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PSEUDO-POLYNOMIAL FUNCTIONS OVER

FINITE DISTRIBUTIVE LATTICES

MIGUEL COUCEIRO AND TAMÁS WALDHAUSER

Abstract. In this paper we extend the authors previous works by considering a
multi-attribute aggregation model based on a composition of a polynomial func-

tion over a finite distributive lattice with local utility functions; these are referred
to as pseudo-polynomial functions. We present an axiomatization for this class of
pseudo-polynomial functions which differs from the previous ones both in flavour
and nature, and develop general tools which are then used to obtain all possible such

factorizations of a given pseudo-polynomial function.

1. Introduction and motivation

The Sugeno integral (introduced by Sugeno [17, 18]) remains as one of the most
noteworthy aggregation functions, and this is partially due to the fact that it provides a
meaningful way to fuse or merge values within universes where essentially no structure,
other than an order, is assumed. Even though primarily defined over real intervals,
the concept of Sugeno integral can be extended to wider domains, namely, distributive
lattices, via the notion of lattice polynomial function (i.e., a combination of variables
and constants using the lattice operations ∧ and ∨). As it turned out, idempotent lattice
polynomial functions coincide with (discrete) Sugeno integrals (see e.g. [5, 15]).

Recently, the Sugeno integral has been generalized via the notion of quasi-polynomial
function (see [3]) originally defined as a mapping f : Xn → X on a bounded chain X
and which can be factorized as

(1) f(x1, . . . , xn) = p(ϕ(x1), . . . , ϕ(xn)),

where p : Xn → X is a polynomial function and ϕ : X → X is an order-preserving map.
This notion was later extended in two ways.

In [4], the input and output universes were allowed to be arbitrary, possibly different,
bounded distributive lattices X and Y so that f : Xn → Y is factorizable as in (1), where
now p : Y n → Y and ϕ : X → Y . These functions appear naturally within the scope
of decision making under uncertainty since they subsume overall preference functionals
associated with Sugeno integrals whose variables are transformed by the utility function
ϕ. Several axiomatizations for this function class were proposed, as well as all possible
factorizations described.

In [6] and [7] a different extension was considered, now appearing within the realm of
multicriteria decision making. Essentially, the aggregation model was based on functions
f : X1 × · · · ×Xn → Y for bounded chains X1, . . . , Xn and Y , which can be factorized
as compositions

(2) f(x1, . . . , xn) = p(ϕ1(x1), . . . , ϕn(xn)),

where p : Y n → Y is a Sugeno integral, and each ϕk : Xk → Y is an order-preserving map.
Such functions were referred to as Sugeno utility functions in [6]. Pseudo-polynomial
functions were defined as functions of the form (2), where p is an arbitrary (possibly
non-idempotent) lattice polynomial function, and each ϕk satisfies a certain boundary
condition (which is weaker than order-preservation). Note that every quasi-polynomial
function (1) can be regarded as a pseudo-polynomial function, whereX1 = · · · = Xn = X
and ϕ1 = · · ·ϕn = ϕ. Moreover, pseudo-polynomial functions naturally subsume Sugeno
utility functions, and several axiomatizations were established for this function class in
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[6]. The question of factorizing a given Sugeno utility function into a composition (2)
was addressed in [7], where a method for producing such a factorization was presented.

In the current paper we extend the previous results by letting X1, . . . , Xn to be ar-
bitrary sets and Y to be an arbitrary finite distributive lattice, thus subsuming the
frameworks in [4, 6, 7]. Moreover, we develop general tools which allow us to produce
all possible factorizations of a given pseudo-polynomial function into compositions (2)
of a lattice polynomial function p : Y n → Y with maps ϕk : Xk → Y .

The structure of the paper is as follows. In Section 2 we introduce the basic notions
and terminology needed throughout the paper, and recall some preliminary results. For
further background on aggregation functions and their use in decision making, we re-
fer the reader to [2, 13]; for basics in the theory of lattices, see [10, 14]. In Section 3
we develop a general framework used to derive an axiomatization of pseudo-polynomial
functions of somewhat different nature than those proposed in [4, 6, 7], and which will
provide tools for determining all possible factorizations of given pseudo-polynomial func-
tions in Section 4. These results are then illustrated in Section 5 by means of a concrete
example, and in Section 6 we show how this new procedure can be applied to derive the
algorithm provided in [7, 8].

2. Preliminaries

Throughout this paper, Y is assumed to be a finite distributive lattice with meet and
join operations denoted by ∧ and ∨, respectively. Being finite, Y has a least element
and a greatest element, denoted by 0 and 1, respectively. By Birkhoff’s Representation
Theorem [1], Y can be embedded into P (U), the power set of a finite set U . Identifying
Y with its image under this embedding, we will consider Y as being a sublattice of P (U)
with 0 = ∅ and 1 = U . The complement of a set S ∈ P (U) will be denoted by S. Since
Y is closed under intersections, it induces a closure operator cl on U , and since Y is
closed under unions, it also induces a dual closure operator int (also known as “interior
operator”):

cl (S) :=
∧

y∈Y
y≥S

y, int (S) :=
∨

y∈Y
y≤S

y, for all S ∈ P (U).

It is easy to verify that these two operators satisfy the following identities for any S1, S2 ∈
P (U):

cl (S1 ∨ S2) = cl (S1) ∨ cl (S2) , int (S1 ∧ S2) = int (S1) ∧ int (S2) .

A function p : Y n → Y is a polynomial function if it can be obtained as a composition
of the lattice operations ∧ and ∨ with variables and constants. Note that polynomial
functions are thus order-preserving. As observed in [15], (discrete) Sugeno integrals
coincide exactly with those lattice polynomial functions p which are idempotent, i.e.,
satisfy the identity p (y, . . . , y) = y. An important lattice polynomial function (in fact,
a Sugeno integral) is the median function med: Y 3 → Y defined by

med (y1, y2, y3) = (y1 ∧ y2) ∨ (y2 ∧ y3) ∨ (y3 ∧ y1) = (y1 ∨ y2) ∧ (y2 ∨ y3) ∧ (y3 ∨ y1) .

It is useful to observe that the above expressions for the median can be simplified when
two of the arguments are comparable:

(3) med (s, y, t) = s ∨ (t ∧ y) whenever s ≤ t.

Polynomial functions over bounded distributive lattices have very neat representa-
tions, for instance, in disjunctive normal form [12], i.e., representations by expressions
of the form ∨

I⊆[n]

(
aI ∧

∧

i∈I

yi
)
,

where
∧

i∈I yi = 1 when I = ∅. To provide the “canonical” expression in this disjunctive
normal form, let us define 1I to be the characteristic vector of I ⊆ [n] := {1, . . . , n}, i.e.,
the n-tuple in Y n whose i-th component is 1 if i ∈ I, and 0 otherwise.
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Theorem 1 (Goodstein [12]). A function p : Y n → Y is a polynomial function if and
only if

(4) p(y1, . . . , yn) =
∨

I⊆[n]

(
p(1I) ∧

∧

i∈I

yi
)
.

Remark 2. Equation (4) is referred to as the canonical disjunctive normal form repre-
sentation of p.

Remark 3. The function given by (4) is a Sugeno integral if and only if p(0) = 0 and
p(1) = 1.

Remark 4. Let us note that in the case n = 1, Goodstein’s theorem shows that unary
polynomial functions p are exactly the functions of the form p (y) = s ∨ (t ∧ y) with
s = p (0) ≤ p (1) = t, and these can be written as p (y) = med (s, y, t) according to (3).

Let X1, . . . , Xn be arbitrary sets with at least two elements, and for each k ∈ [n] let
us fix two distinct elements 0Xk

, 1Xk
of Xk. We shall say that a mapping ϕk : Xk → Y

satisfies the boundary condition (for 0Xk
and 1Xk

) if for every xk ∈ Xk,

(5) ϕk(0Xk
) ≤ ϕk(xk) ≤ ϕk(1Xk

).

Observe that if Xk is a partially ordered set with least element 0Xk
and greatest element

1Xk
, and if ϕk is order-preserving, then it satisfies the boundary condition (cf. also

Remark 22). With no danger of ambiguity, we simply write 0 and 1 instead of 0Xk
and

1Xk
in the sequel.

A function f :
∏

i∈[n] Xi → Y is said to be a pseudo-polynomial function, if there is

a polynomial function p : Y n → Y and there are unary functions ϕk : Xk → Y (k ∈ [n]),
satisfying the boundary condition, such that

(6) f(x) = p (ϕ (x)) = p(ϕ1(x1), . . . , ϕn(xn))

holds for all x = (x1, . . . , xn) ∈
∏

i∈[n] Xi. If p is a Sugeno integral, then we say that f

is a pseudo-Sugeno integral. As it turns out, the notions of pseudo-polynomial function
and pseudo-Sugeno integral are equivalent. This result was proved in [6, 8] for chains
Y , but the proof given there actually just uses the fact that Y is a distributive lattice
and that polynomial functions are “range homogeneous”, hence it applies verbatim to
our setting.

Proposition 5. A function f :
∏

i∈[n] Xi → Y is a pseudo-polynomial function if and

only if it is a pseudo-Sugeno integral.

Clearly, if f is a pseudo-polynomial function, then it satisfies the following n-variable
analogue of the boundary condition (5):

(7) f
(
x0
k

)
≤ f (x) ≤ f

(
x1
k

)
for all k ∈ [n] ,x ∈

∏

i∈[n]

Xi,

where xa
k ∈

∏
i∈[n] Xi denotes the n-tuple which coincides with x in all but the k-th

component, whose value is a.

Remark 6. Note that the particular orderings ϕk(0Xk
) ≤ ϕk(1Xk

) and f
(
x0
k

)
≤ f

(
x1
k

)

in (5) and (7) could be reversed as the choice of 0Xk
and 1Xk

is arbitrary. Hence, the
current notion of boundary condition is not more restrictive than the one used in [8].

Next we define a property that can be used to characterize pseudo-polynomial func-
tions. We say that f :

∏
i∈[n] Xi → Y is pseudo-median decomposable if for each k ∈ [n]

there is a unary function ϕk : Xk → Y satisfying (5), such that

(8) f(x) = med
(
f(x0

k), ϕk(xk), f(x
1
k)
)

for every x ∈
∏

i∈[n] Xi. Note that if f is pseudo-median decomposable w.r.t. unary

functions ϕk : Xk → Y (k ∈ [n]) satisfying (5), then (7) holds.
The following theorem shows that every pseudo-median decomposable function is a

pseudo-polynomial function, and provides a disjunctive normal form of a polynomial
function pf which can be used to factorize f . This theorem appears in [7, 8] for the
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special case of chains. We use the notation 1̂I for the characteristic vector of I ⊆ [n] in∏
i∈[n] Xi, i.e., 1̂I ∈

∏
i∈[n] Xi is the n-tuple whose i-th component is 1Xi

if i ∈ I, and

0Xi
otherwise.

Theorem 7. If f :
∏

i∈[n] Xi → Y is pseudo-median decomposable w.r.t. unary func-

tions ϕk : Xk → Y (k ∈ [n]), then f (x) = pf (ϕ (x)), where the polynomial function pf
is given by

(9) pf (y1, . . . , yn) =
∨

I⊆[n]

(
f
(
1̂I

)
∧
∧

i∈I

yi
)
.

Proof. We need to prove that the following identity holds:

(10) f (x1, . . . , xn) =
∨

I⊆[n]

(
f
(
1̂I

)
∧
∧

i∈I

ϕi (xi)
)
.

We proceed by induction on n. If n = 1, then the right hand side of (10) takes the form
f (0) ∨ (f (1) ∧ ϕ1 (x1)). From (7) it follows that f (0) ≤ f (1), and then, using (3), we
can rewrite f (0)∨ (f (1) ∧ ϕ1 (x1)) as med (f (0) , ϕ1 (x1) , f (1)), which equals f (x1) by
(8).

Now suppose that the statement of the theorem is true for all pseudo-median decom-
posable functions in n− 1 variables. Let f0 and f1 be the (n− 1)-ary functions defined
by

f0 (x1, . . . , xn−1) = f (x1, . . . , xn−1, 0) ,

f1 (x1, . . . , xn−1) = f (x1, . . . , xn−1, 1) .

Observe that (7) implies f0 ≤ f1. Applying the pseudo-median decomposition to f with
k = n and rewriting the median using (3), we obtain

f (x1, . . . , xn) = med (f0 (x1, . . . , xn−1) , ϕn (xn) , f1 (x1, . . . , xn−1))(11)

= f0 (x1, . . . , xn−1) ∨ (f1 (x1, . . . , xn−1) ∧ ϕn (xn)) .

It is easy to verify that f0 and f1 are pseudo-median decomposable w.r.t. ϕ1, . . . , ϕn−1,
therefore we can apply the induction hypothesis to these functions:

f0 (x1, . . . , xn−1) =
∨

I⊆[n−1]

(
f0
(
1̂I

)
∧
∧

i∈I

ϕi (xi)
)
=

∨

I⊆[n−1]

(
f
(
1̂I

)
∧
∧

i∈I

ϕi (xi)
)
,

f1 (x1, . . . , xn−1) =
∨

I⊆[n−1]

(
f1
(
1̂I

)
∧
∧

i∈I

ϕi (xi)
)
=

∨

I⊆[n−1]

(
f
(
1̂I∪{n}

)
∧
∧

i∈I

ϕi (xi)
)
.

Substituting back into (11) and using distributivity we obtain the desired equality (10).
�

Now we can prove that pseudo-median decomposability actually characterizes pseudo-
polynomial functions (see [6, 8] for the case of chains, where the proof is slightly simpler).

Theorem 8. Let f :
∏

i∈[n] Xi → Y be a function. Then f is a pseudo-polynomial

function if and only if f is pseudo-median decomposable.

Proof. Sufficiency follows from Theorem 7, so we only need to show that if f is a pseudo-
polynomial function, then it is pseudo-median decomposable. Suppose that f(x) =
p (ϕ (x)) as in (6), and let k ∈ [n]. We have to prove that (8) holds for all x ∈

∏
i∈[n] Xi.

Regarding xi as a fixed element of Xi for each i 6= k, we can define a unary polynomial
function u : Y → Y by

u (y) = p(ϕ1(x1), . . . , ϕk−1(xk−1), y, ϕk+1(xk+1), . . . , ϕn(xn)).

To simplify notation, let us write a := ϕk (0) , z := ϕk (xk) , b := ϕk (1), and let us
note that the boundary condition (5) yields a ≤ z ≤ b. With this notation (8) reads as
u (z) = med (u (a) , z, u (b)). In order to verify this equality, we write u in disjunctive
normal form as in Remark 4: u (y) = s ∨ (t ∧ y), where s ≤ t. Now the proof is a
straightforward computation, making heavy use of distributivity:
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med (u (a) , z, u (b)) = u (a) ∨ (u (b) ∧ z) = (s ∨ (t ∧ a)) ∨ ((s ∨ (t ∧ b)) ∧ z)

= s ∨ (t ∧ a) ∨ (s ∧ z) ∨ (t ∧ b ∧ z) = s ∨ (t ∧ a) ∨ (s ∧ z) ∨ (t ∧ z)

= s ∨ (t ∧ a) ∨ (t ∧ z) = s ∨ (t ∧ (a ∨ z)) = s ∨ (t ∧ z) = u (z)

�

3. Characterization of pseudo-polynomial functions

Let f :
∏

i∈[n] Xi → Y be a function satisfying (7), and for each k ∈ [n] let us define

two auxiliary functions Φ−
k ,Φ

+
k : Xk → Y as follows:

(12) Φ−
k (ak) :=

∨

x:xk=ak

cl
(
f (x) ∧ f (x0

k)
)
, Φ+

k (ak) :=
∧

x:xk=ak

int
(
f (x) ∨ f (x1

k)
)
.

Here the join and the meet range over all x ∈
∏

i∈[n] Xi whose k-th component is ak.

Note that from (7) it follows that Φ−
k and Φ+

k satisfy the boundary condition (5). With
the help of these functions, we will give a necessary and sufficient condition for f to be a
pseudo-polynomial function. The following lemma formulates a simple observation that
allows us to solve equation (8) for ϕk(xk).

Lemma 9. For any u ≤ m ≤ w, v ∈ Y the following two conditions are equivalent:

(i) med (u, v, w) = m;
(ii) m ∧ u ≤ v ≤ m ∨ w.

Proof. Assuming that med (u, v, w) = m, we can estimate m ∧ u using (3) as follows:

m ∧ u =
(
u ∨ (v ∧ w)

)
∧ u = (u ∧ u) ∨ (v ∧ w ∧ u) = 0 ∨ (v ∧ w ∧ u) ≤ v.

An analogous argument shows that v ≤ m ∨ w, and this establishes (i) =⇒ (ii).
In order to prove (ii) =⇒ (i), let us first compute med (u,m ∧ u,w), again with the

help of (3):

med (u,m ∧ u,w) = u ∨ (m ∧ u ∧ w) = (u ∨m) ∧ (u ∨ u) ∧ (u ∨ w) = m ∧ 1 ∧ w = m.

Similarly, we have med (u,m ∨ w,w) = m, and then, using (ii) and the monotonicity of
the median function, we conclude

m = med (u,m ∧ u,w) ≤ med (u, v, w) ≤ med (u,m ∨ w,w) = m,

hence med (u, v, w) = m. �

With the help of the above lemma we derive from Theorem 8 a necessary condition
for f to be a pseudo-polynomial function.

Proposition 10. If f :
∏

i∈[n] Xi → Y is a pseudo-polynomial function, then it satisfies

(7) and

(13) Φ−
k ≤ Φ+

k , for all k ∈ [n] .

Proof. Let us suppose that f (x) = p (ϕ (x)) is a pseudo-polynomial function. Then (8)
holds by Theorem 8, and applying Lemma 9 with u = f

(
x0
k

)
,m = f (x) , w = f

(
x1
k

)

and v = ϕk (xk), we see that f (x) ∧ f (x0
k) ≤ ϕk (xk) ≤ f (x) ∨ f (x1

k). Moreover, since
ϕk (xk) ∈ Y , we have

cl
(
f (x) ∧ f (x0

k)
)
≤ ϕk (xk) ≤ int

(
f (x) ∨ f (x1

k)
)
.

Considering these inequalities for all x ∈
∏

i∈[n] Xi with a fixed k-th component xk = ak,

it follows that

(14) Φ−
k (ak) ≤ ϕk (ak) ≤ Φ+

k (ak)

for all k ∈ [n] , ak ∈ Xk. �
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Remark 11. Let us note that (13) holds if and only if each joinand in the definition
of Φ−

k (ak) is less than or equal to each meetand in the definition of Φ+
k (ak). In other

words, (13) is equivalent to

cl
(
f (y) ∧ f (y0

k)
)
≤ int

(
f (x) ∨ f (x1

k)
)
for all x,y ∈

∏

i∈[n]

X with xk = yk.

In order to prove that the necessary condition presented in the above proposition is
also sufficient, we verify that (7) and (13) imply that f is pseudo-median decomposable
with respect to Φ−

1 , . . . ,Φ
−
n and also with respect to Φ+

1 , . . . ,Φ
+
n .

Proposition 12. Suppose that f :
∏

i∈[n] Xi → Y satisfies (7) and (13). Then, for all

x ∈
∏

i∈[n] Xi and k ∈ [n], we have

f(x) = med
(
f(x0

k),Φ
−
k (xk), f(x

1
k)
)
= med

(
f(x0

k),Φ
+
k (xk), f(x

1
k)
)
.

Proof. We prove that f is pseudo-median decomposable with respect to Φ−
1 , . . . ,Φ

−
n , and

leave to the reader the analogous argument for Φ+
1 , . . . ,Φ

+
n . Let us fix k ∈ [n] , ak ∈ Xk

and x ∈
∏

i∈[n] Xi with xk = ak. By the definition of Φ−
k , we have

med
(
f(x0

k),Φ
−
k (ak), f(x

1
k)
)
= med

(
f(x0

k),
∨

y:yk=ak

cl
(
f (y) ∧ f (y0

k)
)
, f(x1

k)
)
.

From the distributivity of Y it follows that joins distribute over medians, and thus:

(15) med
(
f(x0

k),Φ
−
k (ak), f(x

1
k)
)
=

∨

y:yk=ak

med
(
f(x0

k), cl
(
f (y) ∧ f (y0

k)
)
, f(x1

k)
)
.

We can estimate this join from below by keeping only the joinand corresponding to
y = x (this indeed appears in the join, since xk = ak):

(16) med
(
f(x0

k),Φ
−
k (ak), f(x

1
k)
)
≥ med

(
f(x0

k), cl
(
f (x) ∧ f (x0

k)
)
, f(x1

k)
)
.

Applying Lemma 9 with u = f(x0
k), v = cl

(
f (x) ∧ f (x0

k)
)
, w = f(x1

k) and m = f (x)

and taking into account that f
(
x0
k

)
≤ f (x) ≤ f

(
x1
k

)
holds by (7), we see that the right

hand side of (16) equals f (x). This yields the inequality

(17) med
(
f(x0

k),Φ
−
k (ak), f(x

1
k)
)
≥ f (x) .

In order to prove the converse inequality, let us note that property (13) implies

cl
(
f (y) ∧ f (y0

k)
)
≤ int

(
f (x) ∨ f (x1

k)
)
,

whenever yk = ak (see Remark 11). Thus, replacing cl
(
f (y) ∧ f (y0

k)
)
by int

(
f (x) ∨

f (x1
k)
)
in each joinand on the right hand side of (15), we get the upper estimate

(18) med
(
f(x0

k),Φ
−
k (ak), f(x

1
k)
)
≤ med

(
f(x0

k), int
(
f (x) ∨ f (x1

k)
)
, f(x1

k)
)
.

Again, Lemma 9 shows that the right hand side of (18) equals f (x), hence we have

(19) med
(
f(x0

k),Φ
−
k (ak), f(x

1
k)
)
≤ f (x) .

Combining inequalities (17) and (19), we get the desired equality

med
(
f(x0

k),Φ
−
k (ak), f(x

1
k)
)
= f (x) .

�

Propositions 10 and 12 together with Theorem 8 yield the following characterization
of pseudo-polynomial functions.

Theorem 13. A function f :
∏

i∈[n] Xi → Y is a pseudo-polynomial function if and

only if it satisfies conditions (7) and (13).

Remark 14. Theorem 13 is of different nature than Theorem 8 and the various char-
acterizations obtained in [8]: here the necessary and sufficient condition for f being a
pseudo-polynomial function is given solely in terms of f itself, without referring to the
existence of certain functions ϕk.
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4. Factorizations of pseudo-polynomial functions

Let us suppose that f :
∏

i∈[n] Xi → Y satisfies (7) and (13). According to Theo-

rem 13, f is a pseudo-polynomial function, i.e., it has a factorization of the form f (x) =
p (ϕ (x)), where p : Y n → Y is a polynomial function and each ϕk : Xk → Y (k ∈ [n]) is
a unary map satisfying (5). We now show how to construct such a factorization; in fact,
we will find all possible factorizations. First we describe the set of possible functions ϕk.

Theorem 15. For any function f :
∏

i∈[n] Xi → Y satisfying (7) and unary maps

ϕk : Xk → Y (k ∈ [n]) satisfying (5), the following three conditions are equivalent:

(i) Φ−
k ≤ ϕk ≤ Φ+

k holds for all k ∈ [n];
(ii) f (x) = pf (ϕ (x)) (where pf is given by (9) in Theorem 7);
(iii) there exists a polynomial function p : Y n → Y such that f (x) = p (ϕ (x)).

Proof. The implication (ii) =⇒ (iii) is trivial, and (iii) =⇒ (i) has been established in
the course of the proof of Proposition 10 (see equation (14)).

So suppose that (i) holds. Then obviously (13) holds, and Proposition 12 shows that
f is pseudo-median decomposable with respect to Φ−

1 , . . . ,Φ
−
n and also with respect to

Φ+
1 , . . . ,Φ

+
n . Since Φ−

k ≤ ϕk ≤ Φ+
k holds for all k ∈ [n] by (i), we have

f (x) = med
(
f(x0

k),Φ
−
k (xk), f(x

1
k)
)

≤ med
(
f(x0

k), ϕk(xk), f(x
1
k)
)

≤ med
(
f(x0

k),Φ
+
k (xk), f(x

1
k)
)
= f (x) ,

therefore f is pseudo-median decomposable with respect to ϕ1, . . . , ϕn. Now (ii) follows
immediately from Theorem 7. �

Theorem 15 describes all those unary maps ϕ1, . . . , ϕn that can occur in a factorization
of f , but it does not provide all possible polynomial functions p. (We know that pf can
be used in any factorization, but there may be others as well.) To find all factorizations
(6) of f , let us fix unary functions ϕk : Xk → Y (k ∈ [n]) satisfying (5), such that Φ−

k ≤
ϕk ≤ Φ+

k for each k ∈ [n]. To simplify notation, let ak = ϕk (0Xk
) , bk = ϕk (1Xk

), and
for each I ⊆ [n] let eI ∈ Y n be the n-tuple whose i-th component is ai if i /∈ I and bi if
i ∈ I. If p : Y n → Y is a polynomial function such that f (x) = p (ϕ (x)), then

(20) p (eI) = f
(
1̂I

)
for all I ⊆ [n] ,

since eI = ϕ
(
1̂I

)
. We show that (20) is not only necessary but also sufficient to establish

the factorization f (x) = p (ϕ (x)).

Lemma 16. Let f :
∏

i∈[n] Xi → Y be a function satisfying (7) and (13), and let

ϕk : Xk → Y (k ∈ [n]) be maps satisfying (5), such that Φ−
k ≤ ϕk ≤ Φ+

k for all k ∈ [n].
Then a polynomial function p : Y n → Y yields a factorization f (x) = p (ϕ (x)) if and
only if (20) holds.

Proof. As noted above, necessity is trivial. To prove the sufficiency, let us assume that p
satisfies (20), and let us define a function f ′ :

∏
i∈[n] Xi → Y by f ′ (x) = p (ϕ (x)). Then

f ′ is a pseudo-polynomial function, and by Theorem 8 it is pseudo-median decomposable
with respect to ϕ1, . . . , ϕn. From Theorem 7 we get the following expression for f ′:

(21) f ′ (x) =
∨

I⊆[n]

(
f ′
(
1̂I

)
∧
∧

i∈I

ϕi (xi)
)
.

The assumptions on f and ϕk guarantee that f (x) = pf (ϕ (x)) by Theorem 15, and
hence f can be written as

(22) f (x) =
∨

I⊆[n]

(
f
(
1̂I

)
∧
∧

i∈I

ϕi (xi)
)
.

Since f ′
(
1̂I

)
= p

(
ϕ
(
1̂I

))
= p (eI) and p (eI) = f

(
1̂I

)
by (20), it follows from (21)

and (22) that f ′ (x) = f (x). �
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Table 1. The airline example

(a) The function f

x1 x2 f (x1, x2)

A1 E B

A1 F B

A2 E B

A2 F D

A3 E N

A3 F G

A4 E N

A4 F V

(b) The functions Φ−
k ,Φ

+
k

x1 Φ−
1 (x1) Φ+

1 (x1)

A1 B B

A2 D D

A3 G G

A4 V V

x2 Φ−
2 (x2) Φ+

2 (x2)

E B N

F V V

For a given f and given ak, bk ∈ Y , (20) gives rise to a polynomial interpolation
problem over Y : the values of the unknown polynomial function p are prescribed at
certain (2n many) points in Y n. It has been shown in [9] that the least solution of this
interpolation problem is

p− (y) =
∨

I⊆[n]

(
c−I ∧

∧

i∈I

yi
)
, where c−I = cl

(
f
(
1̂I

)
∧
∧

i/∈I

ai
)
,

whereas the greatest solution is

p+ (y) =
∨

I⊆[n]

(
c+I ∧

∧

i∈I

yi
)
, where c+I = int

(
f
(
1̂I

)
∨
∨

i∈I

bi
)
.

In other words, a polynomial function p is a solution of (20) if and only if p− ≤ p ≤ p+.
Since, by Theorem 1, p is uniquely determined by its values on the tuples 1I (I ⊆ [n]),
this is equivalent to

c−I = p− (1I) ≤ p (1I) ≤ p+ (1I) = c+I for all I ⊆ [n] .

Thus we obtain the following description of all possible factorizations of a given pseudo-
polynomial function f .

Theorem 17. Let f :
∏

i∈[n] Xi → Y be a function satisfying (7), for each k ∈ [n] let

ϕk : Xk → Y be a given function satisfying (5), and let p : Y n → Y be a polynomial
function. Then f (x) = p (ϕ (x)) if and only if Φ−

k ≤ ϕk ≤ Φ+
k for each k ∈ [n], and we

have p− ≤ p ≤ p+.

Remark 18. Note that the polynomial functions p− and p+ are defined in terms of the
maps ϕk, hence we have to choose these maps first, and only then we can determine p−

and p+ (cf. the example in Section 5).

Remark 19. Clearly, c−I ≤ f
(
1̂I

)
≤ c+I holds independently of ak, bk, hence the poly-

nomial function pf can be used in any factorization of f , as it was already shown in
Theorem 7.

Remark 20. If Xk is a partially ordered set for each k ∈ [n] and f is order-preserving,
then Φ−

k and Φ+
k are also order-preserving. This shows that every order-preserving

pseudo-polynomial function has a factorization where each ϕk is order-preserving. Con-
sequently, order-preserving pseudo-Sugeno integrals coincide with Sugeno utility func-
tions (cf. Corollary 2 in [8]).

5. An example

We illustrate the results of the previous section with a simple example, where pref-
erences about travelling with four airlines A1,A2,A3,A4 in economy class (E) and first
class (F) are modelled by pseudo-polynomial functions. Table 1(a) shows a fictitious cus-
tomer’s evaluation of these eight options, where B,N,G,V stand for “bad”, “neutral”,
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B

N D

G

V

B

N D

G

V

D N

G

Figure 1. The lattice Y and its embedding into a power set

“good” and “very good”, respectively, and D means “don’t know”. This table defines
an overall preference function f : X1 ×X2 → Y , where

X1 := {A1,A2,A3,A4} , X2 := {E,F} , Y := {B,N,G,V,D} .

It is plausible that D is better than B, worse than G, and incomparable with N,
hence the ordering of Y is the one given in Figure 1. This is a distributive lattice that
can be embedded into the power set of a three-element set U as shown in Figure 1.
The figure does not indicate the representation of each element of Y as a subset of U ,
only the complements of the elements, since this is all we need in order to perform the
computations that follow. (Note that B and V are the complements of each other.)

For y ∈ Y we have obviously cl (y) = int (y) = y, and for the three “extra” elements
the closures and interiors can be read easily from Figure 1:

cl
(
D
)
= V, cl

(
N
)
= V, cl

(
G
)
= V,

int
(
D
)
= N, int

(
N
)
= D, int

(
G
)
= B.

It is obvious that 0X2
= E and 1X2

= F, but 0X1
and 1X1

are not clear. However,
from Table 1(a) we can infer that 0X1

= A1 and 1X1
= A4 if f satisfies (7) at all. (If

not, then f is not a pseudo-polynomial function.)
Table 1(b) shows the auxiliary functions Φ−

k ,Φ
+
k corresponding to the function f .

We give the details of the computation of Φ+
2 (E), the other values can be calculated

similarly:

Φ+
2 (E) =

∧

x1∈X1

int
(
f (x1,E) ∨ f(x1,F)

)

= int(B ∨ B) ∧ int(B ∨D) ∧ int(N ∨G) ∧ int(N ∨V)

= int(V) ∧ int(D) ∧ int(D) ∧ int(N) = V ∧N ∧N ∧N = N.

We can see that Φ−
k ≤ Φ+

k for k = 1, 2, therefore f is a pseudo-polynomial function by
Theorem 13. Theorem 15 implies that in any factorization f (x1, x2) = p (ϕ1 (x1) , ϕ2 (x2))
of f , we must have ϕ1 = Φ−

1 = Φ+
1 , while we have two possibilities for ϕ2 (as ϕ2 (E) can

be chosen to be B or N, and ϕ2 (F) must be V). Thus there are two pairs of functions
(ϕ1, ϕ2), namely

(
Φ−

1 ,Φ
−
2

)
and

(
Φ+

1 ,Φ
+
2

)
that allow us to factorize f . Theorem 15 also

shows that in both cases one can use the polynomial function

pf (y1, y2) = B∨(y1 ∧N)∨(y2 ∧ B)∨(V ∧ y1 ∧ y2) = (y1 ∧N)∨(y1 ∧ y2) = y1∧(y2 ∨N) .

Computing the coefficients c−I , c
+
I for

(
Φ−

1 ,Φ
−
2

)
, one can see that in this case

p− = pf = p+, i.e., p = pf is the only polynomial function such that f (x1, x2) =
p
(
Φ−

1 (x1) ,Φ
−
2 (x2)

)
. On the other hand, choosing (ϕ1, ϕ2) =

(
Φ+

1 ,Φ
+
2

)
, we obtain

p− = y1 ∧ y2 and p+ = pf , and these are the only possibilities, since there is no polyno-
mial function strictly between p− and p+. Thus f has altogether three factorizations:

f (x1, x2) = Φ−
1 (x1) ∧

(
Φ−

2 (x2) ∨N
)
= Φ+

1 (x1) ∧
(
Φ+

2 (x2) ∨N
)
= Φ+

1 (x1) ∧ Φ+
2 (x2) .

Note that these factorizations are essentially the same, since Φ−
2 ∨N = Φ+

2 ∨N = Φ+
2 .

The meaning of Φ+
2 is pretty obvious, and Φ+

1 shows the customer’s opinion about the
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S cl (S) int (S)

Figure 2. The closure and interior of a subset of a chain

four airlines, either based on past experience or on information received from other
sources (except for airline A2, where the value D indicates the lack of information).
The fact that Φ+

1 (x1) and Φ+
2 (x2) are aggregated in a conjunctive manner indicates a

pessimistic attitude: the customer expects an enjoyable flight only if both the airline and
the travel class are good enough.

6. Pseudo-polynomial functions over chains

In this section we consider the case when Y is a finite chain. As we will see, in this
case the results of Section 4 lead to a generalization of Algorithm SUFF presented in
[8]. As before, we will suppose that Y is a sublattice of P (U) for some finite set U , with
least element ∅ and greatest element U . We may assume without loss of generality that
U = [m] = {1, 2, . . . ,m}, and Y = {[0] , [1] , . . . , [m]}, where [0] = ∅. The closure of a set
S ⊆ U is the smallest set of the form [k] that contains S, while the interior of S is the
largest set of the form [k] that is contained in S (see Figure 2). Formally, we have

cl (S) = [maxS] , int (S) =
[
minS − 1

]
.

Let us assume that f :
∏

i∈[n] Xi → Y satisfies (7). Then f
(
x0
k

)
= [u] , f (x) =

[v] , f
(
x1
k

)
= [w] with u ≤ v ≤ w, hence we have

f (x) ∧ f (x0
k) = {u+ 1, . . . , v} ,

f (x) ∨ f (x1
k) = {1, . . . , v, w + 1, . . . ,m} .

Therefore the terms in the definition of Φ−
k and Φ+

k can be determined as follows:

cl
(
f (x) ∧ f (x0

k)
)
=

{
f (x) , if f

(
x0
k

)
< f (x) ;

∅, if f
(
x0
k

)
= f (x) ;

(23)

int
(
f (x) ∨ f (x1

k)
)
=

{
f (x) , if f

(
x1
k

)
> f (x) ;

U, if f
(
x1
k

)
= f (x) .

(24)

Thus we obtain from Theorem 13 and Remark 11 the following characterization of
pseudo-polynomial functions valued in a chain.

Theorem 21. If Y is a finite chain, then a function f :
∏

i∈[n] Xi → Y is a pseudo-

polynomial function if and only if it satisfies condition (7) and

f
(
x0
k

)
< f (xak

k ) and f (yak

k ) < f
(
y1
k

)
=⇒ f (xak

k ) ≤ f (yak

k )

holds for all x,y ∈
∏

i∈[n] Xi and k ∈ [n], ak ∈ Xk.

Let us now define the following three sets for any k ∈ [n] , ak ∈ Xk, as in [8]:

Wf
ak

=
{
f (x) : xk = ak and f

(
x0
k

)
< f (x) < f

(
x1
k

)}
,

Lf
ak

=
{
f (x) : xk = ak and f

(
x0
k

)
< f (x) = f

(
x1
k

)}
,

Uf
ak

=
{
f (x) : xk = ak and f

(
x0
k

)
= f (x) < f

(
x1
k

)}
.
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From (23) and (24) it follows that Φ−
k (ak) =

∨
Lf
ak

∨
∨

Wf
ak

and Φ+
k (ak) =

∧
Uf
ak

∧∧
Wf

ak
, hence the condition Φ−

k ≤ ϕk ≤ Φ+
k in Theorem 15 can be reformulated as

follows:

(a) either Wf
ak

= {ϕk (ak)} or Wf
ak

= ∅;

(b) ϕk (ak) ≥
∨
Lf
ak
;

(c) ϕk (ak) ≤
∧
Uf
ak
.

Thus by Theorem 15, f is a pseudo-polynomial function if and only if there are
functions ϕk satisfying the above three conditions. If each Xk is a bounded chain and
f is an order-preserving function depending on all of its variables, then (a),(b),(c) are
equivalent to equation (18) in [8], and Algorithm SUFF does not return the value false if
and only if (13) holds. Thus, in the finite case, Theorem 7 of [8] follows as a special case
of Theorem 15. Moreover, the results of Section 4 not only generalize Algorithm SUFF
to arbitrary finite distributive lattices (instead of finite chains) and to pseudo-polynomial
functions (instead of Sugeno utility functions), but they provide all possible factorizations
of a given pseudo-polynomial function f (whereas Algorithm SUFF constructs only one
factorization).

Algorithm 1 Sugeno Utility Function Factorization (SUFF) [8]

Require: f depends on all of its variables and satisfies (7)
1: if f is not order-preserving then

2: return false // f is not a SUF
3: end if

4: for k ∈ [n] do
5: for ak ∈ Xk do

6: compute Wf
ak

7: if
∣∣Wf

ak

∣∣ ≥ 2 then

8: return false // f is not a SUF
9: end if

10: compute Lf
ak
,Uf

ak
and

wak
:= w if Wf

ak
= {w}

lak
:=

∨
Lf
ak

uak
:=

∧
Uf
ak

11: if lak
> uak

or lak
> wak

or wak
> uak

then

12: return false // f is not a SUF
13: end if

14: if Wf
ak

6= ∅ then

15: ϕf
k (ak) := wak

// (W)

16: else if Lf
ak

6= ∅ then

17: ϕf
k (ak) := lak

// (L),(LU)

18: else if Uf
ak

6= ∅ then

19: ϕf
k (ak) := uak

// (U)
20: else

21: return false // ak is inessential
22: end if

23: end for

24: end for

25: compute pf
26: return pf , ϕ

f
1 , . . . , ϕ

f
n // f is a SUF

Remark 22. If the lattice Y is a finite chain, as it is the case in many applications,
then any map ϕk : Xk → Y attains its minimum and its maximum at some points in
Xk, hence there exist elements 0Xk

and 1Xk
such that (5) holds. Thus, the boundary

condition does not impose any restriction on ϕk; the point is that we must know the
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elements 0Xk
and 1Xk

, even if we do not know the function ϕk. However, even this mild
assumption can be released, by suitably modifying the definition of the functions Φ−

k

and Φ+
k , so that they do not refer to 0 and 1 anymore:

Φ−
k (ak) :=

∨

x:xk=ak

♥∈Xk

cl
(
f (x) ∧ f(x♥

k )
)
, Φ+

k (ak) :=
∧

x:xk=ak

♥∈Xk

int
(
f (x) ∨ f(x♥

k )
)
.

To see that these new definitions yield the same functions as (12), we only need to
observe that we have just added some new joinands to the join defining Φ−

k , but each of
these new joinands is dominated by some of the original joinands of (12). Indeed, from

(7) it follows that f(x♥
k ) ≤ f(x0

k) for all ♥ ∈ Xk, hence

cl
(
f (x) ∧ f(x♥

k )
)
≤ cl

(
f (x) ∧ f(x0

k)
)
.

Similarly, each of the new meetands that we have added to the meet defining Φ+
k is

absorbed by some of the original meetands.
With these new definitions, we can apply Theorem 13 to decide whether a given

function f is a pseudo-polynomial function, and we can find all maps ϕk that can appear
in a factorization of f with the help of Theorem 15. Once we have the maps ϕk, we can
define 0Xk

and 1Xk
as

0Xk
:= argmin

xk∈Xk

ϕk (xk) and 1Xk
:= argmax

xk∈Xk

ϕk (xk) ,

and then we can use Theorem 17 to find the possible polynomial functions p. (Here
argmin and argmax denote the elements of Xk where ϕk attains its minimum and its
maximum, respectively.) The price that we have to pay for this generality is that the
computation of Φ−

k and Φ+
k is longer. Alternatively, we can apply “reverse engineering”

to (7), as in Section 5, in order to find 0Xk
and 1Xk

.

7. Concluding remarks

We have extended the study of Sugeno utility functions over chains developed in
[6, 7, 8] to the case of finite distributive lattices. We refined the axiomatization given
in [6, 8] by providing necessary and sufficient conditions for a function defined on a
Cartesian product of arbitrary underlying sets and valued in a finite distributive lattice,
to be factorizable as a pseudo-polynomial function (6). Moreover, in doing so, we were
able to furnish all possible factorizations, if such a factorization exists, and we proposed
a new procedure for constructing them, which subsumes that of [7, 8] in the case when
the codomain is a finite chain.

Looking at directions for further research, we are inevitably drawn to the two fol-
lowing topics. As mentioned, pseudo-polynomial functions play an important role in
multicriteria decision making since they subsume the so-called Sugeno utility func-
tions, which in turn are used to model preference relations: Say that a preference re-
lation � on X1 × · · · ×Xn is Sugeno representable if there is a Sugeno utility function
U : X1×· · ·×Xn → Y such that x � y if and only if U (x) ≤ U (y). Given the results of
the current paper, and following the line of research developed in [2, 11, 16], it is natural
to consider the following problem.

Problem 23. Axiomatize those preference relations that are Sugeno representable.

This problem was solved in the realm of decision making under uncertainty in [11].
The second emerging topic is of somewhat different nature. So far, we have played

within the setting where no information is missing. However, in real-life situations this
is rarely the case. Translating it into mathematical terms, it is often the case that
information about the functions we deal with is incomplete. In other words, we are
given partial functions in the sense that they are not everywhere defined. Taking the
simplest case where the only aggregation functions considered are Sugeno integrals, we
are faced with the following interpolation problem.
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Problem 24. Given a partial function f : D → X, where X is a distributive lattice and
D ⊆ Xn, give necessary and sufficient conditions for the existence of a Sugeno integral
p : Xn → X which interpolates f on all of its domain D, i.e., p|D = f . If such a Sugeno
integral exists, provide a procedure to compute it.

Again, this problem has been solved for the case of finite chains X in [16].
These two problems constitute topics of current research being carried out by the

authors.
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