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DISCRETE INTEGRALS BASED ON COMONOTONIC

MODULARITY

MIGUEL COUCEIRO AND JEAN-LUC MARICHAL

Abstract. It is known that several discrete integrals, including the Choquet
and Sugeno integrals as well as some of their generalizations, are comonotoni-

cally modular functions. Based on a recent description of the class of comono-
tonically modular functions, we axiomatically identify more general families of
discrete integrals that are comonotonically modular, including signed Choquet

integrals and symmetric signed Choquet integrals as well as natural extensions
of Sugeno integrals.

1. Introduction

Aggregation functions arise wherever merging information is needed: applied and
pure mathematics (probability, statistics, decision theory, functional equations),
operations research, computer science, and many applied fields (economics and
finance, pattern recognition and image processing, data fusion, etc.). For recent
references, see Beliakov et al. [1] and Grabisch et al. [12].

Discrete Choquet integrals and discrete Sugeno integrals are among the best
known functions in aggregation theory, mainly because of their many applications,
for instance, in decision making (see the edited book [13]). More generally, signed
Choquet integrals, which need not be nondecreasing in their arguments, and the
Lovász extensions of pseudo-Boolean functions, which need not vanish at the origin,
are natural extensions of the Choquet integrals and have been thoroughly investi-
gated in aggregation theory. For recent references, see, e.g., [3, 8].

The class of n-variable Choquet integrals has been axiomatized independently
by means of two noteworthy aggregation properties, namely comonotonic additivity
(see, e.g., [11]) and horizontal min-additivity (originally called “horizontal additiv-
ity”, see [2]). Function classes characterized by these properties have been recently
described by the authors [8]. Quasi-Lovász extensions, which generalize signed Cho-
quet integrals and Lovász extensions by transforming the arguments by a 1-variable
function, have also been recently investigated by the authors [9] through natural
aggregation properties.

Lattice polynomial functions and quasi-Sugeno integrals generalize the notion
of Sugeno integral [4–7, 10]: the former by removing the idempotency requirement
and the latter also by transforming arguments by a 1-variable function. Likewise,
these functions have been axiomatized by means of well-known properties such as
comonotonic maxitivity and comonotonic minitivity.
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All of these classes share the feature that its members are comonotonically mod-
ular. These facts motivated a recent study that led to a description of comonoton-
ically modular functions [9]. In this paper we survey these and other results and
present a somewhat typological study of the vast class of comonotonically modular
functions, where we identify several families of discrete integrals within this class
using variants of homogeneity as distinguishing feature.

The paper is organized as follows. In Section 2 we recall basic notions and
terminology related to the concept of signed Choquet integral and present some
preliminary characterization results. In Section 3 we survey several results that
culminate in a description of comonotonic modularity and establish connections to
other well studied properties of aggregation functions. These results are then used in
Section 4 to provide characterizations of the various classes of functions considered
in the previous sections as well as of classes of functions extending Sugeno integrals.

We employ the following notation throughout the paper. The set of permutations
on X = {1, . . . , n} is denoted by SX . For every σ ∈SX , we define

Rn
σ = {x = (x1, . . . , xn) ∈ Rn ∶ xσ(1) ⩽ ⋯ ⩽ xσ(n)}.

Let R+ = [0,+∞[ and R− = ]−∞,0]. We let I denote a nontrivial (i.e., of positive
Lebesgue measure) real interval, possibly unbounded. We also introduce the nota-
tion I+ = I ∩ R+, I− = I ∩ R−, and Inσ = In ∩ Rn

σ. For every S ⊆ X, the symbol 1S

denotes the n-tuple whose ith component is 1, if i ∈ S, and 0, otherwise. Let also
1 = 1X and 0 = 1∅. The symbols ∧ and ∨ denote the minimum and maximum func-
tions, respectively. For every x ∈ Rn, let x+ be the n-tuple whose ith component is
xi ∨ 0 and let x− = (−x)+. For every permutation σ ∈ SX and every i ∈ X, we set
S↑σ(i) = {σ(i), . . . , σ(n)}, S↓σ(i) = {σ(1), . . . , σ(i)}, and S↑σ(n + 1) = S↓σ(0) = ∅.

2. Signed Choquet integrals

In this section we recall the concepts of Choquet integral, signed Choquet inte-
gral, and symmetric signed Choquet integral. We also recall some axiomatizations
of these function classes. For general background, see [3, 8, 9]

A capacity on X = {1, . . . , n} is a set function µ∶2X → R such that µ(∅) = 0 and
µ(S) ⩽ µ(T ) whenever S ⊆ T .

Definition 1. The Choquet integral with respect to a capacity µ on X is the
function Cµ∶Rn

+ → R defined as

Cµ(x) =
n

∑
i=1

xσ(i) (µ(S↑σ(i)) − µ(S↑σ(i + 1))) , x ∈ (Rn
+)σ, σ ∈SX .

The concept of Choquet integral can be formally extended to more general set
functions and n-tuples of Rn as follows. A signed capacity on X is a set function
v∶2X → R such that v(∅) = 0.

Definition 2. The signed Choquet integral with respect to a signed capacity v on
X is the function Cv ∶Rn → R defined as

(1) Cv(x) =
n

∑
i=1

xσ(i) (v(S↑σ(i)) − v(S↑σ(i + 1))) , x ∈ Rn
σ, σ ∈SX .
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From (1) it follows that Cv(1S) = v(S) for every S ⊆ X. Thus Eq. (1) can be
rewritten as

(2) Cv(x) =
n

∑
i=1

xσ(i) (Cv(1S↑σ(i)) −Cv(1S↑σ(i+1))) , x ∈ Rn
σ, σ ∈SX .

Thus defined, the signed Choquet integral with respect to a signed capacity v
on X is the continuous function Cv whose restriction to each region Rn

σ (σ ∈SX) is
the unique linear function that coincides with v (or equivalently, the corresponding
pseudo-Boolean function v∶{0,1}n → R) at the n+1 vertices of the standard simplex
[0,1]n ∩Rn

σ of the unit cube [0,1]n. As such, Cv is called the Lovász extension of
v.

From this observation we immediately derive the following axiomatization of
the class of n-variable signed Choquet integrals over a real interval I. A function
f ∶ In → R is said to be a signed Choquet integral if it is the restriction to In of a
signed Choquet integral.

Theorem 3 ( [3]). Assume that 0 ∈ I. A function f ∶ In → R satisfying f(0) = 0 is
a signed Choquet integral if and only if

f(λx + (1 − λ)x′) = λf(x) + (1 − λ) f(x′), λ ∈ [0,1], x,x′ ∈ Inσ , σ ∈SX .

The next theorem provides an axiomatization of the class of n-variable signed
Choquet integrals based on comonotonic additivity, horizontal min-additivity, and
horizontal max-additivity. Recall that two n-tuples x,x′ ∈ In are said to be comono-
tonic if there exists σ ∈ SX such that x,x′ ∈ Inσ . A function f ∶ In → R is said to
be comonotonically additive if, for every comonotonic n-tuples x,x′ ∈ In such that
x + x′ ∈ In, we have

f(x + x′) = f(x) + f(x′).
A function f ∶ In → R is said to be horizontally min-additive (resp. horizontally
max-additive) if, for every x ∈ In and every c ∈ I such that x − x ∧ c ∈ In (resp.
x − x ∨ c ∈ In), we have

f(x) = f(x ∧ c) + f(x − x ∧ c) (resp. f(x) = f(x ∨ c) + f(x − x ∨ c)).

Theorem 4 ( [8]). Assume [0,1] ⊆ I ⊆ R+ or I = R. Then a function f ∶ In → R is
a signed Choquet integral if and only if the following conditions hold:

(i) f is comonotonically additive or horizontally min-additive (or horizontally
max-additive if I = R).

(ii) f(cx1S) = c f(x1S) for all x ∈ I and c > 0 such that cx ∈ I and all S ⊆X.

Remark 1. It is easy to see that condition (ii) of Theorem 4 is equivalent to the
following simpler condition: f(x1S) = sign(x)xf(sign(x)1S) for all x ∈ I and
S ⊆X.

We now recall the concept of symmetric signed Choquet integral. Here “sym-
metric” does not refer to invariance under a permutation of variables but rather
to the role of the origin of Rn as a symmetry center with respect to the function
values.

Definition 5. Let v be a signed capacity on X. The symmetric signed Choquet
integral with respect to v is the function Čv ∶Rn → R defined as

(3) Čv(x) = Cv(x+) −Cv(x−), x ∈ Rn.
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Thus defined, a symmetric signed Choquet integral is an odd function in the
sense that Čv(−x) = −Čv(x). It is then not difficult to show that the restriction of
Čv to Rn

σ is the function

Čv(x) =
p

∑
i=1

xσ(i) (Cv(1S↓σ(i)) −Cv(1S↓σ(i−1)))

+
n

∑
i=p+1

xσ(i) (Cv(1S↑σ(i)) −Cv(1S↑σ(i+1))), x ∈ Rn
σ,(4)

where the integer p ∈ {0, . . . , n} is given by the condition xσ(p) < 0 ⩽ xσ(p+1), with
the convention that xσ(0) = −∞ and xσ(n+1) = +∞.

The following theorem provides an axiomatization of the class of n-variable sym-
metric signed Choquet integrals based on horizontal median-additive additivity.
Assuming that I is centered at 0, recall that a function f ∶ In → R is said to be
horizontally median-additive if, for every x ∈ In and every c ∈ I+, we have

(5) f(x) = f(med(−c,x, c)) + f(x − x ∧ c) + f(x − x ∨ (−c)),

where med(−c,x, c) is the n-tuple whose ith component is the middle value of
{−c, xi, c}. Equivalently, a function f ∶ In → R is horizontally median-additive if
and only if its restrictions to In+ and In− are comonotonically additive and

f(x) = f(x+) + f(−x−), x ∈ In.
A function f ∶ In → R is said to be a symmetric signed Choquet integral if it is

the restriction to In of a symmetric signed Choquet integral.

Theorem 6 ( [8]). Assume that I is centered at 0 with [−1,1] ⊆ I. Then a func-
tion f ∶ In → R is a symmetric signed Choquet integral if and only if the following
conditions hold:

(i) f is horizontally median-additive.
(ii) f(cx1S) = c f(x1S) for all c, x ∈ I such that cx ∈ I and all S ⊆X.

Remark 2. It is easy to see that condition (ii) of Theorem 6 is equivalent to the
following simpler condition: f(x1S) = xf(1S) for all x ∈ I and S ⊆X.

We end this section by recalling the following important formula. For every
signed capacity v on X, we have

(6) Cv(x) = Cv(x+) −Cvd(x−), x ∈ Rn,

where vd is the capacity on X, called the dual capacity of v, defined as vd(S) =
v(X) − v(X ∖ S).

3. Comonotonic modularity

Recall that a function f ∶ In → R is said to be modular (or a valuation) if

(7) f(x) + f(x′) = f(x ∧ x′) + f(x ∨ x′)
for every x,x′ ∈ In, where ∧ and ∨ are considered componentwise. It was proved [16]
that a function f ∶ In → R is modular if and only if it is separable, that is, there
exist n functions fi∶ I → R (i = 1, . . . , n) such that f = ∑n

i=1 fi. In particular, any
1-variable function f ∶ I → R is modular.

More generally, a function f ∶ In → R is said to be comonotonically modular (or
a comonotonic valuation) if (7) holds for every comonotonic n-tuples x,x′ ∈ In;
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see [9, 15]. It was shown [9] that a function f ∶ In → R is comonotonically modular
if and only if it is comonotonically separable, that is, for every σ ∈ SX , there exist
functions fσ

i ∶ I → R (i = 1, . . . , n) such that

f(x) =
n

∑
i=1

fσ
i (xσ(i)) =

n

∑
i=1

fσ
σ−1(i)(xi), x ∈ Inσ .

We also have the following important definitions. For every x ∈ Rn and every
c ∈ R+ (resp. c ∈ R−) we denote by [x]c (resp. [x]c) the n-tuple whose ith component
is 0, if xi ⩽ c (resp. xi ⩾ c), and xi, otherwise. Recall that a function f ∶ In → R,
where 0 ∈ I ⊆ R+, is invariant under horizontal min-differences if, for every x ∈ In
and every c ∈ I, we have

(8) f(x) − f(x ∧ c) = f([x]c) − f([x]c ∧ c).
Dually, a function f ∶ In → R, where 0 ∈ I ⊆ R−, is invariant under horizontal max-
differences if, for every x ∈ In and every c ∈ I, we have

(9) f(x) − f(x ∨ c) = f([x]c) − f([x]c ∨ c).
The following theorem provides a description of the class of functions which are

comonotonically modular.

Theorem 7 ( [9]). Assume that I ∋ 0. For any function f ∶ In → R, the following
assertions are equivalent.

(i) f is comonotonically modular.
(ii) f ∣In

+ is comonotonically modular (or invariant under horizontal min-differences),
f ∣In

− is comonotonically modular (or invariant under horizontal max-differences),
and we have f(x) + f(0) = f(x+) + f(−x−) for every x ∈ In.

(iii) There exist g∶ In+ → R and h∶ In− → R such that, for every σ ∈ SX and every
x ∈ Inσ ,

f(x) = f(0)+
p

∑
i=1
(h(xσ(i)1S↓σ(i))−h(xσ(i)1S↓σ(i−1)))+

n

∑
i=p+1

(g(xσ(i)1S↑σ(i))−g(xσ(i)1S↑σ(i+1))),

where p ∈ {0, . . . , n} is such that xσ(p) < 0 ⩽ xσ(p+1), with the convention
that xσ(0) = −∞ and xσ(n+1) = +∞. In this case, we can choose g = f ∣In

+

and h = f ∣In
− .

We finish this section with remarks on some properties subsumed by comono-
tonic modularity, namely the following relaxations of maxitivity and minitivity
properties.

Recall that a function f ∶ In → R is said to be maxitive if

(10) f(x ∨ x′) = f(x) ∨ f(x′), x,x′ ∈ In,
and it is said to be minitive if

(11) f(x ∧ x′) = f(x) ∧ f(x′), x,x′ ∈ In.
As in the case of modularity, maxitivity and minitivity give rise to noteworthy
decompositions of functions into maxima and minima, respectively, of 1-variable
functions.

In the context of Sugeno integrals (see Section 4), de Campos et al. [11] proposed
the following comonotonic variants of these properties. A function f ∶ In → R is said
to be comonotonic maxitive (resp. comonotonic minitive) if (10) (resp. (11)) holds
for any two comonotonic n-tuples x,x′ ∈ In. It was shown in [7] that any of these
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properties implies nondecreasing monotonicity, and it is not difficult to observe that
comonotonic maxitivity together with comonotonic minitivity imply comonotonic
modularity; the converse is not true (e.g., the arithmetic mean).

Explicit descriptions of each one of these properties was given in [4] for functions
over bounded chains. For the sake of self-containment, we present these descriptions
here. To this end, we now assume that I = [a, b] ⊆ R, and for each S ⊆X, we denote
by eS the n-tuple in {a, b}n whose i-th component is b if i ∈ S, and a otherwise.

Theorem 8 ( [4]). Assume I = [a, b] ⊆ R. A function f ∶ In → R is comonotonic
maxitive (resp. comonotonic minitive) if and only if there exists a nondecreasing
function g∶ In → R such that

f(x) = ⋁
S⊆X

g(eS ∧⋀
i∈S

xi) (resp. f(x) = ⋀
S⊆X

g(eX∖S ∨⋁
i∈S

xi)).

In this case, we can choose g = f .

These descriptions are further refined in the following corollary.

Corollary 9. Assume I = [a, b] ⊆ R. For any function f ∶ In → R, the following
assertions are equivalent.

(i) f is comonotonic maxitive (resp. comonotonic minitive).
(ii) there are unary nondecreasing functions φS ∶ I → R (S ⊆X) such that

f(x) = ⋁
S⊆X

φS(⋀
i∈S

xi) (resp. f(x) = ⋀
S⊆X

φS(⋁
i∈S

xi)).

In this case, we can choose φS(x) = f(eS ∧ x) (resp. φS(x) = f(eX∖S ∨ x))
for every S ⊆X.

(iii) for every σ ∈SX , there are nondecreasing functions fσ
i ∶ I → R (i = 1, . . . , n)

such that, for every x ∈ Inσ ,

f(x) = ⋁
i∈X

fσ
i (xσ(i)) (resp. f(x) = ⋀

i∈X
fσ
i (xσ(i))).

In this case, we can choose fσ
i (x) = f(eS↑σ(i)∧x) (resp. f

σ
i (x) = f(eS↓σ(i−1)∨

x)).

Remark 3. (i) Note that the expressions provided in Theorem 8 and Corollary
9 greatly differ from the additive form given in Theorem 7.

(ii) An alternative description of comonotonic maxitive (resp. comonotonic
minitive) functions was obtained in Grabisch et al. [12, Ch. 2].

4. Classes of comonotonically modular integrals

In this section we present axiomatizations of classes of functions that naturally
generalize Choquet integrals (e.g., signed Choquet integrals and symmetric signed
Choquet integrals) by means of comonotonic modularity and variants of homogene-
ity. From the analysis of the more stringent properties of comonotonic minitivity
and comonotonic maxitivity, we also present axiomatizations of classes of functions
generalizing Sugeno integrals.
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4.1. Comonotonically modular integrals generalizing Choquet integrals.
The following theorem provides an axiomatization of the class of n-variable signed
Choquet integrals.

Theorem 10. Assume [0,1] ⊆ I ⊆ R+ or [−1,1] ⊆ I. Then a function f ∶ In → R is
a signed Choquet integral if and only if the following conditions hold:

(i) f is comonotonically modular.
(ii) f(0) = 0 and f(x1S) = sign(x)xf(sign(x)1S) for all x ∈ I and S ⊆X.
(iii) If [−1,1] ⊆ I, then f(1X∖S) = f(1) + f(−1S) for all S ⊆X.

Proof. (Necessity) Assume that f is a signed Choquet integral, f = Cv. Then
condition (ii) is satisfied in view of Theorem 4 and Remark 1. If [−1,1] ⊆ I, then
by (6) we have

Cv(−1S) = −Cvd(1S) = Cv(1X∖S) −Cv(1),

which shows that condition (iii) is satisfied. Let us now show that condition (i) is
also satisfied. For every σ ∈ SX and every x ∈ Rn

σ, setting p ∈ {0, . . . , n} such that
xσ(p) < 0 ⩽ xσ(p+1), by (2) and conditions (iii) and (ii), we have

Cv(x) =
n

∑
i=1

xσ(i) (Cv(1S↑σ(i)) −Cv(1S↑σ(i+1)))

=
p

∑
i=1

xσ(i) (Cv(−1S↓σ(i−1)) −Cv(−1S↓σ(i))) +
n

∑
i=p+1

xσ(i) (Cv(1S↑σ(i)) −Cv(1S↑σ(i+1)))

=
p

∑
i=1
(Cv(xσ(i) 1S↓σ(i)) −Cv(xσ(i) 1S↓σ(i−1))) +

n

∑
i=p+1

(Cv(xσ(i) 1S↑σ(i)) −Cv(xσ(i) 1S↑σ(i+1)))

which shows that condition (iii) of Theorem 7 is satisfied. Hence Cv is comonoton-
ically modular.

(Sufficiency) Assume that f satisfies conditions (i)–(iii). By condition (iii) of
Theorem 7 and conditions (ii) and (iii), for every σ ∈SX and every x ∈ Rn

σ we have

f(x) =
p

∑
i=1
(f(xσ(i)1S↓σ(i)) − f(xσ(i)1S↓σ(i−1))) +

n

∑
i=p+1

(f(xσ(i)1S↑σ(i)) − f(xσ(i)1S↑σ(i+1)))

=
p

∑
i=1

xσ(i) (f(−1S↓σ(i−1)) − f(−1S↓σ(i))) +
n

∑
i=p+1

xσ(i) (f(1S↑σ(i)) − f(1S↑σ(i+1)))

=
n

∑
i=1

xσ(i) (f(1S↑σ(i)) − f(1S↑σ(i+1)))

which, combined with (2), shows that f is a signed Choquet integral. �

Remark 4. Condition (iii) of Theorem 10 is necessary. Indeed, the function f(x) =
Cv(x+) satisfies conditions (i) and (ii) but fails to satisfy condition (iii).

Theorem 11. Assume I is centered at 0 with [−1,1] ⊆ I. Then a function f ∶ In → R
is a symmetric signed Choquet integral if and only if the following conditions hold:

(i) f is comonotonically modular.
(ii) f(x1S) = xf(1S) for all x ∈ I and S ⊆X.

Proof. (Necessity) Assume that f is a symmetric signed Choquet integral, f = Čv.
Then condition (ii) is satisfied in view of Theorem 6 and Remark 2. Let us now
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show that condition (i) is also satisfied. For every σ ∈SX and every x ∈ Rn
σ, setting

p ∈ {0, . . . , n} such that xσ(p) < 0 ⩽ xσ(p+1), by (4) and condition (ii), we have

Cv(x) =
p

∑
i=1

xσ(i) (Cv(1S↓σ(i)) −Cv(1S↓σ(i−1))) +
n

∑
i=p+1

xσ(i) (Cv(1S↑σ(i)) −Cv(1S↑σ(i+1)))

=
p

∑
i=1
(Cv(xσ(i) 1S↓σ(i)) −Cv(xσ(i) 1S↓σ(i−1))) +

n

∑
i=p+1

(Cv(xσ(i) 1S↑σ(i)) −Cv(xσ(i) 1S↑σ(i+1)))

which shows that condition (iii) of Theorem 7 is satisfied. Hence Cv is comonoton-
ically modular.

(Sufficiency) Assume that f satisfies conditions (i) and (ii). By condition (iii) of
Theorem 7 and condition (ii), for every σ ∈SX and every x ∈ Rn

σ we have

f(x) =
p

∑
i=1
(f(xσ(i)1S↓σ(i)) − f(xσ(i)1S↓σ(i−1))) +

n

∑
i=p+1

(f(xσ(i)1S↑σ(i)) − f(xσ(i)1S↑σ(i+1)))

=
p

∑
i=1

xσ(i) (f(1S↓σ(i)) − f(1S↓σ(i−1))) +
n

∑
i=p+1

xσ(i) (f(1S↑σ(i)) − f(1S↑σ(i+1)))

which, combined with (4), shows that f is a symmetric signed Choquet integral. �

The authors [9] showed that comonotonically modular functions also include the
class of signed quasi-Choquet integrals on intervals of the forms I+ and I− and the
class of symmetric signed quasi-Choquet integrals on intervals I centered at the
origin.

Definition 12. Assume I ∋ 0 and let v be a signed capacity on X. A signed
quasi-Choquet integral with respect to v is a function f ∶ In → R defined as f(x) =
Cv(φ(x1), . . . , φ(xn)), where φ∶ I → R is a nondecreasing function satisfying φ(0) =
0.

We now recall axiomatizations of the class of n-variable signed quasi-Choquet
integrals on I+ and I− by means of comonotonic modularity and variants of homo-
geneity.

Theorem 13 ( [9]). Assume [0,1] ⊆ I ⊆ R+ (resp. [−1,0] ⊆ I ⊆ R−) and let f ∶ In →
R be a nonconstant function such that f(0) = 0. Then the following assertions are
equivalent.

(i) f is a signed quasi-Choquet integral and there exists S ⊆ X such that
f(1S) ≠ 0 (resp. f(−1S) ≠ 0).

(ii) f ∣In
+ is comonotonically modular (or invariant under horizontal min-differences),

f ∣In
− is comonotonically modular (or invariant under horizontal max-differences),

and there exists a nondecreasing function φ∶ I → R satisfying φ(0) = 0 such
that f(x1S) = sign(x)φ(x) f(sign(x)1S) for every x ∈ I and every S ⊆X.

Remark 5. If I = [0,1] (resp. I = [−1,0]), then the “nonconstant” assumption and
the second condition in assertion (i) of Theorem 13 can be dropped off.

The extension of Theorem 13 to functions on intervals I centered at 0 and con-
taining [−1,1] remains an interesting open problem.

We now recall the axiomatization obtained by the authors of the class of n-
variable symmetric signed quasi-Choquet integrals.
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Definition 14. Assume I is centered at 0 and let v be a signed capacity on X. A
symmetric signed quasi-Choquet integral with respect to v is a function f ∶ In → R
defined as f(x) = Čv(φ(x1), . . . , φ(xn)), where φ∶ I → R is a nondecreasing odd
function.

Theorem 15 ( [9]). Assume that I is centered at 0 with [−1,1] ⊆ I and let f ∶ In → R
be a function such that f ∣In

+ or f ∣In
− is nonconstant and f(0) = 0. Then the following

assertions are equivalent.

(i) f is a symmetric signed quasi-Choquet integral and there exists S ⊆X such
that f(1S) ≠ 0.

(ii) f is comonotonically modular and there exists a nondecreasing odd function
φ∶ I → R such that f(x1S) = φ(x) f(1S) for every x ∈ I and every S ⊆X.

Remark 6. If I = [−1,1], then the “nonconstant” assumption and the second con-
dition in assertion (i) of Theorem 15 can be dropped off.

4.2. Comonotonically modular integrals generalizing Sugeno integrals. In
this subsection we consider natural extensions of the n-variable Sugeno integrals on
a bounded real interval I = [a, b]. By an I-valued capacity on X we mean an order
preserving mapping µ∶2X → I such that µ(∅) = a and µ(X) = b.

Definition 16. Assume that I = [a, b]. The Sugeno integral with respect to an
I-valued capacity µ on X is the function Sµ∶ In → I defined as

Sµ(x) = ⋁
i∈X

xσ(i) ∧ µ(S↑σ(i)), x ∈ Inσ , σ ∈SX .

As the following proposition suggests, Sugeno integrals can be viewed as idem-
potent “lattice polynomial functions” (see [14]).

Proposition 17. Assume that I = [a, b]. A function f ∶ In → I is a Sugeno integral
if and only if f(e∅) = a, f(eX) = b, and for every x ∈ In

f(x) = ⋁
S⊆X

f(eS) ∧⋀
i∈S

xi .

As mentioned, the properties of comonotonic maxitivity and comonotonic mini-
tivity were introduced by de Campos et al. in [11] to axiomatize the class of Sugeno
integrals. However, without further assumptions, they define a wider class of func-
tions that we now define.

Definition 18. Assume that I = [a, b] and J = [c, d] are real intervals and let
µ be an I-valued capacity on X. A quasi-Sugeno integral with respect to µ is a
function f ∶Jn → I defined by f(x) = Sµ(φ(x1), . . . , φ(xn)), where φ∶J → I is a
nondecreasing function.

Using Proposition 11 and Corollary 17 in [5], we obtain the following axiomati-
zation of the class of quasi-Sugeno integrals.

Theorem 19. Let I = [a, b] and J = [c, d] be real intervals and consider a function
f ∶Jn → I. The following assertions are equivalent.

(i) f is a quasi-Sugeno integral.
(ii) f is comonotonically maxitive and comonotonically minitive.
(iii) f is nondecreasing, and there exists a nondecreasing function φ∶J → I such

that for every x ∈ Jn and r ∈ J , we have

(12) f(r ∨ x) = φ(r) ∨ f(x) and f(r ∧ x) = φ(r) ∧ f(x),
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where r ∨x (resp. r ∧x) is the n-tuple whose ith component is r ∨ xi (resp.
r ∧ xi). In this case, φ can be chosen as φ(x) = f(x, . . . , x).

Remark 7. The two conditions given in (12) are referred to in [5] as quasi-max
homogeneity and quasi-min homogeneity, respectively.

As observed at the end of the previous section, condition (ii) (and hence (i)
or (iii)) of Theorem 19 implies comonotonic modularity. As the following result
shows, the converse is true whenever f is nondecreasing and verifies any of the
following weaker variants of quasi-max homogeneity and quasi-min homogeneity:

f(x ∨ eS) = f(x, . . . , x) ∨ f(eS), x ∈ J, S ⊆X,(13)

f(x ∧ eS) = f(x, . . . , x) ∧ f(eS), x ∈ J, S ⊆X.(14)

Theorem 20. Let I = [a, b] and J = [c, d] be real intervals and consider a function
f ∶Jn → I. The following conditions are equivalent.

(i) f is a quasi-Sugeno integral, f(x) = Sµ(φ(x1), . . . , φ(xn)), where φ(x) =
f(x, . . . , x).

(ii) f is a quasi-Sugeno integral.
(iii) f is comonotonically modular, nondecreasing, and satisfies (13) or (14).
(iv) f is nondecreasing and satisfies (13) and (14).

Proof. (i)⇒ (ii) Trivial.
(ii)⇒ (iii) Follows from Theorem 19.
(iii)⇒ (iv) Suppose that f is comonotonically modular and satisfies (13). Then,

f(x ∧ eS) = f(x, . . . , x) + f(eS) − f(x ∨ eS)
= f(x, . . . , x) + f(eS) − f(x, . . . , x) ∨ f(eS) = f(x, . . . , x) ∧ f(eS).

Hence f satisfies (14). The other case can be dealt with dually.
(iv)⇒ (i) Define φ(x) = f(x, . . . , x). By nondecreasing monotonicity and (14),

for every S ⊆X we have

f(x) ⩾ f(eS ∧⋀
i∈S

xi) = f(eS) ∧ φ(⋀
i∈S

xi) = f(eS) ∧⋀
i∈S

φ(xi)

and thus f(x) ⩾ ⋁S⊆X f(eS) ∧⋀i∈S φ(xi). To complete the proof, it is enough to
establish the converse inequality. Let S∗ ⊆ X be such that f(eS∗) ∧⋀i∈S∗ φ(xi) is
maximum. Define

T = {j ∈X ∶ φ(xj) ⩽ f(eS∗) ∧ ⋀
i∈S∗

φ(xi)}.

We claim that T ≠ ∅. Suppose this is not true, that is, φ(xj) > f(eS∗)∧⋀i∈S∗ φ(xi)
for every j ∈ X. Then, by nondecreasing monotonicity, we have f(eX) ⩾ f(eS∗),
and since f(eX) ⩾ ⋀i∈X φ(xi),

f(eX) ∧ ⋀
i∈X

φ(xi) > f(eS∗) ∧ ⋀
i∈S∗

φ(xi)

which contradicts the definition of S∗. Thus T ≠ ∅.
Now, by nondecreasing monotonicity and (13) we have

f(x) ⩽ f(eX∖T∨⋁
j∈T

xj) = f(eX∖T )∨φ( ⋁
j∈T

xj) = f(eX∖T )∨⋁
j∈T

φ(xj) = f(eX∖T ).

Indeed, we have φ(xj) ⩽ f(x) for every j ∈ T and x ⩽ eX∖T ∨⋁j∈T xj .
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Note that f(eX∖T ) ⩽ f(eS∗)∧⋀i∈S∗ φ(xi) since otherwise, by definition of T , we
would have

f(eX∖T ) ∧ ⋀
i∈X∖T

φ(xi) > f(eS∗) ∧ ⋀
i∈S∗

φ(xi),

again contradicting the definition of S∗. Finally,

f(x) ⩽ f(eS∗) ∧ ⋀
i∈S∗

φ(xi) = ⋁
S⊆X

f(eS) ∧⋀
i∈S

φ(xi),

and the proof is thus complete. �

Remark 8. An axiomatization of the class of Sugeno integrals based on comonotonic
modularity can be obtained from Theorems 19 and 20 by adding the idempotency
property.

5. Conclusion

In this paper we analyzed comonotonic modularity as a feature common to many
well-known discrete integrals. In doing so, we established its relation to many
other noteworthy aggregation properties such as comonotonic relaxations of addi-
tivity, maxitivity and minitivity. In fact, the latter become equivalent in presence
of comonotonic modularity. As a by-product we immediately see that, e.g., the
so-called discrete Shilkret integral lies outside the class of comonotonic modular
functions since this integral is comonotonically maxitive but not comonotonically
minitive.

Albeit such an example, the class of comonotonically modular functions is rather
vast and includes several important extensions of the Choquet and Sugeno integrals.
The results presented in Section 4 seem to indicate that suitable variants of homo-
geneity suffice to distinguish and fully describe these extensions. This naturally
asks for an exhaustive study of homogeneity-like properties, which may lead to a
complete classification of all subclasses of comonotonically modular functions.

Another question that still eludes us is the relation between the additive forms
given by comonotonic modularity and the max-min forms. As shown in Theorem 20,
the latter are particular instances of the former; in fact, proof of Theorem 20 pro-
vides a procedure to construct max-min representations of comonotonically modu-
lar functions, whenever they exist. However, we were not able to present a direct
translation between the two. This remains as a relevant open question since its
answer will inevitably provide a better understanding of the synergy between these
intrinsically different normal forms.

Acknowledgments

This research is partly supported by the internal research project F1R-MTH-
PUL-12RDO2 of the University of Luxembourg.

References

[1] G. Beliakov, A. Pradera, and T. Calvo. Aggregation Functions: A Guide for Practitioners.
Studies in Fuziness and Soft Computing. Springer, Berlin, 2007.

[2] P. Benvenuti, R. Mesiar, and D. Vivona. Monotone set functions-based integrals. In Handbook
of measure theory, Vol. II, pages 1329–1379. North-Holland, Amsterdam, 2002.

[3] M. Cardin, M. Couceiro, S. Giove, and J.-L. Marichal. Axiomatizations of signed discrete

Choquet integrals. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems, 19(2):193–
199, 2011.



12 MIGUEL COUCEIRO AND JEAN-LUC MARICHAL

[4] M. Couceiro and J.-L. Marichal. Axiomatizations of quasi-polynomial functions on bounded

chains. Aeq. Math., 78(1-2):195–213, 2009.
[5] M. Couceiro and J.-L. Marichal. Quasi-polynomial functions over bounded distributive lat-

tices. Aeq. Math., 80(3):319–334, 2010.
[6] M. Couceiro and J.-L. Marichal. Characterizations of discrete Sugeno integrals as polynomial

functions over distributive lattices. Fuzzy Sets and Systems, 161(5):694–707, 2010.
[7] M. Couceiro and J.-L. Marichal. Representations and characterizations of polynomial func-

tions on chains. J. Mult.-Valued Logic Soft Comput., 16(1-2):65–86, 2010.
[8] M. Couceiro and J.-L. Marichal. Axiomatizations of Lovász extensions of pseudo-Boolean

functions. Fuzzy Sets and Systems, 181:28–38, 2011.
[9] M. Couceiro and J.-L. Marichal. Axiomatizations of quasi-Lovász extensions of pseudo-

Boolean functions. Aeq. Math., 82:213–231, 2011.
[10] M. Couceiro and J.-L. Marichal. Polynomial functions over bounded distributive lattices. J.

Mult.-Valued Logic Soft Comput., 18(3-4):247–256, 2012.
[11] L. M. de Campos and M. J. Bolaños. Characterization and comparison of Sugeno and Choquet

integrals. Fuzzy Sets and Systems, 52(1):61–67, 1992.
[12] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation functions. Encyclopedia of

Mathematics and its Applications 127. Cambridge University Press, Cambridge, UK, 2009.
[13] M. Grabisch, T. Murofushi, and M. Sugeno, editors. Fuzzy measures and integrals - Theory

and applications, volume 40 of Studies in Fuzziness and Soft Computing. Physica-Verlag,

Heidelberg, 2000.
[14] J.-L. Marichal. Weighted lattice polynomials. Discrete Mathematics, 309(4):814–820, 2009.
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