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Introduction

Let I be a nontrivial real interval (i.e., nonempty and not a singleton) and let n ⩾ 2 be an integer. Recall that an n-ary function f ∶ I n → I is said to be associative if it solves the following system of n -1 functional equations: f (x 1 , . . . , f (x i , . . . , x i+n-1 ), x i+n , . . . , x 2n-1 ) = f (x 1 , . . . , x i , f (x i+1 , . . . , x i+n ), . . . , x 2n-1 ), i = 1, . . . , n -1.

The pair (I, f ) is then called an n-ary semigroup (see Dörnte [START_REF] Dörnte | Untersuchengen über einen verallgemeinerten Gruppenbegriff[END_REF] and Post [START_REF] Post | Polyadic groups[END_REF]).

A function f ∶ I n → I is said to be cancellative if it is one-to-one in each variable; that is, for every k ∈ [n] = {1, . . . , n} and every x = (x 1 , . . . , x n ) ∈ I n and x ′ = (x ′ 1 , . . . , x ′ n ) ∈ I n , (x i = x ′ i for all i ∈ [n] ∖ {k} and f (x) = f (x ′ )) ⇒ x k = x ′ k . Also, a function f ∶ I n → I is said to be symmetric if, for every permutation σ on [n], we have f (x 1 , . . . , x n ) = f (x σ(1) , . . . , x σ(n) ).

In this paper we present a complete description of those associative functions f ∶ I n → I which are continuous, symmetric, and cancellative. Our main result can be stated as follows.

Main Theorem. A function f ∶ I n → I is continuous, symmetric, cancellative, and associative if and only if there exists a continuous and strictly monotonic function φ∶ I → J such that

(1) f (x) = φ -1 ( n ∑ i=1 φ(x i )) ,
where J is a real interval of one of the forms

]-∞, b[, ]-∞, b], ]a, ∞[, [a, ∞[ or R = ]-∞, ∞[ (b ⩽ 0 ⩽ a).
For such a function f , I is necessarily open at least on one end. Moreover, φ can be chosen to be strictly increasing. In other words, the n-ary semigroup (I, f ) is topologically order-isomorphic to the n-ary semigroup (J, +).

The binary case (n = 2) of the Main Theorem, for which symmetry is not needed, was first stated and proved by J. Aczél [START_REF] Aczél | Sur les opérations définies pour nombres réels[END_REF]. A shorter, more technical proof of Aczél's result was then provided by Craigen and Páles [START_REF] Craigen | The associativity equation revisited[END_REF] (see also [START_REF] Aczél | The associativity equation re-revisited[END_REF] for a recent survey). The corresponding binary semigroups are called Aczélian (see Ling [START_REF] Ling | Representation of associative functions[END_REF]Section 3.2]).

We say that an n-ary semigroup is Aczélian if it satisfies the assumptions of the Main Theorem. Thus the Main Theorem provides an explicit description of the class of Aczélian n-ary semigroups. Although this result is not a trivial derivation of the binary case, we prove it by following more or less the same steps as in [START_REF] Craigen | The associativity equation revisited[END_REF].

The following example shows that the symmetry assumption is necessary for every odd integer n ⩾ 3.

Example 1.1. Let n ⩾ 3 be an odd integer. The function f ∶ R n → R, defined by

f (x) = n ∑ i=1 (-1) i-1 x i ,
is continuous, cancellative, and associative. However, it cannot be of the form [START_REF] Aczél | Sur les opérations définies pour nombres réels[END_REF] with a continuous and strictly monotonic function φ. Indeed, if the latter would be the case, then by identifying the variables, we would have f

(x n ) = x and hence φ(x) = φ(f (x n )) = n φ(x), a contradiction.
This paper is organized as follows. In Section 2 we show how n-ary associative functions can be extended to associative functions of certain higher arities. In Section 3 we provide the proof of the Main Theorem.

To avoid cumbersome notation, we henceforth regard tuples x in I n as n-strings over I and we write |x| = n. The 0-string or empty string is denoted by ε so that I 0 = {ε}. We denote by I * the set of all strings over I, that is, I * = ⋃ n∈N I n , where N = {0, 1, 2, . . .}. Moreover, we consider I * endowed with concatenation for which we adopt the juxtaposition notation. For instance, if x ∈ I n , y ∈ I, and z ∈ I m , then xyz ∈ I n+1+m . Remark 1. Using this notation, we immediately see that a function f ∶ I n → I is associative if and only if we have f (x f (y)z) = f (x ′ f (y ′ )z ′ ) for every xyz, x ′ y ′ z ′ ∈ I 2n-1 such that y, y ′ ∈ I n and xyz = x ′ y ′ z ′ . Similarly, f is cancellative if and only if, for every xz ∈ I n-1 and every y, y ′ ∈ I, the equality f (xyz) = f (xy ′ z) implies y = y ′ . For x ∈ I, we also use the short-hand notation x m = x⋯x ∈ I m . Given a function g∶ I * → I, we denote by g m the restriction of g to I m , i.e. g m ∶= g| I m . We convey that g 0 is defined by g 0 (ε) = ε.

Associative extensions

Recall that a binary function f ∶ I 2 → I is said to be associative if

f (f (xy)z) = f (xf (yz))
for all x, y, z ∈ I.

Using an infix notation, we can also write this property as

(x ◇ y) ◇ z = x ◇ (y ◇ z)
for all x, y, z ∈ I.

Since associativity expresses that the order in which variables are bracketed is not relevant, it can be easily extended to functions g∶ I * → I by defining

g m (x 1 ⋯x m ) = x 1 ◇ ⋯ ◇ x m
for every integer m ⩾ 2. The latter definition can be reformulated in prefix notation as g 2 = f and

(2)

g m (x 1 ⋯x m ) = g 2 (g 2 (⋯g 2 (g 2 (g 2 (x 1 x 2 )x 3 )x 4 )⋯)x m )
for every m > 2. Equivalently, we may write g 2 = f and

g m (x 1 ⋯x m ) = g 2 (g m-1 (x 1 ⋯x m-1 )x m )
for every m > 2.

Note that the unary function g 1 is not involved in this construction and so it could be chosen arbitrarily. However, as we will see in Proposition 2.2, it is convenient to ask g 1 to satisfy the following condition:

(3) 2) holds for every m > 2 and every x 1 , . . . , x m ∈ I, and (iii) condition ( 3) holds.

g 1 ○ g = g and g(x g 1 (y)z) = g(xyz) for all xyz ∈ I * . Definition 2.1. A function g∶ I * → I is said to be associative if (i) g 2 is associative, (ii) condition (
By definition, an associative function g∶ I * → I can always be constructed from a binary associative function f ∶ I2 → I by defining g 2 = f , using (2), and choosing a unary function g 1 satisfying (3) (e.g., the identity function).1 Such a function g, which is completely determined by g 1 and g 2 = f , will be called an associative extension of f .

The following proposition provides concise reformulations of associativity of functions g∶ I * → I and justifies condition (3). We will prove a more general statement in Proposition 2.5. The equivalence of assertions (ii)-(iv) was proved in [START_REF] Couceiro | Associative polynomial functions over bounded distributive lattices[END_REF]. Proposition 2.2. Let g∶ I * → I be a function. The following assertions are equivalent.

(i) g is associative.

(ii) g(x g(y)z) = g(x ′ g(y ′ )z ′ ) for every xyz, x ′ y ′ z ′ ∈ I * such that xyz = x ′ y ′ z ′ . (iii) g(x g(y)z) = g(xyz) for every xyz ∈ I * . (iv) g(g(x)g(y)) = g(xy) for every xy ∈ I * .
For any integer n ⩾ 2, define the sets

A n = {m ∈ N ∶ m ≡ 1 (mod n -1)} and I (n) = ⋃ m∈An I m = I × (I n-1 ) * .
Just as associativity for binary functions can be extended to functions g∶ I * → I, one can also extend the associativity of n-ary functions to functions g∶ I (n) → I as follows. 2 Given an associative function f ∶ I n → I, we define g∶ I (n) → I as g n = f and (4)

g m (x 1 ⋯x m ) = g n (g n (⋯g n (g n (x 1 ⋯x n )x n+1 ⋯x 2n-1 )⋯)x m-n+2 ⋯x m )
for every m ∈ A n and m > n. Equivalently, we may write g n = f and

g m (x 1 ⋯x m ) = g n (g m-n+1 (x 1 ⋯x m-n+1 )x m-n ⋯x m )
for every m ∈ A n and m > n.

Once again, the unary function g 1 can be chosen arbitrarily. However, we ask g 1 to satisfy the following condition:

(5) 4) holds for every m ∈ A n , m > n, and every x 1 , . . . , x m ∈ I, and (iii) condition ( 5) holds.

g 1 ○ g = g and g(x g 1 (y)z) = g(xyz) for all xyz ∈ I (n) . Definition 2.3. A function g∶ I (n) → I is said to be n-associative if (i) g n is associative, (ii) condition (
By definition, an n-associative function g∶ I (n) → I can always be constructed from an n-ary associative function f ∶ I n → I by defining g n = f , using (4), and choosing a unary function g 1 satisfying (5) (e.g., the identity function). Such a function g, which is completely determined by g 1 and g n = f , will be called an n-associative extension of f . Example 2.4. From the ternary associative function

f ∶ R 3 → R, defined by f (x 1 x 2 x 3 ) = x 1 -x 2 + x 3 , we can construct the 3-associative extension g∶ R (3) → R as g m (x 1 ⋯x m ) = m ∑ i=1 (-1) i-1 x i (m ⩾ 3, odd),
for which [START_REF] Dörnte | Untersuchengen über einen verallgemeinerten Gruppenbegriff[END_REF] provides the unique solution g 1 = id.

The following proposition generalizes Proposition 2.2 and provides concise reformulations of n-associativity of functions g∶ I (n) → I and justifies condition (5). (i) g is n-associative.

(ii) g 1 ○ g = g and g(x g(y)z) = g(x ′ g(y ′ )z ′ ) for every xyz, x ′ y ′ z ′ ∈ I (n) such that y, y ′ ∈ I (n) and xyz = x ′ y ′ z ′ . (iii) g(x g(y)z) = g(xyz) for every xyz ∈ I (n) such that y ∈ I (n) . (iv) g 1 ○ g = g and g(g(x 1 )⋯g(x n )) = g(x 1 ⋯x n ) for every x 1 , . . . , x n ∈ I (n) .

Proof. Implications (iii) ⇒ (i), (iii) ⇒ (ii), and (iii) ⇒ (iv) are easy to verify.

To prove (ii) ⇒ (iii) simply take y ′ = xyz (i.e., x ′ z ′ = ε).

Let us now prove that (iv) ⇒ (iii). Let xyz ∈ I (n) such that y ∈ I (n) . We write x g(y)z = t 1 ⋯t m , with t k = g(y). By (iv) we have

g(x g(y)z) = g(t 1 ⋯t m ) = g(g(t 1 )⋯g(t n-1 )g(t n ⋯t m )). If k ⩽ n -1, then g(x g(y)z) = g(g(t 1 )⋯g(t k )⋯g(t n-1 )g(t n ⋯t m )) = g(g(t 1 )⋯g(y)⋯g(t n-1 )g(t n ⋯t m )) = g(xyz).
If k ⩾ n, we proceed similarly with g(t n ⋯t m ), unless n = m in which case the result follows immediately.

Let us establish that (i) ⇒ (iii). We only need to prove that g(x g(y)z) = g(xyz) for every xyz ∈ I (n) such that |y| ⩾ 2 and |xz| ⩾ 1. Using (4) twice and the associativity of g n , we can rewrite the function xyz ↦ g(x g(y)z) in terms of nested g n 's only. Then, using the associativity of g n again, we can move all the g n 's to the left to obtain the right-hand side of (4), which reduces to g(xyz).

To illustrate, consider the following example with n = 3:

g(x 1 x 2 x 3 g(x 4 x 5 x 6 x 7 x 8 )x 9 ) = g(x 1 g(x 2 x 3 g(x 4 g(x 5 x 6 x 7 )x 8 ))x 9 )
= g(g(g(g(x 1 x 2 x 3 )x 4 x 5 )x 6 x 7 )x 8 x 9 )

= g(x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 ).

Remark 2. Proposition 2.2 follows from Proposition 2.5. Note that the condition g 1 ○ g = g is not needed in assertions (ii) and (iv) of Proposition 2.2 since I * is used instead of I (n) , thus allowing the use of the empty string ε.

Proof of the Main Theorem

It is easy to show that the condition in the Main Theorem is sufficient. To show that the condition is necessary, let I be a nontrivial real interval, let f ∶ I n → I be a continuous, symmetric, cancellative, and associative function, and let g∶ I (n) → I be the unique n-associative extension of f such that g 1 = id (see the observation following Definition 2.3).

Claim 1. f is strictly increasing in each variable.

Proof. Since f is continuous and cancellative, it must be strictly monotonic in each variable. Suppose it is strictly decreasing in the first variable. Then, by associativity, for every y ∈ I n-1 , u ∈ I, and v ∈ I n-2 , the unary function x ↦ f (f (xy)uv) = f (x f (yu)v) is both strictly increasing and strictly decreasing, which leads to a contradiction. Thus f must be strictly increasing in the first variable and hence in every variable by symmetry.

An element e ∈ I is said to be an idempotent for f if f (e n ) = e. For instance, any real number is an idempotent for the function defined in Example 1.1.

Claim 2. There cannot be two distinct idempotents for f . Proof. Otherwise, if d and e were distinct idempotents, we would have

f (d e n-1 ) = f (f (d n ) e n-1 ) = f (d f (d n-1 e) e n-2 )
and hence (by cancellation), e = f (d n-1 e) = f (e d n-1 ). Similarly, d = f (e n-1 d) = f (d e n-1 ). Now, if e < d, then d = f (d e n-1 ) < f (d n-1 e) = e (by Claim 1), a contradiction. We arrive at a similar contradiction if d < e.

Because of Claim 2, there is a c ∈ I such that either c < f (c n ) or c > f (c n ). We assume w.l.o.g. that the former holds and fix such a c. The latter case can be dealt with similarly. Claim 3. For all fixed x ∈ I, we have x < f (x c n-1 ). Thus the sequence x m = f (x m-1 c n-1 ) strictly increases, and lim x m ∉ I (hence lim x m = sup I and I is open from above).

Proof. Since c < f (c n ), we have f (c x n-1 ) < f (f (c n ) x n-1 ) = f (c f (c n-1 x) x n-2 ) and hence (by strict monotonicity) x < f (c n-1 x) = f (x c n-1 ). Thus x m = f (x m-1 c n-1 ) > x m-1 . If lim x m = x ′
and x ′ ∈ I, continuity gives the following:

x ′ = lim x m = lim f (x m-1 c n-1 ) = f (lim x m-1 c n-1 ) = f (x ′ c n-1 ), a contradiction. Thus x ′ ∉ I, so lim x m = sup I.
Hereinafter we work on the extended real line so that suprema of arbitrary sets exist and all monotone sequences converge. Claim 4. Let x ∈ I and let j, k, p, q ∈ N such that j + 1, k, p, q + 1 ∈ A n . Then we have

g(c p ) > g(x c q ) ⇔ g(c kp ) > g(x k c kq ) ⇔ g(c p+j ) > g(x c q+j ).
The same equivalence holds if "<" or "=" replaces ">".

Proof. Assume that g(c p ) > g(x c q ). Then, by Proposition 2.5(iv), Claim 1, and symmetry, we have g(c kp ) = g(g(c p ) k ) > g(g(x c q ) k ) = g(x k c kq ), which proves the first equivalence (since the same conclusion clearly holds if "<" or "=" replaces ">"). For the second equivalence, assume again that g(c p ) > g(x c q ). Then, as before, we have g(c p+j ) = g(g(c p ) c j ) > g(g(x c q ) c j ) = g(x c q+j ).

Let x be any fixed element of I. Define S x to be the subset of all rational numbers r for which there exist k, p, q ∈ N such that k, p, q + 1 ∈ A n , g(c p ) > g(x k c q ), and

r = (p -q)/k. Now, if r = (p -q)/k = (p ′ -q ′ )/k ′ , then we have pk ′ + q ′ k = p ′ k + qk ′ and it follows from Claim 4 that g(c p ) > g(x k c q ) ⇔ g(c pk ′ ) > g(x kk ′ c qk ′ ) ⇔ g(c pk ′ +q ′ k ) > g(x kk ′ c qk ′ +q ′ k ) ⇔ g(c p ′ k+qk ′ ) > g(x kk ′ c q ′ k+qk ′ ) ⇔ g(c p ′ k ) > g(x kk ′ c q ′ k ) ⇔ g(c p ′ ) > g(x k ′ c q ′ ).
Hence S x is in fact the subset of rational numbers r for which every representation r = (p -q)/k with k, p, q

+ 1 ∈ A n satisfies g(c p ) > g(x k c q ). Claim 5. The set S = { p-q k ∶ k, p, q + 1 ∈ A n } is dense in R. Proof. For every a, b ∈ N, the sequence x m = 1 ± a m (n -1) 1 + b m (n -1)
of S converges to ±a/b. Thus S is dense in Q and hence (by transitivity) in R.

Claim 6. Any two numbers r, r ′ ∈ S may be written r = (p -q)/k, r ′ = (p ′ -q)/k for suitable k, p, p ′ , q + 1 ∈ A n .

Proof. Let r = (p-q)/k and r ′ = (p ′ -q ′ )/k ′ , with k, k ′ , p, p ′ , q +1, q ′ +1 ∈ A n . Assume w.l.o.g. that r ′ > r. Setting k = k k ′ , q = | k r -1|, p = k r + q, and p′ = k r ′ + q, we have r = (p -q)/ k, r ′ = (p ′ -q)/ k with k, p, p′ , q + 1 ∈ A n .

Claim 7. S x is a nonempty, proper, and upper subset of S ("upper" means that if r ∈ S x and r ′ ∈ S, r ′ > r, then r ′ ∈ S x ).

Proof. To show that S x is an upper subset, let r = (p-q)/k ∈ S x and r ′ = (p ′ -q)/k > r (cf. Claim 6). Then p ′ > p and, since p, p ′ ∈ A n , we have p ′ = p + j(n -1) for some integer j ⩾ 1. Using the definition of S x and the first part of Claim 3, we obtain

g(x k c q ) < g(c p ) < g(g(c p ) c n-1 ) = g(c p c n-1 ) < g(g(c p c n-1 ) c n-1 ) = g(c p c 2(n-1) ) < ⋯ < g(c p c j(n-1) ) = g(c p ′ ).
Hence r ′ ∈ S x . Now, by Claim 3, lim f (c m(n-1)+1 ) = sup I > g(x c n-1 ), and hence there is some p ∈ A n with g(c p ) > g(x c n-1 ). Hence r = (p -(n -1))/1 ∈ S x , and so S x is nonempty. Similarly, since lim g(x c m(n-1) ) = sup I, there must a q such that q + 1 ∈ A n and g(c) < g(x c q ), and so (1 -q)/1 ∉ S x . Now, by Claim 7, S x is precisely the set of elements in S which are greater than (and possibly equal to) inf S x . Using this fact, let φ∶ I → R be the function given by φ(x) ∶= inf S x .

Claim 8. If g(c p ) = g(x k c q ), then φ(x) = (p -q)/k. In particular, φ(c) = 1.

Proof. Note that g(c p ) = g(x k c q ) implies r = (p -q)/k ∉ S x . Moreover, by Claim 7 it follows that if

r ′ = (p ′ -q)/k > r (resp. r ′ < r), then g(c p ′ ) > g(c p ) = g(x k c q ) (resp. g(c p ′ ) < g(c p ) = g(x k c q ))
, and hence r ′ ∈ S x (resp. r ′ / ∈ S x ). Thus inf S x = (p -q)/k by Claim 5. For the last claim just note that g(c q+1 ) = g(c c q ). Claim 9. We have φ(g(x

1 ⋯x n )) = ∑ n i=1 φ(x i ) for every x 1 , . . . , x n ∈ I. Proof. Let r i = (p i -q)/k > φ(x i ) for all i ∈ [n]. Then g(c pi ) > g(x k i c q )
, and by Proposition 2.5(iv), Claim 1, and symmetry, we have

g(c ∑ n i=1 pi ) = g(g(c p1 )⋯g(c pn )) > g(g(x k 1 c q )⋯g(x k n c q )) = g(g(x 1 ⋯x n ) k c nq ). By Claim 8, (∑ n i=1 p i -nq)/k ∈ S g(x1⋯xn) . Thus ∑ n i=1 r i > φ(g(x 1 ⋯x n )). Similarly, if r i ⩽ φ(x i ) for all i ∈ [n], then ∑ n i=1 r i ⩽ φ(g(x 1 ⋯x n )).
The result then follows from Claim 5.

Claim 10. φ is nondecreasing.

Proof. Suppose y > x and (p -q)/k ∈ S y . Then g(c p ) > g(y k c q ) > g(x k c q ) and hence S y ⊆ S x and so φ(y) = inf S y ⩾ inf S x = φ(x).

Claim 11. φ is continuous.

Proof. Since φ is nondecreasing, the only possible sort of discontinuity is a gap discontinuity. Hence, if φ is discontinuous, there must exist x, y ∈ I, say x < y, and an interval, and thus a rational r ∉ φ(I), such that φ(x) < r < φ(y). Now if r = (p -q)/k, then g(x k c q ) < g(c p ) ⩽ g(y k c q ). By continuity of g k+q , there is t ∈ ]x, y] such that g(c p ) = g(t k c q ). By Claim 8 it then follows that φ(t) = r, which yields the desired contradiction.

Claim 12. φ is strictly increasing.

Proof. For the sake of contradiction, suppose that there are x, y ∈ I such that x < y and φ(x) = φ(y) = a. Since φ is nondecreasing, there is an interval I ′ containing x and y, and such that φ(z) = a, for all z ∈ I ′ . Let I ′ be the largest interval having this property, and set t = sup I ′ . If t ∉ I, then for every z > x, φ(z) = a. Now g(x c n-1 ) > x (by Claim 3) and hence a = φ(g(x c n-1 )) = a + (n -1) > a (by Claim 9), a contradiction. Thus t ∈ I, and φ(t) = a by Claim 11. We have g(x t n-1 ) < g(t n ) and, by Claim 3, there exists q such that q + 1 ∈ A n and g(t n ) < g(x c q(n-1) ) = g(x g(c q ) n-1 ) and g(c q ) > t. By continuity of g n , there is z ∈ I such that t < z < g(c q ) (and so z ∉ I ′ ) and g(x z n-1 ) = g(t n ). Thus a + (n -1) φ(z) = φ(x) + (n -1) φ(z) = φ(g(x z n-1 )) = φ(g(t n )) = n φ(t) = n a , and we obtain φ(z) = a, so z ∈ I ′ , a contradiction.

Thus φ is a continuous strictly increasing n-ary semigroup homomorphism and, by Claim 9, its range J is a connected real additive n-ary semigroup. Hence the only possibilities for J are ]-∞, b[, ]-∞, b], ]a, ∞[, [a, ∞[ or ]-∞, ∞[ (b ⩽ 0 ⩽ a); see final comments in [START_REF] Craigen | The associativity equation revisited[END_REF]. This completes the proof of the Main Theorem.

Remark 3. The function φ is determined up to a multiplicative constant, that is, with φ all functions ψ = r φ (r ≠ 0) belong to the same function f , and only these; see the "Uniqueness" section in [START_REF] Aczél | The associativity equation re-revisited[END_REF]. Remark 4. An n-ary semigroup (I, f ) is said to be reducible to (or derived from) a binary semigroup (I, ◇) if there is an associative extension g∶ I * → I of ◇ such that g n = f ; that is, f (x 1 ⋯x n ) = x 1 ◇ ⋯ ◇ x n (see [START_REF] Dörnte | Untersuchengen über einen verallgemeinerten Gruppenbegriff[END_REF][START_REF] Post | Polyadic groups[END_REF]). Dudek and Mukhin [START_REF] Dudek | On n-ary semigroups with adjoint neutral element[END_REF] showed that an n-ary semigroup is reducible if and only if we can adjoint an n-ary neutral element to it. This shows that the n-ary semigroup given in Example 1.1 is not reducible since we cannot adjoint any n-ary neutral element (for an alternative proof, see [START_REF] Marichal | A description of n-ary semigroups polynomial-derived from integral domains[END_REF]). However, the Main Theorem shows that every Aczélian n-ary semigroup is reducible and hence we can always adjoint an n-ary neutral element to it (if 0 ∈ J, then the neutral element is e = φ -1 (0); otherwise fix e ∉ I and extend φ to φ ′ ∶ I ∪ {e} → J ∪ {0} by the rule φ ′ (x) = φ(x) if x ∈ I and φ ′ (e) = 0).

Proposition 2 . 5 .

 25 Let g∶ I (n) → I be a function. The following assertions are equivalent.

Note that g 1 necessarily solves the idempotency equation g 1 ○ g 1 = g 1 .

This construction is inspired from Dörnte[START_REF] Dörnte | Untersuchengen über einen verallgemeinerten Gruppenbegriff[END_REF] and Post[START_REF] Post | Polyadic groups[END_REF].
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