
HAL Id: hal-01090435
https://hal.science/hal-01090435

Submitted on 3 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct and Indirect Multi-Touch Interaction on a Wall
Display

Jérémie Gilliot, Géry Casiez, Nicolas Roussel

To cite this version:
Jérémie Gilliot, Géry Casiez, Nicolas Roussel. Direct and Indirect Multi-Touch Interaction on a
Wall Display. IHM’14, 26e conférence francophone sur l’Interaction Homme-Machine, Oct 2014, Lille,
France. pp.147-152, �10.1145/2670444.2670445�. �hal-01090435�

https://hal.science/hal-01090435
https://hal.archives-ouvertes.fr


Direct and Indirect Multi-Touch
Interaction on a Wall Display

Jérémie Gilliot1, Géry Casiez2 & Nicolas Roussel1

1Inria Lille, 2Université Lille 1, France
{jeremie.gilliot, nicolas.roussel}@inria.fr, gery.casiez@lifl.fr

ABSTRACT

Multi-touch wall displays allow to take advantage of co-
located interaction (direct interaction) on very large sur-
faces. However interacting with content beyond arms’
reach requires body movements, introducing fatigue and
impacting performance. Interacting with distant content
using a pointer can alleviate these problems but intro-
duces legibility issues and loses the benefits of multi-
touch interaction. We introduce WallPad, a widget de-
signed to quickly access remote content on wall displays
while addressing legibility issues and supporting direct
multi-touch interaction. After briefly describing how we
supported multi-touch interaction on a wall display, we
present the WallPad widget and explain how it supports
direct, indirect and de-localized direct interaction.

Key Words

Multi-touch; large display; direct interaction; indirect
interaction; de-localized interaction.

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation (e.g. HCI):
User interfaces.

INTRODUCTION

Multi-touch wall displays make it possible for one or more
people to interact with computing systems on an unprece-
dented scale. Co-localized touch-based interaction with
the displayed content contributes to a high feeling of di-
rectness, but interaction with remote content can quickly
become tiring and inefficient due to the required body
movements. Objects of interest might be hard to perceive
and reach if at the opposite end of the display, for exam-
ple. Moving closer might help perceive them, but the ob-
jects might still remain out of arm’s reach. Other users
might also be standing on the way, or one might not want
to move for some reason. These problems are even more
acute when using legacy applications originally designed
for smaller screen sizes: desktop applications heavily rely

on widgets that can not be moved easily (e.g. menus, tool-
bars and scrollbars) and that are automatically placed in
locations far from ideal on large displays, for example.

Specific techniques are direly needed to properly support
multi-touch interactions with legacy and modern applica-
tions on large displays. Previous work has investigated the
combination of direct and indirect interaction [7], tech-
niques to bring remote objects within arm’s reach [2, 3]
and interaction at a distance through an on-screen por-
tal [10] or a mobile device [5]. However each of these so-
lutions provides only partial answers to the above issues
and multi-touch interaction at a distance in a multi-user
context introduces additional challenges. In this paper, we
present WallPad, a widget designed to address all of the
above issues and the limitations of the current state of the
art. WallPad supports elegant creation through a simple
gesture, easy access to remote content, and precise direct,
indirect and de-localized multi-touch interaction with it.

After a description of the context and our original moti-
vation for this work, we present WallPad and its different
features before presenting and discussing previous works
related to multi-touch interaction on large displays.

CONTEXT AND MOTIVATION

Most Virtual Reality rooms built in the 1990s and 2000s
were based on a large stereoscopic display. They typically
used a 3D tracking system to support interaction with the
virtual world, and a mouse and a keyboard to interact with
the operating system and auxiliary 2D applications. At the
time of their design, these VR rooms were clearly techno-
logically advanced and considerable amounts of money
were spent to realize them. But as interactive surfaces
have become more and more popular in other contexts,
the lack of support of their wall display for touch-based
interaction certainly contributes to a diminished interest in
them today. Our motivation for this work was the desire
to upgrade an existing VR room to support multi-touch
interactions.

Despite the many hardware and software technologies
available for multi-touch interaction, supporting it in a
VR room actually remains quite a challenge. The room
configuration is often the result of different trade-offs and
so cannot necessarily be easily changed. The screen is
seldom flat and the image often produced by a carefully
calibrated multi-projector system, for example. Ideally,
one would like the hardware and software additions for
multi-touch sensing to be cheap, easy to set up and with

147

147

© ACM, 2014. This is the author's version of the work. It is posted here by 

permission of ACM for your personal use. Not for redistribution. The definitive 

version was published in Actes de la 26ième conférence francophone sur l'Interac-

tion Homme-Machine, 2014.

http://dx.doi.org/10.1145/2670444.2670445

Session 5 : Interactions en situation spécifique IHM'14, Villeneuve d'Ascq, France



Figure 1. Raw images from our four cameras. The dark spots are
caused by camera lens or filter stains.

a minimal impact on the exiting uses of the room for VR
applications, including the use of legacy 2D applications.

Initial room configuration

Inaugurated in 2006, the VR room in our research facil-
ity included about 400 ke worth of equipment including
a large display wall. The screen of this display is made of
a 5.96 m × 2.43 m × 7 mm acrylic layer constrained by a
frame to follow a curved cylinder shape (76 cm sagitta)
and coated on the front with a diffuser. Two specifi-
cally calibrated stereo projectors placed behind it make
it possible to seamlessly display a composite image of
2392×1050 pixels.

To support multi-touch on such a large surface, optical
sensing seemed the most affordable and practical solution.
As the room had been literally built around the screen,
changing the acrylic layer for an Endlighten1 one or tak-
ing apart its frame to put LEDs on its side was not an op-
tion. Diffused surface illumination (DSI) and frustrated
total internal reflection (FTIR) were thus quickly ruled
out. The curved shape of the screen also ruled out laser
and LED light planes (LLP and LED-LP). Rear diffuse
illumination (DI) had been successfully used by the Uni-
versity of Groningen for their Reality touchscreen2, with
1000 LEDs. We tried a similar approach by placing two il-
luminators taken from an Immersion iliGHT table behind
our screen, but this did not work well. We had great dif-
ficulties achieving homogeneous rear IR illumination, the
shininess of the acrylic layer causing numerous reflections
and saturated areas.

During our tests, however, we observed that the room’s
lighting system emitted enough light in the IR spectrum
to provide homogeneous front illumination. We thus de-
cided to take advantage of this, acquired the appropriate
hardware and started developing the necessary software
to detect and analyze the IR shadows on the screen.

Hardware additions

The room’s lighting system consists of 15 lamps attached
to the ceiling plus 4 omni-directional ones on the walls
and 4 others on the ground. All lamps are regular halogen
bulbs which we set to their maximum intensity for maxi-
mum IR illumination.

1http://openmaterials.org/

materials-101-light-diffusing-acrylic/
2http://www.rug.nl/science-and-society/

centre-for-information-technology/hpcv/nieuws/

touchscreen1

Figure 2. Background subtraction (middle) and adaptive
thresholding (right) when touching the screen (left).

We use four IDS UI-1220LE cameras equipped with
Tamron 13VM2811ASIR lenses and visible light filters
(750 nm high-pass filters) to capture the entire screen3.
The cameras are positioned in portrait mode behind the
screen, outside of the projection volume. The overlapped
region between two cameras is about 30 cm large. The
four cameras are connected to a PC (2.66 GHz Intel Xeon,
4 GB RAM, Windows 7) running a custom software that
processes the four 752×480 images at 60 Hz and sends
contact information to the machine in charge of the dis-
play over UDP.

Software additions

Starting from raw images like those of Figure 1, our soft-
ware detects projected shadows and analyzes them to gen-
erate touch events. Like in a stadium where players have
several shadows in different directions, the plurality of IR
sources allows to discriminate contact points (where shad-
ows converge) from the penumbra created by objects and
people further away from the screen.

Our software uses the IDS SDK to adjust the settings (e.g.
the exposure time) and retrieve images from the four cam-
eras. The images are then processed using OpenCV, the
cameras having been calibrated using a classical black-
white chessboard. Each image is first corrected for barrel
distortion. A background image taken while the room was
empty is subtracted from it, which removes everything but
the shadows (Figure 2, middle image). A Gaussian adap-
tive thresholding function with a 13×13 neighborhood is
used to preserve only the darkest areas (Figure 2, right).
Blobs are then extracted from these areas, filtered using
size (minimum and maximum) and aspect-ratio thresh-
olds, and geometrically corrected for on-screen projec-
tion. The blobs found in the four images are finally
merged based on a distance threshold, labeled, and seri-
alized as a TUIO bundle sent over the network.

The geometric correction for projection compensates the
strong distortion caused by the curved shape of the screen
and the positioning of the cameras near the floor. The
curved screen is approximated by 10×6 flat rectangles, a
classical homography being applied on each one to define
the projection from the camera image to the screen.

Our system can detect 50+ simultaneous contacts with a
precision between 3 and 5 mm (at the bottom and top of
the screen) and an average overall latency of 140 ms (in-
cluding 30 ms for image processing). With the configured
thresholds, fingers are detected from 1 cm away from the

3The total cost for each camera is about 340 e

148

148

Session 5 : Interactions en situation spécifique IHM'14, Villeneuve d'Ascq, France



Figure 3. WallPad in a drawing application. The widget comprises
a rectangular touch sensitive area (a) with a button below (b).

Finger drags in the touch sensitive control the relative position of
the pointer (c). The region around the pointer is displayed in the

touch sensitive area. Each WallPad button and pointer have a
unique color to help disambiguating them.

screen, which is hardly perceivable when touching an ob-
ject but can be annoying when tapping as it requires larger
finger movements. The calibrations of the cameras and
projection are good enough so that users do not notice any
offset between their finger(s) and the detected contact(s).
The overall result is actually surprisingly good consider-
ing the small additions we made to the room equipment.
Yet multi-touch sensing is not enough. Specific interac-
tion techniques are also required to support usable multi-
touch interactions with legacy (often 2D) and custom ap-
plications.

WALLPAD

WallPad4 is a new widget we designed to ease multi-touch
interaction on wall displays. It supports the creation of
proxy views in an easy and elegant way to bring dis-
tant interface regions within arm’s reach. It is intended
to help improving distant objects legibility through these
views, ease switching between direct multi-touch inter-
action within them and indirect cursor-based interaction
through them, and support fast and precise remote cursor
manipulation through non-linear transfer functions. In the
following, we describe the WallPad widget from its use
as a regular touchpad to more sophisticated interactions,
detailing its creation, moving, resizing and dismissal.

Regular Touchpad Use

To ease learning for novice users, WallPad was designed
to operate by default as a conventional touchpad. Its vi-
sual representation is similar to one, comprising a rect-
angular touch sensitive area with a button below (Figure
3). As WallPad appears on top of existing applications, its
representation is semi-transparent to reduce occlusion and
visual clutter. Any finger drag in the rectangular area al-
lows to relatively position a distant arrow-shaped pointer
through a non-linear transfer function designed to easily
cover large distances while preserving precise positioning
(pointer movements are scaled down when movements are
slow and scaled up when they are fast). We used a transfer

4the source code and video are available at
http://ns.inria.fr/mint/WallPad

Figure 4. (a) WallPad screen capture in the de-localized direct
interaction mode: WallPad is opaque to the background. (b)

WallPad extended border after pressing the wrench button: the
widget can be moved and resized. (c) Minimized view after pressing

the minimized button.

function similar to the one used by OS X for real touch-
pads [4]. To reduce clutching after a drag has been ini-
tiated, finger tracking is not limited to the WallPad wid-
get area during this operation. Taps on the button produce
click events. As distant objects can be hard to perceive, the
rectangular area displays a 1:1 view of the region under-
neath the pointer (clipped to the widget area, see Figure
3a) which allows to precisely position it, to select small
objects or read small texts for example.

De-localized Direct Interaction

WallPad also allows to directly interact with the objects
presented in the local rectangular view of the distant area
(de-localized direct interaction). Single and double taps
on the objects displayed in the rectangular region are
passed to their remote location. Thus, users can directly
select menu items or icons shown in the proxy view in-
stead of having to first bring the pointer on the objects
of interest and second pressing the button to select them
(Figure 3a). Items are selected on touch release events to
prevent selecting objects when the rectangular area is used
as a regular touchpad.

Multi-touch object manipulation is enabled after holding
a finger steady in the widget for 0.5s or touching it with
several fingers. The view is turned from semi-transparent
to opaque when multi-touch interaction is engaged to pro-
vide a visual feedback of the quasi-mode change and sug-
gest objects can be further manipulated (Figure 4a). Con-
tact areas are displayed as little colored disks around the
pointer at the remote location to provide awareness to
other users. WallPad remains in this mode for 0.5 s after
the last contact is lost to support clutching while dragging
objects.

WallPad LIFE CYCLE

The soft-aspect [11] of WallPad allows to create as many
devices as needed, with different sizes and positions.

Creation gesture

WallPads can be dynamically created, moved, resized and
dismissed. Creating one requires the use of an unambigu-
ous gesture to prevent unexpected apparition. After con-
sidering different alternatives, we came up with the idea
of bringing out a pointer from a finger. The corresponding
gesture consists in first touching the display with a finger
and, while keeping this first finger steady on the surface,

149

149

Session 5 : Interactions en situation spécifique IHM'14, Villeneuve d'Ascq, France



Figure 5. A user creating a WallPad (a). Another using two WallPads to select (b) some text (c) and click (d) on Copy/Paste buttons (e)
beyond reach. A third user accessing a color palette located at the bottom of the screen through a WallPad (f).

Figure 6. Creating a WallPad (shown here on a 3M multi-touch
screen for clarity). From left to right: the user first slides a finger
along a finger that remains steady on the surface and continues
sliding on the display up to a distance threshold after which the

WallPad is created. Feedback and feed-forward help knowing the
gesture has been correctly recognized and predict when the
WallPad will be created and where the pointer will appear.

using a finger from the other hand to slide on the first one
up to the display and continue sliding for a given distance
threshold (Figure 6). Once the sliding finger touches the
display, specific feedback (a line and a disk) is used to in-
dicate the gesture has been successfully recognized (Fig-
ure 5a). It is then used as feed-forward to show where
the pointer will be created (Figure 6). The creation can
be canceled by either removing the first finger or by not
crossing the distance threshold with the second finger.

During our tests, we never faced ambiguous detection
with other gestures such as pinch or rotate. This type of
gesture can be easily extended to create other widgets. A
virtual keyboard could be created by sliding two fingers
instead of one, for example. The WallPad creation ges-
ture could have interfered with the two finger scale ges-
ture, but this one is usually performed by moving the fin-
gers in opposite directions while our gesture expects the
first finger to remain steady. The chosen gesture specifies
both the desired widget location and the initial location of
the cursor. It does not allow to create cursors in out-of-
reach regions, but the relative non-linear mapping allows

to quickly move newly created cursors to these regions.
A unique color is associated to each WallPad (button and
pointer) to help disambiguate them.

Dynamic and reconfigurable aspects

A WallPad can be moved or resized after pressing the
wrench icon to highlight a border around it (Figure 4b).
Touching the border with one finger allows to move the
WallPad while using two fingers allows to resize it. Re-
sizing is especially useful when one wants the WallPad to
fit the shape of a remote toolbar, for example (Figure 5f).
It is also useful for adjusting the size of the working area
when using the de-localized direct interaction (Figure 5b).
The ability to create multiple local proxies for distant rect-
angular regions is somewhat similar to what WinCuts [17]
and the User Interface Façades [16] support on desktop
systems.

WallPads can be minimized by pressing a specific icon lo-
cated below the wrench one (Figure 4c). Minimized Wall-
Pad appear as a small square buttons with a 20 mm side
(Figure 5d). Once minimized, the corresponding pointer
can no longer be moved (a drag gesture on a minimized
widget moves it, not the corresponding pointer). How-
ever single and double tap events are still forwarded to
it. Minimized WallPad are useful to reduce visual clutter
and occasionally press a button which is far away such as
undo/redo or copy/paste buttons (Figure 5d,e). Finally, a
WallPad can be dismissed by hitting the cross button (Fig-
ure 4c).

Remote WallPad pointers are treated as ordinary graphical
objects and can be directly manipulated. This is particu-
larly useful when a pointer gets in the way of a remote
user, by occluding some information for example. That
user could simply move the pointer aside. This feature
can also ease collaboration, a remote user having the pos-
sibility to position another user’s pointer where he wants
her to do something.

RELATED WORK AND DISCUSSION

Multi-touch walls afford co-localized interaction with
screen content (direct interaction), a convenient way to

150

150

Session 5 : Interactions en situation spécifique IHM'14, Villeneuve d'Ascq, France



interact with objects within arm’s reach. Yet interacting
with farther objects quickly becomes tiring and inefficient
because of the required body movements. To alleviate
this problem a common solution is to interact indirectly
with these remote objects using a pointer controlled with
a relative mapping (indirect interaction). For example Hy-
bridPointing [7] was designed to switch from direct to in-
direct pen interaction on large displays by catching and
releasing a trailing widget. Alternatively, objects can be
thrown to distant locations but it can make precise posi-
tioning difficult [9]. The SurfaceMouse [1] emulates a
desktop mouse on multi-touch surfaces to control a sin-
gle cursor with a relative mapping. The Surface mouse
is activated when the wrist and five fingers are in contact
with the surface. Tangible tools have also been used to
switch between direct and indirect interaction but they are
not very practical with vertical surfaces [19]. However
even if these techniques allow to switch between direct
and indirect interaction using different methods, they only
support single point interaction.The Rizzo virtual mouse
allows to control a virtual pointer using a relative mapping
while a magnified view of the remote objects is displayed
near fingertips [18]. This improves the problem of legi-
bility with distant objects but Rizzo was not designed to
be used together with co-located interaction on the objects
of interest nor does it support the manipulation of remote
objects with multi-touch gestures.

Instead of controlling a cursor to interact with remote ob-
jects, Drag&Pop [2] and the Vacuum widget [3] allow
to temporarily bring distant targets within arm’s reach to
interact with them. However, these techniques require
knowledge about the objects of interest which makes them
unsuitable for interaction in empty spaces, when drawing
for example. Instead of providing access to selected re-
mote objects, WIM [15] allows to interact with any distant
object of a 3D scene by presenting a miniature view of the
whole scene. In practice, interaction with small objects
is rather difficult, especially in the case of large scenes
of course. Back in the 2D world, rather than showing
a miniature view of the whole workspace, Frisbee [10]
brings a delimitated (round) part of it within arm’s reach.
Users can directly manipulate remote objects through this
duplicated view, without the need for a remote pointer.
However the absence of a pointer at the remote location
can actually be a problem in multi-user situations, if some-
one else is working in the same area. Tablecloth [13],
which temporarily moves desktop portions, is also badly
suited for multi-user situations as it would alter everyone’s
view of the display. Personal devices are sometimes used
to support multi-user interaction with remote objects [5,
14, 12]. Yet interaction with a large display on a small
separate input surface poses a lot of other questions [8].

Like the closest technique in the literature, Frisbee, Wall-
Pad allows to create, reposition and resize a local view on
a remote space and and to refine one’s focus in that space.
The main difference between the two lies in the interac-
tion with distant objects. With Frisbee, since interaction
can only take place in the local view, one has to make sure
that all the objects and areas of interest for the task are
locally visible beforehand. WallPad supports this mode
of operation, but also pointer-based interaction in the re-

mote space. This in turn supports situated, unprepared
interactions, and not just planned ones. The display of a
pointer for action at the remote location instead of a disk
shape corresponding to the local view’s focus also has a
profound impact on multi-user interaction. It reduces vi-
sual clutter and allows users to know what others are do-
ing, and not just where they are generally looking. The
use of multiple Frisbees is mentioned in [10], but only as
a design enhancement “to support large-scale workspace
interactions”. Other advantages of WallPad over Frisbee
include support for direct multi-touch interaction with re-
mote objects, pointer-based indirect interaction using a
non-linear mapping to reduce clutching (a 1:1 mapping is
used when moving a Frisbee’s focus in the remote space)
and a rectangular shape better suited to common regions
of interest (e.g. widgets and windows).

Using WallPad, users can dynamically create cursors
whenever deemed necessary, each of them being indepen-
dently controlled. The widgets are persistent - until users
dismiss them - and are freely movable. WallPads can be
used to repeatedly access remote content (e.g. widgets), to
drag objects over large distances, or to interact with out-
of-reach ones. By switching between different WallPads,
users can quickly change the locus of interaction. Beyond
the speed and accuracy advantages of using a pointer con-
trolled through a non-linear transfert function, WallPad
makes it possible to instantaneously move to different ex-
act locations to support recurrent interactions, in a way
similar to UIMarks [6].

CONCLUSION

WallPad was motivated by the lack of interaction tech-
niques to properly support direct and indirect interaction
on multi-touch wall displays. Throughout its design, it has
been refined several times through informal user testing to
obtain a tool easy to use in varied situations. The current
version requires little learning. Once users know how to
create a WallPad and how to transition to the de-localized
direct interaction mode, the other operations are pretty
straight-forward. WallPad is intended to reduce user fa-
tigue when interacting with remote content and doing so
without sacrificing precision or legibility. We expect Wall-
Pad to be a simple and powerful tool allowing users who
master it to interact at a distance with applications that
were not necessarily designed for large multi-touch dis-
plays.

ACKNOWLEDGEMENTS

This work was supported by the ANR project ANR-
09-CORD-013 InSTInCT - http://anr-instinct.

cap-sciences.net - and the Conseil Régional Nord - Pas
de Calais.

REFERENCES

1. Bartindale, T., Harrison, C., Olivier, P., and Hudson,
S. E. SurfaceMouse: supplementing multi-touch
interaction with a virtual mouse. In Proceedings of
TEI ’11, ACM (2011), 293–296.

2. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski,
M., Tandler, P., Bederson, B., and Zierlinger, A.

151

151

Session 5 : Interactions en situation spécifique IHM'14, Villeneuve d'Ascq, France



Drag-and-pop and drag-and-pick: Techniques for
accessing remote screen content on touch- and
pen-operated systems. In Proceedings of
INTERACT ’03 (2003), 57–64.

3. Bezerianos, A., and Balakrishnan, R. The vacuum:
facilitating the manipulation of distant objects. In
Proceedings of CHI ’05, ACM (2005), 361–370.

4. Casiez, G., and Roussel, N. No more bricolage!
methods and tools to characterize, replicate and
compare pointing transfer functions. In Proceedings
of UIST ’11, ACM (2011), 603–614.

5. Chapuis, O., Bezerianos, A., and Frantzeskakis, S.
Smarties: An input system for wall display
development. In Proceedings of CHI ’14, ACM
(2014), 2763–2772.

6. Chapuis, O., and Roussel, N. UIMarks: quick
graphical interaction with specific targets. In
Proceedings of UIST ’10, ACM (2010), 173–182.

7. Forlines, C., Vogel, D., and Balakrishnan, R.
Hybridpointing: fluid switching between absolute
and relative pointing with a direct input device. In
Proceedings of UIST ’06, ACM (2006), 211–220.

8. Gilliot, J., Casiez, G., and Roussel, N. Impact of
form factors and input conditions on absolute
indirect-touch pointing tasks. In Proceedings of
CHI ’14, ACM (2014), 723–732.

9. Hascoët, M. Throwing models for large displays. In
Human Computer Interaction, HCI’2003, B. H.
Group, Ed. (Bath, UK, 2003), 77–108.

10. Khan, A., Fitzmaurice, G., Almeida, D., Burtnyk, N.,
and Kurtenbach, G. A remote control interface for
large displays. In Proceedings of UIST ’04, ACM
(2004), 127–136.

11. Nakatani, L. H., and Rohrlich, J. A. Soft machines: a
philosophy of user-computer interface design. In
Proceedings of CHI ’83, ACM (1983), 19–23.

12. Nancel, M., Chapuis, O., Pietriga, E., Yang, X.-D.,
Irani, P. P., and Beaudouin-Lafon, M. High-precision
pointing on large wall displays using small handheld
devices. In Proceedings of CHI ’13, ACM (2013),
831–840.

13. Robertson, G., Czerwinski, M., Baudisch, P.,
Meyers, B., Robbins, D., Smith, G., and Tan, D. The
large-display user experience. IEEE Computer
Graphics and Applications 25, 4 (July 2005), 44–51.

14. Satyanarayan, A., Weibel, N., and Hollan, J. Using
overlays to support collaborative interaction with
display walls. In Proceedings of IUI ’12, ACM
(2012), 105–108.

15. Stoakley, R., Conway, M. J., and Pausch, R. Virtual
reality on a wim: interactive worlds in miniature. In
Proceedings of CHI ’95, ACM (1995), 265–272.

16. Stuerzlinger, W., Chapuis, O., Phillips, D., and
Roussel, N. User interface facades: towards fully
adaptable user interfaces. In Proceedings of
UIST ’06, ACM (2006), 309–318.

17. Tan, D. S., Meyers, B., and Czerwinski, M. Wincuts:
manipulating arbitrary window regions for more
effective use of screen space. In CHI ’04 Extended
Abstracts, ACM (2004), 1525–1528.

18. Vlaming, L., Collins, C., Hancock, M., Nacenta, M.,
Isenberg, T., and Carpendale, S. Integrating 2D
mouse emulation with 3D manipulation for
visualizations on a multi-touch table. In Proceedings
of ITS ’10, ACM (2010), 221–230.

19. Vogel, D., and Casiez, G. Conté: multimodal input
inspired by an artist’s crayon. In Proceedings of
UIST ’11, ACM (2011), 357–366.

152

152

Session 5 : Interactions en situation spécifique IHM'14, Villeneuve d'Ascq, France


