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The goal of this paper is to obtain a numerical approximation of the effective Hamiltonian for a system of PDEs deriving from a second order discrete model for traffic flow. We will propose an explicit and an implicit discretization for this effective Hamiltonian and we will provide the corresponding error estimates of Crandall-Lions type. Finally, we will also present some numerical simulations.

Introduction

The problem of correctly simulating traffic flow has a great interest since it can be used to see how traffic would react to a change in the infrastructure of the road (to understand if it is interesting to place a traffic light, if a bridge would help the traffic flow, how would a moderator affect the traffic...). Traffic flow can be simulated at different scales: the microscopic scale (which describes the dynamics of all the vehicles), the macroscopic scale (which describes macroscopic quantities such as the vehicle density, the average speed,...) and the mesoscopic scale (it uses the vehicle density and the average speed of the vehicles but still keeps track of the dynamics of all the vehicles). In the present work we only focus on the microscopic and the macroscopic scale.

The microscopic models are very precise and intuitive since they describe how each vehicle reacts to a situation. For instance it is easy to simulate how a vehicle would react to the presence of a moderator (at some point the vehicle notices the moderators and slows down, passes the moderator and then gradually increases its speed). However, to use microscopic models at a large scale would be computationally very costly. For instance if we would like to simulate the traffic in an entire city, we would need to consider all the vehicles.

The macroscopic models are more adapted to simulate traffic at a large scale, since they do not consider all the car-to-car interactions. However, they are often based on assumption that are hard to verify and also they are not very easy to modify. How does the density of vehicle reacts to the presence of a moderator? An example of a macroscopic model would be the LWR (Lighthill-Whitham-Richards) model introduce in [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] and inspired by fluid dynamics.

We can see that it is interesting to pass from a microscopic model to a macroscopic model, it can help to rigorously derive a macroscopic model from a model with solid assumptions and which is adapted to the situation we want to simulate (traffic light, moderator, bifurcation,...).

In this paper, we are interested in the numerical homogenization of a system of PDE that derives from a second order discrete model for traffic flow. The system studied in this paper was introduced in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], and derives from a microscopic model of "follow the leader" type, that was introduced by Bando et al [START_REF] Bando | Dynamical model of traffic congestion and numerical simulation[END_REF].

In [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], the homogenization of the system was obtained and as it turns out, the homogenized system gives a macroscopic model for traffic flow which is defined by the so-called effective Hamiltonian. The main difficulty to use this result in practice is that the effective Hamiltonian cannot be explicitly computed in general. Therefore, the numerical computation of this effective Hamiltonian is very important and this is the main focus of the present paper. We will present an explicit and an implicit discretization of this effective Hamiltonian and we will give the corresponding error estimates.

General model with n 0 types of drivers

For the readers convenience we detail the microscopic model that we use in this paper. We consider a model with n 0 ∈ N types of drivers, defined, for all j ∈ Z and for all t ∈ (0, +∞), by

Üj = a j V j [U j+1 -U j ] -Uj , ( 1.1) 
where U j (t) denotes the position of the vehicle j, Uj (t) its velocity and Üj (t) its acceleration at a time t ∈ (0, +∞). The coefficients a j represent the drivers sensibility (affects how quickly a driver adapts to a change in the road) and the functions V j are the optimal velocity functions (OVFs) of the drivers. Like in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], in order to simplify the scenario and to be able to obtain an homogenization result, we impose the following periodic conditions, a j+n0 = a j and V j+n0 = V j for all j ∈ Z.

Proceeding as in [START_REF] Forcadel | Homogenization of accelerated frenkelkontorova models with n types of particles[END_REF], we introduce a well chosen artificial variable in order to work with a first order system, we consider for all j ∈ Z and for all t ∈ [0, +∞),

Ξ j (t) = U j (t) + 1 α Uj (t) where α = 1 2 min i∈{1,...,n0} (a i ). (1.2)
We obtain the following first order system of ODEs (which is equivalent to (1.1)), for all j ∈ Z and for all t ∈ (0, +∞),

     Uj (t) = α(Ξ j (t) -U j (t)) Ξj (t) = (a j -α)(U j (t) -Ξ j (t)) + a j α V j [U j+1 (t) -U j (t)] . (1.3)
Like in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], we consider the following assumptions concerning the coefficients a j and the functions V j :

(A1) (Regularity) For all j ∈ {1, ..., n 0 }, V j is non-negative. V j is Lipschitz continuous and we denote by L j its Lipschitz constant.

We denote by L = max j∈{1,...,n0} L j .

(A2) (Monotonicity) For all j ∈ {1, ..., n 0 },

   V j is non-decreasing, a j ≥ 4L. (A3) (Upper boundary) For all j ∈ {1, ..., n 0 }, lim h→+∞ V j [h] < +∞. (1.4) We define V max = max j (||V j || ∞ ) and h 0 ≥ V max /α. (A4) (Lower boundary) For all j ∈ {1, ..., n 0 }, V j [h] = 0 for all h ≤ 2h 0 .
(A5) (Periodicity of the type of drivers) For all j ∈ Z, a j+n0 = a j and V j+n0 = V j .

General continuous system with n 0 types of drivers

In order to obtain an homogenization result, it is necessary to inject the system of ODEs (1.3) into a system of PDEs (see [START_REF] Forcadel | Homogenization of fully overdamped frenkelkontorova models[END_REF][START_REF] Forcadel | Homogenization of accelerated frenkelkontorova models with n types of particles[END_REF][START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF]). This is done by considering the functions (u, ξ) = ((u j ) j∈Z , (ξ j ) j∈Z ), (1.5) defined by

u j (t, x) = U j+ x n0 (t) and ξ j (t, x) = Ξ j+ x n0 (t) for all (t, x) ∈ (0, +∞) × R,
where • denotes the floor integer part. Moreover, the function (u, ξ) satisfies (see [9, Proposition A.1]) the following system of PDEs, for all (t, x) ∈ (0, +∞) × R and for all j ∈ Z,

                         ∂u j ∂t (t, x) = α(ξ j (t, x) -u j (t, x)) ∂ξ j ∂t (t, x) = (a j -α)(u j (t, x) -ξ j (t, x)) + a j α V j [u j+1 (t, x) -u j (t, x)] u j+n0 (t, x) = u j (t, x + 1) ξ j+n0 (t, x) = ξ j (t, x + 1). (1.6)
We complete the previous system with the initial condition

u j (0, x) = u 0 x + j n 0 and ξ j (0, x) = ξ 0 x + j n 0 . (1.7)
Remark 1.1. The initial condition functions are artificially introduced, but simply they are regular functions such that, we have for all j ∈ Z,

u 0 j n 0 = U j (0) and ξ 0 j n 0 = U j (0) + 1 α Uj (0) .
If we denote by ((u j ) j , (ξ j ) j ) the solution of (1.6)-(1.7), then in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF] it was proven that for all j ∈ Z, the rescaled functions u ε j and ξ ε j defined by

u ε j (t, x) = εu j t ε , x ε and ξ ε j (t, x) = εξ j t ε , x ε , ( 1.8) 
converge uniformly on compact subsets of (0, +∞) × R as ε goes to 0, to the unique solution of

   u 0 t (t, x) = F (u 0 x (t, x)) for (t, x) ∈ (0, +∞) × R, u 0 (0, x) = u 0 (x) for x ∈ R, (1.9) 
where F is the effective Hamiltonian to be determined. As it turns out, the solution of (1.6) with the following initial condition, for all x ∈ R, and for all j ∈ Z,

u j (0, x) = u 0 x + j n 0 = ξ j (0, x) = ξ 0 x + j n 0 = p • x + j n 0 , ( 1.10) 
can be used to compute the effective Hamiltonian that we denote by λ = F (p). Here and in the rest of the paper • symbolizes the product of two real numbers. We have the following result (see [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF]Proposition 4.1]).

Proposition 1.2 (Particular form of the solution of (1.6) and approximation of λ). Assume (A1)-(A5) and let p > 0. Let ((u j ) j , (ξ j ) j ) be the solution of (1.6) with an initial condition such that (u 0 ) x = (ξ 0 ) x = p. Then ((u j ) j , (ξ j ) j ) satisfies u j (t, x) = px + u j (t, 0) and ξ j (t, x) = px + ξ j (t, 0), (1.11) and there exists a constant C, depending only on p, V max , α and n 0 such that for all T ∈ (0, +∞),

u 1 (T, 0) T -λ ≤ C T .
(1.12)

Remark 1.3. The well chosen initial conditions (1.10) simply translates the fact that the vehicles are initially uniformly distributed along the real line. This initial condition is used in [START_REF] Forcadel | Homogenization of fully overdamped frenkelkontorova models[END_REF][START_REF] Forcadel | Homogenization of accelerated frenkelkontorova models with n types of particles[END_REF][START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF] in order to obtain the homogenization results.

Numerical schemes

We denote by ∆t the time step and by t n = n∆t. As explained before, the goal is to compute the solution of (1.6) with initial condition (1.10). Using the particular form of this solution given by Proposition 1.2, we are only interested in the numerical approximation of u j (t n , 0) and ξ j (t n , 0) that we will denote respectively by u n j and ξ n j . We propose an explicit and an implicit discretization of u n j and ξ n j .

Explicit finite difference scheme

We consider the following numerical scheme, for all j ∈ Z and for all n ∈ N,

                           u n+1 j -u n j ∆t = α ξ n j -u n j ξ n+1 j -ξ n j ∆t = (a j -α) u n j -ξ n j + a j α V j u n j+1 -u n j u n n0+j = u n j + p ξ n n0+j = ξ n j + p, (1.13)
with the initial condition

u 0 j = pj n 0 and ξ 0 j = pj n 0 . (1.14)

Implicit finite difference scheme

We also consider the following numerical scheme, for all j ∈ Z, and for all n ∈ N,

                           u n+1 j -u n j ∆t = α ξ n+1 j -u n+1 j ξ n+1 j -ξ n j ∆t = (a j -α) u n+1 j -ξ n+1 j + a j α V j u n+1 j+1 -u n+1 j . u n j+n0 = u n j + p ξ n j+n0 = ξ n j + p (1.15)
with initial condition given by (1.14).

Remark 1.4. Thanks to the particular form of the solution of (1.6) with the initial condition (1.10), the approximations of u j (t, x) and ξ j (t, x) are given respectively by u n j + px and ξ n j + px.

(1.16)

Numerical estimate of the effective Hamiltonian

Given n T ∈ N, we define T = n T ∆t and we introduce our approximation for the effective Hamiltonian,

λ T = u n T 1 T .
(1.17) Theorem 1.5 (Numerical estimate of the effective Hamiltonian). Let p>0, and let λ T be the numerical approximation of λ given by (1.17). If u n j is computed with the explicit scheme (resp. by the implicit scheme), we will assume that

∆t ≤ 1 max j∈{1,...,n0} (a j ) resp. ∆t < 1 2α 1 + min j∈{1,...,n0} a j + 4α a j .
Then there exist two constants C 1 and C 2 , such that,

λ T -λ ≤ C 1 T + C 2 (∆t + √ ∆t). (1.18)
Corollary 1.6. Let p>0, and let λ T be the numerical approximation of λ given by (1.17). If

∆t ≤ 1 T 2 ,
then we have,

λ T -λ = O 1 T . (1.19)

Organisation of the article

In Section 2, we give some definitions and results for viscosity solutions of the continuous problem (1.6). In Section 3, we give an error estimate between the continuous solution of (1.6) and its numerical approximation. In Section 4, we use the results of Section 3 to do the proof of Theorem 1.5. Finally, Section 5 is devoted to numerical simulations. Different examples are provided and we also present a numerical study of the error for the effective Hamiltonian.

Viscosity solutions

In this section we present the definition of viscosity solutions for the system (1.6). We refer to the user's guide of Crandall, Ishii, Lions [START_REF] Crandall | UserâĂŹs guide to viscosity solutions of second order partial differential equations[END_REF] and the book of Barles [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] for a good introduction to viscosity solutions. We also refer to [START_REF] Ishii | Perron's method for monotone systems of second-order elliptic partial differential equations[END_REF][START_REF] Ishii | Viscosity solutions for monotone systems of second-order elliptic pdes[END_REF][START_REF] Lenhart | Viscosity solutions for weakly coupled systems of first-order partial differential equations[END_REF] and references therein for results concerning solutions for systems of weakly coupled partial differential equations.

The proof of the results concerning the continuous problem can be founded in [START_REF] Forcadel | Homogenization of accelerated frenkelkontorova models with n types of particles[END_REF][START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF].

Definitions

Definition 2.1 (Viscosity Solutions). Let T > 0, u 0 : R → R and ξ 0 : R → R defined by (1.10). For all j, let u j : R + × R → R and ξ j : R + × R → R be upper semi-continuous (resp. lower semicontinuous) locally bounded functions. We set

Ω = (0, T ) × R. Let us consider that ((u j ) j , (ξ j ) j ) satisfies ∀j ∈ Z, ∀(t, x) ∈ Ω, u j+n0 (t, x) = u j (t, x + 1) and ξ j+n0 (t, x) = ξ j (t, x + 1).
-A function ((u j ) j , (ξ j ) j ) is a sub-solution (resp. a super-solution) of (1.6) on Ω if for all (t, x) ∈ Ω and for any test function ϕ ∈ C 1 (Ω) such that u j -ϕ attains a local maximum (resp. a local minimum) at the point (t, x), we have

ϕ t (t, x) ≤ α(ξ j (t, x) -u j (t, x)) (resp. ≥), (2.1) 
and for all (t, x) ∈ Ω, and any test function ϕ ∈ C 1 (Ω) such that ξ j -ϕ attains a local maximum (resp. a local minimum) at the point (t, x), we have

ϕ t (t, x) ≤ (a j -α)(u j (t, x) -ξ j (t, x)) + aj α V j [u j+1 (t, x) -u j (t, x)] (resp. ≥) (2.2) 
-A function ((u j ) j , (ξ j ) j ) is a sub-solution (resp. a super-solution) of (1.6)-(1.10) if ((u j ) j , (ξ j ) j ) is a sub-solution (resp. a super solution) of (1.6) on Ω and if it satisfies moreover for all x ∈ R, j ∈ {1, ..., n 0 }, u j (0, x) ≤ u 0 x + j n 0 (resp. ≥) and ξ j (0, x) ≤ ξ 0 x + j n 0 (resp. ≥).

-A function ((u j ) j , (ξ j ) j ) is a viscosity solution of (1.6) (resp. of (1.6)-(1.10)) on Ω if ((u * j ) j , (ξ * j ) j ) is a sub-solution and (((u j ) * ) j , ((ξ j ) * ) j ) is a super solution of (1.6) (resp. of (1.6)-(1.10)).

Results for viscosity solutions

We now recall some of the results we find in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF] for the continuous problem (1.6), that will help us in the rest of the paper. We also give a result for the discrete solutions.

Theorem 2.2 (Existence and uniqueness of viscosity solutions for (1.6)). Assume (A1)-(A5).

Then there exists a unique continuous solution ((u j ) j , (ξ j ) j ) of (1.6)- (1.10). Moreover, the solution satisfies

p. x + j n 0 -K 1 t ≤ u j (t, x), ξ j (t, x) ≤ p. x + j n 0 + K 1 t, (2.3)
with

K 1 = max j∈{1,...,n0} (a j ). V max α .
(2.4) Proposition 2.3 (Solutions of the numerical scheme (1.15)). Given ((u 0 j ) j , (ξ 0 j ) j ) an initial condition, if we have

∆t < 1 2α 1 + min j∈{1,...,n0} a j + 4α a j , ( 2.5) 
then for any n ∈ N, there exists a unique ((u n j ) j , (u n j ) j ) provided by the numerical scheme (1.15). Proof. We do the proof by induction, and we want to prove that for ((u n j ) j , (ξ n j ) j ) there exists a unique ((u n+1 j ) j , (ξ n+1 j ) j ).

To do this, we use an equivalent formulation of (1.15), we have for all j ∈ {1, ..., n 0 -1},

ξ n+1 j = 1 ∆t(a j -α) ξ n j + ∆t(a j -α)u n+1 j + ∆ta j α V j u n+1 j+1 -u n+1 j u n+1 j = 1 1 + α∆t u n j + ∆tαξ n+1 j = 1 + ∆t(a j -α) 1 + a j ∆t u n j + α∆t 1 + a j ∆t ξ n j + a j ∆t 2 1 + a j ∆t V j u n+1 j+1 -u n+1 j =: G j (u n+1 ),
and

u n+1 n0 = 1 + ∆t(a n0 -α) 1 + a n0 ∆t u n n0 + α∆t 1 + a n0 ∆t ξ n n0 + a n0 ∆t 2 1 + a n0 ∆t V n0 u n+1 1 -u n+1 n0 + p = G n0 (u n+1 ).
We want to prove that there exists a unique solution to u = G(u), with G = (G j ) j=1,..,n0 . We want to use the fixed point theorem and it can easily be seen that

∂G j ∂u n+1 j = - a j ∆t 2 1 + a j ∆t V j u n+1 j+1 -u n+1 j , ∂G j ∂u n+1 j+1 = a j ∆t 2 1 + a j ∆t V j u n+1 j+1 -u n+1 j ,
and

∂G n0 ∂u n+1 n0 = - a n0 ∆t 2 1 + a n0 ∆t V n0 u n+1 1 -u n+1 n0 + p , ∂G n0 ∂u n+1 1 = a n0 ∆t 2 1 + a n0 ∆t V n0 u n+1 1 -u n+1 n0 + p .
Therefore, we have

||DG|| 1 ≤ max j∈{1,...,n0} 2a j ∆t 2 1 + a j ∆t ||V || ∞ ≤ max j∈{1,...,n0} a j ∆t 2 1 + a j ∆t .α.
Using (2.5), we have that for all j ∈ {1, ..., n 0 },

a j ∆t 2 1 + a j ∆t < 1. (2.6)
Therefore G is a contraction mapping on R n0 and by the fixed point theorem, there exists a unique fixed point u n+1 such that u n+1 = G(u n+1 ). By uniqueness of u n+1 we have uniqueness of ξ n+1 .

Proposition 2.4 (Discrete barriers). Assume (A1)-(A5)

.Then there exist a constant K 1 >0 such that for all j ∈ Z,

u +,n j j , ξ +,n j j = pj n 0 + K 1 n∆t j , pj n 0 + K 1 n∆t j , and u -,n j j , ξ -,n j j = pj n 0 -K 1 n∆t j , pj n 0 -K 1 n∆t j ,
are respectivly super-and sub-solution of (1.13) and of (1.15) for all T > 0, with K 1 defined as in (2.4).

Proof. Let us prove that u +,n j j , ξ +,n j j is a super-solution for (1.13) (the proof for (1.15) is the same so we skip it).

u +,n+1 j -u +,n j ∆t = K 1 ≥ α ξ +,n j -u +,n j = 0,
and

(a j -α) u +,n j -ξ +,n j + a j α V j u +,n j+1 -u +,n j ≤ max j∈{1,...,n0} (a j ) V max α ≤ K 1 = ξ +,n+1 j -ξ +,n j ∆t .
The proof for u -,n j j , ξ -,n j j is similar, so we skip it.

The following lemma is applied later in the paper in order to use the viscosity inequalities of (1.6) at time T . Lemma 2.5 (Viscosity inequality at time T ). Let ((u j ) j , (ξ j ) j ) be a continuous sub-solution of (1.6) and let T > 0. For every test function ϕ ∈ C 1 ((0, +∞) × R) such that max(u j -ϕ) = u j (T, x 0 ) -ϕ(T, x 0 ) for some x 0 ∈ R, the following viscosity inequality holds:

ϕ t (T, x 0 ) ≤ α (ξ j (T, x 0 ) -u j (T, x 0 )) .
Similarly, for every test function ϕ ∈ C 1 ((0, +∞) × R) such that max(ξ j -ϕ) = ξ j (T, x 0 ) -ϕ(T, x 0 ) for some x 0 ∈ R, the following viscosity inequality holds:

ϕ t (T, x 0 ) ≤ (a j -α) (u j (T, x 0 ) -ξ j (T, x 0 )) + a j α V [u j+1 (T, x 0 ) -u j (T, x 0 )] .
Proof. The proof of this lemma is similar to the proof of Lemma 4.4 in [START_REF] Cacace | A posteriori error estimates for the effective hamiltonian of dislocation dynamics[END_REF], so we skip it. The following proofs use the method introduced by Crandall and Lions in [START_REF] Crandall | Two approximations of solutions of hamilton-jacobi equations[END_REF] and adapted in [START_REF] Cacace | A posteriori error estimates for the effective hamiltonian of dislocation dynamics[END_REF].

We define for any (u n j ) n the following piecewise constant function

u j (t) = n∈{1,...,n T } u n j .χ [tn,tn+1) (t).
This function is simply a piecewise constant extension in time to [0, T ] of (u n j ) n . We will also use

q ∆t (u ) = sup j∈{1,...,n0} sup |t-s|≥∆t, t,s∈[0,1] |u j (t) -u j (s)| |t -s| . ( 3.1) 
It should be noticed that since t, s ∈ [0, 1] in (3.1), q ∆t (u ) does not depend on T . We also introduce q ∆t (u , v ) = sup(q ∆t (u ), q ∆t (v )).

Error estimate using the explicit scheme

Since we are working with an explicit scheme, we give a sufficient condition on the time-step to make the numerical scheme monotone. then the numerical scheme (1.13) is monotone.

Proof. We have

     u n+1 j = (1 -α∆t)u n j + αξ n j ∆t ξ n+1 j = (1 -(a j -α)∆t)ξ n j + (a j -α)u n j ∆t + ∆t a j α V j u n j+1 -u n j ,
therefore the monotonicity condition is satisfied if

∆t ≤ min   1 α , 1 max j∈{1,...,n0} (a j -α)   . (3.3)
It can easily be seen that (3.2) implies (3.3).

Lemma 3.2 (Bound on discrete-time derivative). Assume (A1)-(A5)

. Let ((u n j ) j , (ξ n j ) j ) be a solution of (1.13), with initial data (u 0 j , ξ 0 j ) as defined in (1.14). If condition (3.2) is fulfilled, then for all j ∈ Z and for all n ∈ N,

0 ≤ u n+1 j -u n j ∆t ≤ V max , ( 3.4) 
and

- V max α max j∈{1,...,n0} (a j ) ≤ ξ n+1 j -ξ n j ∆t ≤ V max α max j∈{1,...,n0}
(a j ).

(3.5)

Proof of Lemma 3.2.

Step 1: first inequality. We do the first part of the proof by induction on n, let us notice that (3.4) is equivalent to

0 ≤ ξ n j -u n j ≤ V max α , ( 3.6) 
for all n ∈ N. Let j ∈ Z, thanks to the initial condition (1.14), we have

0 ≤ ξ 0 j -u 0 j ≤ V max α .
Let us assume that

0 ≤ ξ n j -u n j ≤ V max α . (3.7)
Using the definition of ((u n j ) j , (ξ n j ) j ) as a solution of (1.13), we have

ξ n+1 j -u n+1 j ≤ ξ n j -u n j + ∆t a j u n j -ξ n j + a j α V j u n j+1 -u n j ≤ (1 -a j ∆t) ξ n j -u n j + a j α V max ∆t ≤ (1 -a j ∆t) V max α + a j α V max ∆t ≤ V max α , (3.8) 
where we have used assumption (A3) for the second line and (3.7) and (3.2) for the third line. In the same way we have

ξ n+1 j -u n+1 j ≥ ξ n j -u n j + ∆t a j u n j -ξ n j + a j α V j u n j+1 -u n j ≥ (1 -∆ta j ) ξ n j -u n j + 0 ≥ 0,
where we have used assumption (A1) for the second line, and we have used (3.2) and (3.7) for the last line. This ends the proof of (3.6).

Step 2: second inequality. Let j ∈ Z and n ∈ N, then we have

ξ n+1 j -ξ n j ≤ ∆t (a j -α) u n j -ξ n j + a j α V j u n j+1 -u n j ≤ a j α V max ∆t ≤ ∆t V max α max j∈{1,...,n0} (a j ),
where we have used assumption (A3) and (3.6) for the second line and (3.6) (upper inequality) for the third line. In the same, way we have

ξ n+1 j -ξ n j ≥ ∆t (a j -α) u n j -ξ n j + a j α V j u n j+1 -u n j ≥ a j ∆t u n j -ξ n j ≥ -∆t V max α max j∈{1,...,n0} (a j ), (3.9) 
where we have used assumption (A3) and (3.6).

Theorem 3.3 (Error estimate for the explicit scheme). Assume (A1)-(A5)

. Let T > 0 and let ((u j ) j , (ξ j ) j ) be a solution of the continuous problem (1.6) with initial data ((u 0 (x+j/n 0 )) j , (ξ 0 (x+ j/n 0 )) j ) such that (u 0 ) x = (ξ 0 ) x = p. Let ((v j ) j , (ζ j ) j ) be a solution of (1.13) with initial data (v 0 j , ζ 0 j ) and with ∆t such that (3.2) is satisfied. Then there exist constants K 2 , K 3 > 0 such that

sup t∈[0,T ] max j∈Z max(|v j (t) -u j (t, 0)|, |ζ j (t) -ξ j (t, 0)|) ≤ µ 0 + (K 2 + K 3 )∆t +T.(K 2 + 1) √ ∆t +T (K 2 + K 3 )∆t, with K 2 = max 2K 1 , 4K 1 q ∆t (v , ζ ), , µ 0 = max j∈{1,...,n0} max v j (0) -u j (0, 0), ζ j (0) -ξ j (0, 0) , K 3 = max j∈{1,...,n0} max (a j + α), (a j -α) α + a j α + 2L α a j V max .
and K 1 defined in (2.4).

Proof. To do this proof, we will only prove that sup

t∈[0,T ] max j∈Z max(v j (t) -u j (t, 0), ζ j (t) -ξ j (t, 0)) ≤ µ 0 + (K 2 + K 3 )∆t +T.(K 2 + 1) √ ∆t +T (K 2 + K 3 )∆t,
given that the other inequality is obtain similarly by exchanging the roles of ((u j ) j , (ξ j ) j ) and ((v j ) j , (ζ j ) j ). The proof of this theorem is inspired by the one of Crandall-Lions [START_REF] Crandall | Two approximations of solutions of hamilton-jacobi equations[END_REF]. We do the proof for j ∈ {1, ..., n 0 } and we obtain the result for j ∈ Z by periodicity of the solutions. In this proof we will consider T ≤ 1, and we will prove that sup

t∈[0,T ] max j∈Z max(v j (t) -u j (t, 0), ζ j (t) -ξ j (t, 0)) ≤ µ 0 + (K 2 + 1) √ T ∆t +(K 2 + K 3 )∆t.
(3.10)

In fact if T ∈ (0, +∞) and we have the result for T ≤ 1, (3.10), then

sup t∈[0,T ] max j∈Z max(v j (t) -u j (t, 0), ζ j (t) -ξ j (t, 0)) ≤ sup t∈[0,T -T ] max j∈Z max(v j -u j , ζ j -ξ j ) + T .(K 2 + 1) √ ∆t + T .(K 2 + K 3 )∆t ≤ µ 0 + T -T .(K 2 + 1) √ ∆t + T .(K 2 + 1) √ ∆t + (K 2 + K 3 )∆t + T .(K 2 + K 3 )∆t ≤ µ 0 + (K 2 + K 3 )∆t +T (K 2 + 1) √ ∆t + (K 2 + K 3 )∆t .
where we have used the fact that the result takes into account the error at the initial time.

We now introduce two test functions, for all j ∈ {1, ..., n 0 }

         ϕ(t, s, j) = v j (t) -u j (s, 0) - |t -s| 2 2ν -ηs φ(t, s, j) = ζ j (t) -ξ j (s, 0) - |t -s| 2 2ν -ηs.
We can see that the function ψ = max(ϕ, φ) reaches a maximum at a finite point ( t, s, j) ∈ [0, T ] × [0, T ] × {1, ..., n 0 }. We define

M ν,η = max (t,s,j)∈[0,T ]×[0,T ]×{1,...,n0}
ψ(t, s, j).

Step 1: estimate of the maximum point of ψ. We want to prove that

| t -s| ≤ 4νq ∆t (v , ζ ) + 2∆t. (3.11)
To do this, we denote ŝ = ñ∆t, with ñ ∈ N, such that |s -ŝ| ≤ ∆t. We can assume that | t -s| ≥ 2∆t (otherwise the result is trivial). Then, using the fact that ψ(ŝ, s, j) ≤ ψ( t, s, j) (let us assume that for instance ψ = ϕ, we have the same result in the other case), we have

v j (ŝ) - (ŝ -s) 2 2ν ≤ v j ( t) - ( t -s) 2 2ν ,
This implies that

( t -s) 2 2ν ≤ q ∆t (v , ζ )| t -ŝ| + ∆t 2 2ν ≤ q ∆t (v , ζ )(| t -s| + ∆t) + | t -s| 2 8ν ⇒ 3| t -s| 2 8ν ≤ 3 2 q ∆t (v , ζ )| t -s|, ⇒ | t -s| ≤ 4νq ∆t (v , ζ ),
where we used ∆t ≤ | t -s|/2 for the second and third line. Now we would like to prove that for η big enough, we will have t = 0 or s = 0.We argue by contradiction and we assume that t > 0 and s > 0.

Step 2: case ψ( t, s, j) = ϕ( t, s, j).

Step 2.1: continuous viscosity inequality. Let us consider the following test function

w(s, 0) = v j ( t) - ( t -s) 2 2ν -ηs,
then uj -w reaches a minimum at (s, 0) and since uj is a super-solution, we get

q ν -η ≥ α(ξj(s, 0) -uj(s, 0)),
with q ν = ( ts)/ν.

Step 2.2: discrete viscosity inequality. Let n ∈ N such that t = n∆t. Let us consider for all t ≥ t -∆t,

g(t) = (t -s) 2 2ν .
We now use the fact that ϕ(t, s, j) ≤ ϕ( t, s, j), which allows us to see that

v j (t) -g(t) ≤ v j ( t) -g( t) ⇔ g( t) -g(t) ≤ v j ( t) -v j (t).
Now we use the fact that v j is a piecewise constant function and choosing t := t -∆t,

g( t) -g( t -∆t) ∆t ≤ v j (n∆t) -v j ((n -1)∆t) ∆t ( t -s) 2 2ν∆t - ( t -s -∆t) 2 2ν∆t ≤ v n j -v n-1 j ∆t ( t -s) ν - ∆t 2ν ≤ α ζ n-1 j -v n-1 j ≤ α ζ n j + max j∈{1,...,n0} (a j ) V max α ∆t -v n j + V max ∆t ⇒ q ν - ∆t 2ν ≤ α ζ n j -v n j + K 3 ∆t, (3.12) 
where we have used for the third line the fact that (v j , ζ j ) is a sub-solution of (1.13), for the fourth line we have used Lemma 3.2, and for the fifth line we have used the definition of K 3 .

Step 2.3: subtracting the viscosity inequalities. We obtain directly

η ≤ ∆t 2ν + K 3 ∆t + α ζ j ( t) -ξj(s, 0) -v j ( t) -uj(s, 0) ≤ ∆t 2ν + K 3 ∆t, (3.13) 
where we used the fact that ϕ( t, s, j) ≥ φ( t, s, j). We can see that if we define η := ∆t 2ν + K 3 ∆t and we choose η > η, we get a contradiction.

Step 3: case ψ( t, s, j) = φ( t, s, j). In this case, we proceed as before. When we subtract the two viscosity inequalities, we then obtain

η ≤ ∆t 2ν + K 3 ∆t + (aj -α) v j ( t) -uj(s, 0) -(ζ j ( t) -ξj(s, 0)) + aj α Vj v j+1 ( t) -v j ( t) -Vj uj +1 (s, 0) -uj(s, 0) .
We can see that, in the case j ∈ {1, ..., n 0 }, using φ( t, s, j) ≥ ϕ( t, s, j) we get

v j ( t) -u j (s, 0) ≤ ζ j ( t) -ξj(s, 0). (3.14) 
In the case j = n 0 , using the periodicity conditions in the systems (1.6) and (1.13) with the particular form of the solution (see Proposition 1.2), we get

v n0+1 ( t) -u n0+1 (s, 0) = v 1 ( t) + p -u 1 (s, 0) -p ≤ ζ j ( t) -ξj(s, 0). (3.15) 
Therefore, for all j ∈ {1, ..., n 0 + 1},

v j ( t) ≤ u j (s, 0) + ζ j ( t) -ξj(s, 0)
Now using monotonicity assumption (A2) we get

η ≤ ∆t 2ν + K 3 ∆t.
As before, it suffices to choose η > η to obtain a contradiction. Therefore we have t = 0 or s = 0.

Step 4: bound on the error. Let us assume that ψ( t, s, j) = ϕ( t, s, j), (the other case being similar).

Step 4.1: case t = 0. We get

M ν,η = v j (0) -uj(s, 0) - s2 2ν -ηs ≤ v j (0) -uj(s, 0) ≤ µ 0 + K 1 s ≤ µ 0 + K 1 |s -t| ≤ µ 0 + K 1 (4νq ∆t (v , ζ ) + 2∆t),
where we have used for the third line Theorem 2.2, for the fourth line, the definition of the initial data (1.14). Then, for the last line we have used inequality (3.11).

Step 4.2: case s = 0. Similarly, we get

M ν,η ≤ v j ( t) -uj(0, 0) ≤ K 1 t + v j (0) -uj(0, 0) ≤ µ 0 + K 1 (4νq ∆t (v , ζ ) + 2∆t).
Step 4.3: conclusion. We can see that we have the same upper bound in the two cases, therefore

M ν,η ≤ max(2K 1 , 4K 1 q ∆t (v , ζ )). (ν + ∆t) + µ 0 =: M. ( 3.16) 
Now we can see that for all j ∈ Z and for all t ∈ [0, T ] ( we recall that we have chosen T ≤ 1),

v j (t) -u j (t, 0) -ηt ≤ M ν,η ≤ M, ⇒ v j (t) -u j (t, 0) ≤ M + T η * , with η * = K 3 ∆t + ∆t/ν = K 3 ∆t + √ ∆t/ √ T , choosing ν = √ T.∆t.
We have a similar result for ζ j -ξ j , therefore we have

M ≤ max(2K 1 , 4K 1 q ∆t (v , ζ )).

√

T ∆t + ∆t + µ 0 .

Finally, we have sup

t∈[0,1] max j∈Z max(v j (t) -u j (t, 0), ζ j (t) -ξ j (t, 0)) ≤ (K 2 + 1). √ T ∆t +(K 2 + K 3 T ).∆t + µ 0 ≤ (K 2 + 1). √ T ∆t + (K 2 + K 3 ).∆t + µ 0 ,
where we have used the fact that T ≤ 1 and with

K 2 = max(2K 1 , 4K 1 q ∆t (v , ζ )).

Error estimate using an implicit scheme

Theorem 3.4 (Error estimate for the implicit scheme). Assume (A1)-(A5). Let T > 0 and let ((u j ) j , (ξ j ) j ) be a solution of the continuous problem (1.6) with initial data ((u 0 (x+j/n 0 )) j , (ξ 0 (x+ j/n 0 )) j ). Let ((v j ) j , (ζ j ) j ) be a solution of (1.15) with initial data (v 0 j , ζ 0 j ) and with ∆t such that (2.5) is satisfied. Then there exist a constant K 2 > 0 such that

sup t∈[0,T ] max j∈Z max(|v j (t) -u j (t, 0)|, |ζ j (t) -ξ j (t, 0)|) ≤ µ 0 + K 2 ∆t(T + 1) +T.(K 2 + 1) √ ∆t,
with

K 2 = max 2K 1 , 4K 1 q ∆t (v , ζ ) , µ 0 = max j∈{1,...,n0} max v j (0) -u j (0, 0), ζ j (0) -ξ j (0, 0) ,
Proof. The proof of this theorem is similar to the one of Theorem 3.3, and even simpler. The difference is that when obtaining the discrete inequality (like in (3.12)) there is no need to use Lemma 3.2, we have the result directly using the definition of the numerical scheme (1.15). That is the reason why for this theorem, K 2 does not depend on another constant K 3 . The rest of the proof remains the same, so we skip it.

Estimate on the effective Hamiltonian for a discrete traffic flow model

This section is devoted to the proof of Theorem 1.5.

Proof of Theorem 1.5. Let us consider ((u j ) j , (ξ j ) j ) the solution to (1.6)-(1.10), and let us now consider a numerical approximation of u 1 (T, 0), given by (1.13) or (1.15), that we denote by u n T 1 . From Theorem 3.3, we have

u n T 1 -u 1 (T, 0) T ≤ max(K 2 + 1, K 2 + K 3 )(∆t + √ ∆t) + (K 2 + K 3 ) ∆t T . (4.1)
Therefore, we have the following estimate

λ T -λ = u n T 1 T - u 1 (T, 0) T + u 1 (T, 0) T -λ ≤ C 1 T + C 2 (∆t + √ ∆t), (4.2) 
where we have also used Proposition 1.2.

Numerical Simulations

As seen in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], the Cauchy problem (1.9) is equivalent to a LWR macroscopic model (see [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] or [START_REF] Garavello | Traffic flow on networks[END_REF] for more information on macroscopic models) of the form

∂ t ρ + ∂ y (ρv(ρ)) = 0, (5.1) 
where ρ(t, y) is the density of vehicles at time t at the physical point y (point on the road) and v(ρ) := F 1 ρ is the average speed of the vehicles. The equivalence between (1.9) and (5.1), was done in [START_REF] Leclercq | The lagrangian coordinates and what it means for first order traffic flow models[END_REF] and [START_REF] Wagner | Equivalence of the euler and lagrangian equations of gas dynamics for weak solutions[END_REF].

Figure 1: Average speed using the explicit scheme (left) and the implicit scheme (right). We consider only one type of driver, n 0 = 1. In red we have the numerical approximation and in green the theoretical value.

interval T f inal 20 , T f inal , with T f inal = 200 s and ∆t = 1/T 2 for both numerical scheme. We choose the same time step for both schemes, in order to numerically verify Corollary 1.6. In fact, we expect to have a linear relationship between 1/T and the approximation error to the average speed. From Figure 2 we can see that the error decreases linearly with 1 T , which numerically verifies Corollary 1.6 in this particular case. Notice that for the explicit scheme, the error increases greatly for the last value of 1/T , this is due to the fact that for such a point the monotonicity condition (3.2) is no longer satisfied.

Second case: one optimal velocity function

Let us consider the same optimal velocity function as before, but with n 0 = 10 different sensibilities, we choose the a j coefficients at random in the interval [a, (1 + θ)a], with a defined as before.

Here and in the rest of the paper, the parameter θ ∈ [0, 1] is there to simply define the amplitude of the intervals in which we take the values of the coefficients appearing in the models. For this example, we consider the following numerical values for the parameters of the model: (5.8) Let us choose for example θ = 0.99. We fix ρ max = 180 vehicles/km, ∆ρ = 0.35 vehicles/km and T = 20000 s. It is easily verified that with these values we satisfy all of our assumptions. We also choose for the time steps 1/ max j∈{1,...,n0} (a j ) for the explicit scheme and 1/α for the implicit scheme (like before, given that a j > 1 for all j ∈ {1, ..., n 0 }, condition (2.5) is satisfied). In Figure 3, we can see the average speed that we obtain in this particular case. Figure 3: Average speed using the explicit scheme (left) and the implicit scheme (right). We consider only optimal velocity function and n 0 = 10 different driver sensibilities.

       V max =
Remark 5.1. We can see that we have the same results in the first two cases, but we know that we should have v(ρ ) = V [1/(n 0 ρ )], the problem is that ρ is in (vehicles/n 0 )/km, so we denote by ρ = n 0 ρ the density in vehicles/km. That is the reason why we have the same results in both cases once we pass to the same units. Moreover, this numerical test allows us to numerically verify Theorem 1.4 in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], that gave us Formula (5.2), meaning that in the case we have only one optimal velocity function, we will have the same effective Hamiltonian, independently of the number of different driver sensibilities. Also it should be remarked that once we start having different values for the coefficients it becomes necessary to use larger values for T , and the use of the implicit scheme becomes more and more interesting to reduce the computation time.

Third case: n 0 type of drivers

Let us now consider a generalized Newell-based model (see [START_REF] Garavello | Traffic flow on networks[END_REF] for other models), that uses the following optimal velocity functions, for j ∈ {1, ..., n 0 },

V j [h] =        0, h ≤ h 0 V j max 1 -exp - h -h 0 b j n , h > h 0 .
(5.9)

For the different parameters we have chosen values that are close to the ones in [3, Table 2]. We set h 0 = 6.50 m, and the rest of the parameters we have chosen at random in the following intervals, for all j ∈ {1, ..., n 0 }, Let us take n 0 = 1 (one type of driver with the values of the parameters given by (5.10) for θ = 0), in order to compare the deformation. We can see the results in Figure 5. At the beginning of Section 5, we introduce the LWR model. In general such models are often defined by their flux f (ρ) = ρ • v(ρ), also called the fundamental diagram. In Figure 6, we present one last graphic where we can see the difference in the fundamental diagrams when we consider n 0 = 1 type of driver (with θ = 0) and when we consider n 0 = 10 types of drivers (with θ = 0.55).

                   b j ∈ [(
Remark 5.3. Unlike for the cases where we only had one optimal velocity function, we can see that the average speed function that we obtain in Figure 4 is different from the one in Figure 5. However, the form of the average speed remains the same and we also can see that v(ρ) = 0 for all ρ ≥ ρ max 153 vehicles/km which is another qualitative property of the effective Hamiltonian that was proven in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF]. 

3 Crandall-Lions type error estimates for ( 1 . 6 )

 16 In this section, we prove an error estimate of Crandall-Lions type between the viscosity solution for the continuous problem (1.6)-(1.10) and the discrete solutions of the schemes (1.13)-( 1.14) and (1.15)-(1.14) namely, Theorem 1.5.

Proposition 3 . 1 (

 31 Monotonicity of the explicit numerical scheme (1.13)). If we have ∆t ≤ 1 max j∈{1,...,n0} (a j ) , (3.2)

Figure 2 : 2

 22 Figure 2: Relative error for the explicit scheme (left) and the implicit scheme (right) against 1/T . If we denote by λi the approximation of v(ρ i ) = F 1 ρi with ρ i = i∆ρ with i ∈ 1, ..., ρ 0 n 0 ∆ρ =: n max , (5.6) then we define the error plotted in Figure 2 by

  58.86 km/h, h 0 = 9.64 m, a j ∈ [a, (1 + θ)a], with a = 20.35 s -1 , j ∈ {1, ..., n 0 }, n = 3.

  1 -θ)b, b] , with b = 0.013 km, V j max ∈ [(1 -θ)V max , V max ] , with V max = 54.11 km/h, Numerical test. We choose θ = 0.55, n 0 = 10, T = 2.10 6 , and for the time step we choose, for the implicit scheme 1/α and 1/ max i∈{1,...,n0} (a i ) for the explicit scheme. In this example we have min j∈{1,...,n0} (||V i || ∞ ) = 26.50 km/h.

Figure 4 :Remark 5 . 2 .

 452 Figure 4: Average speed using the explicit scheme (left) and the implicit scheme (right). Using the Newell optimal velocity function and considering n 0 = 10 different types of drivers.

Figure 5 :

 5 Figure 5: Average speed using the explicit scheme (left) and the implicit scheme (right). Considering n 0 = 1 and θ = 0, we only consider one type of driver.

Figure 6 :

 6 Figure 6: Flux of vehicles obtained using the implicit scheme and n 0 = 1 (with θ = 0) (left) and the flux of vehicles obtained using the implicit scheme with n 0 = 10 (with θ = 0.55) (and n 0 = 10) (right).
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Since the interest of the homogenisation of (1.6) is to pass to a macroscopic model, we will give our numerical results in the form v(ρ) := F 1 ρ . Moreover, according to Theorem 1.4 in [START_REF] Forcadel | Homogenization of second order discrete model and application to traffic flow[END_REF], and in the case there is only one optimal velocity function, meaning V ≡ V j , for all j ∈ {1, ..., n 0 }, we have that the effective Hamiltonian is given by

We recall that to simulate traffic flow at a macroscopic scale, it is necessary to use a numerical scheme for the equivalent LWR model. We recommend [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF][START_REF] Roe | Approximate riemann solvers, parameter vectors, and difference schemes[END_REF][START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] for numerical scheme for conservation laws like the LWR model.

Setting of the computation

To obtain a numerical estimation of λ = F (p), for p ∈ [0, +∞), we have to fix T , and solve (1.6) using one of our two finite difference schemes, with the initial condition (1.14) for p ∈ [0, +∞), to obtain u n T 1 , then our estimate is given by λ T = u n T 1 /T . To obtain the function F 1 ρ , we simply repeat the same process for different values of ρ ∈ (0, ρ 0 ]. We denote by ∆ρ our step in space for the interval (0, ρ 0 ].

First case: one type of driver

Let us begin with a simple case, we consider that we have only one type of driver, n 0 = 1, therefore, we have only one optimal velocity function V and one driver sensibility a. We consider the model based on the Greenshields optimal velocity function,

with n ∈ N * . For the values of the different parameters we take similar values to the ones in [3, Table 2], for the Lincoln tunnel,

we also fix ρ 0 = 180 vehicles/km, ∆ρ = 0.35 vehicles/km and T = 2000 s. Using (5.2) and the definition of v(ρ) in (5.1), we get that

(5.5) with ρ max = 1 h 0 . For the numerical tests, we choose, for the explicit scheme ∆t = 1/ max j∈{1,...,n0} (a j ) and for the implicit scheme ∆t = 1/α (which, given the definition of α, satisfies (2.5) because a > 1) to get the average speed (v(ρ)) on Figure 1.

Using the fact that we know the explicit form of v(ρ) (see (5.5)), we can analyse the relative error of our numerical estimation against T . To do this, we take different values for T from the