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LOCALLY MONOTONE BOOLEAN AND PSEUDO-BOOLEAN

FUNCTIONS

MIGUEL COUCEIRO, JEAN-LUC MARICHAL, AND TAMÁS WALDHAUSER

Abstract. We propose local versions of monotonicity for Boolean and pseudo-
Boolean functions: say that a pseudo-Boolean (Boolean) function is p-locally

monotone if none of its partial derivatives changes in sign on tuples which differ
in less than p positions. As it turns out, this parameterized notion provides a
hierarchy of monotonicities for pseudo-Boolean (Boolean) functions.

Local monotonicities are shown to be tightly related to lattice counter-
parts of classical partial derivatives via the notion of permutable derivatives.
More precisely, p-locally monotone functions are shown to have p-permutable
lattice derivatives and, in the case of symmetric functions, these two notions

coincide. We provide further results relating these two notions, and present a
classification of p-locally monotone functions, as well as of functions having p-
permutable derivatives, in terms of certain forbidden “sections”, i.e., functions
which can be obtained by substituting constants for variables. This description

is made explicit in the special case when p = 2.

1. Introduction

Throughout this paper, let [n] = {1, . . . , n} and B = {0,1}. We are interested in
the so-called Boolean functions f ∶Bn → B and pseudo-Boolean functions f ∶Bn → R,
where n denotes the arity of f . The pointwise ordering of functions is denoted by
≤, i.e., f ≤ g means that f(x) ≤ g(x) for all x ∈ Bn. The negation of x ∈ B is
defined by x = x ⊕ 1, where ⊕ stands for addition modulo 2. For x, y ∈ B, we set
x ∧ y =min(x, y) and x ∨ y =max(x, y).

For k ∈ [n], x ∈ Bn, and a ∈ B, let xa
k be the tuple in Bn whose i-th component is

a, if i = k, and xi, otherwise. We use the shorthand notation xab
jk for (xa

j )bk = (xb
k)aj .

More generally, for S ⊆ [n], a ∈ Bn, and x ∈ BS , let axS be the tuple in Bn whose
i-th component is xi, if i ∈ S, and ai, otherwise.

Let i ∈ [n] and f ∶Bn → R. A variable xi is said to be essential in f , or that f
depends on xi, if there exists a ∈ Bn such that f(a0i ) ≠ f(a1i ). Otherwise, xi is said
to be inessential in f . Let S ⊆ [n] and f ∶Bn → R. We say that g∶BS → R is an
S-section of f if there exists a ∈ Bn such that g(x) = f(axS) for all x ∈ BS . By a
section of f we mean an S-section of f for some S ⊆ [n], i.e., any function which
can be obtained from f by replacing some of its variables by constants.

The (discrete) partial derivative of f ∶Bn → R with respect to its k-th variable is
the function ∆kf ∶Bn → R defined by ∆kf(x) = f(x1

k)−f(x0
k); see [8, 12]. Note that
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∆kf does not depend on its k-th variable, hence it could be regarded as a function
of arity n − 1, but for notational convenience we define it as an n-ary function.

A pseudo-Boolean function f ∶Bn → R can always be represented by a multilinear
polynomial of degree at most n (see [13]), that is,

(1) f(x) = ∑
S⊆[n]

aS ∏
i∈S

xi ,

where aS ∈ R. For instance, the multilinear expression for a binary pseudo-Boolean
function is given by

(2) a0 + a1 x1 + a2 x2 + a12 x1x2 .

This representation is very convenient for computing the partial derivatives of f .
Indeed, ∆kf can be obtained by applying the corresponding formal derivative to
the multilinear representation of f . Thus, from (1), we immediately obtain

(3) ∆kf(x) = ∑
S∋k

aS ∏
i∈S∖{k}

xi .

We say that f is isotone (resp. antitone) in its k-th variable if ∆kf(x) ≥ 0
(resp. ∆kf(x) ≤ 0) for all x ∈ Bn. If f is either isotone or antitone in its k-th
variable, then we say that f is monotone in its k-th variable. If f is isotone (resp.
antitone, monotone) in all of its variables, then f is an isotone (resp. antitone,
monotone) function.1 It is clear that any section of an isotone (resp. antitone,
monotone) function is also isotone (resp. antitone, monotone). Thus defined, a
function f ∶Bn → R is monotone if and only if none of its partial derivatives changes
in sign on Bn.

Noteworthy examples of monotone functions include the so-called pseudo-polyno-
mial functions [2, 3] which play an important role, for instance, in the qualita-
tive approach to decision making; for general background see, e.g., [1, 6]. In the
current setting, pseudo-polynomial functions can be thought of as compositions
p ○ (φ1, . . . , φn) of (lattice) polynomial functions p∶ [a, b]n → [a, b], a < b, with
unary functions φi∶B → [a, b], i ∈ [n]. Interestingly, pseudo-polynomial functions
f ∶Bn → R coincide exactly with those pseudo-Boolean functions that are monotone.

Theorem 1. A pseudo-Boolean function is monotone if and only if it is a pseudo-
polynomial function.

Proof. Clearly, every pseudo-polynomial function is monotone. For the converse,
suppose that f ∶Bn → R is monotone and let a ∈ R be the minimum and b ∈ R
the maximum of f . Constant functions are obviously pseudo-polynomial functions,
therefore we assume a < b. Define φi∶B → {a, b} by φi(0) = a and φi(1) = b
if f is isotone in its i-th variable and φi(0) = b and φi(1) = a otherwise. Let
p∶{a, b}n → [a, b] be given by p = f ○ (φ−11 , . . . , φ−1n ). Thus defined, p is isotone
(i.e., order-preserving) in each variable and hence, by Theorem D in Goodstein [10,
p. 237], there exists a polynomial function p′∶ [a, b]n → [a, b] such that p′∣{a,b}n = p.
Therefore f is the pseudo-polynomial function p′ ○ (φ1, . . . , φn). �

In the special case of Boolean functions, monotone functions are most frequent
among functions of small (essential) arity. For instance, among binary functions

1Note that the terms “positive” and “nondecreasing” (resp. “negative” and “nonincreasing”)

are often used instead of isotone (resp. antitone), and it is also customary to use the word “mono-
tone” only for isotone functions.
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f ∶B2 → B, there are exactly two non-monotone functions, namely the Boolean sum
x1 ⊕ x2 and its negation x1 ⊕ x2 ⊕ 1. Each of these functions is in fact highly
non-monotone in the sense that any of its partial derivatives changes in sign when
negating its unique essential variable; this is not the case, e.g., with f(x1, x2, x3) =
x1 − x1x2 + x2x3 which is non-monotone but none of its partial derivatives changes
in sign when negating any of its variables (see Example 6 below).

This fact motivates the study of these “skew” functions, i.e., these highly non-
monotone functions. To formalize this problem we propose the following param-
eterized relaxations of monotonicity: a function f ∶Bn → R is p-locally monotone
if none of its partial derivatives changes in sign when negating less than p of its
variables, or equivalently, on tuples which differ in less than p positions. With
this terminology, our problem reduces to asking which Boolean functions are not 2-
locally monotone. As we will see (Corollary 10), these are precisely those functions
that have the Boolean sum or its negation as a binary section.

In this paper we extend this study to pseudo-Boolean functions and show that
these parameterized relaxations of monotonicity are tightly related to the following
lattice versions of partial derivatives. For f ∶Bn → R and k ∈ [n], let ∧kf ∶Bn → R
and ∨kf ∶Bn → R be the partial lattice derivatives defined by

∧kf(x) = f(x0
k) ∧ f(x1

k) and ∨k f(x) = f(x0
k) ∨ f(x1

k).

The latter, known as the k-th join derivative of f , was proposed by Fadini [9] while
the former, known as the k-th meet derivative of f , was introduced by Thayse
[16]. In [17] these lattice derivatives were shown to be related to so-called prime
implicants and implicates of Boolean functions which play an important role in the
consensus method for Boolean and pseudo-Boolean functions. For further back-
ground and applications see, e.g., [4, 5, 7, 15, 18].

Observe that, just like in the case of the partial derivative ∆kf , the k-th variable
of each of the lattice derivatives ∧kf and ∨kf is inessential.

The following proposition assembles some basic properties of lattice derivatives.

Proposition 2. For any pseudo-Boolean functions f, g∶Bn → R and j, k ∈ [n],
j ≠ k, the following hold:

(i) ∧k ∧k f = ∧kf and ∨k ∨k f = ∨kf ;
(ii) if f ≤ g, then ∧kf ≤ ∧kg and ∨kf ≤ ∨kg;
(iii) ∧j ∧k f = ∧k ∧j f and ∨j ∨k f = ∨k ∨j f ;
(iv) ∨k ∧j f ≤ ∧j ∨k f .

From equations (1) and (3) it follows that every function is (up to an additive
constant) uniquely determined by its partial derivatives. As it turns out, this
does not hold when lattice derivatives are considered. However, as we shall see
(Theorem 22), there are only two types of such exceptions.

Now, if an n-ary pseudo-Boolean function is 2-locally monotone, then for every
j, k ∈ [n], j ≠ k, we have ∨k ∧j f = ∧j ∨k f (see Lemma 11 below). This motivates
the notion of permutable lattice derivatives. As it turns out, p-local monotonicity
of f implies permutability of p of its lattice derivatives (see Theorem 21). However
the converse does not hold (see Example 24).

The structure of this paper goes as follows. In Section 2 we formalize the notion
of p-local monotonicity and show that it gives rise to a hierarchy of monotonici-
ties whose largest member is the class of all n-ary pseudo-Boolean functions (this
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is the case when p = 1) and whose smallest member is the class of n-ary mono-
tone functions (this is the case when p = n). We also provide a characterization of
p-locally monotone functions in terms of “forbidden” sections; as mentioned, this
characterization is made explicit in the special case when p = 2. In Section 3 we
introduce the notion of permutable lattice derivatives. Similarly to local mono-
tonicity, the notion of permutable lattice derivatives gives rise to nested classes,
each of which is also described in terms of its sections. In the Boolean case and for
p = 2, these two parameterized notions are shown to coincide; this does not hold for
pseudo-Boolean functions even when p = 2 (see Example 13). (At the end of Sec-
tion 3 we also provide some game-theoretic interpretations of p-local monotonicity
and p-permutability of lattice derivatives.) However, in Section 4, we show that a
symmetric function is p-locally monotone if and only if it has p-permutable lattice
derivatives. In the last section we discuss directions for future research.

2. Local monotonicities

The following definition formulates a local version of monotonicity given in terms
of Hamming distance between tuples. In what follows we assume that p ∈ [n].

Definition 3. We say that f ∶Bn → R is p-locally monotone if, for every k ∈ [n]
and every x,y ∈ Bn, we have

∑
i∈[n]∖{k}

∣xi − yi∣ < p ⇒ ∆kf(x)∆kf(y) ≥ 0.

Any p-locally monotone pseudo-Boolean function is also p′-locally monotone for
every p′ ≤ p. Every function f ∶Bn → R is 1-locally monotone, and f is n-locally
monotone if and only if it is monotone. Thus p-local monotonicity is a relaxation of
monotonicity, and the nested classes of p-locally monotone functions for p = 1, . . . , n
provide a hierarchy of monotonicities for n-ary pseudo-Boolean functions. The
weakest nontrivial condition is 2-local monotonicity, therefore we will simply say
that f is locally monotone whenever f is 2-locally monotone.2 If f is p-locally
monotone for some p < n but not (p + 1)-locally monotone, then we say that f is
exactly p-locally monotone, or that the degree of local monotonicity of f is p.

If f ∶Bn → B is a Boolean function, then ∆kf(x) ∈ {−1,0,1} for all x ∈ Bn,
hence the condition ∆kf(x)∆kf(y) ≥ 0 in the definition of p-local monotonicity is
equivalent to

(4) ∣∆kf(x) −∆kf(y)∣ ≤ 1.

From this it follows that a Boolean function f ∶Bn → B is locally monotone if and
only if

(5) ∣∆kf(x) −∆kf(y)∣ ≤ ∑
i∈[n]∖{k}

∣xi − yi∣.

(see [14, Lemma 5.1] for a proof of (5) in a slightly more general framework). In a
sense, the latter identity means that ∆kf is “1-Lipschitz continuous”.

The following proposition is just a reformulation of the definition of p-local mono-
tonicity.

2In [11], local monotonicity is used to refer to Boolean functions which are monotone (i.e.,
isotone or antitone in each variable).
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Proposition 4. A function f ∶Bn → R is p-locally monotone if and only if, for
every k ∈ [n], S ⊆ [n] ∖ {k}, with ∣S∣ = p − 1, and every a ∈ Bn, x,y ∈ BS, we have

(6) ∆kf(axS)∆kf(ayS) ≥ 0.

Equivalently, a pseudo-Boolean function is p-locally monotone if and only if none
of its partial derivatives changes in sign when negating less than p of its variables.

As a special case, we have that f ∶Bn → R is locally monotone if and only if, for
every j, k ∈ [n], j ≠ k, and every x ∈ Bn, we have

(7) ∆kf(x0
j)∆kf(x1

j) ≥ 0.

Equivalently, a pseudo-Boolean function is locally monotone if and only if none of
its partial derivatives changes in sign when negating any of its variables.

By (4) we see that, for Boolean functions f ∶Bn → B, inequality (7) can be
replaced with ∣∆jkf(x)∣ ≤ 1, where ∆jkf(x) =∆j∆kf(x) =∆k∆jf(x).
Example 5. As observed, the binary Boolean sum

f1(x1, x2) = x1 ⊕ x2 = x1 + x2 − 2x1x2

and the binary Boolean equivalence

f2(x1, x2) = f1(x1, x2) = x1 ⊕ x2 ⊕ 1 = 1 − x1 − x2 + 2x1x2

are not locally monotone. Indeed, we have ∣∆12f1(x1, x2)∣ = ∣∆12f2(x1, x2)∣ = 2.
Example 6. Consider the ternary Boolean function f ∶B3 → B given by

f(x1, x2, x3) = x1 − x1x2 + x2x3.

Since ∆2f may change in sign (∆2f(x) = x3 −x1), the function f is not monotone.
However, f is locally monotone since ∣∆12f(x)∣ = 1, ∣∆13f(x)∣ = 0, and ∣∆23f(x)∣ =
1. Thus f is exactly 2-locally monotone. Example 26 in Section 4 provides, for
each p ≥ 2, examples of exactly p-locally monotone functions.

Fact 7. A function f ∶Bn → R is p-locally monotone if and only if so is αf + β for
every α,β ∈ R, with α ≠ 0. The same holds for any function obtained from f by
negating some of its variables.

The next theorem gives a characterization of p-locally monotone functions in
terms of their sections.

Theorem 8. A function f ∶Bn → R is p-locally monotone if and only if every p-ary
section of f is monotone.

Proof. We just need to observe that the inequality (6) is equivalent to ∆kg(x)∆kg(y) ≥
0, where g is the p-ary section of f defined by g(x) = f(axS∪{k}), where S is a (p−1)-
subset of [n] ∖ {k}. Thus f is p-locally monotone if and only if ∆kg(x)∆kg(y) ≥ 0
holds for every x,y ∈ BS∪{k}, and for every S ∪ {k}-section g of f . �

By combining (7) with Theorem 8, we can easily verify the following corollary.

Corollary 9. A function f ∶Bn → R is locally monotone if and only if every binary
section (2) of f satisfies a1(a1 + a12) ≥ 0 and a2(a2 + a12) ≥ 0.

Since every binary Boolean function is monotone except for x⊕ y and x⊕ y ⊕ 1,
we also obtain the following corollary.

Corollary 10. A Boolean function f ∶Bn → B is locally monotone if and only if
neither x⊕ y nor x⊕ y ⊕ 1 is a section of f .
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3. Permutable lattice derivatives

The aim of this section is to relate commutation of lattice derivatives to p-
local monotonicity. The starting point is the characterization of locally monotone
Boolean functions given in Theorem 12 below.

Lemma 11. If f ∶Bn → R is locally monotone, then ∨k∧jf = ∧j∨kf for all j, k ∈ [n],
j ≠ k.

Proof. Let f ∶Bn → R be a locally monotone function, and let j, k ∈ [n], j ≠ k.
Setting a = f(x00

jk), b = f(x01
jk), c = f(x10

jk), and d = f(x11
jk), the desired equality

∨k ∧j f(x) = ∧j ∨k f(x) takes the form

(8) (a ∧ c) ∨ (b ∧ d) = (a ∨ b) ∧ (c ∨ d).
Since f is 2-locally monotone, the binary section g(u, v) = f(xuv

jk ) is monotone,
according to Theorem 8. If g is isotone in u, then a ≤ c and b ≤ d, while if g is
antitone in u, then a ≥ c and b ≥ d. Similarly, we have either a ≤ b and c ≤ d or a ≥ b
and c ≥ d, depending on whether g is isotone or antitone in v. Thus we need to
consider four cases, and in each one of them it is straightforward to verify (8). �
Theorem 12. A Boolean function f ∶Bn → B is locally monotone if and only if
∨k ∧j f = ∧j ∨k f holds for all j, k ∈ [n], j ≠ k.

Proof. If f is locally monotone, then ∨k ∧j f = ∧j ∨k f by Lemma 11. If f is not
locally monotone, then Corollary 10 implies that there exists a ∈ Bn and j, k ∈ [n],
j ≠ k, such that the binary section g(u, v) = f(auvjk ) is of the form g(u, v) = u⊕ v or

g(u, v) = u⊕ v ⊕ 1. Then we have

∨k ∧j f(a) = (g(0,0) ∧ g(1,0)) ∨ (g(0,1) ∧ g(1,1)) = 0,
∧j ∨k f(a) = (g(0,0) ∨ g(0,1)) ∧ (g(1,0) ∨ g(1,1)) = 1,

showing that ∨k ∧j f ≠ ∧j ∨k f . �
As the next example shows, Theorem 12 is not valid for pseudo-Boolean func-

tions.

Example 13. Let f be the binary pseudo-Boolean function defined by f(0,0) = 1,
f(0,1) = 4, f(1,0) = 2 and f(1,1) = 3. Then we have ∨2 ∧1 f = ∧1 ∨2 f = 3 and
∨1 ∧2 f = ∧2 ∨1 f = 2. However, f is not locally monotone since ∆1f(x0

2)∆1f(x1
2) =

−1.

Lemma 11 and Theorem 12 motivate the following notion of permutability of
lattice derivatives, and its relation to local monotonicities.

Definition 14. We say that a pseudo-Boolean function f ∶Bn → R has p-permutable
lattice derivatives if, for every p-subset {k1, . . . , kp} ⊆ [n], every choice of the op-
erators Oki ∈ {∧ki ,∨ki} (i = 1, . . . , p), and every permutation π ∈ Sp, the following
identity holds:

Ok1⋯Okpf = Okπ(1)⋯Okπ(p)f.

If f ∶Bn → R has n-permutable lattice derivatives, then we simply say that f has
permutable lattice derivatives.

Every function f ∶Bn → R has 1-permutable lattice derivatives. We will see in
Theorem 23 that if a function f ∶Bn → R has p-permutable lattice derivatives, then
it also has p′-permutable lattice derivatives for every p′ ≤ p.
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Fact 15. A function f ∶Bn → R has p-permutable lattice derivatives if and only if so
has αf +β for every α,β ∈ R, with α ≠ 0. The same holds for any function obtained
from f by negating some of its variables.

Fact 16. A function f ∶Bn → R has p-permutable lattice derivatives if and only if
every p-ary section of f has permutable lattice derivatives.

In the particular case when p = 2, we have the following description of functions
having 2-permutable lattice derivatives. The proof is a straightforward verification
of cases.

Proposition 17. A function f ∶Bn → R has 2-permutable lattice derivatives if and
only if every binary section (2) of f satisfies a1 a12 ≥ 0 or a2 a12 ≥ 0 or ∣a12∣ ≤
∣a1∣ ∨ ∣a2∣.

Lemma 11 shows that the class of 2-locally monotone pseudo-Boolean functions
is a subclass of that of pseudo-Boolean functions which have 2-permutable lattice
derivatives. Example 13 then shows that this inclusion is strict. On the other
hand, according to Theorem 12, a Boolean function is 2-locally monotone if and
only if it has 2-permutable lattice derivatives. Example 24 below shows that the
analogous equivalence does not hold for p > 2. However, p-local monotonicity
implies p-permutability of lattice derivatives of any pseudo-Boolean function (see
Theorem 21 below). To this extent, let us first study how the degree of local
monotonicity is affected by taking lattice derivatives.

Lemma 18. If f ∶Bn → R is monotone, then ∧jf and ∨jf are also monotone for
all j ∈ [n].
Proof. Clearly, if f is monotone, then so are f0

j (x) = f(x0
j) and f1

j (x) = f(x1
j), for

all j ∈ [n]. Moreover, if f is isotone (resp. antitone) in xk, then both f0
j and f1

j are
also isotone (resp. antitone) in xk. Since ∧ and ∨ are isotone functions, we have
that for every j ∈ [n], both ∧jf(x) = f0

j (x)∧f1
j (x) and ∨jf(x) = f0

j (x)∨f1
j (x) are

monotone. �
Theorem 19. If f ∶Bn → R is p-locally monotone, then ∧jf and ∨jf are (p − 1)-
locally monotone for all j ∈ [n].
Proof. Suppose that f ∶Bn → R is p-locally monotone. By Theorem 8, it suffices to
show that all (p − 1)-ary sections of ∧jf and ∨jf are monotone. We consider only
∨jf , the other case can be dealt with in a similar way.

Let h be a (p − 1)-ary section of ∨jf defined by h(x) = ∨jf(axS) for all x ∈ BS ,
where a ∈ Bn and S ⊆ [n] is a (p − 1)-subset. Let T = S ∪ {j}, and let us define
g∶BT → R by g(y) = f(ayT ) for all y ∈ B

T . Clearly, g is a section of f , and the arity
of g is either p − 1 or p , depending on whether j belongs to S or not. A simple
calculation shows that h(y∣S) = ∨jg(y) for all y ∈ BT , where y∣S stands for the
restriction of y to S. This means that if j ∉ S, then h can be obtained from ∨jg
by deleting its inessential j-th variable, and h = ∨jg if j ∈ S. Since f is p-locally
monotone, g is monotone by Theorem 8, thus we can conclude with the help of
Lemma 18 that h is monotone as well. �
Corollary 20. Let 0 ≤ ℓ < p ≤ n. If f ∶Bn → R is p-locally monotone, then, for
every ℓ-subset {k1, . . . , kℓ} ⊆ [n] and every choice of the operators Oki ∈ {∨ki ,∧ki}
(i = 1, . . . , ℓ), the function Ok1⋯Okℓ

f is (p − ℓ)-locally monotone. In particular, if
ℓ ≤ p − 2, then Ok1⋯Okℓ

f is locally monotone.
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Remark 1. We will see in Example 26 of Section 4 that Theorem 19 cannot be
sharpened, i.e., the lattice derivatives of a p-locally monotone function are not
necessarily p-locally monotone, not even in the case of Boolean functions.

With the help of Corollary 20 we can now prove the promised implication between
p-local monotonicity and p-permutability of lattice derivatives, thus generalizing
Lemma 11.

Theorem 21. If f ∶Bn → R is p-locally monotone, then it has p-permutable lattice
derivatives.

Proof. Let f ∶Bn → R be a p-locally monotone function, let {k1, . . . , kp} be a p-
subset of [n], and let Oki ∈ {∧ki ,∨ki} for i = 1, . . . , p. We need to show that for any
permutation π ∈ Sp the following identity holds:

Ok1⋯Okpf = Okπ(1)⋯Okπ(p)f.

Since Sp is generated by transpositions of the form (i i+1), it suffices to prove that

Ok1⋯Oki−1OkiOki+1Oki+2⋯Okpf = Ok1⋯Oki−1Oki+1OkiOki+2⋯Okpf,

and for this it is sufficient to verify that

(9) OkiOki+1g = Oki+1Okig,

where g stands for the function Oki+2⋯Okpf . From Corollary 20 it follows that g
is locally monotone, and then Lemma 11 proves (9) if one of Oki ,Oki+1 is a meet
and the other is a join derivative. (If both are meet or both are join, then (9) is
trivial.) �

A natural question regarding lattice derivatives is whether a function can be re-
constructed from its derivatives. As the next theorem shows, the answer is positive
for almost all functions.

Theorem 22. Let f, g∶Bn → R be pseudo-Boolean functions such that for all k ∈ [n]
we have ∨kf = ∨kg and ∧kf = ∧kg. Then either f = g or there exists a one-to-one
function α∶B → R such that f(x) = α(x1 ⊕⋯⊕ xn) and g(x) = α(x1 ⊕⋯⊕ xn ⊕ 1)
for all x ∈ Bn.

Proof. To make the proof more vivid, we present it through the analysis of the
following game. Alice picks a secret function f ∶Bn → R, and Bob tries to identify
this function by asking the values of its lattice derivatives. If he can do this, then
he wins, otherwise Alice is the winner. We show that Bob has a winning strategy
unless f is a function of the special form in the statement of the theorem.

Let us regard Bn as the set of vertices of the n-dimensional cube, and let Alice
write the values of f to the corresponding vertices. Now the possible winning
strategy for Bob is based on the following four basic observations.

1. Bob can determine the unordered pair of numbers written to the endpoints
of any edge of the cube. Indeed, the endpoints of an edge are of the form
x0
k,x

1
k, and it is clear that {∧kf(x),∨kf(x)} = {f(x0

k), f(x1
k)}.

2. If Bob can find the value of f at one point, then he can win. According
to the previous observation, knowing the value at one vertex of the cube,
Bob can figure out the values written to the neighboring vertices. Since the
graph of the cube is connected, he can determine all values of f this way.
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3. If f(x0
k) = f(x1

k) for some x ∈ Bn, k ∈ [n] , then Bob can win. This follows
immediately from the first two observations.

4. If the range of f contains at least three elements, then Bob can win. We
can suppose that the previous observation does not apply, i.e., for every
edge Bob detects a two-element set. If f takes on at least three different
values, then, by the connectedness of the cube, there exists a vertex x and
two edges incident with this vertex such that the two-element sets E1 and
E2 corresponding to these edges are different. Then E1 ∩ E2 must be a
one-element set3 containing the value of f(x), and then Bob can win as
explained in the second observation.

From these observations we can conclude that Bob has a winning strategy unless
the range of f contains exactly two numbers and f(x0

k) ≠ f(x1
k), for all x ∈ Bn, k ∈

[n]. This means that f is of the following form for some u ≠ v ∈ R:

f(x) = { u , if ∣x∣ is even ;
v , if ∣x∣ is odd ,

where ∣x∣ = ∑n
i=1 xi. In other words, f(x) = α(x1⊕⋯⊕xn), where α(0) = u,α(1) = v.

In this case Bob can determine f only up to interchanging u and v, i.e., he cannot
distinguish f from g(x) = α(x1 ⊕⋯ ⊕ xn ⊕ 1), so he has only 50% chance to win.
(Indeed, f and g have the same lattice derivatives, namely their meet derivatives
are all constant u ∧ v, while their join derivatives are all constant u ∨ v.) �

The following theorem shows that, as in the case of local monotonicity, the classes
of functions having permutable lattice derivatives form a chain under inclusion.

Theorem 23. If f ∶Bn → R has (p + 1)-permutable lattice derivatives, then f has
p-permutable lattice derivatives.

Proof. Let f ∶Bn → R be a function that has (p + 1)-permutable lattice derivatives.
Using the same notation as in the proof of Theorem 21, it suffices to prove that

Ok1⋯Oki−1OkiOki+1Oki+2⋯Okpf = Ok1⋯Oki−1Oki+1OkiOki+2⋯Okpf.

Let g1 and g2 be the (n − p)-ary functions obtained from the left-hand side and
from the right-hand side of this equality by deleting their inessential variables
xk1 , . . . , xkp . If Oki = ∧ki ,Oki+1 = ∧ki+1 or Oki = ∨ki ,Oki+1 = ∨ki+1 , then g1 = g2
holds trivially. Let us now assume that Oki = ∨ki ,Oki+1 = ∧ki+1 ; the remaining case
Oki = ∧ki ,Oki+1 = ∨ki+1 is similar.

By Proposition 2, we have g1 ≤ g2. Since the two (types of) functions given in
Theorem 22 are order-incomparable, if g1 ≠ g2, then the lattice derivatives of g1
and g2 cannot all coincide. Thus there exists j ∈ [n]∖{k1, . . . , kp} and Oj ∈ {∧j ,∨j}
such that Ojg1 ≠ Ojg2. Taking into account the definition of g1 and g2, we can
rewrite this inequality as

OjOk1⋯Oki−1OkiOki+1Oki+2⋯Okpf ≠ OjOk1⋯Oki−1Oki+1OkiOki+2⋯Okpf,

which contradicts the fact that f has (p + 1)-permutable lattice derivatives. �

If f ∶Bn → B is a Boolean function with p-permutable lattice derivatives for
some p ≥ 2, then f has 2-permutable lattice derivatives by Theorem 23, and then
Theorem 12 implies that f is 2-locally monotone. Unfortunately, nothing more

3If E1 ∩E2 is empty, then Alice is cheating!
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can be said about the degree of local monotonicity of a Boolean function with p-
permutable lattice derivatives. Indeed, the next example shows that there exist
n-ary Boolean functions with n-permutable lattice derivatives that are exactly 2-
locally monotone.

Example 24. Let fn∶Bn → B be the function that takes the value 1 on all tuples
of the form

x = (
m

³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
1, . . . ,1,0, . . . ,0) with 0 ≤m ≤ n,

and takes the value 0 everywhere else. Using Corollary 10, it is not difficult to
verify that fn is 2-locally monotone. However, if n ≥ 3, then fn is not 3-locally
monotone, since

∆2f(0,0,0,0, . . . ,0) = −1,
∆2f(1,0,1,0, . . . ,0) = 1.

Thus fn is exactly 2-locally monotone.
We will show by induction on n that fn has n-permutable lattice derivatives.

First we compute the meet derivatives

∧kfn(x) = {
1 , if x1 = ⋯ = xk−1 = 1 and xk+1 = ⋯ = xn = 0 ;
0 , otherwise .

Since ∧kf takes the value 1 only at one tuple, it is monotone. The join derivative
∨kfn is essentially the same as the function fn−1 (up to the inessential k-th variable
of ∨kfn), that is,

(10) ∨kfn(x) = fn−1(x1, . . . , xk−1, xk+1, . . . , xn).

Now it follows that if {k1, . . . , kn} = [n] and Oki ∈ {∧ki ,∨ki} (i = 1, . . . , n), then

(11) Ok1⋯Okn−1Oknf = Okπ(1)⋯Okπ(n−1)Oknf

holds for every permutation π ∈ Sn−1. (If Okn = ∧kn , then we use Theorem 21
and the fact that ∧knf is monotone, and if Okn = ∨kn , then we use (10) and the
induction hypothesis.) On the other hand, from the 2-local monotonicity of f we
can conclude that

(12) Ok1⋯Okn−2Okn−1Oknf = Ok1⋯Okn−2OknOkn−1f

with the help of Theorem 12. Since Sn is generated by Sn−1 and the transposition
(n − 1 n), we see from (11) and (12) that f has n-permutable lattice derivatives.

We finish this section with game-theoretic interpretations of the parameterized
notions of local monotonicity and permutability of lattice derivatives. Identifying
Bn with the power set of [n], we can regard a pseudo-Boolean function f ∶Bn → R
as a cooperative game, where [n] is the set of players and f (C) is the worth of
coalition C ⊆ [n].

The partial derivative ∆kf(C) gives the (marginal) contribution of the k-th
player to coalition C. Note that the same player might have a positive contribution
to some coalitions and a negative contribution to other coalitions. Such a setting
can model situations where some players have conflicts, which prevents them from
cooperating. The lattice derivative ∨kf(C) gives the outcome if the k-th player acts
benevolently and joins (or leaves) the coalition C only if this increases the worth.
Similarly, ∧kf(C) represents the outcome if the k-th player acts malevolently.



LOCALLY MONOTONE BOOLEAN AND PSEUDO-BOOLEAN FUNCTIONS 11

Games corresponding to locally monotone functions have the property that if
two coalitions are close to each other, then any given player relates in the same way
to these coalitions. More precisely, f is p-locally monotone if and only if whenever
two coalitions differ in less than p players, then the contribution of any player is
either nonnegative to both coalitions or it is nonpositive to both.

Finally, let us interpret permutability of lattice derivatives. Let P be a p-subset
of [n], and let C ⊆ [n] ∖ P . Suppose that some players of P are benevolent and
some of them are malevolent, and they are asked one by one to join coalition C if
they want to. We obtain the least possible outcome if the malevolent players are
asked first, and we get the greatest outcome if the benevolent players make their
choices first. The function f has p-permutable lattice derivatives if and only if
these extremal outcomes coincide, i.e., if the order in which the players make their
choices is irrelevant for every p-subset of [n].

4. Symmetric functions

In the previous sections we saw that both notions of local monotonicity and of
permutable lattice derivatives lead to two hierarchies of pseudo-Boolean functions
which are related by the fact that each p-local monotone class is contained in
the corresponding class of functions having p-permutable lattice derivatives. Now,
in general this containment is strict. However, under certain assumptions (see,
e.g., Theorem 12), p-local monotonicity is equivalent to p-permutability of lattice
derivatives. Hence it is natural to ask for conditions under which these two notions
are equivalent.

In this section we provide a partial answer to this problem by focusing on sym-
metric pseudo-Boolean functions, i.e., functions f ∶Bn → R that are invariant under
all permutations of their variables. Quite surprisingly, in this case the notions of
p-local monotonicity and p-permutability of lattice derivatives become equivalent.

Symmetric functions of arity n are in a one-to-one correspondence with sequences
of real numbers of length n + 1, where the function corresponding to the sequence
α = α0, . . . , αn is given by f(x) = α∣x∣ (x ∈ Bn). Clearly, f is isotone if and only if
the corresponding sequence is nondecreasing, i.e., α0 ≤ α1 ≤ ⋯ ≤ αn. Similarly, f
is antitone if and only if α0 ≥ α1 ≥ ⋯ ≥ αn, and f is monotone if and only if f is
either isotone or antitone.4

It is easy to see that if f is symmetric, then every section of f is also sym-
metric; moreover, if f corresponds to the sequence α = α0, . . . , αn, then the p-ary
sections of f are precisely the symmetric functions corresponding to the subse-
quences5 αi, αi+1, . . . , αi+p of α of length p + 1. This observation and Theorem 8
lead to the following description of p-locally monotone symmetric pseudo-Boolean
functions.

Proposition 25. Let f ∶Bn → R be a symmetric function corresponding to the se-
quence α = α0, . . . , αn. Then f is p-locally monotone if and only if each subsequence
of length p + 1 of α is either nondecreasing or nonincreasing.

Unlike in the previous sections, here it will be more convenient to discard the
inessential k-th variable of the lattice derivatives ∧kf and ∨kf , and regard the

4Since if f is isotone (resp. antitone) in one variable, then it is isotone (resp. antitone) in all

variables.
5Here by a subsequence we mean a sequence of consecutive entries of the original sequence.
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latter as (n − 1)-ary functions. Clearly, if f is symmetric, then so are its lattice
derivatives. Moreover, if f corresponds to the sequence α = α0, . . . , αn, then ∧kf
and ∨kf correspond to the sequences

α0 ∧ α1, α1 ∧ α2, . . . , αn−1 ∧ αn and

α0 ∨ α1, α1 ∨ α2, . . . , αn−1 ∨ αn ,

respectively, for all k ∈ [n]. Since these sequences do not depend on k, we will write
∧f and ∨f instead of ∧kf and ∨kf , and we will abbreviate

∧⋯∧
±

ℓ

f and ∨⋯∨
±

ℓ

f

by ∧ℓf and ∨ℓf , respectively.
The next example shows that Theorem 19 cannot be sharpened.

Example 26. Let f ∶Bn → B be the symmetric function corresponding to the
sequence

α = 0,0,

p
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
1, . . . ,1,

p
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
0, . . . ,0,1,1

where n = 2p+4 and p ≥ 2. It follows from Proposition 25 that f is exactly p-locally
monotone. To compute ∧f , it is handy to construct a table whose first row contains
the sequence α, and in the second row we write αi ∧ αi+1 between αi and αi+1:

f ∶ 0 0 1 1 ⋯ 1 1 0 0 ⋯ 0 0 1 1
∧f ∶ 0 0 1 1 ⋯ 1 1 0 0 0 ⋯ 0 0 0 1

Thus ∧f corresponds to the sequence

0,0,

p−1
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
1, . . . ,1,

p+1
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
0, . . . ,0,1,

and a similar calculation yields that ∨f corresponds to the sequence

0,

p+1
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
1, . . . ,1,

p−1
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
0, . . . ,0,1,1.

Now Proposition 25 shows that ∧f and ∨f are exactly (p − 1)-locally monotone.

Remark 2. Example 26 shows that the degree of local monotonicity can decrease,
when taking lattice derivatives, and Theorem 19 states that it can decrease by at
most one. Other examples can be found to illustrate the cases when this degree stays
the same, or even increases. For instance, consider the function f(x) = x1⊕⋯⊕xn,
which is not even 2-locally monotone, but its lattice derivatives are constant.

We conclude this section by proving that for symmetric functions the notions of
p-local monotonicity and p-permutability of lattice derivatives coincide.

Theorem 27. If f ∶Bn → R is symmetric, then f is p-locally monotone if and only
if f has p-permutable lattice derivatives.

Proof. By Theorem 21, it is enough to show that if a symmetric function f ∶Bn → R
is not p-locally monotone, then it does not have p-permutable lattice derivatives.
So suppose that f is a symmetric function which is not p-locally monotone, and
which corresponds to the sequence α = α0, . . . , αn. Let αi, . . . , αi+ℓ be a shortest
subsequence of α that is neither nondecreasing nor nonincreasing. Proposition 25
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implies that there is indeed such a subsequence for ℓ + 1 ≤ p + 1. From the mini-
mality of ℓ it follows that the subsequence αi, . . . , αi+ℓ−1 is either nondecreasing or
nonincreasing. We may assume without loss of generality that the first case holds;
the second case is the dual of the first one. Then we must have αi+ℓ−1 > αi+ℓ,
since otherwise the whole subsequence αi, . . . , αi+ℓ would be nondecreasing. Thus
we have the following inequalities:

(13) αi ≤ αi+1 ≤ ⋯ ≤ αi+ℓ−1 > αi+ℓ .

From the minimality of ℓ, we can also conclude that the subsequence αi+1, . . . , αi+ℓ is
either nondecreasing or nonincreasing. As αi+ℓ−1 > αi+ℓ, the first case is impossible,
therefore αi+1, . . . , αi+ℓ is nonincreasing, and we must have αi < αi+1 since otherwise
the whole subsequence αi, . . . , αi+ℓ would be nonincreasing:

(14) αi < αi+1 ≥ ⋯ ≥ αi+ℓ−1 ≥ αi+ℓ .

Comparing (13) and (14), we obtain

αi < αi+1 = ⋯ = αi+ℓ−1 > αi+ℓ .

To simplify notation, we set β ∶= αi, γ ∶= αi+1, δ ∶= αi+ℓ. With this notation we have
that α contains the subsequence β, γ, . . . , γ, δ of length ℓ + 1 with β, δ < γ. In the
following we will use this observation to prove that f does not have ℓ-permutable
lattice derivatives.

Let us compute the sequence corresponding to ∨∧ℓ−1f . We can construct a table
as in Example 26, but this time the table has ℓ + 1 rows (in the last row µ stands
for β ∨ δ):

f ∶ α0 ⋯ β γ γ γ ⋯ γ γ γ δ ⋯ αn

∧f ∶ ⋯ β γ γ ⋯ γ γ δ ⋯
∧2f ∶ ⋯ β γ ⋯ γ δ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
∧ℓ−2f ∶ ⋯ β γ δ ⋯
∧ℓ−1f ∶ ⋯ β δ ⋯
∨ ∧ℓ−1 f ∶ ⋯ µ ⋯

A similar table can be constructed for ∧ℓ−1 ∨ f :

f ∶ α0 ⋯ β γ γ γ ⋯ γ γ γ δ ⋯ αn

∨f ∶ ⋯ γ γ γ ⋯ γ γ γ ⋯
∧ ∨ f ∶ ⋯ γ γ ⋯ γ γ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
∧ℓ−3 ∨ f ∶ ⋯ γ γ γ ⋯
∧ℓ−2 ∨ f ∶ ⋯ γ γ ⋯
∧ℓ−1 ∨ f ∶ ⋯ γ ⋯

Since β, δ < γ, we have µ < γ, and this means that the sequences corresponding
to ∨ ∧ℓ−1 f and ∧ℓ−1 ∨ f differ in at least one position, therefore f does not have
ℓ-permutable lattice derivatives. As ℓ ≤ p, this implies that f does not have p-
permutable lattice derivatives either, according to Theorem 23. �

Remark 3. As a consequence of Theorem 27, we can observe that any exactly
p-locally monotone symmetric function (for instance, the functions considered in
Example 26) has p-permutable but not (p + 1)-permutable lattice derivatives.
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5. Open problems and concluding remarks

We proposed relaxations of monotonicity, namely p-local monotonicity, and we
presented characterizations of each in terms of “forbidden” sections. Also, for each
p, we observed that p-locally monotone functions have the property that any p of
their lattice derivatives permute, and showed that the converse also holds in the
special case of symmetric functions. The classes of 2-locally monotone functions,
and of functions having 2-permutable lattice derivatives were explicitly described.
However, similar descriptions elude us for p ≥ 3. Hence we are left with the following
problems.

Problem 1. For p ≥ 3, describe the class of p-locally monotone functions and that
of functions having p-permutable lattice derivatives.

Problem 2. For p ≥ 3, determine necessary and sufficient conditions on func-
tions for the equivalence between p-local monotonicity and p-permutability of lattice
derivatives.
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