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ABSTRACT

Parallelism is becoming more important nowadays due to
the increasing use of multiprocessor systems. In this pa-
per, we study the problem of scheduling periodic parallel
real-time Directed Acyclic graph (DAG) tasks on m homo-
geneous multiprocessor systems. A DAG task is an example
of inter-subtask parallelism. It consists of a collection of
dependent subtasks under precedence constraints. The de-
pendencies between subtasks make scheduling process more
challenging. We propose a stretching algorithm applied on
each DAG tasks to transform them into a set of independent
sequential threads with intermediate offsets and deadlines.
The threads obtained with the transformation are two types,
(i) fully-stretched master threads with utilization equal to
1 and (ii) constrained-deadline independent threads. The
fully-stretched master threads are assigned to dedicated pro-
cessors and the remaining processors m′ ≤ m, are scheduled
using global EDF scheduling algorithm. Then, we prove
that preemptive global EDF scheduling of stretched threads

has a resource augmentation bound equal to 3+
√
5

2
for all

tasksets with n < ϕ ·m′, where n is the number of tasks in
the taskset and ϕ is the golden ratio1.
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1. INTRODUCTION
Increasing the performance of execution platforms has

been done by increasing the speed of uniprocessor systems
associated to the reduction of the size of chips leading to
heating problems. Multiprocessor systems have been seen
as one solution to overcome these physical limitations, by
increasing execution capabilities with processor parallelism.
Many practical examples of shifting towards multiprocessors

1The value of the golden ratio is 1+
√
5
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can be found, such as the Intel Xeon, ARM and Cavium
processor families.

However, current real-time software APIs are not able to
efficiently take advantage of multiprocessor platforms espe-
cially when parallelism is considered. In the industry, the
majority of designed applications are targeting uniproces-
sor systems. But this is expected to change in the coming
few years which will focus on parallel programming to take
advantage of multiprocessor architectures. There are many
models of parallel application, but in this work, we are in-
terested in a particular family of parallelism called inter-
subtask parallelism, in which a parallel task consists of a
collection of subtasks under precedence constraints and de-
pendencies between subtasks. There are many parallel task
models based on this family, such as the Fork-join model
which is the base of the famous parallel programming API
OpenMP, and the multi-threaded Segment model. But the
most general model is the Directed Acyclic Graph (DAG)
model, which we consider as our task model in this paper.

Real-time scheduling of DAG tasks in particular and par-
allel tasks in general is a challenging problem. In hard real-
time systems, the correctness of a system does not only de-
pend on the correctness of the results, but on the respect of
tasks timing parameters. Real-time systems on both unipro-
cessor and multiprocessor systems have been studied in the
last decade, and many researches and scheduling algorithms
have been proposed for such platforms [6]. However, the
extension of real-time scheduling w.r.t. parallel tasks with
dependencies is not trivial. The scheduling analysis of such
systems can be divided into two main categories: either by
transforming task precedence constraints into independent
sequential tasks that execute on multiprocessor systems, or
by scheduling parallel tasks directly using adapted schedul-
ing algorithms. The first method simplifies scheduling at the
price of losing some of the characteristics of parallel tasks, as
it removes subtasks dependencies such that classical schedul-
ing algorithms can then be used. In this work, we study the
scheduling of DAG tasks using DAG transformation with a
stretching approach.

It is worth mentioning here that this work is a generaliza-
tion of the stretching algorithm proposed by Lakshmanan
et. al. in [9]. Their work targeted Fork-join parallel tasks
and it aims at scheduling tasks as sequentially as possible by
stretching their master threads2 up to their deadline. They
proposed to schedule stretched tasks using partitioned FBB-

2A master thread of a parallel task is defined as the sequen-
tial path in the task with the longest execution time.



FFD DM-decreasing scheduling algorithm3. In our work, we
consider a more general task model which is the DAG task
and we provide a resource augmentation bound for global
Earliest Deadline First (EDF) scheduling of stretched tasks.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related works w.r.t. the problem of schedul-
ing real-time tasks on multiprocessor systems especially for
parallel DAG model. Then we present in Section 3 the con-
sidered task model. In Sections 4 and 5, we explain the DAG
stretching algorithm in detail and we provide a resource aug-
mentation bound4 (speedup factor) analysis. Simulation re-
sults are provided in Section 6 to study the performance of
our stretching algorithm. Finally, Section 7 concludes this
work.

2. RELATED WORK
The scheduling of parallel real-time tasks of different mod-

els has been studied on both uniprocessor and multiproces-
sor systems. In the case of uniprocessor systems, a classical
approach in the state-of-the-art is to transform a parallel
task into a chain and to assign each subtask of the chain
extra timing parameters used for their scheduling. For ex-
ample, in [4], the authors considered a hybrid taskset of
periodic independent tasks and sporadic dependent graph
tasks with a DAG model. They proposed an algorithm aim-
ing at modifying the DAG timing parameters (by adding
intermediate offsets and deadlines) in order to remove the
dependencies between the tasks in the analysis.

In the case of multiprocessor systems, most research has
been done regarding scheduling hard real-time tasks on ho-
mogeneous multiprocessor systems, especially for indepen-
dent sequential tasks [6]. As mentioned above, there are
mainly two methods for scheduling parallel DAGs in hard
real-time systems. The first method schedules DAG tasks
by using directly common scheduling algorithms and adapt-
ing the performance analysis and the scheduling conditions
to take into consideration the particular characteristics of
DAGs and parallel tasks in general. This technique is in-
troduced in [2], which considers a taskset of a single spo-
radic DAG. They also provided polynomial and pseudo-
polynomial schedulability tests for EDF scheduling algo-
rithm.

The problem of scheduling multiple DAG tasks on mul-
tiprocessors have been more studied in [3, 10]. The au-
thors considered general timing parameters of DAG tasks
without taking into account their internal structure. They
proved that global EDF has a resource augmentation bound
of 2− 1/m, where m is the number of processors in the sys-
tem. In [11], the internal structure and the dependencies
between subtasks are considered in the analysis of global
EDF scheduling of DAG tasks.

The second method for DAG scheduling is based on DAG
transformation. Dependencies of inter-subtask parallelism
are removed and a DAG task is transformed into a collec-
tion of independent sequential threads. A decomposition
algorithm is provided in [12] to distribute the slack time of

3Partitioned scheduling algorithm FBB-FFD stands for
Fisher Baruah Baker-First Fit Decreasing, then Deadline
Monotonic priority assignment is used.
4A resource augmentation bound ν for scheduling algorithm
A is the processor speed up factor, such that any feasible
taskset on unit-speed processor, is guaranteed to be schedu-
lable with A on processor of speed at least ν.

the DAG task on its subtasks. The slack time is defined as
the difference between the deadline of the graph and its min-
imum sequential execution time. The subtasks are assigned
intermediate offsets and deadlines. The authors proved that
preemptive global EDF scheduling algorithm has a resource
augmentation bound equal to 4, and 4 plus a constant non-
preemption overhead for non-preemptive global EDF.

In [9], the authors considered fork-join model of parallel
tasks and they proposed a stretching algorithm to execute
them as sequentially as possible. A fork-join model is repre-
sented as an alternative sequence of sequential and parallel
segment. All parallel segments of the same task have the
same number of threads, and the threads of each segment
have the same sequential execution length. The authors pro-
posed to stretch a fork-join task into a master thread with
utilization equal to 1, the remaining parallel threads are
forced to execute in parallel with the master thread within a
fixed activation interval. Hence, dependencies are no longer
considered in the scheduling process. A resource augmen-
tation bound of 3.42 for partitioned preemptive FBB-FFD
using Deadline Monotonic (DM) scheduling is given.

Fork-join model is a special case of DAG task model, our
paper is an extension of the stretching algorithm of fork-join
tasks to DAG tasks. The concept of our stretching algorithm
is the same as the one proposed in [9], but the steps and the
analysis are adapted to a general DAG task model. The
contributions of this paper are as follows:

• we propose a stretching algorithm adapted to DAG
task model. This algorithm is a pre-step of the schedul-
ing process of the DAGs, which transforms parallel
DAGs into independent sequential threads to be sched-
uled on m identical processors,

• for a taskset of n DAG tasks that execute on a platform
of m identical processors, we prove that global EDF
scheduling of stretched tasks has a resource augmen-

tation bound equal to 3+
√
5

2
for all tasks if n < ϕ ·m′,

where m′ ≤ m is the number of processors not running
master threads and ϕ is the golden ratio, and equal to
4 else.

3. TASK MODEL
We consider a taskset τ of n periodic parallel real-time

Directed Acyclic Graph (DAG) tasks run on a system of
m identical processors. The taskset τ is represented by
{τ1, ..., τn}. Each DAG task τi, where 1 ≤ i ≤ n, is a
periodic implicit-deadline graph which consists of a set of
subtasks under precedence constraints that determine their
execution flow. A DAG task τi is characterized by ({τi,j |1 ≤
j ≤ ni}, Gi, Oi, Di) , where the first parameter represents
the set of subtasks of τi and ni is their number, Gi is the set
of directed relations between these subtasks, Oi is the off-
set of the DAG and Di is τi’s relative deadline. Since each
DAG task has an implicit deadline, its period Ti (interval
time between its successive jobs) is the same as its deadline
Ti = Di.

Let τi,j denotes the j
th subtask of the set of subtasks form-

ing the DAG task τi, where 1 ≤ j ≤ ni. Each subtask τi,j is
a single-threaded sequential task which is characterized by
a worst-case execution time (WCET) Ci,j . All subtasks of a
DAG share the same deadline and period of the DAG. The
total WCET Ci of DAG τi is defined as the sum of WCETs
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Figure 1: An example of a DAG task τ1 which con-
sists of 7 subtasks. The number on the upper right
corner of each subtask represents its WCET and the
arrows represent their precedence constraints.

of its subtasks, where Ci =

ni∑

j=1

Ci,j . Let Ui denote the uti-

lization of τi where Ui =
Ci

Ti

, and its density is denoted

by δi =
Ci

min(Di, Ti)
. For an implicit-deadline task, whose

deadline is equal to its period, the density is the same as the
utilization, while the density of a constrained-deadline task

becomes δi =
Ci

Di

.

The set of directed relations between the subtasks of DAG
τi is denoted by Gi and it defines their dependencies. A di-
rected relation Gi(j, k) between subtasks τi,j and τi,k means
that τi,j is a predecessor of τi,k, and the latter subtask have
to wait for all of its predecessors to complete their execu-
tion before it can start its own. An example of a DAG task
is shown in Figure 1, in which τ1 consists of 7 subtasks.
Precedence constraints are represented by directed arrows
between subtasks. A source subtask is a subtask with no
predecessors such as τ1,1. Respectively, an ending subtask
is the one without any successors such as τ1,7.

Based on the structure of DAG tasks, the critical path of
DAG τi is defined as the longest sequential execution path in
the DAG when it executes on a virtual platform composed
of an infinite number of processors. Its length Li is the
minimum response time of the DAG. A subtask that is part
of the critical path is referred to as a critical subtask, while
non-critical subtasks are executed in parallel with the critical
ones.

A DAG task is said to be feasible if the subtasks of all of
its jobs respect its deadline. A taskset τ is deemed unfeasible
when scheduled using any scheduling algorithm on m unit-
speed processors if, at least, one of the following conditions
is false:

∀τi ∈ τ, Li ≤ Di

U(τ) =
n∑

i=1

Ui =
n∑

i=1

Ci

Ti

≤ m

4. DAG STRETCHING ALGORITHM

Based on our task model, subtasks of a DAG inherit the
absolute deadline of the DAG task. However, only source
subtasks are activated by the activation of the DAG task,
while their successors are activated dynamically based on
the completion time of their predecessors. During schedul-
ing process, the subtasks of a DAG have to execute within
the activation interval of the DAG (between the release time
and the absolute deadline of the DAG), while the exact acti-
vation time of subtasks is unknown prior to scheduling pro-
cess. As a result, multiprocessor scheduling of DAG tasks
is more complicated than the scheduling of independent se-
quential tasks. Therefore, scheduling process of DAG tasks
can be simplified by avoiding the dynamic activation of sub-
tasks by assigning them intermediate offsets and deadlines.
Hereby, we propose a stretching algorithm for parallel DAG
tasks which transforms each DAG task into a set of inde-
pendent periodic constrained-deadline threads, that can be
scheduled using any scheduling algorithm of multiproces-
sors. With our DAG stretching algorithm, the scheduling of
a DAG task is done based on the timing parameters of the
threads, and a task is deemed feasible if all of its jobs respect
their assigned intermediate deadlines. Our DAG stretching
algorithm chooses intermediate offset and deadline for each
subtask in a DAG task. Before explaining the concept of
our algorithm, we start by analyzing the DAG model and
identifying its characteristics that led to the stretching al-
gorithm.

Assume that the critical subtasks of DAG τi are combined
together in a sequential master thread τmaster

i whose exe-
cution time is equal to Li. Based on the task model, τi
can be seen as a master thread with the longest sequen-
tial execution time among all paths in the DAG from a
source to an ending subtask, while the remaining paths of
the DAG execute in parallel with it. For example, DAG
task τ1 from Figure 1 consists of 7 subtasks and 6 execu-
tion paths: {{τ1,1, τ1,4, τ1,6} {τ1,1, τ1,4, τ1,7} {τ1,2, τ1,4, τ1,6}
{τ1,2, τ1,4, τ1,7} {τ1,3, τ1,6} {τ1,5, τ1,7}}. The master thread
of τ1 is either {τ1,1, τ1,4, τ1,6} or {τ1,2, τ1,4, τ1,6} with a length
L1 = 6. Since both paths are identical w.r.t. their length,
we consider the former to be the master thread of the DAG
arbitrarily. Thus, DAG task τ1 needs at least 6 time units in
order to execute on unit-speed processors. Let Sli denote the
positive slack available to DAG τi when it is scheduled ex-
clusively without interference from other tasks. Sli is given
by:

Sli = Di − Li (1)

The slack time of the DAG can be seen as a slack time of
its master thread since it is the DAG’s longest path. Back
to the previous example, if we assume that τ1 had a deadline
D1 = 10, then its slack time would be Sl1 = 4. In order to
avoid dependencies between the subtasks of a DAG task, we
propose to use the stretching algorithm which is summarized
as follows:

DAG Stretching Algorithm.
Our stretching algorithm fills the slack time of a DAG task

by adding fractions of non-critical subtasks to its master
thread until it is stretched up to DAG’s deadline. As a
result, the remaining non-critical subtasks (if any) will be
forced to execute in parallel with the stretched master thread
within a fixed activation interval.

The objective of our stretching algorithm is to avoid the



parallel structure of DAG tasks by executing their subtasks
as sequentially as possible. Hence, for each DAG task τi ∈ τ ,
if τi fits completely on a single processor (Ci ≤ Di), then
the stretching algorithm transforms it into a single thread
which contains all of its subtasks and forces them to exe-
cute sequentially. Otherwise, the algorithm fully stretches
the master thread of τi up to its deadline Di. As a result,
the stretching algorithm generates a fully-stretched master
thread and a collection of independent threads with inter-
mediate offsets and deadlines that execute in parallel with
the master thread. The offsets and deadlines of threads are
important for the scheduling process and also to maintain
the precedence constraints of DAG τi. It is worth noting
that the stretching algorithm is a pre-step to the scheduling
process, and any master thread with utilization equal to 1, is
assigned a dedicated processor by the scheduler. Other par-
allel threads are scheduled on the remaining processors of
the system using any multiprocessor scheduling algorithm.
In this paper, we choose global EDF scheduling algorithm.

For clarity reasons, the reader is advised to refer to the
example in Figures 2 and 3 so as to have a better under-
standing of our DAG stretching algorithm. More details
about the example are provided at the end this section.

In order to perform our stretching algorithm, we pro-
pose to transform a DAG task into Multi-Threaded Segment
(MTS) representation. This is a basic transformation for
DAGs that maintains precedence constraints between their
subtasks and leads to an easier scheduling analysis.

The Multi-Threaded Segment (MTS) Representation

A multi-threaded Segment (MTS) task τ ′
i consists of a se-

quence of segments. Each segment is composed of a number
of parallel threads with the same WCET. Let Si denote the
set of parallel segments of τ ′

i , and si denote the total number
of segments in Si. Each segment Si,j , 1 ≤ j ≤ si, consists
of mi,j parallel threads. All threads of segment Si,j have
the same WCET which is denoted by ei,j . The number of
threads and their WCETs vary from one segment to another,
and each segment contains at least one thread.

In this work, MTS task τ ′
i is not a new task but a repre-

sentation of DAG task τi ∈ τ . This is done by considering
that all subtasks of τi are executed as soon as possible on a
virtual platform having an infinite number of processors. As
a result, each subtask executes under precedence constraints
and it does not suffer from interference of other subtasks in
the system. For a DAG task τi, its source subtasks are ac-
tivated at the activation time of DAG τi. Then, successor
subtasks are activated as soon as their predecessors have
completed their execution. A segment in the MTS task is
defined whenever a subtask completes its execution. Thus,
threads of the same segment have the same WCET. It is
worth noticing that a subtask in DAG τi may be divided
into two or more threads executing in successive segments
from its MTS representation τ ′

i .
Figure 2 shows the MTS representation τ ′

1 of DAG τ1 from
Figure 1. Knowing that DAG τ1 is released at time t = 0 and
has a deadline D1 = 10, source subtasks {τ1,1, τ1,2, τ1,3, τ1,5}
are activated at t = 0. At t = 2, both subtasks τ1,3 and τ1,5
complete their execution and the first segment S1,1 is de-
fined. Their successors (subtasks τ1,6 & τ1,7) have to wait
for all of their predecessors to complete their execution be-
fore they can start theirs. At time t = 3, subtasks τ1,1 and
τ1,2 complete their execution, subtask τ1,4 starts its own
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Figure 2: The Multi-Threaded Segment (MTS) rep-
resentation of DAG task τ1 from Figure 1.

and segment S1,2 is defined. Finally, at time t = 4, subtasks
τ1,6 and τ1,7 are activated, and segments S1,3, S1,4 and S1,5

are defined at times 4, 5 and 6 respectively. The resulting
MTS task τ ′

1 is represented as a sequence of 5 segments.
The number and the WCET of threads of each segment are
identified. Subtask τ1,1 is an example of a subtask that is
spread on multiple segments. It is divided into two threads
executing in segments S1,1 and S1,2.

Finally, the MTS task τ ′
i shares the same deadline Di and

period Ti of DAG task τi. Hence, Equation 1 regarding
the slack Sli of τi remains correct for the MTS task τ ′

i .
Also, the critical path length Li and the total WCET Ci of
the original DAG task τi is the same for τ ′

i , but they are
calculated differently based on the parameters of the MTS
task τ ′

i :

Li =

si∑

j=1

ei,j

Ci =

si∑

j=1

mi,j ∗ ei,j

For a given DAG set τ , the stretching algorithm is applied
to τ ′

i for each DAG task τi ∈ τ . The algorithm is explained
in detail in the remainder of this section.

The DAG Stretching Algorithm

As stated earlier, the DAG stretching technique executes
the DAGs as sequentially as possible. By doing so, paral-
lel structure of DAGs is removed and dependencies between
the subtasks are replaced by intermediate offsets and dead-
lines. The stretching algorithm is done based on the MTS
representation τ ′

i rather than the DAG structure τi. Hence,
threads of parallel segments of τ ′

i are used to fill its slack Sli
and intermediate offsets and deadlines are assigned to the
segments. As a result, a subtask τi,j of DAG τi is said to be
feasible if all of its threads in its respective τ ′

i have respected
their intermediate deadlines.

The stretching algorithm is divided into two main cases,
based on the timing parameters of the parallel DAG τi and
the relation between its total WCET Ci and its deadline Di:

• if Ui ≤ 1, then DAG τi is considered as a sequential
task because its total WCET Ci can be contained en-
tirely within its deadlineDi. As a result, the stretching
algorithm transforms its subtasks into a single master
thread τmaster

i in which all of the subtasks execute se-
quentially. If Ui is equal to 1, then the master thread
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Figure 3: Example of the DAG stretching algorithm
applied on DAG τ1 from Figure 1.

will be fully-stretched (Cmaster
i = Dmaster

i ) and the
scheduler dedicates an entire processor for it. Other-
wise, the master thread is scheduled as a sequential
implicit-deadline periodic task using any multiproces-
sor scheduling algorithm. In this work, we use global
EDF scheduling algorithm.

In this case, the stretching is done directly on the orig-
inal DAG task τi and it is not necessary to use its MTS
representation τ ′

i .

• if Ui > 1, then it is impossible for DAG τi to be trans-
formed completely into a single master thread, since its
total WCET Ci is larger than its deadline Di. Hence,
the stretching algorithm cannot avoid parallelism in
τi. Applying the stretching algorithm on τ ′

i generates
a fully-stretched master thread τmaster

i as a result of
stretching the critical path of τ ′

i up to its deadline, in
addition to a set of constrained-deadline threads {τ cd

i }
with intermediate offsets, deadlines and period equal
to the original Ti. The importance of intermediate
offsets and deadlines of each thread is to keep the de-
pendencies between the subtasks of the original task,
and prevent threads of the same subtask from execut-
ing in parallel. As in the previous case, the master
thread, which has a utilization Umaster

i = 1, will be
assigned its own processor, while threads of the latter
set will be scheduled independently on the remaining
processors of the system.

As stated earlier, the stretching algorithm aims at stretch-
ing the critical path of task τ ′

i up to its deadline and create

a fully-stretched master thread. In order to do so, parallel
non-critical threads of τ ′

i are used to fill the slack Sli of the
task uniformly, and all segments of τ ′

i with more than one
thread participate. To achieve a uniform filling of the slack,
equal fractions from these threads are added to the master
thread. In this case, where the stretching algorithm targets
only parallel tasks with Ci > Di, the total WCET Ci of
τ ′
i without its critical path length Li definitely exceeds its
deadline Di. We define a distribution factor fi of each ex-
ecution unit in (Ci − Li) that has to be added to the slack
Sli as follows:

fi =
Sli

Ci − Li

=
Di − Li

Ci − Li

(2)

≤ Di

Ci

< 1

In order to clarify the meaning of fi, let us suppose that
each non-critical execution unit in task τ ′

i is divided into two
parts, first part of length equal to fi is added to the master
thread and (1 − fi) execute in parallel as a constrained-
deadline thread. The total execution time added from non-
critical threads to the master thread is equal to Sli. How-
ever, it is unpractical to use fi in this way, and force each
execution unit to be divided into two parts. So, the filling
of the slack is based on the execution requirement of each
segment in the task and not on the threads directly. We fill
the slack with the maximum number of entire threads from
each segment. Thus, at most one thread from each segment
will be used to fill the slack partially. From the MTS repre-
sentation τ ′

i , each segment Si,j ∈ Si ∈ τ ′
i has mi,j parallel

threads, among them there is a critical thread. Hence, the
total non-critical worst-case execution time of segment is
equal to (ei,j ∗ (mi,j − 1)). Based on the definition of fi, we
conclude that a total of (fi ∗ ei,j(mi,j − 1)) time units from
segment Si,j will be added to the master thread.

Now, we want to identify how many threads of each seg-
ment Si,j are added to the master thread based on the total
execution time of the segment. Knowing that the threads of
segment Si,j have equal WCETs denoted by ei,j , which is
equivalent to the shortest sequential execution length of the
segment, we can identify how many entire threads are added
to the master thread. Let fi,j denote the number of threads
from segment Si,j to be added to the master thread:

fi,j =
fi ∗ ei,j(mi,j − 1)

ei,j

= fi ∗ (mi,j − 1) (3)

According to this, each segment Si,j adds ⌊fi,j⌋ entire
threads and a fraction of a thread of length (fi,j−⌊fi,j⌋)ei,j
to the master thread. As a result, the slack Sli of task τ ′

i is
filled completely and a fully-stretch master thread τ ′

i with
Umaster

i equal to 1 is generated. We conclude that each seg-
ment Si,j adds in total (1+fi,j) threads to the master thread
(including the critical thread), while the remaining threads
of the segment execute in parallel with the master thread.
Hence, each segment Si,j has an intermediate deadline Di,j

calculated as follows:

Di,j = (1 + fi,j) ∗ ei,j (4)

From the definition of the MTS model, segments of a task
τ ′
i execute sequentially and when one segment completes its
execution, its successor starts its own. Hence, at any time



t ≥ 0, there is only one active segment from each task τ ′
i .

According to this, we can define an intermediate offset Oi,j

for each segment Si,j ∈ τ ′
i based on the intermediate dead-

lines of the segments, where:

∀Si,j : j > 1 → Oi,j =

j−1∑

k=1

Di,k

and Oi,1 = 0 (since τi has no offset).
After applying the stretching algorithm, a segment Si,j of

τ ′
i comprises of:

• a thread τmaster
i,j which is part of the master thread

τmaster
i of τ ′

i . It has a WCET of Di,j and a deadline
of Di,j .

• (mi,j−⌊fi,j⌋−2) parallel constrained-deadline threads
with a WCET of ei,j and a deadline Di,j .

• one remaining thread with WCET of (1 + ⌊fi,j⌋ −
fi,j)ei,j and a constrained-deadline (1+⌊fi,j⌋)ei,j . The
remaining WCET is added to the master thread so as
to fill its slack. We can notice here that the remaining
thread has a shorter deadline than the other entire re-
maining threads from the same segment. This is done
so as to force the first fraction of the thread to finish
its execution before the second fraction in the master
thread starts its own. As a result, both fractions of
the same threads are forced to execute sequentially.

For each segment Si,j , the total number of threads in a
segment (including the partial thread), which are not added
to the master thread, is given by:

qi,j = mi,j − ⌊fi,j⌋ − 1 (5)

According to this, qi,j independent threads from segments
of each task τ ′

i ∈ τ are scheduled using any multiproces-
sor scheduling algorithm, while the fully-stretched master
threads are assigned their own processors. After applying
the stretching algorithm on each task τ ′

i ∈ τ , each task gen-
erates at most one fully-stretched master thread. Hence, the
total number of these master threads, respectively the num-
ber of their dedicated processors, cannot exceed n, which is
the total number of tasks in the original DAG set τ . As a
result, the constrained-deadline tasks are scheduled on the
remaining processors of the system which are referred to as
m′. The relation between the remaining processors m′ and
the total number of processors in the system m is given as
follows:

m′ ≥ m− n (6)

Algorithm 1 shows the DAG stretching algorithm. It
shows its steps and the generated threads after the stretch-
ing. Now, we present an example of the stretching algorithm
applied on the DAG task τ1 from Figure 1.

Example: Stretching Algorithm

We present in this section an example of the stretching algo-
rithm applied to the DAG task of Figure 1. The algorithm is
summarized in three main steps which are shown in Figures
2 & 3. We assume that task τ1 is a periodic implicit-deadline
DAG with C1 = 14 and a deadline D1 = 10. Since its uti-
lization U1 = 1.4 > 1, then τ1 has to be represented by τ ′

1

which is shown in Figure 2. The subtasks of τ1 execute as

Algorithm 1 DAG Stretching Algorithm

Require: τi(ni, {1 ≤ j ≤ ni|τi,j}, Gi, Di)
Ensure: τmaster

i , {τ cd
i }

if Ci ≤ Ti then ⊲ Execute τ ′
i sequential as a single task

for Si,j ∈ Si do
for k = 1 to mi,j do

τmaster
i ← τmaster

i ∪ τk
i,j : ei,j

end for
end for

else
τ ′
i ← DagToMTS(τi)
⊲ Represent a DAG task as a multi-threaded segment

task.
fi ← Sli

Ci−Li

for Si,j ∈ Si do
fi,j ← fi ∗ (mi,j − 1)
qi,j ← ⌊fi,j⌋+ 1
for k = 1 to qi,j do ⊲ qi,j threads of segment Si,j

are added to the master thread
τmaster
i ← τmaster

i ∪ τk
i,j : ei,j

end for
τmaster
i ← τmaster

i ∪ τ
qi,j+1

i,j : (fi,j − ⌊fi,j⌋) ∗ ei,j
τ tmp
i,j ← τ

qi,j+1

i,j : (1 + ⌊fi,j⌋ − fi,j) ∗ ei,j
Dtmp

i,j ← (1 + ⌊fi,j⌋) ∗ ei,j
if j == 1 then

Otmp
i,j ← Oi

else
Otmp

i,j ← Oi,(j−1) +Di,(j−1)

end if
{τ cd

i } ← {τ cd
i } ∪ τ tmp

i,j

for k = (qi,j + 2) to mi,j do
τ tmp
i,j ← τk

i,j : ei,j

Dtmp
i,j ← (1 + fi,j) ∗ ei,j

if j == 1 then
Otmp

i,j ← Oi

else
Otmp

i,j ← Oi,(j−1) +Di,(j−1)

end if
{τ cd

i } ← {τ cd
i } ∪ τ tmp

i,j

end for
end for

end if

(Omaster
i ← Oi

(Dmaster
i ← Di

return (τmaster
i , {τ cd

i })

soon as possible while considering an execution platform of
infinite number of processors, and the only blocking effect
on a subtask is due to its predecessors.

In Figure 2, the MTS task τ ′
1 is identified. It consists of 5

segments. Segment S1,1 has 4 threads with e1,1 = 2, while
the remaining threads have WCET equal to 1. Segments
S1,2 & S1,4 have two threads and segments S1,3 & S1,5 have
a single thread. The length of the critical path is L1 = 6 and
its deadline D1 = 10. Based on Equation 1, the slack Sl1 is
equal to 4. The total WCET of τ1 is equal to 14 and the non-
critical execution time (while excluding the critical path) is
equal to 8. According to Equation 2, the distribution factor
of τ ′

1 is equal to f1 = 4
8
= 1

2
. For each segment S1,j , its

distribution factor f1,j depends on the number of its parallel



threads, where f1,1 = 3
2
, f1,2 = f1,4 = 1

2
and f1,3 = f1,5 = 0,

as shown in Figure 3(a). It is worth noticing that segments
with a single thread have a distribution factor equal to zero,
because their single thread is a critical one and it is already
included in the master thread.

Based on the values of the segment distribution factor of
each segment, we can identify how many threads to be added
to the master thread from each segment. As described ear-
lier, (1 + fi,j) threads from segment Si,j are used to fill the
master thread. Figure 3(b) shows the stretching of task τ1
and its final result. We can notice that a total of 5

2
threads

from segment S1,1 are added to the master thread where
each thread has a length of 2. This is equivalent to 2 entire
threads and a half. Knowing that the original DAG task τ1
has no offset, then the first segment S1,1 has no offset and its
execution interval length is defined as 5

2
∗ 2 = 5. The third

thread of segment S1,1 (denoted by τ1,3 in Figure 3(b)) is
divided into two halves, one is added to the master thread
and the other is an independent constrained-deadline thread
with a deadline D1,3 = 4. The fourth remaining thread of
the segment has a deadline equal to the deadline of the seg-
ment which is 5. The difference between both threads is
that thread τ1,3 has to finish earlier than the deadline of the
segment so as to give its other part (the one added to the
master thread) enough time to execute. Both parts have to
execute sequentially and never in parallel, and the interme-
diate deadline of the remaining thread forces the sequential
execution of the entire subtask. By applying the same cal-
culations on all of the segments, we obtain the result in
Figure 3(b). Regarding segments S1,2 & S1,4, each one adds
1
2
thread to the master thread. This means that there is

only one partial thread left to execute in parallel with the
master thread from each segment.

As shown in the example in Figure 3(b), the stretching
algorithm generates a master thread τmaster

1 with WCET
and deadline equal to 10, and 4 constrained-deadline threads
identified as follows: {τ cd

1 } = {{τ1,3 : (0, 1, 4, 10)},{τ1,5 :
(0, 2, 5, 10)},{τ1,2 : (5, 0.5, 1, 10)},{τ1,7 : (7.5, 0.5, 1, 10)}},
where each thread is identified by its intermediate offset,
WCET, intermediate deadline and period. These threads
are scheduled as independent constrained-deadline threads
on m′ processors. In this example , we consider that taskset
τ contains a single DAG τ1 which execute on a system of
2 identical processors. Then the master thread occupies a
processor for itself, and the other processor is used for the
scheduling of the parallel threads, which means m′ = 1.

Lemma 1. A DAG set τ that is schedulable using algo-
rithm A on a system of m processors, remains schedulable
after stretching, i.e., the DAG stretching algorithm does not
affect its schedulability.

Proof. As described above, the stretching algorithm as-
signs intermediate offsets and deadlines for threads of each
DAG in τ , without changing their original offsets and dead-
lines. Intermediate offsets and deadlines maintain prece-
dence constraints of the original DAG, which means that if
a τ ′

str is schedulable while respecting the intermediate dead-
lines of the threads, then the original DAG taskset τ must
be schedulable while respecting the DAGs’ deadlines.

5. RESOURCE AUGMENTATION BOUND

ANALYSIS

In this section, we analyze the performance of DAG stretch-
ing algorithm of parallel tasks by calculating its resource
augmentation bound (speedup factor) when global EDF is
used to schedule the non fully-stretched threads generated
from the stretching algorithm. Speedup factor is a common
performance metric for real-time scheduling algorithms, that
gives indications about their performance w.r.t. the perfor-
mance of an optimal algorithm.

Definition 1 (from [8]). For a given taskset τ that is
feasible on m unit-speed processors using an optimal sched-
uler, it is schedulable using A scheduling algorithm on m
processors that are ν times faster. The minimum speedup
factor of processors speed is the resource augmentation bound
(or simply the speedup factor) of scheduler A.

Let τ ′′ be the thread set generated after applying our
stretching algorithm on every DAG task in τ . It contains all
threads generated from the stretching algorithm except for
the fully-stretched master threads (including the constrained-
deadline parallel threads and the implicit-deadline master
threads). We prove that global EDF scheduling of τ ′′ when

executing on m′ processors, has a speedup factor of 3+
√
5

2

for all tasks with n < ϕ ·m′, where ϕ = 1+
√

5
2

, the remaining
number of processors is denoted by m′ ≥ m−n, where m is
the original number of processors in the system and n is the
number of tasks in the set τ This implies that if a taskset τ ′′

is feasible on m′ unit-speed processors, then it is schedulable

using global EDF on m′ processors with speed of 3+
√
5

2
as

fast as the original. Otherwise, the speedup factor is equal
to 4 if we use the decomposition algorithm from [12]. The
fully-stretched master threads are assigned their own pro-
cessors, while the remaining parallel threads are scheduled
using global EDF on the remaining processors.

Our speedup factor analysis is based on the following suf-
ficient scheduling condition of global EDF scheduling algo-
rithm.

Theorem 1 (From [1]). Any constrained-deadline spo-
radic sequential task set τ with total density δsum(τ) and
maximum density δmax(τ) is schedulable using preemptive
global EDF policy on m unit-speed processors if

δsum(τ) ≤ m− (m− 1)δmax(τ)

Theorem 2. If constrained-deadline taskset τ ′′ of paral-

lel threads, with n < ϕ · m′, where ϕ = 1+
√
5

2
(the golden

ratio) and n is the number of tasks in DAG taskset τ , is
feasible on m′ unit-speed processors, then τ ′′ is schedulable

using global EDF on m′ processors with speed at least 3+
√

5
2

.

Proof. Based on Theorem 1, a taskset of constrained-
deadline parallel threads τ ′′ that is generated after applying
the DAG stretching algorithm is schedulable on the remain-
ing processors m′ of the system if:

δsum(τ ′′) ≤ m′ − (m′ − 1)δmax(τ ′′)

We start by calculating the maximum density δmax(τ ′′)
of the threads of τ ′′. As stated earlier, τ ′′ consists of two
types of threads: implicit-deadline master threads (not fully-
stretched) from DAG tasks with utilization less than 1, and
a collection of constrained-deadline threads {τ cd} from each
DAG task with a utilization higher than 1. We will consider
both cases while calculating δmax(τ ′′):



• case 1: for an implicit-deadline DAG task τi with Ui <
1, it is completely transformed into a single master
thread τmaster

i with the same timing parameters of
the original DAG τi. Based on the assumption that
τi has implicit deadline, then its deadline Dmaster

i is
equal to its period Tmaster

i , and respectively, δmaster
i =

Umaster
i < 1.

• case 2: for an implicit-deadline DAG task τi with
Ui > 1, it is transformed into a set of constrained-
deadline parallel threads with intermediate offsets and
deadlines. From the structure of multi-threaded seg-
ment tasks, only one segment is active at every time
instant t. Each segment Si,j ∈ Si ∈ τ ′, with mi,j > 1,
has at most two types of parallel threads, entire and
partial threads. Parallel threads of segment Si,j (other
than the one in the master thread) have a maximum
density δmax

i,j of:

δmax
i,j = max{ ei,j

(1 + fi,j)ei,j
,
(1 + ⌊fi,j⌋ − fi,j)ei,j

(1 + ⌊fi,j⌋)ei,j
}

= max{ 1

1 + fi,j
,

1− (fi,j − ⌊fi,j⌋)
(1 + fi,j)− (fi,j − ⌊fi,j⌋)

}

∀ mi,j > 1 ⇒ δmax
i,j =

1

1 + fi,j
(7)

From the above equation, the maximum density of
threads of segment Si,j in τi depends on the segment
distribution factor fi,j . From Equation 3, fi,j depends
on the number of threads in this segment. Hence, the
segment with a small number of threads has a higher
density. We can conclude that the highest density of
a thread in task τi occurs when the segment has the
smallest possible number of threads (mi,j ≥ 2).

δmax
i =

1

1 + (fi ∗ (2− 1))
−→ from 3

=
1

1 + fi
(8)

From Equation 2, we can derive the following relation:

∀fi ≥ 0→ δmax
i =

1

1 + fi
and fi ≥

Di − Li

Ci

→ 1

1 + fi
≤ 1

1 + Di−Li

Ci

≤ Ci

Ci +Di − Li

≤ 1

(Since Li ≤ Di).

From both cases, the maximum density δmax(τ ′′) of all
threads in τ ′′ is:

δmax(τ ′′) = max
τ ′′

i
∈τ ′′

{δmaster
i , δmax

i }

≤ 1 (9)

It is worth noticing here that DAG tasks with utilization
equal to one are not considered in the previous cases, be-
cause the DAG stretching algorithm transforms them into
fully-stretched master threads that are assigned their own
executing processors. Hence, they are not included in the
resource augmentation bound of global EDF scheduling.

In order to calculate the total density of thread set τ ′′, we
consider that at time t, only a single segment from each task
with utilization higher than 1 can be active in addition to the

master threads of tasks with utilization < 1. We calculate
the density of a task τ ′′

i , with Ui > 1, by considering the
threads of the segment with the highest density. Let δsumi

be the sum of densities of such threads in a certain segment
in a task τi:

δsumi ≤ 1

1 + fi,j
∗ (mi,j − 1− ⌊fi,j⌋) −→ ⌊fi,j⌋ ≥ 0

and from Eq. (5)

≤ mi,j − 1

fi ∗ (mi,j − 1)

≤ 1

fi

≤ Ci − Li

Di − Li

≤ Ci

Di − Li

−→ from Eq. (2)

(10)

Now, we consider the second case where task τ ′′
i has a utiliza-

tion less than 1 and is transformed into an implicit-deadline
non-fully stretched master thread. The total density of the

task is denoted δmaster
max =

Ci

Di

≤ δsumi .

For taskset τ ′′, let δsum(τ ′′) be the sum of densities of
every DAG task in the original taskset τ :

δsum(τ ′′) ≤
∑

τi∈τ

Ci

Di − Li

(11)

In order to calculate the speedup factor, we consider that
taskset τ ′′ executes on m′ processors with a minimum speed
ν, where ν > 1. Increasing the speed of processors affects
the execution parameters of task τi such as Ci and Li.

The critical path length Li of any task τi has a necessary
feasibility condition:

∀τi : 1 ≤ i ≤ n −→ Li ≤ Di (12)

Otherwise, task τi is not feasible on a unit-speed processors.
On a processor that is ν times faster, the critical path

length Lν
i is given by:

∀τi : 1 ≤ i ≤ n −→ Lν
i =

Li

ν
≤ Di

ν
(13)

The same notation is applied for the total execution time
Cν

i of task τi when it is run on processors ν times faster:

∀τi : 1 ≤ i ≤ n −→ Cν
i =

Ci

ν
(14)

The total density of taskset δsum,ν on speed-ν processors
is:

δsum,ν(τ ′′) ≤
∑

τi∈τ

Cν
i

Di − Lν
i

(15)

From Equation 13,

∀1 ≤ i ≤ n −→ Lν
i ≤

Di

ν
⇒ (Di − Lν

i ) ≥ Di(1−
1

ν
)

Using this result,

δsum,ν(τ ′′) ≤
∑

τi∈τ

Ci/ν

Di(1− 1
ν
)

≤ 1

ν − 1

∑

τi∈τ

Ci

Di

≤ m

ν − 1



From Equation 9, the maximum density δmax,ν(τ ′′) of
taskset τ ′′ on speed-ν processors is:

δmax,ν(τ ′′) =
δmax

ν
≤ 1

ν
(16)

Therefore, taskset τ ′′ is schedulable under preemptive global
EDF on m′ speed-ν processors if:

m

ν − 1
≤ m′ + n

ν − 1
≤ m′ − (m′ − 1)

1

ν

m′

ν − 1
+

n

ν − 1
≤ m′ − m′

ν
+

1

ν
1

ν − 1
+

1

ν
− 1

m′ν
≤ 1

ν − 1
+

1

ν
≤ 1− n

(ν − 1)m′

2ν − 1

ν2 − ν
≤ 1− n

m′(ν − 1)

In order to have a positive value for the right hand side of
the inequality, we consider the following:

0 <
n

m′(ν − 1)
< 1⇒ m′ >

n

ν − 1

2ν − 1

ν2 − ν
<1

0 <ν2 − 3ν + 1

→ ν =
3 +
√
5

2
for n < ϕ ·m′ ,where ϕ =

1 +
√
5

2

where ϕ is the golden ratio.
This concludes the proof of the speedup factor.

6. SIMULATION
In this section, we provide simulation results for global

EDF scheduling with stretched tasksets. The objective of
simulation experiments is to test the performance of our
DAG stretching algorithm when used prior to the scheduling
process of DAG tasks. Also, we aim to compare it with an-
other existing DAG scheduling technique found in the state-
of-the-art [12]. To our knowledge, the decomposition algo-
rithm proposed in [12] is the only other DAG scheduling
algorithm using a DAG transformation technique. There-
fore, we simulated the process of DAG scheduling for both
algorithms, stretching and decomposition.

In all experiments, we generated 100000 synchronous tasksets.
We used a random generator of DAG tasksets which uses
UUnifast-Discard method from [5]. In order to generate a
taskset, the generator requires two inputs, the total utiliza-
tion of the taskset and the number of tasks. Then it dis-
tributes the utilization on its tasks uniformly. Based on the
assigned utilization of each task, we derive its remaining tim-
ing parameters (WCET and deadline). In order to limit the
hyperperiod (least common multiple of periods) of tasksets,
we used the limitation technique from [7] in which we define
a matrix containing all possibilities of period values of tasks.
We defined the simulation interval of tasksets to be as large
as the hyperperiod. Also, the number of subtasks of each
DAG task and their dependencies are generated randomly.
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Figure 4: Comparison results of global EDF schedul-
ing simulation between the DAG stretching algo-
rithm and decomposition algorithm from [12]

Comparison between DAG stretching and de-
composition algorithms

The first results of simulation are provided in Figure 4. They
are obtained by varying two parameters, the number of unit-
speed processors m on which tasksets are executing, and the
percentage of taskset utilization, where the maximum uti-
lization of a taskset is equal to m. Figure 4 shows the com-
parison results between our DAG stretching algorithm (de-
noted ‘STR’ in the figure) and the DAG decomposition algo-
rithm5 (denoted by ‘DCMP’ in the figure). Similarly, The
decomposition algorithm transforms each dependent DAG
task into a set of independent sequential threads with in-
termediate offsets and deadlines by distributing the slack
of the DAG on its segments. Figure 4 shows the percent-
age of successfully schedulable tasksets when global EDF
is used for m processors (from 2 to 16). The x-axis of the
figure represents the percentage of taskset utilization w.r.t.
the maximum utilization which is equal to m. The percent-
age values are between 20% and 100%. For each taskset,
the scheduling process is simulated for both cases, when the
taskset is stretched (STR) or decomposed (DCMP).

From our simulations, we notice that the performances of
our stretching algorithm is better than the decomposition
algorithm for the scheduling of the DAG tasks. In all the
experiments, the percentage of schedulable tasksets when
stretched are higher than the decomposed ones. Also, we
can notice that the percentage of the schedulable tasksets
decreases when the number of processors increases.

Varying the speed of processors

Here, we analyze the effect of increasing the speed of pro-
cessors w.r.t. the schedulability of stretched DAG tasks.
Based on the speedup factor of our stretching approach, the
schedulability of stretched DAG tasks increases when the
speed of processors increases and feasible tasksets become

schedulable using global EDF when the speed ν > 3+
√
5

2
. In

these experiments, we increased the speed of processors from
ν = 1 up to 4 by steps of 1, while varying the number of
processor and taskset utilization as in the above simulations.
The results shown in Figure 5 are done by varying the

5For more details about the decomposition algorithm, please
refer to the original paper in [12].
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Figure 5: Simulation results show the effect of pro-
cessor speed on the schedulability of the stretched
tasksets.

speed of processors on which tasksets are executed. For each
m from 2 to 8, we simulate global EDF scheduling of tasksets
of maximum utilization (equal to m). The choice of taskset
utilization is done because these tasksets have the smallest
success ratio in the results from Figure 4. As shown in Figure
5, schedulability of stretched tasksets increases when the
speed of processors increases. In the case of m = 2 and
m = 4, a success ratio of almost 100% is achieved when the
speed of processors ν ≥ 2, while it needs processors speed
at least equal to 4 for m = 8.

The simulation results provided in this section show the
performances of our DAG stretching approach when com-
pared to the decomposition scheduling algorithm of DAGs.
Although simulation experiments based on random genera-
tion of tasksets cannot be used as an accurate performance
metric of algorithms in real-time systems, the results are
considered as an indication regarding the average behavior
of studied scheduling algorithms.

7. CONCLUSIONS
In this paper, we presented a stretching algorithm for par-

allel periodic real-time DAG tasks on homogeneous multi-
processor systems. The stretching algorithm is an extension
to the one in [9] which targeted Fork-join task model, a spe-
cial case of DAG model. Similarly, our DAG stretching algo-
rithm aimed at removing dependencies between subtasks of
DAG tasks and stretching their critical path (master thread)
up to its deadline. In addition to the master thread which
is assigned its own executing processor, a set of independent
threads with intermediate offsets and deadlines are gener-
ated and scheduled using global EDF scheduling algorithm.

Then, we proved a speedup factor of 3+
√
5

2
for global EDF

scheduling algorithm for stretched threads if n < ϕ · m′,
where n is the total number of tasks in the taskset, m′ is
the remaining number of processors after taking off the pro-
cessors dedicated for the fully-stretched master threads and

ϕ is the golden ratio whose value is 1+
√
5

2
and 4 else.

Finally, we compared the performance of our stretching
algorithm with another scheduling technique for DAGs from
the state-of-art using DAG decomposition. The simulation
results show that our DAG stretching algorithm has better
average performances.
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