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Abstract 

The consequences of changes in the water flow of the Rhône River on surface 

sediment characteristics and benthic macrofauna composition were assessed within 

3 distinct areas: (1) the delta front, (2) the prodelta, and (3) the distal zone. Five 

stations were sampled during or closely after: (1) an oceanic flood (April 2007), (2) a 

generalized flood (May 2008), (3) a Cevenol flood (December 2008), and (4) a dry 

period (July 2011). Measurements of sediment characteristics included granulometry 

(D0.5), bulk descriptors of sedimentary organics (OC, TN and THAA), descriptors of 

labile components of sedimentary organics (chloropigments, EHAA), and both 

descriptors of origin (Chl-b/Chl-a, C/N) and lability (Chl-a/(Chl-a+Phaeo-a), 

EHAA/THAA) of sedimentary organics. Sediment Profile Images were collected 

during April 2007, May 2008 and July 2011. Temporal changes in both sedimentary 

organics and benthic macrofauna were more important in the delta front and the 

prodelta than in the distal zone. Bulk characteristics of sedimentary organics 

presented decreasing inshore/offshore gradients during both April 2007 and July 

2011 but not during May and December 2008. There were significant temporal 

changes in EHAA/THAA at all stations. Changes in benthic macrofauna composition 

differed between: (1) the delta front and the prodelta, and (2) the distal zone. In the 

former area, the dry period was associated with the establishment of a mature 

community characterized by high abundances and species richness. The best 

description of spatiotemporal changes in benthic macrofauna composition by surface 

sediment characteristics was obtained using D0.5, Chl-b/Chl-a, Chl-a/(Chl-a+Phaeo-

a) and EHAA, which supports the role of the quality of sedimentary organics in 

controlling benthic macrofauna composition. 
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1 Introduction 

River-dominated Ocean Margins (RiOMar) are land-ocean margin systems that 

are impacted by major rivers water, nutrient and particle discharges (McKee et al., 

2004). As such they include large marine areas. RiOMar provide essential 

ecosystem services, such as habitat for many plant and animal species, nutrient 

recycling and fisheries (Levin et al., 2001) and are sensitive to a large diversity of 

natural and anthropogenic disturbances. On continental margins, in front of each 

river as well as lagoon mouths appears a preferential area of sediment accumulation 

under the wave storm base (Aloïsi and Monaco, 1975). These deposition areas, 

commonly named prodeltas, are the subaquaeous extension of aerial deltas in the 

inner-shelf around 30 m water depth (Bourrin and Durrieu de Madron, 2006). River 

prodeltas (i.e., the underwater parts of river deltas) are hydrodynamic environments 

experimenting high nutrient and terrestrial organic matter inputs, which enhance 

primary production (Cruzado and Velasquez, 1990; Lochet and Leveau, 1990). Their 

benthic compartments are affected by several co-occurring sedimentary (e.g. 

sedimentation/resuspension) and biogeochemical (e.g. bioturbation/mineralization) 

processes (Aller, 1998; Lansard et al., 2009; Pastor et al., 2011a; Pastor et al., 

2011b). Together with shelf sediments, deltaic sediments are the most important 

area for organic carbon burial (Hedges and Keil, 1995) and for the decomposition of 

both terrestrial and marine particulate organic matter (POM) (Aller, 1998).  

Deltaic sedimented POM is usually composed of: (1) continental (e.g. vascular 

land plants debris and soil-derived POM exported by rivers), and (2) marine material 

(e.g. marine autochthonous primary production and advective inputs) (Hedges et al., 

1988; Goni et al., 1998; Leithold and Hope, 1999; Gordon and Goni, 2003). The 
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balance between both sources clearly shifts from the dominance of continental to 

marine inputs along inshore/offshore gradients (Vonk et al., 2010). River floods affect 

temporal changes in this balance. They are important in controlling both the quantity 

and the quality of continental POM exported to the sea. These 2 parameters vary 

seasonally depending on water flows (Pont, 1997) and are also affected by drainage 

basin compositions. Dry seasons are usually associated with strong contributions of 

marine production, conversely to wet seasons, which are typically associated with 

strong contributions of soil-derived POM and plant debris carried by strong flows (Yu 

et al., 2002). Although many studies have been devoted to the assessment of the 

relationships between spatiotemporal changes in deltaic sedimentary organics and 

hydrological regimes (Leithold and Hope, 1999; Bianchi et al., 2002; Yu et al., 2002), 

no real consensus has been reached yet regarding: (1) the quality (i.e., lability) of 

continental inputs (Leeuw and Largeau, 1993; Wakeham and Canuel, 2006; Mayer 

et al., 2008; Vonk et al., 2010), and (2) the effects of different types of floods on 

spatiotemporal changes in sedimentary organics within RiOMar.  

The long-term impact of riverine inputs (e.g. sediments, organic matter) in 

controlling benthic macrofauna composition is well recognized as well. This 

paradigm was initially established based on the studies of major rivers such as the 

Amazon (Aller and Aller, 1986; Aller and Stupakoff, 1996) and the Changjiang 

(Rhoads et al., 1985; Aller and Aller, 1986). It has then been verified for smaller 

rivers (Occhipinti-Ambrogi et al., 2005; Wheatcroft, 2006; Akoumianaki and 

Nicolaidou, 2007; Harmelin-Vivien et al., 2009; Akoumianaki et al., 2013). According 

to the conceptual model proposed by Rhoads et al. (1985) spatial changes in benthic 

macrofauna composition off (major) rivers result from 2 opposite effects, namely: (1) 
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a reduction of benthic macrofauna at the immediate vicinity of the river mouth due to 

the inputs of large quantities of sediments resulting in high sedimentation rates and 

instability, and (2) an increase of benthic macrofauna further offshore resulting from 

moderate organic enrichment. Conversely, there is no consensus about the 

occurrence of short-term effects of river inputs on benthic macrofauna, which were 

reported by Occhipinti-Ambrogi et al. (2005) and by Akoumianaki et al. (2013) but 

not by Wheatcroft (2006). Part of this discrepancy may result from differences 

between studies in the relative locations of monitored stations relative to 

inshore/offshore gradients. There is therefore a clear need for new studies 

combining appropriate spatial and temporal sampling to better describe the effects of 

changes in riverine inputs on benthic macrofauna composition.  

The Rhône River (Figure 1) is the major source of freshwater and terrigenous 

particles to the Gulf of Lions (Aloisi et al., 1977). Its drainage Basin shows a strong 

geological heterogeneity and is subjected to highly fluctuating climatic conditions 

(Pont, 1997; Pont et al., 2002). Mean annual water and particle flows are 1700 m3.s-1 

and 7400 103 t.y-1 (Pont et al., 2002). Temporal changes in water (up to 11000 m3.s-

1) and particle flows (up to 22700 103 t.y-1 in years with strong floods) are very high, 

which is a characteristic of Mediterranean Rivers (Pont et al., 2002; Antonelli et al., 

2008). Rhône River floods may be classified (Pont, 1997) as: (1) oceanic when 

resulting from precipitations in the Northern Basin and characterized by water flows 

rising slowly and regularly, (2) Cevenol when resulting from intense precipitations in 

the South-Western Basin and characterized by sudden and violent increase in water 

flows, (3) extensive Mediterranean when resulting from precipitations affecting the 

whole Southern Basin and mostly often associated with autumnal western 
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perturbations, and (4) generalized when corresponding to a combination of the 3 first 

types. These events strongly differ in terms of both the quantity (Pont, 1997) and the 

origin (Eyrolle et al., 2012) of the particles transferred to the sea. The Rhône River 

prodelta is characterized by high sedimentation rates (0.40-0.65 cm.y-1 as assessed 

through 210Pb measurements), which then decrease offshore (0.20 cm.y-1) (Zuo et 

al., 1997; Radakovitch et al., 1999; Miralles et al., 2005). It constitutes a transitional 

depositional area for terrigenous particles, associated organic matter and 

contaminants (Roussiez et al., 2005), which are later transferred to the deep sea 

through a succession of resuspension events mostly caused by storms (Ulses et al., 

2008). Overall, strong temporal changes in its hydrological regime together with the 

heterogeneity of its drainage basin and classical spatial gradients within the deltaic 

area make the Rhône River an excellent model for the assessment of the effect of a 

major Mediterranean river on sedimentary organics and benthic macrofauna 

characteristics.  

Spatiotemporal changes in surface sediment characteristics off the Rhône River 

have already been assessed in several studies (Alliot et al., 2003; Tesi et al., 2007; 

Lansard et al., 2009; Cathalot et al., 2010; Bourgeois et al., 2011; Pastor et al., 

2011b; Cathalot et al., 2013). Part of these studies (Lansard et al., 2009; Cathalot et 

al., 2010) have mostly dealt with the assessment of sediment organic matter 

remineralization and thus have only considered a limited set of bulk biochemical 

descriptors. Others have included a wider set of biochemical parameters but have 

been restricted to an assessment of spatial changes (Alliot et al., 2003; Bourgeois et 

al., 2011; Pastor et al., 2011a; Pastor et al., 2011b; Cathalot et al., 2013). To our 

knowledge, the study by Tesi et al. (2007) is the only one, which combined the study 
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of 2 contrasted situations in terms of Rhône River flows with the sampling of a large 

number of stations and the assessment of a reasonably large set of sedimentary 

organics biochemical characteristics. However, it still did not include classical 

organic matter quality descriptors such as EHAA/THAA and Chl-a/(Chl-a+Phaeo-a). 

Several studies have assessed spatiotemporal changes in benthic macrofauna 

composition off the Rhône River as well (Salen-Picard et al., 2003; Hermand et al., 

2008; Harmelin-Vivien et al., 2009; Labrune et al., 2012). A few of them have dealt 

with: (1) the whole benthic macrofauna but were restricted to a single sampling date 

(Hermand et al., 2008; Harmelin-Vivien et al., 2009; Labrune et al., 2012). They have 

shown the occurrence of strong longitudinal gradients in benthic macrofauna 

composition, which limits their use to ca 10 stations sampled only once in assessing 

the impact of Rhône River water flow (Hermand et al., 2008; Harmelin-Vivien et al., 

2009). Another study was conversely restricted to the assessment of polychaete 

fauna at a single 70 m deep station but focussed on the assessment of the 

relationship linking Rhône River water flows and fauna compositions based on 

repeated seasonal sampling (Salen-Picard et al., 2003). It has suggested the 

dependency of benthic macrofauna composition on temporal changes in the Rhône 

River water flow with the distinction between 2 groups of species: one responding 

rapidly (i.e., around 3 months) and mostly composed of opportunistic species 

adapted to organically rich environments, and a second one responding with a 1-2 

year time lag and mostly composed of (more) stable species. The question of the 

extrapolation of these results to other areas off the Rhône River mouth however still 

remains fully open due to the occurrence of strong spatial gradients and of their 

possible interactions with temporal changes in Rhône River water flow. 
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In this context, the aim of this work was to further assess the effect of changes in 

Rhône River water flows on both: (1) the quantitative and qualitative characteristics 

of surface sediment, (2) benthic macrofauna composition, and (3) the possible 

control of the latter by the former.  

 

2 Materials and Methods 

2.1 Study area 

The Rhône River hydrological basin covers an area of 97800 km² (Figure 1) 

with a mean daily flow between 602 and 11000 m3.s-1 (Pont et al., 2002; Antonelli et 

al., 2008). Low flows are usually recorded during summer whereas high flows occur 

during winter and spring (Pont, 1997). The mean daily concentration of suspended 

particulate matter (SPM) is 180 mgDW.l-1. It can decrease to 26 mgDW.l-1 during dry 

periods (Pont et al., 2002). The Rhône River accounts for about 80% of total 

particulate matter riverine inputs to the Gulf of Lions (Aloisi et al., 1977; Durrieu de 

Madron et al., 2000). There are 3 distinct sedimentary units in front of its mouth 

(Aloisi, 1986): (1) the delta front between 5 and 30 m depth, (2) the prodelta between 

30 and 60 m depth, and (3) the distal zone between 60 and 100 m. 
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2.2 Rhône River flows 

Rhône River water flow (m3.s-1) and SPM (mgDW.l-1) were measured in Arles, 

(47.5 km upstream of the river mouth, data provided by MOOSE: Mediterranean 

Ocean Observing System on Environment - http://www.moose-network.fr).  

 

2.3 Sampling 

The 5 sampled stations were located between 2 and 13 km off the Rhône River 

mouth along a gradient corresponding to the preferential direction of the river plume 

(Figure 1, Table 1). Station A was in the delta front; station B in the prodelta and 

stations N, C and D in the distal zone. Sampling took place in April 2007, May and 

December 2008 and July 2011 for: (1) sediments characteristics and (2) benthic 

macrofauna. Sediment Profile Images (SPIs) were also collected in April 2007, May 

2008 and July 2011. 

 

2.4 Sediment characteristics 

Sediment cores (9.5 cm internal diameter) were collected using an Oktopus® 

GmbH MUC 8/100 multicorer in April 2007, May 2008 and December 2008; and an 

Oktopus® GmbH MC 6 multicorer in July 2011. There were 3 cores per sampled 

station. The upper half centimetre of each core was sliced and homogenized. Each 

sample was then split in two subsamples (one for granulometry and pigment and one 
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for biochemistry) and frozen at -20°C. The subsamples used for organic carbon, total 

nitrogen and amino acids were later freeze-dried. 

Granulometry 

Sediment granulometry was assessed using a Malvern Mastersizer® 2000 

laser microgranulometer and expressed as median grain diameter (D0.5). There was 

no replicate at stations N, C and D in December 2008 and all stations in July 2011. 

Organic carbon and total nitrogen 

Organic carbon and total nitrogen concentrations (OC and TN, respectively) 

were measured on homogenized, precisely weighed samples with an automatic CN-

analyzer LECO 2000, after acidification with 2M HCl (overnight, at 50 °C) in order to 

remove carbonates prior to the analyses of organic carbon (Cauwet et al., 1990). 

Precision for OC and TN measurements are about 2 %. C/N ratios were expressed 

as atomic ratios. There was no replicate for OC in May and December 2008 and for 

TN in May and December 2008 and July 2011. 

Chloropigments 

Triplicates (100 to 500 mgFW) samples were extracted overnight (5°C in 

darkness) in 5 ml of 90% acetone (final concentration). Fluorescence measurements 

were then performed using a Perkin Elmer® LS55 spectrofluorometer according to 

(Neveux and Lantoine, 1993). This allowed for the quantification of chlorophyll-a 

(Chl-a), chlorophyll-b (Chl-b) and phaeophytin-a (Phaeo-a).  

Amino acids 
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Total hydrolysable amino acids (THAA) and enzymatically hydrolysable amino 

acids (EHAA) were analysed on triplicates. THAA were extracted by acid hydrolysis. 

EHAA were extracted following the biomimetic approach proposed by Mayer et al. 

(1995). THAA and EHAA were analysed as isoindole derivatives following reaction 

with an orthophtaldialdehyde solution (Lindroth and Mopper, 1979). During July 

2011, THAA and EHAA were quantified by fluorescence measurements (excitation 

wavelength of 340 nm and emission wavelength of 453 nm) using a Perkin Elmer® 

LS55 fluorescence spectrometer. During April 2007, May 2008 and December 2008, 

fluorescent derivatives were separated by reverse-phase high-performance liquid 

chromatography (Gynkotek-Dionex system) on a C18 HPLC column using non-linear 

gradient of methanol-acetate buffer, and detected by fluorescence at 450 nm using 

an excitation wavelength of 335 nm. 

 

2.5 Benthic macrofauna  

At each station, 5 samples of 0.1 m2 were collected using a van Veen grab, 

sieved on a 1 mm mesh and fixed (5% buffered formalin). Macrofauna were then 

sorted, identified to the lowest tractable taxonomic group and counted. 

 

2.6 Sediment Profile Images 

SPIs were collected using two similar Ocean Imaging® systems. Ten 

deployments were carried out at each station, except in May 2008 (4 deployments at 
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station A and 9 at station N due to bad weather conditions). SPIs were analyzed 

using the SpiArcBase software (Romero-Ramirez et al., 2013). 

 

2.7 Data analysis 

Sediment characteristics 

Non-Metric Multidimensional Scaling (nMDS) and hierarchical clustering 

(Euclidean distance, group average linking) were performed on normalized sediment 

characteristics (D0.5, OC, TN, THAA, EHAA, Chl-a, Chl-b, Chl-b/Chl-a, Phaeo-a, C/N, 

EHAA/THAA and Chl-a/(Chl-a+Phaeo-a)). The significance of differences among the 

groups derived from hierarchical clustering was tested using SIMilarity PROFile 

(SIMPROF) procedure (Clarke et al., 2008).  

 

Benthic macrofauna 

Total abundance, species richness (SR) and Pielou’s evenness (J’) were used 

as bulk descriptors of benthic macrofauna compositions. SR is the number of 

species present in a sample whereas J’ indicates how homogeneous is the individual 

abundance of each species within a sample. J’ is between 0 and 1. This last value 

indicates that all species are represented by the same number of individuals. 

Replicated samples were pooled and abundance-based compositions were also 

compared through nMDS and hierarchical clustering (square-root transformed data, 

Bray-Curtis similarity, group average linking). SIMPROF tests (were used together 
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with ANOSIM for the cluster composed by stations N, C and D) to assess the 

significance of internal structures in identified clusters (Clarke et al., 2008). SIMilarity 

PERcentages analyses (Clarke, 1993) were performed to identify the species 

contributing most to between-clusters dissimilarity. 

 

Relationships linking sediment characteristics and benthic macrofauna 

compositions 

A BIO-ENV procedure (Clarke and Ainsworth, 1993) was performed to identify 

the subset of sediment characteristics, which best described spatiotemporal changes 

in benthic macrofauna composition. The set of tested sediment characteristics 

included D0.5, Chl-a, Chl-b/Chl-a, Phaeo-a, Chl-a/(Chl-a+Phaeo-a), EHAA, THAA, 

EHAA/THAA, OC and C/N. The correlations of each retained environmental variable 

with benthic macrofauna compositions were assessed using Mantel tests. 

All procedures were completed using the PRIMER 6® software package. 

 

3 Results 

3.1 Rhône River flows 

Strong temporal changes in daily water and particle flows were observed 

between 2007 and 2011 (Figure 2). The May 2008 cruise took place during a flood. 

The April 2007 and December 2008 cruises took place 42 and 26 days after a flood. 
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Conversely, the July 2011 cruise took place after an extended (i.e., 191 day long) 

period of low water flows. 

 

3.2 Sediment characteristics 

Overall, sediments grains tended to be coarser and more variable in size 

among dates at station A (between 6.7 in May and 69.2 µm in December 2008; 

Table 2, Figure 3A). D0.5 at station B was between 12.9 in July and 23.9 µm in May 

2008. Surface sediments tended to be finer and less variable at stations N, C and D. 

Temporal changes in OC, TN and THAA were the lowest at stations N, C and 

D. They were the highest at station A for OC (Figure 3B) and TN, and at station B for 

THAA (Table 2). All 3 descriptors showed decreasing values offshore during April 

2007 and July 2011. Conversely, May and December 2008 were characterized by 

low values of OC, TN and THAA at station A and maximal ones at station B. This 

pattern was especially marked for THAA. 

Overall, EHAA showed the same pattern for the 3 bulk descriptors of 

sedimentary organics with: (1) high temporal changes at station A, (2) decreasing 

inshore/offshore gradients during April 2007 and July 2011, and (3) low 

concentrations at station A and the highest concentrations at station B during May 

and December 2008 (Table 2, Figure 3C). Temporal changes in EHAA at station B 

were however low. Temporal changes in Chl-a (Figure 3D) and Chl-b were high at 

station A, intermediate at station B and low at stations N, C and D (Table 2). 

Decreasing inshore/offshore gradients were marked during April 2007 and July 2011. 
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Concentrations at stations A and B were much higher during April 2007 than July 

2011. Chl-a and Chl-b concentrations were maximal at station B during May and 

December 2008. This pattern was especially marked for Chl-b during December 

2008. 

Temporal changes in C/N were highest at station A (Table 2). It was especially 

high at station A in December 2008 and tended to be highest at this particular date 

than during the 3 other cruises at all other 4 stations. Temporal changes in Chl-

b/Chl-a were the highest at station A, intermediate at station B, and low at stations N, 

C and D (Table 2). During April 2007, May 2008 and December 2008, there were 

clear inshore/offshore gradients with the highest values at stations A and B during 

December 2008. During July 2011, the highest Chl-b/Chl-a was recorded at station 

B. 

Temporal changes in EHAA/THAA were slightly higher at station A than at the 4 

other stations (Table 2, Figure 3E). EHAA/THAA always tended to be similar at all 

stations with the exception of station A during July 2011. EHAA/THAA also tended to 

be higher during July 2011 at all stations. Temporal changes in Chl-a/(Chl-a+Phaeo-

a) were higher at station A than at the 4 other stations (Table 2, Figure 3F). There 

were always strong decreasing inshore/offshore gradients. 

The nMDS (Figure 4A) confirmed that the temporal variability of surface 

sediment characteristics was higher at station A, intermediate at station B and lower 

at stations N, C and D. Station A during May 2008, and station B during July 2011, 

showed the characteristics of sedimentary organics the closest to those of stations 

N, C and D. The hierarchical clustering (Figure 4B) confirmed this pattern with the 
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identification of 4 significantly differing clusters: (I) station A in April 2007 and July 

2011, and station B in April 2007, May and December 2008, (II) stations N, C and D 

in April 2007 and May 2008, (III) stations N and C in December 2008, and (IV) 

stations C and D in July 2011. Station A in May and December 2008, station D in 

December 2008 and stations B and N in July 2011 were not included in these main 

clusters. 

 

3.3 Benthic macrofauna 

4558 specimens belonging to 142 taxa were identified. Benthic macrofauna 

was mainly composed of polychaetes (80% of total overall abundance) followed by 

crustaceans and molluscs (7% each) and minor groups, including echinoderms, 

sipunculans, echiurans, cnidarians, hemichordates, nemerteans, platyhelminthes 

and phoronideans (for a total of 6%). Sternaspis scutata (Polychaeta) accounted for 

36% of total abundance, whereas all others species accounted for less than 5% 

each. S. scutata (Polychaeta) was the top rank species at all stations except station 

A in April 2007 (Thyasira flexuosa, Mollusca), May 2008 (Heteromastus filiformis, 

Polychaeta) and December 2008 (Polycirrus sp., Polychaeta); station B during 

December 2008 (Lumbrineris latreilli, Polychaeta); and station N in May 2008 

(Poecilochaetus serpens, Polychaeta). Four taxa (S. scutata, H. filiformis, Nephtys 

kersivalensis (all Polychaeta) and nemerteans) were always present at station A 

versus 13, 12, 11 and 13 taxa at stations B, N, C and D, respectively. 

Temporal changes in abundances were higher at stations A and B, 

intermediate at station N lower at stations C and D (Table 2, Figure 5A). Abundances 
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at station A were between 144 and 1522 ind.m-2 during April 2007 and July 2011. 

Abundances at station B were between 310 and 1700 ind.m-2 during May 2008 and 

July 2011. Temporal patterns were similar at these 2 stations except for higher 

abundances at station B during April 2007. Abundances at station N were between 

238 and 622 ind.m-2 during May 2008 and December 2008. They were intermediate 

during April 2007 (358 ind.m-2) and July 2011 (426 ind.m-2). Abundances at station C 

and D were higher during April 2007 (436 and 294 ind.m-2, respectively) and July 

2011 (442 and 284 ind.m-2, respectively)) and lower during May (258 and 202 ind.m-2 

for stations C and D) and December 2008 (246 and 210 ind.m-2 for stations C and 

D). 

Temporal changes in SR were the highest at station A (Table 2, Figure 5B). 

Both the lowest (15 taxa.0.5m-2 during May 2008) and the highest SR (57 taxa.0.5m-

2 in July 2011) were recorded at this station. High SR were as well recorded at 

station B during April 2007 (39 taxa.0.5m-2), station N during December 2008 (37 

taxa.0.5m-2) and station C during May 2008 (36 taxa.0.5m-2). The only clear 

inshore/offshore gradient was recorded during July 2011 with SR ranging from 57 to 

39 taxa.0.5m-2 at stations A and D, respectively. 

J’ were between 0.55 (station C in April 2007) and 0.91 (station N in May 2008). 

They did not show any clear temporal or spatial patterns (Table 2, Figure 5C). At 

stations A and B, the lowest values were recorded during July 2011, when both total 

abundances and SR were the highest. 

The nMDS (Figure 6A) showed that temporal changes in macrofauna 

composition were highest at station A, intermediate at station B and lowest at 
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stations N, C and D. The hierarchical clustering (Figure 6B) confirmed this pattern 

with the identification of 4 clusters: (I) station A in April 2007, May and December 

2008, (II) stations A and B in July 2011, (III) station B in April 2007, May and 

December 2008, and (IV) stations N, C and D during all cruises. There was no 

internal structure within this last cluster (SIMPROF tests, p>0.05). Conversely, the 

ANOSIM test (=0.87, p=0.001) showed significant temporal changes at stations N, 

C and D.  

Average dissimilarity between groups I and II was 76.6% with Sternaspis 

scutata (12.3%, Polychaeta), Laonice cirrata (5.2%, Polychaeta), Lumbrineris latreilli 

(4.6%, Polychaeta) and Thyasira flexuosa (4.2%, Mollusca) contributing most. 

Average dissimilarity between groups I and III was 70.7% with Labidoplax digitata 

(5.2%, Echinodermata), S. scutata (5.2%, Polychaeta), L. latreilli (5.1%, Polychaeta), 

Nephtys hystricis (4.62%, Polychaeta) and Goniada maculata (4.3%, Polychaeta) 

contributing most. Average dissimilarity between groups II and III was 54.3% with S. 

scutata (11.1%, Polychaeta), L. cirrata (6.5%, Polychaeta) and T. flexuosa (5.0%, 

Mollusca) contributing most. Average dissimilarity between subgroups IVa and IVb 

was 47.5% with S. scutata (7.7%, Polychaeta), Athanas nitescens (3.9%, 

Crustacea), Harpinia dellavallei (3.3%, Crustacea), Chaetozone spp. (3.1%, 

Polychaeta) and Abra nitida (3.0%, Mollusca) contributing most. Average 

dissimilarity between subgroups IVa and IVc was 50.9% with S. scutata (4.5%, 

Polychaeta), Ampharete grubei (4.3%, Polychaeta), L. cirrata (3.4%, Polychaeta) 

and L. latreilli (3.0%, Polychaeta) contributing most. Average dissimilarity between 

subgroups IVb and IVc was 49.4% with A. grubei (5.0%, Polychaeta), L. cirrata 

(4.4%, Polychaeta) and S. scutata (3.8%, Polychaeta) contributing most. 
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3.4  SPIs 

Temporal changes in SPIs characteristics (Figure 7) were the strongest at 

station A with: (1) a very thin apparent Redox Potential Discontinuity (aRPD) layer 

and almost no biogenic structures in April 2007, (2) a thick flood layer with a few 

large biogenic structures in May 2008, and (3) an average thickness of the aRPD of 

38 mm with numerous biogenic structures including tubes in July 2011. The flood 

layer observed in May 2008 was thickest at station A and then tended to decrease 

offshore (data not shown). The aRPD at stations B, N, C and D tended to be thicker 

in May 2008 than in April 2007 and in July 2011. 

  

3.5 Relationship between sediment characteristics and benthic macrofauna 

compositions  

The best correlation (=0.795, p=0.01) between the similarity matrices of 

benthic macrofauna composition and sediment characteristics was found using D0.5, 

Chl-b/Chl-a, Chl-a/(Chl-a+Phaeo-a) and EHAA. Each of these variables correlated 

positively with benthic macrofauna composition (Mantel tests, p=0.001 in all cases). 

 



21 

 

4 Discussion 

4.1 Sampling in relation with the hydrological regime of the Rhône River 

The distinction between the 4 types of floods of the Rhône River is often based 

on SPM, with oceanic floods associated with the lowest concentrations (i.e., <500 

mgDW.l-1) (Pont, 1997). It can also rely on the activities of 238U, 232Th, 137Cs and 

(239+240)Pu (Eyrolle et al., 2012). This last approach has been used to classify Rhône 

River floods between 2000 and 2012 (Zebracki et al., 2015). The March 2007, May 

2008 and November 2008 floods were respectively classified as: oceanic, 

generalized and Cevenol. Sampling was thus associated with 3 different types of 

floods. Floods can also be of different intensities (Pont (1997); Figure 2A). In the last 

20 years, several studies have reported water flows and suspended particulate 

discharges for different time periods: 1992-1995, 2003 and 2006-2008 (Pont, 2002; 

Antonelli et al., 2008; Eyrolle et al., 2012). Maximal water flow was reported by 

Antonelli et al (2008) in December 2003 with an extreme flow of 11000 m3.s-1 for a 

total particulate discharge of 5400 103t.flood-1. Maximal suspended particulate 

discharge was of 12624 103t.flood-1 in the 1992-1995 time period. The May 2008 

flood, with a water flow of 4156 m3.s-1 and a particulate discharge of 4670 103 t.flood-

1 (Eyrolle et al., 2012), can thus be considered as reasonably strong regarding 

particle flows. Conversely, the March 2007 and the November 2008 floods (3269 

m3.s-1 and 4806 m3.s-1, respectively) can be considered as of low and intermediate 

intensity based on water flows. Another source of heterogeneity is the time lag 

between the last floods and samplings. These were 42 and 26 days in April 2007 

and December 2008, whereas the May 2008 cruise took place during the flood. The 

July 2011 cruise took place after an extended (i.e., 191 day long) period of low water 
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flows. Sampling thus proved representative of a large variety of hydrological regimes 

and therefore allows for the assessment of the responses of both surface sediment 

characteristics and benthic macrofauna composition, provided that the temporal 

dynamics of such responses are properly taken into account. 

 

4.2 Sedimentary organics  

Quantitative changes 

Previous studies have shown the occurrence of decreasing inshore/offshore 

gradient in sediment grain size (Cathalot et al., 2010; Bourgeois et al., 2011; Pastor 

et al., 2011b) and sedimentary organics concentrations (Alliot et al., 2003; Hermand 

et al., 2008; Lansard et al., 2009; Cathalot et al., 2010; Bourgeois et al., 2011). The 

resulting positive correlation between sediment grain size and sedimentary organics 

concentrations contradicts the general negative correlation linking these 2 

parameters (Mayer, 1994). This mostly results from the fact that the Rhône River 

constitutes the major source of organic inputs in the studied area (Pastor et al., 

2011b). During the present study, decreasing inshore/offshore gradients in both 

sediment grain size and sedimentary organic contents were observed during April 

2007 and July 2011. Spatial distributions differed during May and December 2008 

with: (1) much finer and much coarser sediments in the delta front, respectively; and 

(2) higher sedimentary organics concentrations in the prodelta than in the delta front 

at both dates. Differences in sediment grain size in the delta front can be related 

with: (1) the type of the last flood, and (2) the time lag between this flood and 

sampling. The occurrence of finer sediment in May 2008 probably results from the 
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fact that the May 2008 generalized flood mostly affected the Durance River, which 

required the opening of the Serre-Ponçon dam. This resulted in the liberation of large 

amounts of fine particles, which later sedimented in the delta front as indicated by 

the flood layer observed on 29th May 2008 (Figure 7). Such a pattern was not 

observed at station B, which was sampled on 28th May 2008 (i.e., just at the 

beginning of the flood). However, Cathalot et al. (2010) later observed a 30 cm thick 

flood layer with low OC on 6th June 2008 near this station. Moreover, based on the 

analysis of 7Be and 210Pbxs activities on SPM collected in Arles, Eyrolle et al. (2012) 

suggested that SPM during the May 2008 flood mostly originated from the reworking 

of old degraded soils initially trapped in the Serre-Ponçon dam, which is known to 

trap organically poor fine clay particles originating from intense erosion acting on a 

soil lacking vegetation (Pont et al., 2002). Overall, the occurrence of finer surface 

sediment grain size in the delta front than in the prodelta during May 2008 largely 

results from the fact that station B was sampled before being affected by the 

deposition of the flood layer. Accordingly, the occurrence of lower sedimentary 

organic contents in the delta front probably results from the fact that the OC of the 

sediment constitutive of the flood layer was low (Cathalot et al., 2010). 

The occurrence of sandy sediments in the delta front in December 2008 

probably results from 2 distinct processes. First, the November 2008 flood classified 

as Cevenol. Such events are sudden and result in high water and particle flows. 

Antonelli et al. (2008) found a positive correlation between SPM grain size in Arles 

and particle flow. Since, sandy particles settle quicker than fine particles, this may 

account for the occurrence of higher concentrations of sand following the flood. 

Another possible cause of the discrepancies in sediment grain size within the delta 
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front between May and December 2008 is linked to the fact that station A was 

sampled during the flood in May and 26 days after the flood in December. Prodeltaic 

systems of the Gulf of Lions are areas of transitory deposits for continental inputs, 

which are later resuspended and transferred offshore (Buscail et al., 1995; Durrieu 

de Madron et al., 2000; Ulses et al., 2008). For instance, 2 kilometres off the Rhône 

River mouth, Marion et al. (2010) observed the erosion of a 5 cm deposits within 20 

days after the November 2006 flood. Resuspension preferentially affects fines and 

mostly occurs during autumn and winter (Ulses et al., 2008). It may thus have 

contributed to clear surface sediments at station A of their finest components 

between their deposition (i.e., during the November 2008 flood) and December 2008 

sampling. The occurrence of higher sedimentary organic concentrations in the 

prodelta during December 2008 may result from the granulometry effect (Mayer, 

1994). 

 

Qualitative changes 

C/N and Chl-b/Chl-a ratios classically show decreasing inshore/offshore 

gradients off the Rhône River mouth (Lansard et al., 2009; Cathalot et al., 2010; 

Bourgeois et al., 2011). For both descriptors, results from the present study show no 

strong temporal changes except in December 2008 in the delta front and to a lesser 

extent in the prodelta where high Chl-b/Chl-a supported the contribution of 

continental plant detritus to sedimentary organics (Jeffrey, 1976; Meyers, 1994; 

Hedges et al., 1997; Tesi et al., 2007; Cathalot et al., 2013). This may be related to 

the November 2008 Cevenol flood since these events mostly originate from the 
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Cevennes area, which is densely forested. Besides changes in continental inputs, 

higher Chl-b/Chl-a close to the Rhône River mouth may also result from subsequent 

physical sorting (Tesi et al., 2007), which tends to export fine particles with lower 

contents of vascular plant detritus offshore (Goni et al., 1998; Leithold and Hope, 

1999). This pattern is supported by spatiotemporal changes in C/N. The C/N of soil 

organic matter is typically between 7 and 15 (Baldock et al., 1992). Values recorded 

during April 2007, May 2008 and July 2011 were in the upper range (11-15) with no 

clear inshore/offshore gradient. Values recorded in December 2008 were higher with 

a clear decreasing inshore/offshore gradient, which is coherent with a higher 

contribution of continental vascular plant material (C/N>20; Baldock et al. (1992)) to 

sedimentary organics, and/or a reduction of this contribution due to dilution or 

preferential degradation during the transport offshore (Baldock et al., 1992). The first 

of these 2 hypotheses is probably the most valid because C/N ratios did not 

decrease offshore during the 3 other cruises and EHAA/THAA never decreased 

offshore. 

Spatiotemporal changes in Chl-a/(Chl-a+Phaeo-a) and EHAA/THAA ratios 

clearly differed. Chl-a/(Chl-a+Phaeo-a) ratios always decreased offshore with, except 

to some extent in the delta front, no marked temporal change. Conversely, 

EHAA/THAA ratios showed no offshore gradient during either cruise but did show 

temporal changes with high values in July 2011, intermediate values in April 2007 

and low values in May and December 2008. In the delta front Chl-a/(Chl-a+Phaeo-a) 

ratios correlated negatively with Chl-b/Chl-a ratios, which is coherent with the lower 

lability classically attributed to continental than to marine plant material (Wakeham et 

al., 1997). The decreasing trend and the lack of temporal changes at higher depth 
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result from the fact that: (1) Rhône River inputs are the major source of plant 

material to the sediment/water interface of all stations, and (2) irrespective of slight 

differences in the original freshness of bulk plant materials, its most labile 

components are quickly degraded during their transfer offshore. EHAA/THAA ratios 

are indicative of a different, much larger and overall less labile component of 

sedimentary organics (Wakeham et al., 1997). The lack of offshore gradient probably 

results from the fact that the degradation taking place during the offshore transfer 

affects a minor fraction of the nitrogenous fraction of sedimentary organics. 

Conversely, the occurrence of significant temporal changes in EHAA/THAA may 

reflect differences in the lability of the nitrogenous component of sedimentary 

organics depending on seasons or hydrologic conditions of the Rhône River. Results 

from the present study suggest that such changes are mainly related with changes in 

the intensity of continental inputs with higher values during April 2007 (intermediate 

particle flow, oceanic flood) and July 2011 (low particle flow, dry period) and lower 

ones during May and December 2008 (high particle flows, generalized and Cevenol 

floods). 

   

4.3 Benthic macrofauna 

 Although still significant in the distal zone (according to the results of the 

ANOSIM test at least), temporal changes in macrofauna composition were clearly 

much more marked in the delta front and to a lesser extent in the prodelta, which is 

similar to what was observed for surface sediment characteristics.  
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In the Rhône River delta front, sedimentation rates can reach up to 0.65 cm.y-

1 (Zuo et al., 1997; Miralles et al., 2005) which, according to the model proposed by 

Rhoads et al. (1985), can account for minimal SR and abundance of benthic 

macrofauna in the delta front during April 2007, May and December 2008. The fact 

that benthic macrofauna SR (April 2007, May and December 2008) and abundances 

(April 2007) tended to be higher in the prodelta, which is located further offshore 

supports this model. Conversely, benthic macrofauna abundances in the delta front 

and the prodelta were close in May and December 2008 (i.e., following the 

generalized and Cevenol floods, respectively), which may be indicative of the 

extension of the negatively affected area during major floods and therefore also 

tends to support the Rhoads et al. (1985) model. 

The nMDS and the analysis of benthic macrofauna characteristics at stations 

A and B show that July 2011 clearly differed from the 3 other sampling dates with: 

(1) much higher abundances and SR, and (2) higher abundances of Sternaspis 

scutata (Polychaeta), Laonice cirrata (Polychaeta), Lumbrineris latreilli (Polychaeta, 

station A only) and Thyasira flexuosa (Mollusca). The extended period of reduced 

water flows before July 2011 clearly enhanced the establishment of a more mature 

benthic macrofauna community in the delta front and the prodelta. This community 

included both tube-dwelling and deep-burrowing macrofauna as indicated by 

sediment profile imagery in the prodelta (Figure 7). More generally, July 2011 

corresponded to the inshore enlargement of the spatial distributions of several 

species including Abra nitida (Mollusca), Abyssoninoe hibernica (Polychaeta), 

Alpheus glaber (Crustacea), Ampharete grubei (Polychaeta), Apseudes spp. 

(Crustacea), Chaetozone spp. (Polychaeta), Goniada maculata (Polychaeta), L. 
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cirrata (Polychaeta), Malmgrenia lilianae (Polychaeta), T. flexuosa (Mollusca) and 

Thysanocardia procera (Sipunculida), which were found up to the delta front. Such a 

positive effect of low flow on benthic macrofauna abundance and SR has already 

been reported for several major rivers (Aller and Stupakoff, 1996; Occhipinti-Ambrogi 

et al., 2005). This supports previous observations (on an annual basis and without 

any time lag in the response of benthic polychaete fauna to changes in Rhône River 

flow) by Harmelin-Vivien et al. (2009) and is also in good agreement with the Rhoads 

et al. (1985) model.  

SPI data suggest an almost immediate impact of the May 2008 flood in the 

delta front with the onset of the deposition of a flood layer only 1 day after the 

beginning of the flood event (Figure 7). Together with subsequent observations by 

Cathalot et al. (2010) (see above) they suggest an almost immediate effect of the 

hydrological regime of the Rhône River on the composition of benthic macrofauna 

within its delta front and prodelta. Moreover, the analysis of temporal changes in 

benthic macrofauna compositions in the delta front and the prodelta shows that May 

2008 (during a generalized flood) was intermediate between December 2008 (26 

days after a Cevenol flood) and April 2007 (42 days after an oceanic flood). This 

underlines the importance of the type of floods relative to the time lag between last 

flood and sampling in affecting benthic macrofauna composition within the delta 

front.  

Spatiotemporal changes in benthic macrofauna composition were much more 

reduced in the distal zone. Salen-Picard et al. (2003) reported a high interannual 

variability at a 70 m deep station which was attributed to interannual changes in the 

hydrological regime of the Rhône River. The results of the ANOSIM test support the 
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existence of such variability, even though the overall weakness of differences in 

benthic macrofauna composition associated with 4 contrasted hydrological 

conditions clearly complicates the assessment of a causal relationship between 

water flows and benthic fauna compositions. The analysis of between-cruises 

similarities in benthic macrofauna compositions at stations in the distal zone shows 

that July 2011 was closest to December 2008 and farthest from April 2007, which 

differs from what was observed in the delta front and prodelta (see above). The 

balance between the 2 opposite effects constitutive of the Rhoads et al. (1985) 

model thus clearly differs in the delta front and in the distal zone. In the former, 

negative effects are most pronounced due to high sedimentation (Zuo et al., 1997; 

Miralles et al., 2005) and direct inputs of POM are occasionally so high that they 

negatively affect benthic macrofauna (Pearson and Rosenberg, 1978; Labrune et al., 

2012). Conversely, disturbances resulting from sedimentation and direct POM inputs 

are much smaller in the distal zone, which tend to switch the overall balance of the 

effects of floods towards positive values. Such discrepancies between the delta front 

and the prodelta, and the distal zone probably account for differences in the nature 

and the intensity of the response of benthic macrofauna composition to changes in 

the hydrological regime of the Rhône River. They are as well likely to account for 

differences in the time lag associated with these responses since the negative effect 

of sedimentation is almost immediate (Wheatcroft, 2006), whereas, for some feeding 

types at least, the response to changes in POM availability is much longer (Salen-

Picard et al., 2003). 
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4.4 Relationship between sediment characteristics and benthic macrofauna 

Sediments characteristics, in general, and organic matter availability, in 

particular, are known to largely control both the spatial and temporal patterns of 

benthic macrofauna composition (Pearson and Rosenberg, 1978; Grémare et al., 

2002; Labrune et al., 2012). The other way around, benthic macrofauna may also 

alter both the physical and biogeochemical properties of marine sediments through 

nutrition and/or bioturbation (Meysman et al., 2006; Bernard et al., 2012). Both of 

these interactions may contribute to the correlation between sediment characteristics 

and benthic macrofauna composition. Based on the sampling of 16 stations during 

April 2007, Labrune et al. (2012) reported that spatial changes in benthic 

macrofauna composition off the Rhône River mouth correlated with the OC contents 

of surface sediments. Pastor et al. (2011b) reported a similar correlation between 

OC and benthic oxygen consumption, with no significant effect of the quality/lability 

of sedimentary organics, which they attributed to the strong dominance of the 

organic matter source constituted by the inputs from the Rhône River. Results from 

the present study show that spatiotemporal changes in benthic macrofauna 

composition are best described when combining 4 factors including D0.5, EHAA, Chl-

a/(Chl-a+Phaeo-a) and Chl-b/Chl-a. Besides sediment granulometry (D0.5), these 

include a quantitative descriptor of a labile component of sedimentary organics 

(EHAA) and a qualitative descriptor of sedimentary organics (Chl-a/(Chl-a+Phaeo-

a)). Results from the present study thus support the better correlation found between 

meiofauna abundance and quantitative descriptors of labile (i.e., EHAA and lipids) 

rather than bulk (i.e., OC, TN and THAA) components of sedimentary organics 

already found in the open Gulf of Lions (Grémare et al., 2002). Moreover, they 
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suggest that temporal changes in the quality of sedimentary organics in relation with 

changes in the hydrological regime of the Rhône River contribute to control temporal 

changes in the composition of benthic macrofauna. 

There are however several lines of evidences suggesting that these 

parameters are not the only ones accounting for differences between the 

compositions of benthic macrofauna during July 2011 and the 3 other dates. First, 

OC and EHAA contents in the delta front and the prodelta were almost equivalent 

during April 2007 and July 2011, whereas the characteristics and the compositions of 

benthic macrofauna conversely strongly differed between these 2 dates. Second, the 

co-variation between abundance, SR and J’ did not match the classical Pearson and 

Rosenberg (1978) model since low evenness were associated with high abundances 

but also with high SR during July 2011. It is therefore likely that spatiotemporal 

changes in benthic macrofauna composition were also affected by other factors than 

the Rhône River water flow and resulting organic inputs. High abundances of small 

individuals of the dominant polychaete Sternaspis scutata (Polychaeta) during July 

2011 may for instance result from a recent recruitment. This hypothesis is consistent 

with the reported preferential recruitment of this species during summertime in the 

Chinhae Bay (Lim and Hong, 1996). However, Hermand et al. (2008) reported the 

preferential recruitment of S. scutata (Polychaeta) during wintertime (i.e., December 

and January) off the Rhône River, which suggest that high abundances of S. scutata 

(Polychaeta) in the delta front and the prodelta in July 2011 are indeed associated 

with low water fluxes and do not result from an interaction with its lifecycle. This is 

further supported by the fact that low water flow periods are known to enhance the 
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colonization of more inshore zones of the Amazon continental shelf by juveniles of 

benthic macrofauna (Aller and Stupakoff, 1996). 
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Table 1 : Latitude, longitude (WGS84, degrees and decimal minutes), depth and 1 
distance from the Rhône River mouth of the 5 sampled stations. 2 

Station 
Latitude 

(N) 
Longitude 

(W)  
Depth 
 (m) 

Distance from 
the Rhône River 

mouth (km) 

A 43°18.690’ 04°51.042’ 24 1.9 

B 43°18.013’ 04°50.068’ 54 3.0 

N 43°17.626’ 04°47.896’ 67 5.5 

C 43°16.343’ 04°46.565’ 76 8.6 

D 43°14.917’ 04°43.613’ 74 13.0 

 3 



2 

 

Table 2: Mean values of surface sediment and benthic macrofauna characteristics. Sta: Stations, D0.5: median grain size, OC: organic carbon, 
TN: total nitrogen, C/N: ratio between organic carbon and total nitrogen, Chl-a: chlorophyll-a, Chl-b: chlorophyll-b, Chl-b/Chl-a: ratio between 
chlorophyll-b and chlorophyll-a, Phaeo-a: phaeophytin-a, Chl-a/(Chl-a+Phaeo-a): ratio between chlorophyll-a and the sum of chlorophyll-a and 
phaeophytin-a, EHAA: enzymatically hydrolysable amino acid, THAA: total hydrolysable amino acid, EHAA/THAA: ratio between enzymatically 
and total hydrolysable amino acids, SR: species richness and J’: Pielou’s evenness. ± standard deviation (n=3). 

Cruise Sta. 
Sampling 

date 

D0.5 
(0-0.5mm) 

(µm) 

OC 
(%DW) 

TN 
(%DW) 

C/N 
(atomic ratio) 

Chl-a 
(µg.g

-1
DW) 

Chl-b 
(µg.g

-1
DW) 

Chl-b/Chl-a 
(%) 

Phaeo-a 
(µg.g

-1
DW) 

Chl-a/(Chl-
a+Phaeo-a) (%) 

EHAA 
(mg.g

-1
DW) 

THAA 
(mg.g

-1
DW) 

EHAA/THAA 
(%) 

Abundance 
(ind.m

-2
) 

SR 
(taxa.0.5m

-2
) 

J’ 

April 
2007 

A 4/20/2007 37.40±3.05 1.83±0.18 0.17±0.004 12.90±1.42 9.78±0.82 01.38±0.06 14.20±0.82 20.51±1.49 32.26±0.52 1.17±0.19 3.77±0.30 28.21±1.07 144 20 0.88 

B 4/20/2007 14.83±0.55 1.53±0.08 0.15±0.003 12.10±0.45 4.99±0.49 0.51±0.06 10.17±0.24 21.76±1.24 18.62±0.88 0.86±0.05 3.14±0.03 27.49±1.76 642 39 0.69 

N 4/24/2007 14.01±2.42 1.19±0.21 0.10±0.002 13.46±2.11 2.57±0.60 0.18±0.13 6.29±4.33 14.31±0.18 15.13±2.95 0.68±0.02 2.82±0.35 24.52±2.67 358 26 0.68 

C 4/23/2007 11.38±1.12 1.20±0.05 0.11±0.003 12.78±0.63 1.64±0.12 0.06±0.05 3.79±3.63 12.19±1.19 11.90±0.48 0.69±0.03 2.38±0.07 28.91±1.99 436 34 0.55 

D 4/23/2007 10.45±0.22 1.02±0.03 0.11±0.001 11.23±0.38 1.56±0.29 0.00 0.00 13.76±2.83 10.21±0.43 0.72±0.04 2.54±0.09 28.17±1.85 294 34 0.68 

May 
2008 

A 5/29/2008 6.74±0.63 1.13 0.09 14.81 3.07±0.43 0.29±0.07 9.47±2.84 4.58±0.57 40.16±0.77 0.43±0.04 2.18±0.13 19.68±0.80 178 15 0.73 

B 5/28/2008 23.87±6.67 1.75 0.17 12.3 3.80±0.63 0.31±0.09 8.02±1.65 17.70±1.11 17.60±1.52 0.93±0.12 5.62±0.63 16.57±1.47 310 28 0.82 

N 5/30/2008 10.65±1.90 1.00 0.10 12.03 1.62±0.59 0.07±0.06 3.48±3.41 12.31±6.59 14.14±8.60 0.49±0.05 2.57±0.20 19.05±2.38 238 28 0.91 

C 5/30/2008 14.51±1.39 1.16 0.10 13.01 1.48±0.62 0.05±0.06 2.83±2.64 8.37±0.21 14.82±5.36 0.52±0.01 2.69±0.11 19.48±1.03 258 36 0.87 

D 06/08/2008 11.37±1.27 1.00 0.10 12.03 0.09±0.13 0.00 0.00 5.47±2.24 1.30±1.84 0.51±0.14 2.33±0.50 21.73±1.36 202 24 0.80 

December  
2008 

A 12/04/2008 69.18±19.22 1.22 0.05 28.15 2.14±1.06 0.56±0.31 25.71±5.52 6.49±3.43 24.83±1.86 0.41±0.20 2.57±1.37 16.27±0.70 260 21 0.75 

B 12/03/2008 21.58±3.85 1.96 0.13 18.09 5.01±0.80 1.05±0.12 21.05±0.99 17.45±0.98 22.20±1.87 0.83±0.04 5.48±0.59 15.25±1.07 344 32 0.83 

N 12/08/2008 13.58 1.36 0.10 16.28 1.47±0.21 0.05±0.02 3.53±0.74 13.17±1.04 10.03±1.41 0.61±0.06 3.06±0.11 19.87±2.65 622 37 0.64 

C 12/04/2008 17.11 1.49 0.10 18.01 0.98±0.20 0.00 0.00 13.28±0.72 6.85±1.00 0.55±0.05 3.05±0.27 18.07±0.95 246 25 0.78 

D 12/08/2008 15.57 1.16 0.08 16.08 0.18±0.03 0.00 0.00 10.77±1.31 1.66±0.28 0.45±0.06 2.53±0.13 18.01±2.54 210 28 0.78 

July 
2011 

A 7/26/2011 26.08 1.80±0.14 0.15 14.03 5.94±0.91 0.59±0.21 9.86±7.14 7.14±0.07 45.22±3.92 1.13±0.02 2.96±0.21 38.44±2.25 1522 57 0.61 

B 7/21/2011 12.92 1.54±0.14 0.14 12.98 1.04±0.54 0.17±0.11 15.85±6.52 6.52±1.90 13.24±2.62 0.81±0.07 2.71±0.20 30.04±2.12 1700 45 0.57 

N 7/30/2011 11.07 1.25±0.05 0.11 12.91 0.80±0.29 0.06±0.02 06.93±4.13 4.13±0.52 15.89±3.21 0.66±0.05 2.02±0.12 32.58±0.97 426 41 0.85 

C 7/25/2011 10.32 1.21±0.10 0.09 15.7 0.39±0.17 0.00 0.00 3.25±0.21 10.72±4.90 0.65±0.00 2.03±0.06 32.14±1.12 442 41 0.69 

D 7/28/2011 9.88 1.08±0.03 0.08 15.36 0.43±0.02 0.00 0.00 3.78±0.10 10.27±0.67 0.62±0.07 1.88±0.09 32.62±2.18 284 39 0.83 

 



Figure Captions 

Figure 1: Delimitations of the different Rhône River basins (A) (from Antonelli et al., 2008) and 

locations of the 5 sampled stations within the Rhône River mouth area (B) (Gulf of Lions, North-

Western Mediterranean Sea). 

Figure 2: Temporal changes in Rhône River mean daily water flow (A) and suspended particulate 

matter (SPM) (B) between 2007 and 2011. Vertical dashed lines indicate the last floods (> 3000 

m3.s-1) recorded before the 4 sampling cruises (vertical grey lines). The first 3 floods were 

characterized by Zebracki et al. (2015) and the last one based on SPM. 

Figure 3: Spatiotemporal changes in surface sediment characteristics: D0.5: median grain size (A), 

OC: organic carbon (B), EHAA: enzymatically hydrolysable amino acids (C), Chl-a: chlorophyll-a 

(D), EHAA/THAA: ratio between enzymatically and total hydrolysable amino acids (E) and Chl-

a/(Chl-a+Phaeo-a): ratio between chlorophyll-a and the sum of chlorophyll-a and phaeophytin-a 

(F). Vertical bars are standard deviations. 

Figure 4: Non-metric Multidimensional Scaling (nMDS) (A) and hierarchical clustering (Euclidean 

distance and average group method) (B) of normalized surface sediment characteristics. Grey 

lines indicate groups of samples (combinations of stations and dates), which do not show 

significant differences in their characteristics (SIMPROF test, p>0.05). Letters refer to stations and 

symbols to dates. 

Figure 5: Spatiotemporal changes in benthic macrofauna main characteristics: abundance (A), 

species richness (B) and Pielou’s evenness (C). 

Figure 6: Non-metric Multidimensional Scaling (nMDS) (A) and hierarchical clustering (Bray-Curtis 

similarity and average group method) (B) of macrofauna abundance data (square-root 

transformed). Grey lines indicate groups of samples (combinations of stations and dates), which 

do not show significant difference in their macrofauna composition (SIMPROF test, p>0.05). 

Letters refer to stations and symbols to cruises.  



Figure 7: Examples of sediment profile images collected at 3 stations along the main 

inshore/offshore gradient (stations A, B and C) during 3 different cruises (April 2007, May 2008 

and July 2011). The aRPD (apparent Redox Potential Discontinuity) is drawn in blue and the flood 

layer in light blue. Biogenic structures are also highlighted: OV: oxic voids (red), T: tubes (yellow), 

B: burrow (white), I: infauna (green). 
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