity flow avec con-
traintes de connectivité. Ce problème peut être défini comme un problème classique de flot, avec
contraintes de connectivité. Plus précisement, pour tout ensemble de noeuds du graphe source
induisant un sous-graphe connexe, il est requis que les noeuds du graphe de demande recevant
du flot induisent également un sous-graphe connexe. Cette contrainte rend le problème difficile,
alors même qu’en l’absence de contrainte il se réduit à un programme linéaire. Par ailleurs, un
contrainte sur le nombre d’arête est aussi posée.

Nous montrons que ce problème est est NP-complet et n’est pas dans APX, même pour des
instances simples (e.g. quand le graphe induit par les noeuds de demande est complet). Nous
développons également un algorithme de complexité polynomiale lorsque la contrainte sur le
nombre d’arêtes est relaxée, ainsi qu’un algorithme glouton calculant une solution admissible
pour le cas général.

Du point de vue applicatif, ce problème est motivé par la comparaison de paysages énergétiques
en biophysique. Des tests sur un modèle simplifié de protéine et sur des donnees synthétiques
montrent que malgré la complexité du problème, nos algorithmes sont effectifs jusqu’à quelques
centaines de sommets.

Mots-clés : Multi-commodity flow, transport optimal, contraintes de connectivité graphes
bipartie, NP-hardness, not in APX, Polynomial Time Approximation Scheme (PTAS), bio-
physique, paysages énergétiques, modèles de protéines, méta-stabilité.
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1 Introduction

1.1 Transportation Problems

Optimal transportation problems have a long standing history in mathematics and computer
science, originating with the works of Monge on earth moving (≪ la théorie des déblais et des
remblais ≫) [8]. Such problems were later rephrased in terms of Riemannian geometry and
measure theory [13], one key concept being the distance between two distributions, namely is the
minimal amount of work that must be performed to transform one distribution into the other by
moving distribution mass around. Various applications were developed across all sciences, one
of the early ones in computer science beingthe earth mover distance (EMD), used to compare two
images using their color histograms [10].

From an algorithmic standpoint, the problem of computing the EMD is a special case of the
transportation problem [4] that admits a polynomial algorithm using linear programming. We
will formally define this problem later in terms of minimum-cost flow in graphs. In this paper,
we investigate a similar problem adding connectivity constraints, motivated by a problem from
bio-physics.

1.2 Applications to Energy Landscapes in Physics

The terminology EMD is clearly evocative of the energy landscapes used to study molecular sys-
tems in biophysics [14]. To see why, consider a molecular system (a protein, a cluster of water
molecules, a cluster of ions, etc) consisting of n atoms, so that its conformational space is 3n
dimensional – each atom has three Cartesian coordinates. The potential energy landscape (PEL)
of the system is defined as the function defined over this conformational space, which associates
an energy to each conformation. Features of the PEL play a crucial role to understand the
system’s behavior: the local minima correspond to meta-stable states; the volume of the basin
associated with a local minimum is a measure of the entropy associated with the meta-stable
state; a saddle connecting two local minima defines a possible transition between the two cor-
responding meta-stable states. However, studying the PEL of systems involving from hundreds
to tens of thousands of atoms is a major endeavor. Because an analytical expression of the PEL
is in general unknown, PEL can only be explored via simulation methods, yielding questions in
three directions [11, 14]: sampling, sketching, comparing.

Sampling consists of generating samples on the PEL based on molecular dynamics on Monte
Carlo strategies [14]. This is a technical endeavor, since one needs to choose the type of model
used (atomic or coarse grain model), the potential energy function for that model, and the
sampling method. The multiplicity of these choices is clearly a hindrance to understand the
very properties of the system, so that the problem of comparing sampled PEL obtained under
different conditions arises.

Sketching consists of identifying samples which are near local minima and saddles. Upon
sketching, one is left with a graph specified as follows: its nodes are the local minima, each node
being endowed with the number of configurations associated with the meta-stable state; two
nodes are linked by an edge provided by the corresponding local minima are linked by a saddle
on the PEL.

Finally, comparing aims at checking whether two sets of samples uncovered the same regions
of the landscape. As of now, this problem has only been addressed by comparing the local
minima of the two sample sets. One could naturally resort to the aforementioned EMD (Fig. 1).
However, we also wish to respect a connectivity constraint, which is absent from the original
earth mover distance problem: prosaically, if a transportation plan aims at filling lakes of a
mountain range from lakes of another mountain ranges, connected lakes of the former should be

Inria



Mass Transportation Problems with Connectivity Constraints 5

Figure 1 Comparing energy landscapes. (Left) Each landscape is partitioned into the
basins associated to its local minima. (Right) Comparing two landscapes is phrased as a mass
transportation problem on the bipartite graph defined by the two sets of minima.
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mapped to connected lakes of the latter. These new constraints make our problem, also called
minimum-cost flow under connectivity constraints problem, much more difficult to solve. Indeed,
this problem cannot be written as a linear program.

1.3 Contributions and Paper Overview

The simplest transportation problems reduce to linear programs. However, when the supply and
demand nodes belong to graphs, these problems are oblivious to the connectivity of these graphs.
In this context, we make the following contributions.

In Section 2, we define two optimal transportation problems for graphs so as to minimize a
transport cost between their nodes, while respecting connectivity constraints.These problems are
minimum-cost flow under connectivity constraints problem (EMD-CC) and maximum-flow under
cost and connectivity constraints problem (EMD-CCC). In Section 3, we first prove that the decision
version of EMD-CC is in NP, and obtain a simpler definition of the connectivity constraints. We
then show that the decision version of EMD-CC is NP-complete even for very simple classes of
instances. We deduce that the decision version of EMD-CCC is NP-complete, and also prove
that the EMD-CC problem is not in APX even for simple classes of instances. We also prove a
Polynomial Time Approximation Scheme for EMD-CC and EMD-CCC when transport plans involving
a large number of edges are allowed. Since the flow problems are very hard to solve and even to
approximate, a greedy heuristic algorithm is developed in Section 4. Finally, Section 5 presents
an experimental assessment of our greedy algorithm on two types of landscapes (associated with
protein models and synthetic), showing that it is effective for graphs of intermediate size.

2 Problem Formulation and Models

Consider two connected graphs: a supply graph G = (V,E) and a demand graph G′ = (V ′, E′).
The set V = {v1, . . . , v|I|} represents the supply nodes. We denote by I the set of indices of
the supply nodes. The value Xi ≥ 0 represents the volume of supply of node vi for all i ∈ I.
The set V ′ = {v′1, . . . , v

′
|J |} represents the demand nodes. We denote by J the set of indices

of the demand nodes. The value Yj ≥ 0 represents the volume of demand of node v′j for all
j ∈ J . Without loss of generality, we assume that Xi > 0 and Yj > 0 for all i ∈ I, j ∈ J .
Let B = (V ∪ V ′, V × V ′) be the complete bipartite graph between the supply and the demand
nodes. The real values ci,j ≥ 0 represent the linear cost of sending a unit of flow from node vi
to node v′j for all i ∈ I, j ∈ J . The variable Fi,j represents the volume of flow sent by node
vi to v′j for all i ∈ I, j ∈ J . For all i ∈ I, j ∈ J , the cost of sending avolume of flow Fi,j

through edge {vi, v
′
j} ∈ E(B) is Fi,jci,j . Given the flows Fi,j for all edges of B,the total flow is

∑

i∈I

∑

j∈J Fi,j and the total cost is
∑

i∈I

∑

j∈J Fi,jci,j .

RR n° 8611
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2.1 Minimum-cost Flow Problem

The classical minimum-cost flow problem (EMD), or transportation problem [4], consists in deter-
mining a minimum cost flow satisfying the demands and respecting the supply constraints. This
problem is polynomial since it reduces to solving the following linear program:

LP























Min
∑

i∈I

∑

j∈J Fi,j ci,j
∑

i∈I Fi,j ≤ Yj ∀j ∈ J ,
∑

j∈J Fi,j ≤ Xi ∀i ∈ I,
∑

i∈I

∑

j∈J Fi,j = min(
∑

i∈I Xi,
∑

j∈J Yj)

Fi,j ≥ 0 ∀i ∈ I, ∀j ∈ J .

(1)

The first line is the objective function, the second line represents the demand constraints (the
total volume of flow that arrives at node v′j must be at most Yj for all j ∈ J ), the third line
describes the supply constraints (the total volume of flow sent by node vi must be at most Xi

for all i ∈ I), the fourth line states that the total amount of flow equals the minimum between
the total volume of supplies and the total volume of demands, and the last line guarantees that
flows are positive. Note that if

∑

i∈I Xi ≥
∑

j∈J Yj , then the fourth line can be removed and
the inequality constraints of the second line become equality constraints.

Based on this LP, we introduce the total number of edges, the total flow, the total cost, and
their ratio, known as the earth mover distance [10]:

MEMD =
∑

i,j|Fi,j>0

1, FEMD =
∑

i,j

Fi,j , C
EMD =

∑

i,j

Fi,jci,j , and dEMD =
CEMD

FEMD
. (2)

2.2 Minimum-cost Flow under Connectivity Constraints Problem

Problem statement. In this paper, we investigate a more difficult problem consisting in
adding connectivity constraints. The minimum-cost flow under connectivity constraints problem
(EMD-CC) consists in computing a minimum cost flow (satisfying demand and supply constraints)
such that for every subset of supply nodes H ⊆ V that induces a connected subgraph, the graph
induced by the set of nodes H ′ = {v′j | Fi,j > 0, vi ∈ H, i ∈ I, j ∈ J } is connected. In other
words, all the nodes of G′ that receive non-zero flow from at least one node of H, induce a
connected subgraph of G′. Let H be the set of all sets of nodes of G that induce a connected
subgraph. Let H′ be the set of all sets of nodes of G′ that induce a connected subgraph.

Furthermore, we have a constraint on the number of edges of B that can support non-zero
flow. From our application point of view, we aim at computing flow solutions with a linear
(in the total number of nodes) number of edges that support non-zero flow, that is a number
θ(|V |+ |V ′|) of such edges. But in practice, we do not know a priori this number of edges, and so
we must addan upper-bound M for this number of edges. Furthermore, without this constraint,
optimal solutions would not be interesting for our problem because of the quadratic number of
edges supporting non-zero flow. Indeed, a class of near optimal solutions can be easily obtained
as follows. We first add a volume of flow ε for all edges of the complete bipartite graph B,
and then obtain an auxiliary instance (in which we update the supply and the demand volumes
for all nodes). By construction, the connectivity constraints are satisfied, and so the EMD-CC is
equivalent to EMD for this auxiliary instance, which gets solved by the LP of Eq. (1). Thus, we
get a polynomial time approximation scheme for this problem choosing ε function of the desired
approximation ratio (Theorem 3), and so optimal solutions may be not interesting. In summary,
since we do not know the number of edges, then our implemented algorithms do not take this
upper-bound in input, or equivalently M = |E(B)|, but we carefully analyze the number of edges

Inria
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that support non-zero flow in our experimental results. Formally, given M , 0 ≤ M ≤ |E(B)|,
EMD-CC can be written as follows:







































Min
∑

i∈I

∑

j∈J Fi,j ci,j
∑

i∈I Fi,j ≤ Yj ∀j ∈ J ,
∑

j∈J Fi,j ≤ Xi ∀i ∈ I,
∑

i∈I

∑

j∈J Fi,j = min(
∑

i∈I Xi,
∑

j∈J Yj)

Fi,j ≥ 0 ∀i ∈ I, ∀j ∈ J ,
∑

i∈I

∑

j∈J |Fi,j>0 1 ≤ M

H ′ = {v′j | Fi,j > 0, vi ∈ H, i ∈ I, j ∈ J } ∈ H′ ∀H ∈ H.

(3)

From which we define the total number of edges, the total flow, the total cost, and their ratio:

MEMD-CC =
∑

i,j|Fi,j>0

1, FEMD-CC =
∑

i,j

Fi,j , C
EMD-CC =

∑

i,j

Fi,jci,j , dEMD-CC =
CEMD-CC

FEMD-CC
.

(4)
Note that the number of connectivity constraints may be exponential in the number of nodes

of G. Observe also that if G′ is a complete graph and M = |E(B)|, then EMD-CC is polynomial
because the constraints of the two last lines are always satisfied.

Example. Fig. 2 (a) describes a simple instance: three supply nodes with X1 = 8, X2 = 5,
X3 = 4 and three demand nodes with Y1 = 4, Y2 = 3, Y3 = 6. Integers on nodes represent
these supply and demand values. The graph G = (V,E) is a path, where V = {v1, v2, v3} and
E = {{v1, v2}, {v2, v3}}. The graph G′ = (V ′, E′) is also a path, where V ′ = {v′1, v

′
2, v

′
3} and

E′ = {{v′1, v
′
2}, {v

′
2, v

′
3}}. Integers on edges of the complete bipartite graph B represents unitary

costs ci,j for all i, j ∈ {1, 2, 3}. Theunit costs are c1,1 = 1, c1,2 = 7, c1,3 = 1, c2,1 = 6,
c2,2 = 1, c2,3 = 9, c3,1 = 9, c3,2 = 5, and c3,3 = 1. Since G is a path, we get H = {{v1},
{v1, v2}, {v1, v2, v3}, {v2}, {v2, v3}, {v3}}. Since G′ is also a path, we get H′ = {{v′1}, {v

′
1, v

′
2},

{v′1, v
′
2, v

′
3}, {v

′
2}, {v

′
2, v

′
3}, {v

′
3}}.

EMD consists in solving:














































Min F1,1 + 7F1,2 + F1,3 + 6F2,1 + F2,2 + 9F2,3 + 9F3,1 + 5F3,2 + F3,3,
F1,1 + F2,1 + F3,1 = 4,
F1,2 + F2,2 + F3,2 = 3,
F1,3 + F2,3 + F3,3 = 6,
F1,1 + F1,2 + F1,3 ≤ 8,
F2,1 + F2,2 + F2,3 ≤ 5,
F3,1 + F3,2 + F3,3 ≤ 4,
F1,1, F1,2, F1,3, F2,1, F2,2, F2,3, F3,1, F3,2, F3,3 ≥ 0.

The first three equations represent demand constraints, the following three inequations are
supply constraints, and the last line guarantees non-negative flows. Fig. 2 (b) represents an
optimal solutionfor EMD: F1,1 = 4, F1,3 = 2, F2,2 = 3, F3,3 = 4, and F1,2 = F2,1 = F2,3 = F3,1 =
F3,2 = 0. Only links of cost 1 are used and so the cost of the solution isCEMD =

∑

j∈{1,2,3} Yj =
13. This solution is not admissible for EMD-CC. Indeed node v1 ∈ V sends non-zero flow only to
demand nodes v′1 ∈ V ′ and v′3 ∈ V ′ (that is F1,1 > 0, F1,2 = 0, and F1,3 > 0), and the nodes v′1
and v′3 do not induce a connected subgraph because {v′1, v

′
3} /∈ E′ (and so {v′1, v

′
3} /∈ H′). One

can observe that there does not exist an admissible solution of cost 13 for EMD-CC even when
M = |E(B)| = 9.

Fig. 2 (c) represents an admissible solution for EMD-CC for5 ≤ M ≤ 9 and for any real number
x ∈]0, 3]: F1,1 = 4, F1,2 = x, F1,3 = 2, F2,2 = 3− x, F3,3 = 4, and F2,1 = F2,3 = F3,1 = F3,2 = 0.

RR n° 8611



8 F. Cazals and D. Mazauric / ABS

Figure 2 (a) Example of supply and demand graphs. (b) Optimal solution for EMD of cost 13.
(c) Optimal solution for EMD-CC of cost 6x+13 for 5 ≤ M ≤ 9. (d) Optimal solution for EMD-CC
of cost 29 for M = 4. (e) Optimal solution for EMD-CC of cost 45 for M = 3.
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The total cost is
∑

i∈I

∑

j∈J Fi,jci,j = 6x + 13. Thus, limx→0

∑

i∈I

∑

j∈J Fi,jci,j = 13 but we
cannot obtain an admissible solution of cost 13 because x > 0. Fig. 2 (d) shows an optimal
solution for EMD-CC forM = 4: F1,1 = 4, F2,2 = 3, F2,3 = 2, F3,3 = 4, and F1,2 = F1,3 = F2,1 =
F3,1 = F3,2 = 0. The total cost is

∑

i∈I

∑

j∈J Fi,jci,j = 29. Fig. 2 (e) describes an optimal
solution for EMD-CC forM = 3: F1,3 = 6, F2,2 = 3, F3,1 = 4, and F1,1 = F1,2 = F2,1 = F2,3 =
F3,2 = F3,3 = 0. The total cost is

∑

i∈I

∑

j∈J Fi,jci,j = 45. One can observe that there does
not exist an admissible solutionfor EMD-CC when 0 ≤ M ≤ 2.
Solutions do not define a metric. Consider the case where the vertices of the two graphs live
in a metric space C, and let dC be a metric for that space. Under these assumptions, solutions of
the linear program specified by the system of Eq. (1) define a metric provided that the production
satisfies the demand [10]. Such a property does not hold for solutions computed with connectivity
constraints, since the symmetry and the triangle inequality do not hold in general (Fig. 3).

In this example, we consider three graphs G,G′ and G′′ as follows:G is a path, G′ is a star
graph (every node but one has degree one), G and G′ have the same number of nodes, and G′′

is G′ (or G) completed to contain all edges. In the tree cases, we assume that the sum of masses
associated to the vertices is one. We first observe that the triangle inequality fails for dEMD-CC.
To see why, first observe that the hypothesis made on the three graphs implies that

0 < CEMD-CC(G,G′) 6≤ CEMD-CC(G,G′′)+CEMD-CC(G′, G′′) = CEMD(G,G′′)+CEMD(G′, G′′) = 0.

Because the LP fully satisfies the demand, the previous inequality on total costs translates into
an inequality on distances.

Figure 3 Solutions of EMD-CC may not satisfy the triangle inequality.

G G
′

G
′′
: G

′
completed

2.3 Maximum-flow under Cost and Connectivity Constraints Problem

Since EMD-CC does not necessarily admit a solution, we define a similar problem, called maximum-
flow under cost and connectivity constraints problem (EMD-CCC), that aims at computing the

Inria



Mass Transportation Problems with Connectivity Constraints 9

largest volume of flow that can be supported respecting the connectivity constraints and such
that the total cost is less thana given bound C. We define the following upper bound for the
maximum total cost of any admissible flow:

Cmax =
∑

j∈J

Yj max
i∈I,j∈J

ci,j . (5)

Formally, given C and M , 0 ≤ C ≤ Cmax, 0 ≤ M ≤ |E(B)|, EMD-CCC is defined as follows:







































Max
∑

i∈I

∑

j∈J Fi,j
∑

i∈I Fi,j ≤ Yj ∀j ∈ J ,
∑

j∈J Fi,j ≤ Xi ∀i ∈ I,
Fi,j ≥ 0 ∀i ∈ I, ∀j ∈ J ,
∑

i∈I

∑

j∈J Fi,j ci,j ≤ C
∑

i∈I

∑

j∈J |Fi,j>0 1 ≤ M

H ′ = {v′j | Fi,j > 0, vi ∈ H, i ∈ I, j ∈ J } ∈ H′ ∀H ∈ H.

(6)

From which we define the total number of edges, the total flow, the total cost, and their ratio:

MEMD-CCC =
∑

i,j|Fi,j>0

1, FEMD-CCC =
∑

i,j

Fi,j , C
EMD-CCC =

∑

i,j

Fi,jci,j , dEMD-CCC =
CEMD-CCC

FEMD-CCC
.

(7)

Remark 1. While developing algorithms (Section 4), we shall actually discard the constraint
involving the upper-bound M in input, or equivalently M = |E(B)|. In doing so, we avoid
speculating on a good value for M . On the other hand, while running experiments, we precisely
assess the size of transport plans computed, by comparing the number of edges carrying flow
against the size of the input graphs. As we shall see, in all our experiments, we end up with
transport plans of linear size in the number of vertices,that is MEMD-CCC = θ(|V |+ |V ′|).

3 Complexity Results

3.1 The Problems are Difficult even for Simple Instances

We first show in Lemma 1 that the decision version of EMD-CC is in NP. We then prove that the
problem is NP-complete and not in APX.

Lemma. 1. The decision version of EMD-CC is in NP.

Proof of Lemma 1. Consider any instance of EMD-CC.Without loss of generality, assume that
∑

i∈I Xi ≥
∑

j∈J Yj . Let F be a solution. We can check in polynomial time if
∑

i∈I Fi,j = Yj ,
if
∑

j∈J Fi,j ≤ Xi, if Fi,j ≥ 0, and if
∑

i∈I

∑

j∈J |Fi,j>0 1 ≤ M for all i ∈ I, j ∈ J .

We now prove that we can decide in polynomial time if H ′ = {v′j | Fi,j > 0, vi ∈ H, i ∈
I, j ∈ J } ∈ H′ for all H ∈ H. We prove the result by induction on the size |H| of the subset of
the supply nodes. First, we can verify in polynomial time if the constraints of connectivity are
satisfied for allH ∈ H, |H| ≤ 2. Suppose now thatH ′ = {v′j | Fi,j > 0, vi ∈ H, i ∈ I, j ∈ J } ∈ H′

for allH ∈ H, |H| ≤ t,with t ≤ |V |−1. We prove thatH ′ = {v′j | Fi,j > 0, vi ∈ H, i ∈ I, j ∈ J } ∈
H′ for all H ∈ H, |H| ≤ t+ 1. Let H ∈ H such that |H| = t+ 1. Since H induces a connected
component, then there exists a node u ∈ H such that H \ {u} induces a connected component.
The constraint of connectivity is satisfied for H \ {u} because |H \ {u}| = t. Furthermore there
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exists a node v ∈ H \ {u} such that {u, v} ∈ E. The constraint of connectivity is satisfied for
{u, v} because |{u, v}| = 2. We deduce that the constraint of connectivity is satisfied for H
because (H \ {u}) ∩ {u, v} 6= ∅. Thus, H ′ = {v′j | Fi,j > 0, vi ∈ H, i ∈ I, j ∈ J } ∈ H′ for all
H ∈ H, |H| ≤ t+ 1.

Finally we can decide in polynomial time if H ′ = {v′j | Fi,j > 0, vi ∈ H, i ∈ I, j ∈ J } ∈ H′

for all H ∈ H because it reduces to decide if H ′ = {v′j | Fi,j > 0, vi ∈ H, i ∈ I, j ∈ J } ∈ H′ for
all H ∈ H, |H| ≤ 2.

Fromthe proof of Lemma 1, the constraints of connectivity can be written as follows:

{

H ′
i = {v′j | Fi,j > 0, j ∈ J } ∈ H′ ∀i ∈ I,

H ′
i1,i2

= {v′j | Fi,j > 0, i ∈ {i1, i2}, j ∈ J } ∈ H′ ∀i1, i2 ∈ H, {vi1 , vi2} ∈ E.

In the following, we prove hardness results. In our reductions, we use the strongly NP-
complete problem 3-Partition [6]. Let m ≥ 1 be any integer.Given a set S = {n1, n2, . . . , n3m}
of 3m positive integers, 3-Partition problem consists in deciding if S can be partitioned into m
subsets such that the sum of the numbers in each subset is equal.

Theorem. 1. The decision version of EMD-CC is NP-complete even if:

• the demand graph G′ is a complete graph;

• all the volumes of demands are equal, Yj = Yj′ for all j, j′ ∈ J ;

• all the unitary costs are equal to one, ci,j = 1 for all i ∈ I, j ∈ J ;

• and the total volume of demands equals the total volume of supplies,
∑

i∈I Xi =
∑

j∈J Yj.

Proof of Theorem 1. Consider an instance of3-Partition problem. Let m ≥ 1 be any integer and
let S = {n1, n2, . . . , n3m} be a set of 3m positive integers.

We construct the instance of EMD-CC as follows. Set |I| = 3m and |J | = m. Set Xi = ni for
all i ∈ I. Let Z =

∑

i∈I Xi. Without loss of generality, let Yj = Y with Z = mY . Set ci,j = 1
for all i ∈ I, j ∈ J . Let G = (V,E) be any connected graph and let G′ = (V ′, V ′ × V ′). Let
M = 3m. Since G′ is a complete graph, the connectivity constraints are always satisfied and so
EMD-CC can be written as follows:























Min
∑

i∈I

∑

j∈J Fi,j ci,j
∑

i∈I Fi,j = Yj ∀j ∈ J ,
∑

j∈J Fi,j ≤ Xi ∀i ∈ I,
Fi,j ≥ 0 ∀i ∈ I, ∀j ∈ J ,
∑

i∈I

∑

j∈J |Fi,j>0 1 ≤ M.

We prove that there is an admissible solution for EMD-CC ifand only if there is a solution for
the instance of3-Partition problem.

(⇐) Assume there is a solution for the instance of3-Partition problem, that is S can be
partitioned into m subsets S1, S2, . . . , Sm such that the sum of the numbers in each subset is
equal. We construct our solution for EMD-CC as follows. For all i ∈ I, j ∈ J , if ni ∈ Sj , then set
Fi,j := ni, otherwise set Fi,j := 0. By construction,we have 0 ≤ Fi ≤ Xi for all i ∈ I, j ∈ J .
Since S1, S2, . . . , Sm is a solution for the instance of3-Partition problem, then

∑

i∈I Fi,j = Yj

for all j ∈ J . Finally we prove that the number of edges of B that support non-zero flow is (at
most) M = 3m. By construction, Fi,j1Fi,j2 = 0 for all i ∈ I, j1, j2 ∈ J . Thus, for all i ∈ I, there
is at most one edge adjacent to vi that supports non-zero flow. Thus, the solution is admissible
because |I| = 3m.

Inria
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(⇒) Assume there is an admissible solution for EMD-CC. Since
∑

i∈I Xi =
∑

j∈J Yj , then
∑

j∈J Fi,j > 0 for all i ∈ I. In other words, there is at least one edge adjacent to vi that
supports non-zero flow for all i ∈ I. Furthermore there is at most one edge adjacent to vi that
supports non-zero flow for all i ∈ I because M = 3m = |I|. Thus, for all i ∈ I, there is exactly
one edge adjacent to vi that supports non-zero flow. We construct a solution for the instance
of 3-Partition problem as follows. For all i ∈ I, j ∈ J , if Fi,j > 0, then ni ∈ Sj , otherwise set
ni /∈ Sj . By hypothesis (existence of an admissible flow), the sum of the numbers of Sj is Y
because

∑

i∈I Xi =
∑

j∈J Y . Thus, there is a solution for the instance of3-Partition problem.
In conclusion, the decision version of EMD-CC is strongly NP-complete because it is in NP

(Lemma 1) and because3-Partition problem is stronglyNP-complete [6].

Note that M = θ(
√

|E(B)|) in the proof ofTheorem 1.
From Theorem 1, we deduce in Corollary 1 that the decision version of EMD-CCC is NP-

complete. Indeed, given a maximum cost C and a maximum number of edges M , the prob-
lem of deciding if there exists a flow F satisfying the connectivity constraints and such that
∑

i∈I,j∈J Fi,j =
∑

j∈J Yj ,
∑

i∈I,j∈J Fi,jci,j ≤ C, and
∑

i∈I,j∈J |Fi,j>0 1 ≤ M , is equivalent to
the problem of deciding if there is an admissible solution for EMD-CC with C as input.

Corollary. 1. The decision version of EMD-CCC is NP-complete.

We now prove in Theorem 2 that EMD-CC is hard to approximate even for simple classes of
instances.

Theorem. 2. The EMD-CC is not in APX even if:

• all the volumes of demands are equal, Yj = Yj′ for all j, j′ ∈ J ;

• and there are only two possible unitary costs for edges of the bipartite graph B, that is
ci,j ∈ {1,K} for all i ∈ I, j ∈ J , where K > 1.

Proof of Theorem 2. Suppose there exists a constant k > 1 such that there is a polynomial time
k-approximation algorithm for EMD-CC.

Consider an instance of3-Partition problem. Letm ≥ 1 be any integer and let S = {n1, n2, . . . , n3m}
be a set of 3m positive integers. Set |I| = 3m + 1 and I− = I \ {3m + 1}. Set |J | = m + 1
and J− = J \ {m + 1}. Set Xi = ni for all i ∈ I− Let Z =

∑

i∈I− Xi. Without loss of
generality, let Yj = Y with Z = mY for all j ∈ J−. Set X3m+1 = Z and Ym+1 = Y . Set
ci,j = 1 for all i ∈ I−, j ∈ J−. Set c3m+1,m+1 = 1. Set c3m+1,j = K = k(Y +Z) for all j ∈ J−.
Set ci,m+1 = K = k(Y + Z) for all i ∈ I−. Let G = (V,E) be any connected graph and let
G′ = (V ′, V ′ × V ′). The connectivity constraints are always satisfied because G′ is a complete
graph. Let M = 3m+ 1.

There exists a solution for EMD-CC such that
∑

j∈J− F3m+1,j +
∑

i∈I− Fi,m+1 = 0if and only
if thereis a solution for the instance of3-Partition problem (Theorem 1). The cost of this solution
is Y +

∑

i∈I,j∈J Fi,jci,j = Y +Z. We prove that if there does not exist a solution for the instance
of3-Partition problem, then the cost of any admissible solution for EMD-CC is at least Z − 1+K.
Suppose that there does not exist a solution for the instance of3-Partition problem. Thus, we
have

∑

j∈J F3m+1,j > 0. There are two cases.

• If F3m+1,m+1 = 0, then
∑

i∈I− Fi,3m+1 = Y . Thus, we get
∑

i∈I−

∑

j∈J− Fi,j ≤ Z − Y
and

∑

j∈J− F3m+1,j ≥ Y . Then,
∑

i∈I

∑

j∈J Fi,jci,j ≥ 2Y K + Z − Y ≥ Z − 1 +K.

• If F3m+1,m+1 > 0, then
∑

i∈I−

∑

j∈J− Fi,j ≤ Z − 2. Thus, we get
∑

j∈J− F3m+1,j ≥ 2.
Then,

∑

i∈I

∑

j∈J Fi,jci,j ≥ 2K + Y + Z − 2 ≥ Z − 1 +K.
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Since K = k(Y + Z), we have (Z − 1 +K)/Z > k. As we have supposed that there exists a
polynomial time k-approximation algorithm for EMD-CC, then if there is a solution of cost Y +Z,
the k-approximation algorithm returns such a solution (otherwise the approximation ratio would
be wrong); otherwise (solution of cost at least Z−1+K), the k-approximation ratio would return
a solution with cost at least Z − 1+K. Thus, the polynomial time (k-approximation) algorithm
solves3-Partition problem which is a strongly NP-completeproblem [6]. A contradiction, unless
P=NP.

3.2 PTAS when the Number of Active Edges is not Bounded

We prove in Theorem 3 a Polynomial Time Approximation Scheme for EMD-CC whenM = |E(B)|.

Theorem. 3. Let M = |E(B)|. For any ε > 0, there is a polynomial time (1+ε)-approximation
algorithm for EMD-CC.

Proof of Theorem 3. Consider an instance of EMD-CC. We construct an auxiliary instance as
follows. The graphs G, G′, and B and the cost ci,j for all i ∈ I, j ∈ J are those of the original
instance. Let ε′ > 0 be a real value such that Xi − |J |ε′ > 0 for all i ∈ I and such that
Yj − |I|ε′ > 0 for all j ∈ I. We denote by X ′

i the volume of supply for all i ∈ I in the auxiliary
instance. Set X ′

i = Xi−|J |ε′ for all i ∈ I. We denote by Y ′
i the volume of demand for all j ∈ J

in the auxiliary instance. Set Y ′
j = Yj − |I|ε′ for all j ∈ I. Let F ′ be an optimal solution for

this auxiliary instance for EMD. Recall that this can be done in polynomial time since it reduces
to solve a linear program. The cost of F ′ is

∑

i∈I

∑

j∈J F ′
i,jci,j .

We now construct an admissible solution F for the original instance for EMD-CC as follows.
Set Fi,j = F ′

i,j + ε′ for all i ∈ I, j ∈ J . All the constraints of connectivity are satisfied because
Fi,j > 0 for all i ∈ I, j ∈ J . Recall that M = |E(B)|. Thus, the solution is admissible. The
cost of F is

∑

i∈I

∑

j∈J Fi,jci,j = |I||J |ε′ +
∑

i∈I

∑

j∈J F ′
i,jci,j .

Let F ∗ be an optimal solution for the original instance of EMD-CC. Observe that:

∑

i∈I

∑

j∈J

F ′
i,jci,j ≤

∑

i∈I

∑

j∈J

F ∗
i,jci,j ≤ |I||J |ε′ +

∑

i∈I

∑

j∈J

F ′
i,jci,j =

∑

i∈I

∑

j∈J

Fi,jci,j .

We finally choose ε′ > 0 suchthat:

|I||J |ε′ +
∑

i∈I

∑

j∈J

F ′
i,jci,j ≤ (1 + ε)

∑

i∈I

∑

j∈J

F
′

i,jci,j .

Thus, weget:

∑

i∈I

∑

j∈J

Fi,jci,j = |I||J |ε′ +
∑

i∈I

∑

j∈J

F ′
i,jci,j ≤ (1 + ε)

∑

i∈I

∑

j∈J

F ∗
i,jci,j .

We get a polynomial time (1 + ε)-approximation algorithm for EMD-CC because F ′ is obtained
by solving a linear program and F is directly deduced from F ′.

Fromthe proof of Theorem 3, an interesting problem is to determine the minimum number
of edges to add in an optimal solution for EMD in order to get an admissible solutionfor EMD-CC.

From Theorem 3, we deduce Corollary 2.

Corollary. 2. Let M = |E(B)| and let C be any real such that 0 ≤ C ≤ Cmax. For any ε > 0,
there is a polynomial time (1 + ε)-approximation algorithm for EMD-CCC.
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4 Algorithms

In Section 4.1, we present a greedy algorithm, called Alg-EMD-CCC-G, to solve EMD-CCC. In
Section 4.2, we design algorithm Alg-EMD-CCC-G-I, which uses Alg-EMD-CCC-G in an iterative
fashion to deal withdifferent cost upper-bounds.

4.1 Greedy Algorithm Alg-EMD-CCC-G

Recall that we wish to solve EMD-CCC, while alleviating constraint involving the upper-boundM(remark
of Section 1). Indeed, Algorithm 1 is used with M = |E(B)|. We do so with a greedy strategy,
Alg-EMD-CCC-G (Algorithm 1). Alg-EMD-CCC-G returns the cost, the number of edges, the total
flows, and the flows for every edge {vi, v

′
j} ∈ E(B) of the solution found, namely CAlg-EMD-CCC-G,

MAlg-EMD-CCC-G, FAlg-EMD-CCC-G, and FAlg-EMD-CCC-G
i,j for every edge {vi, v

′
j} ∈ E(B), respec-

tively.

The algorithm greedily selects (Line 4 of Algorithm 1) edges of the bipartite graph that can
support flow without violating the connectivity constraints and the cost upper-bound. After
such a selection, Algorithm 2 updates the set of candidate edges for the next step of selection in
respect with the connectivity constraints.

Before presenting in detail Algorithm 1, let us first define some notations. For any subset
S ⊆ V , the open neighborhood NG(S) of S is the set of vertices in V \ S having a neighbor in
S and the closed neighborhood of S, denoted by NG[S], is defined as N(S) ∪ S. If S = {v},
we use NG(v) and NG[v] instead of NG({v}) and NG[{v}],respectively. Similarly, for any subset
S′ ⊆ V ′, the open neighborhood NG′(S′) of S′ is the set of vertices in V ′\S′ having a neighbor in
S′ and the closed neighborhood of S′, denoted by NG′ [S′], is defined as N(S′)∪S′. If S′ = {v′},
we use NG′(v′) and NG′ [v′] instead of NG′({v′}) and NG′ [{v′}],respectively. We denote by ∆(G)
(∆(G′), respectively) the maximum degree of the graph G (G′, respectively).

Algorithm 1. The inputs of Algorithm 1 are the supply graph G = (V,E), the demand
graph G′ = (V ′, E′), acost upper-bound C, and a maximum number M of edges that can support
non-zero flow.

We now describe the variables used in Algorithm 1. For all i ∈ I, the value xi ≥ 0 represents
the current volume of supply of node vi ∈ V , and so Xi − xi is the current amount of flow sent
by vi. For all j ∈ J , the value yj ≥ 0 represents the current volume of demand of node v′j ∈ V ′,
and so Yj − yj is the current amount of flow received by v′j . For all i ∈ I, j ∈ J , the variable

Algorithm 1 Greedy algorithm Alg-EMD-CCC-G for EMD-CCC.

Require: G = (V,E), G′ = (V ′, E′), C, M .
1: for all i ∈ I, j ∈ J do
2: Fi,j := 0; CF := 0; MF := 0; xi := Xi; yj := Yj ; bi,j := 1
3: while CF < C, MF ≤ M − 1, and ∃(i, j) such that bi,j = 1, xi > 0, and yj > 0 do
4: (it, jt) = arg min

i∈I,xi>0,j∈J ,yj>0

ci,jbi,j ; f := min((C − CF )/cit,jt ,min(xit , yjt))

5: Fit,jt := Fit,jt + f ; CF := CF + f.cit,jt ; MF := MF + 1; xit := xit − f ; yjt := yjt − f
6: Update of bi,j for all i ∈ I, j ∈ J using Algorithm 2
7: CAlg-EMD-CCC-G := CF ; MAlg-EMD-CCC-G := MF ; FAlg-EMD-CCC-G =

∑

i∈I

∑

j∈J Fi,j ;

FAlg-EMD-CCC-G
i,j = Fi,j for all i ∈ I, j ∈ J

8: return CAlg-EMD-CCC-G, MAlg-EMD-CCC-G, FAlg-EMD-CCC-G, and FAlg-EMD-CCC-G
i,j for all

i ∈ I, j ∈ J
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Algorithm 2 Update of the boolean function b used in Algorithm 1.

Require: G = (V,E), G′ = (V ′, E′), (it, jt), bi,j , Fi,j , xi, for all i ∈ I, j ∈ J .
Ensure: Binary values bi,j for all i ∈ I, j ∈ J .
1: if Xit − xit − Fit,jt = 0 then
2: for all j such that v′j ∈ NG′(v′jt) do bit,j := 1
3: for all j such that v′j /∈ NG′(v′jt) do bit,j := 0
4: for all i such that vi ∈ NG(vit) do
5: if Xi − xi = 0 then
6: for all j such that v′j /∈ NG′ [v′jt ] do bi,j := 0
7: else
8: for all j such that v′j ∈ NG′(v′jt) do bit,j := 1
9: for all i such that vi ∈ NG(vit) do

10: if Xi − xi = 0 then
11: for all j such that v′j ∈ NG′ [v′jt ] do
12: if bi,j = 0 then
13: bi,j := 1
14: for all k such that vk ∈ NG(vi) do
15: if Xk − xk > 0 and bk,j = 0 do bi,j := 0
16: return bi,j for all i ∈ I, j ∈ J

bi,j is used to encode if the edge {vi, v
′
j} ∈ E(B) can support non-zero flow in respect with the

constraints. In other words, bi,j = 1 if the edge {vi, v
′
j} is an edge candidate (bi,j = 0 otherwise).

For all i ∈ I, j ∈ J , the variable Fi,j represents the current flow sent from vi ∈ V to v′j ∈ V ′.
The variable CF represents the total cost of the current flow. The variable MF is the current
number of edges of B that support non-zero flow. Initially, xi = Xi, yj = Yj , Fi,j = 0, CF = 0,
MF = 0, and bi,j = 1 for all i ∈ I, j ∈ J .

We are now ready to precisely explain the core of Algorithm 1. While the current cost CF

is less than the given cost upper-bound C, while the current number MF of edges of B that
support non-zero flow is strictly less than the given upper-bound M , and while there exists an
edge candidate {vi, v

′
j} such that xi, yj > 0 (that is such that a positive flow can be supported

by {vi, v
′
j} ∈ E(B)), then an edge {vit , v

′
jt
} ∈ E(B) is selected (Line 4). Then, the maximum

amount of flow f that can be supported by the edge {vit , v
′
jt
} is computed. Line 5 updates the

values of Fit,jt , CF , MF , xit , and yjt . Line 6 updates the boolean function b using Algorithm 2
for all i ∈ I, j ∈ J .

Algorithm 1 finally returns CAlg-EMD-CCC-G,MAlg-EMD-CCC-G, FAlg-EMD-CCC-G, and FAlg-EMD-CCC-G
i,j

for every edge {vi, v
′
j} ∈ E(B).

Algorithm 2. The inputs of Algorithm 2 are the supply graph G = (V,E), the demand graph
G′ = (V ′, E′), the pair (it, jt) representing the edge {vit , v

′
jt
} ∈ E(B) selected for supporting

flow, and for all i ∈ I, j ∈ J , the boolean variable bi,j , the variable Fi,j , and the value xi

representing the current volume of supply of node vi ∈ V .

We now prove in Lemma 2 that Algorithm 2 updates the set of candidate edges that can
support flow in respect with the connectivity constraints.

Lemma. 2. Algorithm 2 updates bi,j for all i ∈ I, j ∈ J .

Proof of Theorem 2. Lines 1-6of Algorithm 2 update the boolean function b if Xi−(xit+Fit,jt) =
0, that is if the supply node vit sends flow for the first time. In that case, all the neighbors of v′jt
in G′ can receive flow from vit (Line 2) and all the other nodes of G′ cannot receive flow from
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Algorithm 3 Algorithm Alg-EMD-CCC-G-I.

Require: G = (V,E), G′ = (V ′, E′), Cinf , Csup.
1: Finf := total flow of Alg-EMD-CCC-G with G, G′, C := Cinf , M := |E(B)|
2: Fsup := total flow of Alg-EMD-CCC-G with G, G′, C := Csup, M := |E(B)|
3: if Finf < Fsup then
4: Alg-EMD-CCC-G-I with G, G′, Cinf , Csup := C
5: Alg-EMD-CCC-G-I with G, G′, Cinf := C, Csup

vit (Line 3). Furthermore, all the neighbors of vit in G that do not have sent flow, cannot send
flow to the nodes of G′ that are not neighbors of v′jt in G′ (Lines 4-6).

Lines 7-15 update the boolean function b if Xi − (xit + Fit,jt) 6= 0, that is if the supply node
vit has already sent flow before the current step. All the neighbors of v′jt in G′ can receive flow
from vit (Line 8). Every neighbor vi of vit in G that does not have sent flow, can send flow to
every neighbor v′j of v′jt in G′ if bi,j = 0, that is if the edge {vi, v

′
j} does not support flow (Lines

9-13). Furthermore, for every neighbor vi of vit in G that does not have sent flow, for every
neighbor v′j of v′jt in G′ such that bi,j = 0, and for every neighbor vk of vi in G that has already
sent flow and such that vk cannot send flow to v′j , then we set that vi cannot send flow to v′j ,
that is bi,j = 0 (Lines 9-15).

Algorithm 2 finally returns the variables bi,j for all i ∈ I, j ∈ J .

We finally prove in Lemma 3 the time-complexity of Algorithm 1.

Lemma. 3. The time-complexity of Alg-EMD-CCC-G is O(|V |3|V ′|2).

Proof of Theorem 3. The time-complexity of Algorithm 2 is O(|V ′|+∆(G)2∆(G′)). Indeed, the
time-complexity of the first part (Lines 1-6) is O(|V ′|+∆(G)∆(G′)), and the time-complexity of
the second part (Lines 7-15) is O(∆(G)2∆(G′)). The time-complexity of Line 4 of Algorithm 1
to perform the edge selection is O(|V ||V ′|). The number of steps (number of iterations of the
while loop) of Algorithm 1 is at most |V ||V ′|. Thus, we deduce that the time-complexity of
Algorithm 1 is O(|V |3|V ′|2) because ∆(G) = O(|V |) and ∆(G′) = O(|V ′|).

4.2 Iterative Algorithm Alg-EMD-CCC-G-I

As previously explained, the maximum cost is an input of Alg-EMD-CCC-G. In order to compute
different flow solutions for differentcost upper-bounds in the range [0, Cmax] (Eq. (5)), we design
Alg-EMD-CCC-G-I (Algorithm 3). Thatis, Alg-EMD-CCC-G-I returns a collection of transport
plans, from which one may select the one with the largest flow, or the one with the best ratio
dEMD-CCC (Eq. 7).

The inputs of Alg-EMD-CCC-G-I are those of Alg-EMD-CCC-G and two additional inputs: Cinf

and Csup. Alg-EMD-CCC-G-I computes a flow solution of cost at most Cinf (Line 1) and a flow
solution of cost at most Csup (Line 2). Note that it is possible that these two flow solutions
have been previously computed. If the total flows are different, then we refine our calculation
by computing a flow solution of cost at most (Cinf +Cmax)/2. This is done in Lines 3-5 by the
two recursive calls of Alg-EMD-CCC-G-I. To do that, we initially apply Alg-EMD-CCC-G-I with
Cinf := 0 and Csup := Cmax.
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5 Experiments

We present experiments on protein models and synthetic landscapes derived from Voronoi dia-
grams.

5.1 Implementations

Algorithms. We implemented our algorithms in generic C++, using the Boost Graph Library
to represent the graphs. Each algorithm is templated by a traits class specifying two main
parameters, namely (i) the information associated with a vertex (quantity of supply or demand,
coordinates), and (ii) a distance functor used to compute the unit cost of flow between a source
node and a demand node. This design makes it possible to instantiate the algorithms on various
types of graphs, and to investigate the role of the cost by changing the distance functor.

In all experiments, the transport plan considered is the one returned by Alg-EMD-CCC-G, run
with thecost upper bound Cmax (Eq. (5)).

To make comparisons, we also implemented a procedure (Alg-EMD-LP) writing the linear
program of Eq. (1) in the Mathematical Programming System format, so as to solve it with a
LP solver. The corresponding cost is denoted CEMD(Eq. (2)). Solutions of the LP are expected
to violate connectivity constraints, so that we also implemented a checker. Consider the solution
of the LP program. For a vertex of the source graph, let the target vertices be the vertices
of the demand graph corresponding to edges along which strictly positive flow circulates. A
vertex of the source graph violates the connectivity constraints if the subgraph induced by its
target vertices is not connected. Likewise, for an edge of the input graph (or larger subgraphs),
we check the connectedness of the subgraph induced by the union of the target vertices. Both
checks merely require running a union-find algorithm [12].

Comparisons. To evaluate Alg-EMD-LP, we focus on the total cost and the associated distance,
as specified by Eq. (2), and on the fraction of vertices and edges satisfying the connectivity
constraints, as defined above, respectively denoted rc.c.V and rc.c.E . To evaluate Alg-EMD-CCC-G, we
resort to the total flow, the total cost and their ratio, as specified by Eq. (7). For Alg-EMD-CCC-G,
we also assess the symmetry of costs and flows. For costs, given two graphs A and B, we compute
the following ratio:

rsym.
Cost =

min(CAlg-EMD-CCC-G(A,B), CAlg-EMD-CCC-G(B,A))

max(CAlg-EMD-CCC-G(A,B), CAlg-EMD-CCC-G(B,A))
. (8)

Given a collection of pairs of graphs, we also compute the min and max of the ratio of Eq. (8)
over all pairs. We proceed mutatis mutandis for the total flow. Finally, we also monitor running
times, as well as the size of the transport plans computed(remark of Section 1).

5.2 Potential Energy Landscapes of Simplified Protein Models

5.2.1 Specifications

Definition. A BLN model is a simplified protein model whose amino-acids have been replaced
by three pseudo amino-acids modeled as beads, each with specific properties (hydrophobic (B),
hydrophylic (L) and neutral (N)) [14]. A BLN model with k beads therefore consists of a linear
chain containing k − 1 covalent bonds linking every pair of consecutive beads, resulting in 3× k
Cartesian coordinates. We use k = 69, so that the conformational space of the system has
dimension d = 207. BLN models are known to fold into a structure with a hydrophobic core
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favoring close interactions between hydrophobic beads, thus mimicking real proteins (Fig. 5).
As a distance between conformations, we use the least Root Mean Square Deviation (lRMSD).

Generation. The potential energy landscape (PEL) of the BLN system is obtained by asso-
ciating a potential energy to each conformation, and we use the expression provided in the
supplemental Section 7.1. Exploring a PEL in general is a challenging endeavor [11], due to its
high dimensionality and to its ruggedness, namely the presence of many shallow local minima.
That of BLN69 has been thoroughly explored [9], with more than 450,000 local minima reported
overall. Ten of them are of special interest since they are low in energy and interconnected by
barriers of small height [9]. Our analysis focuses on this top ten in the sequel. We use the T-RRT
algorithm [7] to generate samples at random in the vicinity of each minimum in the top ten.
Algorithm T-RRT builds a random tree by adding nodes at its periphery, so as to favor the explo-
ration of yet unexplored regions and discover low hanging local minima. Practically, we generate
N = 104 samples for each minimum. We further process each such sampling, as explained below,
to produce one graph to be used in the comparisons.

Figure 4 Voronoi landscapes. The graph of a Voronoi landscape is defined by the one-skeleton
of the 2D Delaunay triangulation of points. The volume of supply or demand is the normalized
area of the Voronoi tile (gray region on the left side). (Left) A landscape with S = 20 random
points. (Right) A nested landscape obtained by merging samples within two nested squares.

with S + s = 20 + 20 points.
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Figure 5 Example conformation of the BLN69 model The three types of beads are rep-
resented as follows: hydrophobic (B) in red, hydrophylic (L) in blue, and neutral (N) in green.
Note the formation of a hydrophobic core clubbing the hydrophobic particles.

A given sampling may have visited several local minima in the vicinity of the local minimum
it was generated from. To identify these, we perform a gradient descent of the potential energy
at each sample pi, i = 1, . . . , N , an operation known as quenching. Quenching assigns a sample pi
to the local minimum q(pi) found at the bottom of the basin of the PEL sample pi belongs to. To
define a graph connecting these local minima q(pi) via index one saddles, we resort to a modified
version of the Tomato algorithm [3]. Recall that the Tomato algorithm maps each sample to its
local minimum by a discrete flow operator defined from a nearest neighbor graph (NNG) defined
on all samples, and identifies transitions between basins as pairs of neighboring samples flowing
to distinct local minima. We replace this discrete flow operator by the information provided by
q(pi). (As argued in [2], in high dimensional spaces, information encoded in NNG falls short from
providing accurate information for local minima in particular, and for critical points in general.)
Furthermore, upon obtaining this graph, we simplify it using topological persistence, to retain
the 50 most significant local minima.

Finally, we assign a mass to each node of this simplified graph, defined as the fraction of
samples (out of N = 104) which get quenched to this local minimum. The process leaves us with
one graph, called a transition graph in the sequel, for each local minimum in the top ten. We
refer to this data set as TRRT-top10, and to a particular graph as TRRT-top10-i, i = 1, . . . , 10.

5.2.2 Results

Our ten transition graphs yield 45 pairs, whence 45 instances for Alg-EMD-LP (which is symmet-
ric), and 90 instances for Alg-EMD-CCC-G (which is not symmetric).

Algorithm Alg-EMD-LP and constraint satisfaction. Since algorithm Alg-EMD-LP is obliv-
ious to critical point connectivity, we compute the fraction rc.c.V and rc.c.E of vertices and edges
of the input graph inducing through the flow a connected subgraph of the demand graph. Out
of the 45 instances of the dataset TRRT-top10, the min and max values for vertices and edges
are (0.41, 1), and (0.24, 1), respectively. That is, transport plans obtained from solutions of the
linear program do disrupt connectivity constraints.
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Algorithm Alg-EMD-CCC-G and demand satisfaction. The connectivity constraints may
prevent Alg-EMD-CCC-G to fully satisfy the demand. For each instance, we therefore monitor the
total flow FAlg-EMD-CCC-G provided by the transport plan, the ideal value being one. On the 90
instances, a worst-case of 0.99 is observed, showing that the connectivity constraints are lenient
on these instances. Further inspection shows that such performances owe to the distribution
of weights in the basins. Indeed, for each transition graph TRRT-top10-i, it turns out that
the local minimum from which the exploration was started takes most of the mass. Therefore,
in comparing two such graphs, a transportation plan essentially reduces to moving the mass
in-between the two prominent local minima.

Transport costs. To assess transport costs, we compute the linear correlation between three
sets of 45 values, namely the transport costs of Alg-EMD-LP of the 45 instances, and those of
Alg-EMD-CCC-G on the 45 × 2 pairs (recall that Alg-EMD-CCC-G is not symmetric). The three
coefficients obtained are equal to 0.99, a property again owing to the structure of the basins, as
just discussed.

These examples showthat Alg-EMD-CCC-G does find elementary transport plans when these
exist. In the sequel, we therefore challenge it with cases involving a more uniform distribution
of masses.

5.3 Voronoi Landscapes

The difficulty of transport problems associated with a biophysical system depends on the topog-
raphy of its landscape, which impacts the number of local minima and the volume of their basins.
We therefore challenge our algorithms with synthetic landscapes characterized by two features:
a user-defined number of nodes, and a more uniform distribution of masses. These landscapes
are based on 2D Voronoi diagrams.

5.3.1 Specifications

Definition. Consider a 2D point cloud P = {pi}i=1,...,S in a square Q = [0, a]× [0, a]. Define the
following distance function dP (p) = mini d(p, pi), with d(p, pi) the Euclidean distance between
p ∈ Q and pi ∈ P .

A Voronoi landscape mimics a potential energy landscapes (PEL) in the following respect
(Fig. 4):

• The conformational space of the molecule is replaced by the Euclidean space Q.

• The local minima of the PEL are replaced by the local minima of the distance function dP ,
namely the samples in P .

• The volume of a basin of the PEL is replaced by the surface area of the Voronoi tile of
a sample from P , restricted to Q. That is, these areas define the volume of supply or
demand.

• A saddle between two basins of the PEL is replaced by a Delaunay edge connecting two
samples from P .

• To compute the unit transport cost between two local minima on the PEL, the distance
measure used between two molecular conformations is replaced by the Euclidean distance
in R

2.
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Generation. We compute instances of Voronoi landscapes using the Computational Geometry
Algorithms Library [1]. To go beyond the case where the samples in P are generated uniformly
at random, we generate nested landscapes. More precisely, a nested landscape with parameters
(S, s) results from merging S samples taken uniformly at random within Q with s samples located
in a square of side a/10 randomly placed within Q. Equipped with these notations, a random
landscape generator is specified by the pair (S, s), with S (resp. s) the number of samples in the
big (resp. small) square. Practically, we use S = 5s, and use values of S in the range [50, 1000].
We observe in passing that 1000 is a comfortable upper bound for the number of meta-stable
states of many bio-physical systems, including proteins [5, 14].

To remove random bias, we consider several instances of problems associated with a random
landscape generator with parameters (S, s). That is, for each pair (S, s), we generate I(= 10)
pairs of graphs with parameters S and s.

5.3.2 Results

Algorithm Alg-EMD-CCC-G and running times. The maximum running times on our instances
range from ts = .3s for instances of size 60 nodes (S = 50, s = 10), to ts = 1530s for graphs of
1200 nodes (S = 1000, s = 200). Thus, despite its complexity, algorithm Alg-EMD-CCC-G remains
effective for graphs of intermediate size.

Algorithm Alg-EMD-LP and constraint satisfaction. On our instances, the fraction rc.c.V is
at least 0.89, while rc.c.E is larger than 0.75 (Table 1). In this respect, these instances are easier
than those defined by the BLN models.

Algorithm Alg-EMD-CCC-G and demand satisfaction. It is observed that the total flow
FAlg-EMD-CCC-G is always larger than 0.62 (Table 2). Moreover, the symmetry ratio of Eq. (8),
which is always larger than 0.79 (Table 3), shows that instances tend to be equally hard in both
directions.

Transport costs. We observe that transport costs decrease with the number of nodes, which is
expected since when the number of points increases, the distance between the endpoints of edges
of the bipartite graph along which flow circulates decreases (Table 2).

In comparing the costs of Alg-EMD-CCC-G against those of Alg-EMD-LP (Table 2 vs Table 1),
one sees that transport plans provided by Alg-EMD-CCC-G tend to be cheaper, which is expected
since the demand is not fully satisfied. This trend remains upon re-normalizing the costs of
Alg-EMD-CCC-G by the total flow, which is also in line with the greedy selection of edges. Indeed,
choosing cheap edges leaves a pool or more expensive edges, which may not be used at a latter
stage due to connectivity constraints. Note that Alg-EMD-LP does not stand the chance to skip
these expensive edges, since it is forced to saturate the demand.

Algorithm Alg-EMD-CCC-G and size of solutions. We also computed the relative size RS of
solutions, namely ratio between the number of edges carrying flow and the number of vertices of
the bipartite graph (i.e. 2(S+s)). With a value in the range [0.55, 0.75], this statistic shows that
solutions have a linear (in the number of vertices of the input graphs) number of edges. This
observation legitimates the choice made in Section 2.3, which consists of relaxing the constraint
on the number of edges M .

6 Conclusion and Future Works

In this paper, we developed several hardness results for the mass transportation problem with
connectivity constraints, together with two polynomial time algorithms. Despite the problem
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hardness, our experiments show that these algorithms are effective for graphs involving up to
hundreds of nodes.

Despite these contributions, several research avenues remain open. The first one naturally
concerns the approximation factors associated with our algorithms. The second one relates to
the possibility of obtaining solutions respecting the connectivity constraint, by fixing the optimal
transport plan computed by the linear program. Another one concerns large graphs (involving
thousands of nodes), whose vertices can be embedded in a Euclidean space. In this case, the
locality information provided by spatial partitions could be exploited to drive the flow. Yet
another one would consist of generalizing our problems and algorithms so as to handle the more
general case where the mass associated to a supply or demand node is not concentrated into a
single point.

On the application side, two topics are of foremost importance. The first one is the comparison
of energy landscapes of molecular systems, in two guises: landscapes coupled to atomic models,
versus landscapes coupled to coarse grain models. Thelatter should indeed match the former, a
topic which has barely been addressed while designing coarse grain models. The second one is
the coupling of our algorithm to landscape exploration algorithms, so as to boost the exploration
breadth.
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7 Supplemental: Experiments

7.1 BLN Models

The potential energy VBLN consists of two types of terms (Eq. 9 and [14]): first, terms describing
the interaction between beads sharing a covalent bond (the first, second and third terms below
are respectively bond lengths, valence angles, and dihedral angles); second, a term describing
non covalent interactions between beads (the fourth term below is the so-called Lennard-Jones
potential):

VBLN =
1

2
·Kr ·

N−1
∑

i=1

(Ri,i+1 −Re)
2 +

1

2
K0

N−2
∑

i=1

(θi − θe)
2

+ǫ ·
N−3
∑

i=1

[Ai(1 + cosφi) +Bi(1 + 3 cosφi)]

+4ǫ ·
N−2
∑

i=1

N
∑

j=i+2

Cij [(
σ

Ri,j

)12 −Dij(
σ

Ri,j

)6].

(9)
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7.2 Statistics

Table 1 Algorithm Alg-EMD-LP: statistics for runs on the 45 instances defined by pairs
of Voronoi landscapes. Columns 2-3, rc.c.V : fraction of vertices respecting the connectivity
constraints; Columns 4-5, rc.c.E : fraction of edges respecting the connectivity constraints; Columns
6-7, CEMD: total cost.

Batch spec. rc.c.V rc.c.E CEMD

min max min max min max
VL-s10-S50 0.92 0.98 0.84 0.94 0.82 0.94
VL-s20-S100 0.93 0.98 0.85 0.93 0.59 0.67
VL-s30-S150 0.96 0.98 0.88 0.91 0.49 0.53
VL-s40-S200 0.95 0.97 0.87 0.92 0.44 0.47
VL-s100-S500 0.93 0.96 0.83 0.85 0.28 0.31
VL-s200-S1000 0.89 0.91 0.75 0.78 0.21 0.24

Table 2 Algorithm Alg-EMD-CCC-G: statistics for runs on the 90 instances defined
by pairs of Voronoi landscapes. The columns read as follows: Column 2-3, ts: running
time in seconds; Columns 4-5, RS: relative size of solution (number of edges carrying flow
/ number of nodes of the bipartite graph); Columns 6-7, FAlg-EMD-CCC-G: total flow (ideal
value is one); Columns 8-9, CAlg-EMD-CCC-G: transport cost; Columns 8-9, dAlg-EMD-CCC-G =
CAlg-EMD-CCC-G/FAlg-EMD-CCC-G

Batch spec. ts RS FAlg-EMD-CCC-G CAlg-EMD-CCC-G dAlg-EMD-CCC-G

min max min max min max min max min max
VL-s10-S50 0.23 0.29 0.57 0.75 0.62 0.83 0.48 0.77 0.75 0.92
VL-s20-S100 1.64 1.98 0.59 0.75 0.63 0.80 0.37 0.55 0.53 0.71
VL-s30-S150 5.13 5.97 0.59 0.72 0.68 0.77 0.29 0.38 0.42 0.51
VL-s40-S200 12.01 13.65 0.60 0.69 0.66 0.77 0.27 0.33 0.39 0.44
VL-s100-S500 185.25 207.17 0.59 0.62 0.67 0.72 0.17 0.20 0.25 0.28
VL-s200-S1000 1434.73 1538.4 0.55 0.59 0.67 0.71 0.12 0.14 0.18 0.20

Table 3 Algorithm Alg-EMD-CCC-G: symmetry assessment on the 45 instances defined
by pairs of Voronoi landscapes. Columns 2-3 report the min and max values of Eq. (8),
while Columns 4-5 report the equivalent statistic for the ratios of flows.

Batch spec. Flow ratio Cost ratio
min max min max

VL-s10-S50 0.79 0.99 0.68 0.99
VL-s20-S100 0.85 0.97 0.78 0.96
VL-s30-S150 0.95 1.00 0.87 0.97
VL-s40-S200 0.85 0.99 0.81 0.99
VL-s100-S500 0.96 1.00 0.94 1.00
VL-s200-S1000 0.96 0.99 0.93 0.99
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