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Abstract. We consider the generalized Benjamin-Ono equation, regularized in the same manner that the Benjamin-

Bona-Mahony equation is found from the Korteweg-de Vries equation [3], namely the equation ut+ux+uρux+H(uxt) =

0, where H is the Hilbert transform. In a second time, we consider the generalized Kadomtsev-Petviashvili-II equation,

also regularized, namely the equation ut + ux + uρux − uxxt + ∂−1
x uyy = 0. We are interested in dispersive properties

of these equations for small initial data. We will show that, if the power ρ of the nonlinearity is higher than 3, the

respective solution of these equations tends to zero when time rises with a decay rate of order close to 1
2

.
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1 Introduction

The small amplitude long waves moving inside a nonhomogeneous fluid are modelled in dimension 1 by
the Benjamin-Ono equation [2, 4, 11]

ut + ux + uux −H(uxx) = 0,

where H indicates the Hilbert transform in the direction x. Since this equation is obtained correcting,
at the second order, the transport equation ut + ux = 0, the BO-BBM equation is found [3]

ut + ux + uux +H(uxt) = 0.

We consider here a generalization of this equation, namely the gBO-BBM equation

ut + ux + uρux +H(uxt) = 0, (1.1)

where ρ is a nonnegative integer. We are interested here in the decay in time for small amplitude solution
of the equation (1.1).
For 1 < p < 2 and (m0,m1) ∈ R2, we denote Xm0,m1,p(R) = Hm0(R) ∩Wm1,p(R) the space of functions
f such that the norm

||f ||Xm0,m1,p := ||f ||Hm0 + ||f ||Wm1,p

is finite. Our result reads as follows.
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Theorem 1.1

Let ρ ≥ 3. For 0 < δ <
1

3
− 8

9ρ
, we set m =

1

2δ
− 1. We choose 1 < p < 2 and q > 2 such that

1

p
+

1

q
= 1

and 0 <
1

q
<

1

2
− 4

3ρ(1− 3δ)
.

Then there exists ε > 0 sufficiently small so that for all f ∈ Xm+1,4− 2
p ,p(R) such that ||f ||

X
m+1,4− 2

p
,p ≤ ε,

there exists an unique global in time solution u ∈ C
(
R;Xm+1,4− 2

p ,p(R)
)

of the gBO-BBM equation (1.1)

with initial datum f .
Moreover this solution verifies that there exists a constant C > 0, depending only on m, p and ε such
that for all time t ∈ R, we have

||u(t)||Lq + ||ux(t)||Lq ≤ C(1 + |t|)(−
1
2+

3δ
2 )(1− 2

q ).

We remark that if δ approaches zero then the decay rate of the norm Lq of u(t), for q ∈ [2,+∞[, approaches

t−
1
2 (1− 2

q ), but we need to impose more regularity on the initial datum. We notice that t−
1
2 (1− 2

q ) is the
decay rate of the norm Lq of the linear evolution.
We are inspired by the method described by Albert [1] for generalized Benjamin-Bona-Mahony equation

ut + ux + uρux − uxxt = 0.

In this paper, Albert shows that, for a power ρ strictly higher than 4, the solution of the preceding

equation decreases in time with a rate of order
1

3
, what is the same order as the rate of the decay in time

of the solution of the generalized Korteweg-de Vries equation [10, 14]

ut + ux + uρux + uxxx = 0.

In our work, we prove that the decay rate in time of the solution of the gBO-BBM equation is of order

close to
1

2
, what is equal to the decay rate in time of the solution of generalized Benjamin-Ono equation

[6].
In a second time, we study the small amplitude long waves in shallow water moving mainly in the direction
x, which are modelled in dimension 2 by the Kadomtsev-Petviashvili equations [8]

ut + ux + uux + σuxxx + ∂−1x uyy = 0,

called KP-I if σ = −1 and KP-II if σ = 1, according to whether the surface tension is or isn’t neglected.
Since this equation is also obtained correcting, at the second order, the transport equation ut + ux = 0,
the KP-BBM equations are found [3]

ut + ux + uux − σuxxt + ∂−1x uyy = 0,

called KP-BBM-I if σ = −1 and KP-BBM-II if σ = 1. The KP-BBM-I is not well posed in L2(R2), and
so we study here only the KP-BBM-II equation.
We consider a generalization of this equation, namely the gKP-BBM-II equation

ut + ux + uρux − uxxt + ∂−1x uyy = 0, (1.2)

where ρ is a nonnegative integer. We prove a similar result as the theorem 1.1 for the equation (1.2).

Theorem 1.2

Let ρ ≥ 3. For 0 < δ <
1

5
− 8

15ρ
, we set m =

1

2δ
− 2. We choose 1 < p < 2 and q > 2 such that
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1

p
+

1

q
= 1 and 0 <

1

q
<

1

2
− 4

3ρ(1− 5δ)
.

Then there exists ε > 0 sufficiently small so that for all f ∈ X2m+1,7− 4
p ,p(R2) such that ||f ||

X
2m+1,7− 4

p
,p ≤ ε,

there exists an unique global in time solution u ∈ C
(
R;X2m+1,7− 4

p ,p(R2)
)

of the gKP-BBM-II equation

with initial datum f .
Moreover this solution verifies that there exists a constant C > 0, depending only on m, p and ε such
that for all time t ∈ R, we have

||u(t)||Lq + ||ux(t)||Lq ≤ C(1 + |t|)(−
1
2+

5δ
2 )(1− 2

q ).

We recall that, for the generalized KP equations, Hayashi, Naumkin and Saut [7] proved that for ρ ≥ 3,
the decay rate of the solution of these equations is of order 1.
Whether it is for the gBO-BBM or the gKP-BBM-II, the Strauss method [14] will be used to prove the
decay in time. For T > 0, it consists of choosing a norm NT , which depends on time a priori, such that
for a solution of the gBO-BBM equation, all the derivatives act like a linear term and are included in
a Sobolev norm of sufficiently high order and such that the power ρ are linked with the decay in time.
More precisely, the Duhamel formula is written for the gBO-BBM equation (1.1) and for t ≥ 0

Φu(t) = Stf −
1

ρ+ 1

∫ t

0

St−τ

(
Dx

1 + |Dx|
uρ+1

)
(τ) dτ,

where (St)t≥0 is the semi-group of the gBO-BBM evolution and
Dx

1 + |Dx|
denotes the operator defined by

the Fourier multiplicator σ(k) :=
ik

1 + |k|
. The fractional Leibniz rule implies for m ≥ 0 and 1 < p < +∞,

there exists a constant C > 0 such that for t ∈ [−T, T ],

||Dm
(
uρ+1

)
||Lp(t) ≤ C||Dmu||Lp(t) ||u||ρ∞(t).

The first term of this inequality is a linear term and a Sobolev norm, and for the second one, we choose
θ > 0 such that

||u||∞(t) ≤ CNT (u)(1 + t)−θ.

Then we show that for sufficiently small initial datum, this norm NT is bounded independently of time.

The principal difficulty here is that the operator
Dx

1 + |Dx|
is not bounded in L1(R) but only in Lp(R) for

1 < p < +∞. In dimension 2, we have to be careful that the operator
Dx

1 +D2
x

is not bounded in L1(R2)

but only in Lp(R2) for 1 < p < +∞.

We will use the following notations: for n = 1, 2 and 1 ≤ p < ∞, we denote Lp(Rn) the space of
p-power integrable functions equipped with the norm

||f ||Lp :=

(∫
Rn
|f(x)|p dx

)1/p

,

we denote L∞(Rn) the functions space equipped with the norm

||f ||∞ = sup ess (f) := inf {c ; |f(x)| ≤ c almost everywhere in Rn} .

Let T an operator from Lp(Rn) to Lq(Rn) with
1

p
+

1

q
= 1, we define the operator norm by

|||T |||Lq := sup
||f ||Lp=1

||Tf ||Lq .
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The Schwartz space is denoted by S(Rn) and for 1 ≤ p ≤ ∞, Wm,p(Rn) is the Sobolev space equipped
with the norm

||f ||Wm,p :=
∣∣∣∣∣∣(1−∆)m/2f

∣∣∣∣∣∣
Lp
.

In particular, we will note Hm(Rn) the Sobolev space Wm,2(Rn).

We organise the paper as follows. In the first section, we will give estimates for the linear Cauchy
problem associated with the gBO-BBM equation (1.1), and in the second one, the existence and unique-
ness of global solution with the decay in time will be done. Finally, the decay in time for the gKP-BBM-II
equation (1.2) will be studied.

2 Estimates for the linear gBO-BBM equation

We consider the linear Cauchy problem

ut + ux +H(uxt) = 0 ; u(x, 0) = f(x).

Let us suppose that the initial datum f belongs to the Schwartz space S(R). Then the Fourier transform
in space implies

ût(1 + |k|) + ikû = 0 ; û(k, 0) = f̂(k).

The solution u of this ordinary differential equation is given by, for all x ∈ R and t ∈ R∗,

u(x, t) =
1

2π

∫ +∞

−∞
e−ithα(k)f̂(k) dk, (2.1)

with hα(k) =
k

1 + |k|
− αk and α =

x

t
.

We recall the Van der Corput lemma [13].

Lemma 2.1
For all a ≤ b, λ > 0, t 6= 0 and for all function h ∈ C∞([a, b]) real valued satisfying for all k ∈ [a, b],
|h′′(k)| ≥ λ, we have ∣∣∣∣∣

∫ b

a

e−ith(k) dk

∣∣∣∣∣ ≤ 10

(λ|t|)1/2
. (2.2)

Proof. In [13], the proof is done for λ = 1. Here it is enough to set g(k) =
h(k)

λ
. We have then∫ b

a

e−ith(k) dk =

∫ b

a

e−i(λt)g(k) dk,

with k ∈ [a, b], |g′′(k)| ≥ 1. �

Now, the Van der Corput lemma is applied with the function hα.

Lemma 2.2

Let 0 ≤ δ < 1

3
. For all α ∈ R and all time |t| ≥ 1, we have∣∣∣∣∣

∫ |t|δ−1
−|t|δ+1

e−ithα(k) dk

∣∣∣∣∣ ≤ 10
√

2|t|− 1
2+

3δ
2 .
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Proof. We only consider the contribution for k ≥ 0, the contribution for k ≤ 0 being dealt with
similarly.
For k ≥ 0, we have

hα(k) =
k

1 + k
− αk , h′α(k) =

1

(1 + k)2
− α , h′′α(k) =

−2

(1 + k)3
.

For k ∈ [0, |t|δ − 1], we have

|h′′α(k)| =

∣∣∣∣ −2

(1 + k)3

∣∣∣∣ =
2

(1 + k)3
≥ 2|t|−3δ.

The lemma 2.1 is then applied to find∣∣∣∣∣
∫ |t|δ−1
0

e−ithα(k) dk

∣∣∣∣∣ ≤ 10

(2|t|−3δ|t|)1/2
≤ 5
√

2|t|− 1
2+

3δ
2 .

�

The oscillating integral (2.1) can be majorized.

Lemma 2.3

Let 0 < δ <
1

3
and m =

1

2δ
− 1. For all f ∈ Hm(R), α ∈ R and all time |t| ≥ 1, we have∣∣∣∣∣
∫ +∞

|t|δ−1
e−ithα(k)f̂(k) dk

∣∣∣∣∣ ≤
√

2m

2m− 1
||f ||Hm |t|−

1
2+

3δ
2 ,

and ∣∣∣∣∣
∫ −|t|δ+1

−∞
e−ithα(k)f̂(k) dk

∣∣∣∣∣ ≤
√

2m

2m− 1
||f ||Hm |t|−

1
2+

3δ
2 .

Proof. We have∣∣∣∣∣
∫ +∞

|t|δ−1
e−ithα(k)f̂(k) dk

∣∣∣∣∣ ≤
∫ +∞

|t|δ−1

∣∣∣f̂(k)
∣∣∣ dk =

∫ +∞

|t|δ−1

(1 + k)m

(1 + k)m

∣∣∣f̂(k)
∣∣∣ dk,

and the Cauchy-Schwarz inequality gives∣∣∣∣∣
∫ +∞

|t|δ−1
e−ithα(k)f̂(k) dk

∣∣∣∣∣ ≤
(∫ +∞

|t|δ−1
(1 + k)2m|f̂(k)|2 dk

)1/2(∫ +∞

|t|δ−1

dk

(1 + k)2m

)1/2

.

In one hand, since for 0 < δ <
1

3
and m =

1

2δ
− 1, the order m of the Sobolev space is strictly higher

than
1

2
and we have

(∫ +∞

|t|δ−1

dk

(1 + k)2m

)1/2

=

([
−1

(2m− 1)(1 + k)2m−1

]+∞
|t|δ−1

)1/2

=
1√

2m− 1
|t| δ2 (1−2m) =

1√
2m− 1

|t|− 1
2+

3δ
2 .
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In the other hand, since for k ∈ R, we have (1 + k)2 ≤ 2(1 + k2), the first integral becomes(∫ +∞

|t|δ−1
(1 + k)2m|f̂(k)|2 dk

)1/2

≤
√

2m

(∫ +∞

|t|δ−1
(1 + k2)m|f̂(k)|2 dk

)1/2

≤
√

2m||f ||Hm .

Finally, we find ∣∣∣∣∣
∫ +∞

|t|δ−1
e−ithα(k)f̂(k) dk

∣∣∣∣∣ ≤
√

2m

2m− 1
||f ||Hm |t|−

1
2+

3δ
2 .

�

By abuse, when there is no ambiguity, we will write C and Cm the different constants appearing in
the following results.

Proposition 1

Let 0 < δ <
1

3
and m =

1

2δ
− 1. There exists a constant Cm > 0, depending only on m, such that for all

function f ∈ L1(R) ∩Hm(R), α ∈ R and all time t ∈ R, we have∣∣∣∣∫ +∞

−∞
e−ithα(k)f̂(k) dk

∣∣∣∣ ≤ Cm(||f ||L1 + ||f ||Hm)(1 + |t|)− 1
2+

3δ
2 . (2.3)

Proof. Let 0 < δ <
1

3
and |t| ≥ 1, we write

∫ +∞

0

e−ithα(k)f̂(k) dk =

∫ |t|δ−1
0

e−ithα(k)f̂(k) dk +

∫ +∞

|t|δ−1
e−ithα(k)f̂(k) dk.

For the first integral, the Fubini theorem implies∫ |t|δ−1
0

e−ithα(k)f̂(k) dk =

∫ |t|δ−1
0

e−ithα(k)
(∫ +∞

−∞
e−ikx

′
f(x′) dx′

)
dk

=

∫ +∞

−∞

(∫ |t|δ−1
0

eik(x−x
′)e−it

k
1+k dk

)
f(x′) dx′.

We deduce from it that∣∣∣∣∣
∫ |t|δ−1
0

e−ithα(k)f̂(k) dk

∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣
∫ |t|δ−1
0

e−ithα(k) dk

∣∣∣∣∣
∣∣∣∣∣
∞

||f ||L1 .

The lemmas 2.2 and 2.3 are applied to give∣∣∣∣∫ +∞

0

e−ithα(k)f̂(k) dk

∣∣∣∣ ≤ max

(
10
√

2 ;

√
2m

2m− 1

)
(||f ||L1 + ||f ||Hm) |t|− 1

2+
3δ
2 .

Since |t| ≥ 1, we have |t| ≥ 1 + |t|
2

, thus we obtain finally∣∣∣∣∫ +∞

0

e−ithα(k)f̂(k) dk

∣∣∣∣ ≤ Cm (||f ||L1 + ||f ||Hm) (1 + |t|)− 1
2+

3δ
2 . (2.4)
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The contribution for k ≤ 0 is dealt with similarly.
Let |t| ≤ 1. We have directly∣∣∣∣∫ +∞

−∞
e−ithα(k)f̂(k) dk

∣∣∣∣ ≤ ∫ +∞

−∞

∣∣∣f̂(k)
∣∣∣ dk =

∫ +∞

−∞

(1 + k2)m/2

(1 + k2)m/2

∣∣∣f̂(k)
∣∣∣ dk,

and the Cauchy-Schwarz inequality gives∣∣∣∣∫ +∞

−∞
e−ithα(k)f̂(k) dk

∣∣∣∣ ≤ Cm||f ||Hm .
Since |t| ≤ 1, we have 1 ≥ 1 + |t|

2
, thus we obtain finally∣∣∣∣∫ +∞

−∞
e−ithα(k)f̂(k) dk

∣∣∣∣ ≤ 2
1
2−

3δ
2 Cm||f ||Hm(1 + |t|)− 1

2+
3δ
2 . (2.5)

The inequalities (2.4) and (2.5) give the result. �

We can deduce the following corollary.

Corollary 1

Let 0 < δ <
1

3
and m =

1

2δ
− 1. There exists a constant Cm > 0, depending only on m, such that for all

function f ∈ Lp(R) ∩Hm(R), with 1 ≤ p ≤ 2, for all α ∈ R and all time t ∈ R, we have∣∣∣∣∣∣∣∣∫ +∞

−∞
e−ithα(k)f̂(k) dk

∣∣∣∣∣∣∣∣
Lq
≤ Cm(||f ||Lp + ||f ||Hm)(1 + |t|)(−

1
2+

3δ
2 )(1− 2

q ), (2.6)

where
1

p
+

1

q
= 1.

Proof. Let 0 < δ <
1

3
and |t| ≥ 1, we define the operator I

(1)
t from L1(R) to L∞(R) by, for f ∈ L1(R)

and x ∈ R,

I
(1)
t f(x) :=

∫ |t|δ−1
0

e−ithα(k)f̂(k) dk.

The lemma 2.2 gives that there exists a constant C > 0 such that

||I(1)t f ||∞ ≤ C|t|−
1
2+

3δ
2 ||f ||L1 ,

thus
|||I(1)t |||∞ ≤ C|t|−

1
2+

3δ
2 . (2.7)

The operator I
(1)
t is rewritten

I
(1)
t f(x) :=

∫ ∞
−∞

eikxe−it
k

1+|k| f̂(k)1[0,|t|δ−1] dk,

thus
||I(1)t f ||L2 ≤ ||f ||L2 ,

and
|||I(1)t |||L2 ≤ 1. (2.8)
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The Riesz-Thorin interpolation theorem then implies that, for 1 ≤ p ≤ 2, and
1

p
+

1

q
= 1, the operator

I
(1)
t is continuous from Lp(R) to Lq(R), and we have according to the inequalities (2.7) and (2.8)

|||I(1)t |||Lq ≤ C|t|(
− 1

2+
3δ
2 )(1− 2

q ).

We conclude that for f ∈ Lp(R),

||I(1)t f ||Lq ≤ C|t|(−
1
2+

3δ
2 )(1− 2

q )||f ||Lp ≤ C(1 + |t|)(−
1
2+

3δ
2 )(1− 2

q )||f ||Lp .

Let m =
1

2δ
− 1, we define now the operator I

(2)
t from Hm(R) to L∞(R) by, for f ∈ Hm(R) and

x ∈ R,

I
(2)
t f(x) :=

∫ +∞

|t|δ−1
e−ithα(k)f̂(k) dk.

The lemma 2.3 implies that there exists a constant Cm > 0, depending only on m, such that

||I(2)t f ||∞ ≤ Cm|t|−
1
2+

3δ
2 ||f ||Hm . (2.9)

Since the operator I
(2)
t can be rewritten

I
(2)
t f(x) :=

∫ +∞

−∞
eikxe−it

k
1+|k| f̂(k)1[|t|δ−1,+∞] dk,

we have
||I(2)t f ||L2 ≤ ||f ||L2 ,

and since m >
1

2
,

||I(2)t f ||L2 ≤ ||f ||Hm . (2.10)

The Hölder inequality then implies that, for 2 ≤ q ≤ ∞, according to the inequalities (2.9) and (2.10),
we have

||I(2)t f ||Lq ≤ ||I(2)t f ||1−
2
q

∞ ||I(2)t f ||
2
q

L2 ≤ Cm(1 + |t|)(−
1
2+

3δ
2 )(1− 2

q )||f ||Hm .
The contribution for k ≤ 0 is dealt with similarly.

For |t| ≤ 1, we define the operator I
(3)
t from Hm(R) to L∞(R) by, for f ∈ Hm(R) and x ∈ R,

I
(3)
t f(x) :=

∫ +∞

−∞
e−ithα(k)f̂(k) dk.

As for the proposition 1, we have directly that there exists a constant Cm > 0, depending only on m,
such that

||I(3)t f ||∞ ≤ Cm||f ||Hm(1 + |t|)(−
1
2+

3δ
2 ). (2.11)

Since the operator I
(3)
t can be rewritten

I
(3)
t f(x) :=

∫ +∞

−∞
eikxe−it

k
1+|k| f̂(k)1[0,+∞[ dk,

we have, because m >
1

2
,

||I(3)t f ||L2 ≤ ||f ||Hm . (2.12)

The Hölder inequality then implies that, for 2 ≤ q ≤ ∞, according to the inequalities (2.11) and (2.12),
we have

||I(3)t f ||Lq ≤ ||I(3)t f ||1−
2
q

∞ ||I(3)t f ||
2
q

L2 ≤ Cm||f ||Hm(1 + |t|)(−
1
2+

3δ
2 )(1− 2

q ).

�
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3 Preliminary results

We now quote some useful results for the proof of our principal result. We will need the Mikhlin-
Hörmander theorem proved in [12, chapter 6 - proposition 4.4].

Theorem 3.1
Let σ : Rn \ {0} → C satisfying for all multi-index of length 0 ≤ |α| < l, where l is the smallest integer

with l >
n

2
, and for all k ∈ Rn \ {0},

|∂αk σ(k)| ≤ Cα|k|−|α|.

Then, for all 1 < p < +∞, there exists a constant Cp > 0, depending only on p, such that for all
u ∈ Lp(Rn), we have ∣∣∣∣F−1(σû)

∣∣∣∣
Lp
≤ Cp||u||Lp .

The fractional Leibniz rule will be also used [9, lemma X.4].

Theorem 3.2
For all m ≥ 0 and 1 < p < +∞, there exists a constant Cm,p > 0, depending on m and p such that for
all u and v in S(Rn), we have

||u v||Wm,p ≤ Cm,p (||u||Wm,p ||v||∞ + ||u||∞||v||Wm,p) .

We need the Sobolev inequality [5, chapter 1 - theorem 9.3].

Theorem 3.3
Let 1 ≤ p, q ≤ +∞ and 0 ≤ j < m, there exists a constant C > 0, depending on p, q, j and m, such that
for all u ∈ S(Rn), we have

|| (−∆)
j
2 u||Lr ≤ C|| (−∆)

m
2 u||aLp ||u||1−aLq ,

where
1

r
=
j

n
+ a

(
1

p
− m

n

)
+

1− a
q

and
j

m
≤ a < 1.

Finally, we prove an integration’s lemma.

Lemma 3.4
Let α > 1 and β > 0. Then there exists 0 < β1 < 1 and C > 0 such that for all time t ≥ 0∫ t

0

dτ

(1 + τ)α(1 + t− τ)β
≤ C

(1 + t)β1
,

with β1 = β if 0 < β < 1.

Proof. If t = 0, the result is obvious. Let t > 0, we separate the time integral in two parts∫ t

0

dτ

(1 + τ)α(1 + t− τ)β
=

∫ t/2

0

dτ

(1 + τ)α(1 + t− τ)β
+

∫ t

t/2

dτ

(1 + τ)α(1 + t− τ)β
.

For the first integral, we have∫ t/2

0

dτ

(1 + τ)α(1 + t− τ)β
≤

(
1 +

t

2

)−β ∫ t/2

0

dτ

(1 + τ)α

≤
(

1 +
t

2

)−β [
(1 + τ)−α+1

−α+ 1

]t/2
0

,

9



since −α+ 1 < 0, we find∫ t/2

0

dτ

(1 + τ)α(1 + t− τ)β
≤ C

(
1 +

t

2

)−β [
1−

(
1 +

t

2

)−α+1
]
≤ C

(
1 +

t

2

)−β
,

and it is enough to remark 1 +
t

2
≥ 1

2
(1 + t) to obtain

∫ t/2

0

dτ

(1 + τ)α(1 + t− τ)β
≤ C

(1 + t)β
.

Let us suppose first of all that 0 < β < 1. For the second integral, we have∫ t

t/2

dτ

(1 + τ)α(1 + t− τ)β
≤

(
1 +

t

2

)−α ∫ t

t/2

dτ

(1 + t− τ)β

=

(
1 +

t

2

)−α [
− (1 + t− τ)−β+1

−β + 1

]t
t/2

.

Since −β + 1 > 0 and −α+ 1 < 0, we have∫ t

t/2

dτ

(1 + τ)α(1 + t− τ)β
≤ C

(
1 +

t

2

)−α−β+1

≤ C (1 + t)
−β

.

Let us suppose now β ≥ 1. Then for 0 < β1 < 1, we have for all t ≥ 0∫ t

0

dτ

(1 + τ)α(1 + t− τ)β
≤
∫ t

0

dτ

(1 + τ)α(1 + t− τ)β1
,

and the first part of the proof gives the result. �

4 Existence and Uniqueness of global solution of the gBO-BBM
equation

Let us return to the nonlinear problem. We consider the Cauchy problem

ut + ux +H(uxt) + uρux = 0 (4.1)

u(x, 0) = f(x). (4.2)

We show from now the principal result of this paper.
Proof. [Proof of the theorem 1.1.] The proof is carried out for positive time. By abuse, we will write
Cm and Cm,p the different constants depending respectively on m, and on m and p.

To simplify the writings, we denote
Dx

1 + |Dx|
the operator defined by the Fourier multiplicator σ(k) :=

ik

1 + |k|
,

and we denote also 0 < θ =

(
1

2
− 3δ

2

)(
1− 2

q

)
<

1

2
.

We remark that
3θρ

4
> 1. (4.3)
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Indeed we have

3θρ

4
> 1 ⇐⇒ 3

4

(
1

2
− 3δ

2

)(
1− 2

q

)
ρ > 1 ⇐⇒ (1− 3δ)

(
1− 2

q

)
>

8

3ρ
,

since 1− 3δ > 0, we find
3θρ

4
> 1 ⇐⇒ 1

q
<

1

2
− 4

3ρ(1− 3δ)
,

which inequality is the assumption on q.
The Duhamel formula implies that u is the solution of the gBO-BBM equation (4.1)-(4.2) if and only if
u is the solution of the following equation, for t ≥ 0

u(t) = Φu(t) := Stf −
1

ρ+ 1

∫ t

0

St−τ

(
Dx

1 + |Dx|
uρ+1

)
(τ) dτ, (4.4)

where Stf :=
1

2π

∫ +∞

−∞
eikx−it

k
1+|k| f̂(k) dk.

We remark first of all that in one hand, we have for u ∈ S(R)∣∣∣∣∣∣∣∣ Dx

1 + |Dx|
uρ+1

∣∣∣∣∣∣∣∣
Hm

=

(∫ +∞

−∞
(1 + k2)m

(
ik

1 + |k|

)2

|ûρ+1|2 dk

)1/2

≤
(∫ +∞

−∞
(1 + k2)m|ûρ+1|2 dk

)1/2

= ||uρ+1||Hm . (4.5)

In the other hand, we have

for k ≥ 0, |σ′(k)| = 1

(1 + k)2
and for k ≤ 0, |σ′(k)| = 1

(1− k)2
.

The Mikhlin-Hörmander theorem 3.1 is applied to give, for 1 < p < 2, there exists a constant Cp > 0
depending only on p such that ∣∣∣∣∣∣∣∣ Dx

1 + |Dx|
uρ+1

∣∣∣∣∣∣∣∣
Lp
≤ Cp||uρ+1||Lp . (4.6)

Let T > 0, we define the norm NT by, for u ∈ Xm+1,4− 2
p ,p(R),

NT (u) := sup
0≤τ≤T

[
(||u||Lq (τ) + ||ux||Lq (τ))(1 + τ)θ + ||u||

X
m+1,4− 2

p
,p(τ)

]
. (4.7)

We will proved separately some technical lemmas.

Lemma 4.1
There exists a constant Cm,p > 0 such that for all u and v in Xm+1,4− 2

p ,p(R), we have

||Φu− Φv||Lq (t) ≤ Cm,p

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + t)−θNT (u− v), (4.8)

and

||(Φu− Φv)x||Lq (t) ≤ Cm,p

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + t)−θNT (u− v). (4.9)
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Proof. Let u and v two elements of Xm+1,4− 2
p ,p(R), the Duhamel formula gives

||Φu− Φv||Lq ≤ 1

ρ+ 1

∫ t

0

∣∣∣∣∣∣∣∣St−τ ( Dx

1 + |Dx|
(uρ+1 − vρ+1)

)∣∣∣∣∣∣∣∣
Lq

(τ) dτ.

The corollary 1 implies that there exists a constant Cm > 0, depending only on m, such that

||Φu− Φv||Lq ≤ Cm
∫ t

0

(∣∣∣∣∣∣ Dx
1+|Dx| (u

ρ+1− vρ+1)
∣∣∣∣∣∣
Lp

+
∣∣∣∣∣∣ Dx

1+|Dx| (u
ρ+1− vρ+1)

∣∣∣∣∣∣
Hm

)
(τ)

(1 + t− τ)θ
dτ,

and the inequalities (4.5) and (4.6) imply

||Φu− Φv||Lq ≤ Cm,p
∫ t

0

(
||uρ+1 − vρ+1||Lp + ||uρ+1 − vρ+1||Hm

)
(τ)

(1 + t− τ)θ
dτ.

From now, when there is no ambiguity, we will use the following notation: for any positive A and B, the
notation A . B means that there exists a constant C > 0 such that A ≤ C B.

Since uρ+1 − vρ+1 = (u− v)

ρ∑
i=0

uρ−ivi, we have according to the fractional Leibniz theorem 3.2 with

p = 2 and the Minkowski inequality

||uρ+1− vρ+1||Hm(τ) . ||u− v||Hm
ρ∑
i=0

||uρ−ivi||∞(τ) + ||u− v||∞
ρ∑
i=0

||uρ−ivi||Hm(τ)

= I (τ) + II (τ).

On the other hand, the Sobolev inequality 3.3 with
1

p
+

1

q
= 1, r =∞, j = 0, a =

1

4
and m = 3− 2

p
gives

||u||∞ ≤ Cp ||u||1/4
W

3− 2
p
,p
||u||3/4Lq . (4.10)

According to the definition (4.7) of the norm NT , we can see that the decay in time will be linked to the
norm Lq and the power 3/4. We deduce from the inequality (4.10) that for I (τ), we have

I (τ) . ||u− v||Hm
ρ∑
i=0

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i
(τ)

. ||u− v||Hm
ρ∑
i=0

(
||u||Lq

(1 + τ)θ

(1 + τ)θ

) 3(ρ−i)
4

||u||
ρ−i
4

W
3− 2

p
,p

(
||v||Lq

(1 + τ)θ

(1 + τ)θ

) 3i
4

||v||
i
4

W
3− 2

p
,p

.

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + τ)−

3θρ
4 NT (u− v).

For II (τ), the theorem 3.2 is again applied and we have

II(τ) . ||u− v||∞

(
||v||ρ−1∞ ||v||Hm +

ρ−1∑
i=0

||u||ρ−i−1∞ ||u||Hm ||v||i∞

+ ||u||ρ−1∞ ||u||Hm +

ρ∑
i=1

||u||ρ−i∞ ||v||i−1∞ ||v||Hm
)

(τ),
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and the inequality (4.10) gives

II(τ) . ||u− v||3/4Lq ||u− v||
1/4

W
3− 2

p
,p
×

[(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)ρ−1
||v||Hm +

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−1
||u||Hm

+

ρ−1∑
i=0

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i−1
||u||Hm

(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i
+

ρ∑
i=1

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i−1
||v||Hm

]
(τ)

.

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + τ)−

3θρ
4 NT (u− v).

In the same manner, we have

||uρ+1 − vρ+1||Lp(τ) ≤ ||u− v||Lp
ρ∑
i=0

||u||ρ−i∞ ||v||i∞(τ)

.

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + τ)−

3θρ
4 NT (u− v).

Finally, we find

||Φu− Φv||Lq (t) ≤ Cm,p

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v)

∫ t

0

dτ

(1 + τ)
3θρ
4 (1 + t− τ)θ

.

Since
3θρ

4
> 1 by the inequality (4.3) and 0 < θ <

1

2
, the lemma 3.4 can be applied to give

||Φu− Φv||Lq (t) ≤ Cm,p

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + t)−θNT (u− v).

We have, for the space derivate,

(Φu− Φv)x(t) =

∫ t

0

St−τ

(
Dx

1 + |Dx|
(uρux − vρvx)

)
(τ) dτ,

the corollary 1 and the inequalities (4.5) and (4.6) imply

||(Φu− Φv)x||Lq (t) ≤ Cm,p
∫ t

0

(||uρux− vρvx||Lp + ||uρux− vρvx||Hm) (τ)

(1 + t− τ)θ
dτ.

Since uρ+1 − vρ+1 = (u− v)

ρ∑
i=0

uρ−ivi, the fractional Leibniz rule gives

||uρux− vρvx||Hm(τ) = ||(u− v)

ρ∑
i=0

uρ−ivi||Hm+1(τ)

. ||u− v||Hm+1

ρ∑
i=0

||uρ−ivi||∞(τ) + ||u− v||∞
ρ∑
i=0

||uρ−ivi||Hm+1(τ) = I (τ) + II (τ).
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We deduce from the inequality (4.10) that for I (τ), we have

I (τ) . ||u− v||Hm+1

ρ∑
i=0

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i
(τ)

.

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + τ)−

3θρ
4 NT (u− v).

For the second norm, the theorem 3.2 is again applied and we have

II (τ) . ||u− v||∞

(
||v||ρ−1∞ ||v||Hm+1 +

ρ−1∑
i=0

||u||ρ−i−1∞ ||u||Hm+1 ||v||i∞

+ ||u||ρ−1∞ ||u||Hm+1 +

ρ∑
i=1

||u||ρ−i∞ ||v||i−1∞ ||v||Hm+1

)
(τ),

and the inequality (4.10) gives

II (τ) . ||u− v||3/4Lq ||u− v||
1/4

W
3− 2

p
,p

[(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)ρ−1
||v||Hm+1 +

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−1
||u||Hm+1

+

ρ−1∑
i=0

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i−1
||u||Hm+1

(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i
+

ρ∑
i=1

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i−1
||v||Hm+1

]
(τ)

.

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + τ)−

3θρ
4 NT (u− v).

In the same manner,

||uρux − vρvx||Lp(τ) . ||(u− v)x||Lp
ρ∑
i=0

||u||ρ−i∞ ||v||i∞(τ)

+ ||u− v||Lp
(
ρ−1∑
i=0

||u||ρ−i−1∞ ||ux||∞||v||i∞ +

ρ∑
i=1

||u||ρ−i∞ ||v||i−1∞ ||vx||∞

)
(τ).

According to the inequality (4.10), ||ux||∞ ≤ ||ux||3/4Lq ||ux||
1/4

W
3− 2

p
,p

= ||ux||3/4Lq ||u||
1/4

W
4− 2

p
,p

, we deduce

||uρux− vρvx||Lp(τ) . ||u− v||W 1,p

ρ∑
i=0

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i
(τ)

+ ||u− v||Lp
[
ρ−1∑
i=0

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i−1(
||ux||3/4Lq ||u||

1/4

W
4− 2

p
,p

)(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i
+

ρ∑
i=1

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i−1(
||vx||3/4Lq ||v||

1/4

W
4− 2

p
,p

)]
(τ),
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and since 4− 2

p
> 1, we have

||uρux − vρvx||Lp(τ) .

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + τ)−

3θρ
4 NT (u− v).

Thus we find

||(Φu− Φv)x||Lq (t) ≤ Cm,p

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + t)−θNT (u− v).

�

Lemma 4.2
There exists a constant Cm,p > 0 such that for all u and v in Xm+1,4− 2

p ,p(R), we have

||Φu− Φv||
X
m+1,4− 2

p
,p(t) ≤ Cm,p

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v). (4.11)

Proof. We now majorize the norm ||(Φu− Φv)x||
X
m+1,4− 2

p
,p(t),

||Φu− Φv||
X
m+1,4− 2

p
,p(t) ≤ 1

ρ+ 1

∫ t

0

∣∣∣∣∣∣∣∣St−τ ( Dx

1 + |Dx|
(uρ+1 − vρ+1)

)∣∣∣∣∣∣∣∣
X
m+1,4− 2

p
,p
(τ) dτ,

the inequalities (4.5) and (4.6) imply

||Φu− Φv||
X
m+1,4− 2

p
,p(t) ≤ 1

ρ+ 1

∫ t

0

∣∣∣∣uρ+1 − vρ+1
∣∣∣∣
X
m+1,4− 2

p
,p (τ) dτ.

Since Xm+1,4− 2
p ,p(R) = Hm+1(R) ∩W 4− 2

p ,p(R) and uρ+1 − vρ+1 = (u− v)

ρ∑
i=0

uρ−ivi, we have

||uρ+1 − vρ+1||
X
m+1,4− 2

p
,p(τ) = ||uρ+1 − vρ+1||Hm+1(τ) + ||uρ+1 − vρ+1||

W
4− 2

p
,p(τ),

and as previously,

||uρ+1 − vρ+1||Hm+1(τ) .

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v)(1 + τ)−

3θρ
4 .

Since 4− 2

p
≥ 0, the fractional Leibniz theorem 3.2 gives

||uρ+1 − vρ+1||
W

4− 2
p
,p(τ) . ||u− v||

W
4− 2

p
,p

ρ∑
i=0

||uρ−ivi||∞(τ) + ||u− v||∞
ρ∑
i=0

||uρ−ivi||
W

4− 2
p
,p(τ)

= I (τ) + II (τ).

We deduce from the inequality (4.10)

I (τ) . ||u− v||
W

4− 2
p
,p

ρ∑
i=0

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i
(τ)

.

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + τ)−

3θρ
4 NT (u− v).
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For II (τ), the theorem 3.2 is again applied and we have

II (τ) . ||u− v||∞

(
||v||ρ−1∞ ||v||

W
4− 2

p
,p +

ρ−1∑
i=0

||u||ρ−i−1∞ ||u||
W

4− 2
p
,p ||v||i∞

+ ||u||ρ−1∞ ||u||
W

4− 2
p
,p +

ρ∑
i=1

||u||ρ−i∞ ||v||i−1∞ ||v||
W

4− 2
p
,p

)
(τ),

and the inequality (4.10) gives

II (τ) .

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + τ)−

3θρ
4 NT (u− v).

Finally we find

||uρ+1 − vρ+1||
X
m+1,4− 2

p
,p(τ) .

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v)(1 + τ)−

3θρ
4 ,

thus

||Φu− Φv||
X
m+1,4− 2

p
,p(t) .

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v)

∫ t

0

(1 + τ)−
3θρ
4 dτ,

and thanks to the inequality (4.3),

||Φu− Φv||
X
m+1,4− 2

p
,p(t) ≤ Cm,p

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v).

�

Lemma 4.3
There exists a constant Cm,p > 0 such that for all u and v in Xm+1,4− 2

p ,p(R), we have

NT (Φu− Φv) ≤ Cm,p

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v), (4.12)

and
NT (Φu) ≤ Cm,p

(
||f ||

X
m+1,4− 2

p
,p +NT (u)ρ+1

)
. (4.13)

Proof. The inequalities (4.8), (4.9) and (4.11) give the inequality (4.12). For the second inequality, it
is enough to take v = 0. �

Let M > 0, we consider the closed ball

BT,M :=
{
u ∈ C([−T, T ];Xm+1,4− 2

p ,p(R)); NT (u) ≤M
}
.

We would like to show that there exists an unique solution u of the equation (4.4) in this ball by using
the fixed point theorem.
First, there exists ε > 0 sufficiently small such that if ||f ||

X
m+1,4− 2

p
,p ≤ ε, even if we take Cm,pM instead

of M , it is enough to take M > 0 satisfying ε + Mρ+1 ≤ M so that the inequality (4.13) implies that
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the image of the closed ball BT,M by the map Φ is include in itself. Here, the crucial point is that ε
is independent of T . Secondly, we prove that the map Φ is a contraction on this ball for M sufficiently
small. Let u and v two elements of the closed ball BT,M . The inequality (4.12) gives

NT (Φu− Φv) ≤ Cm,pMρNT (u− v),

and it is enough to take M > 0 sufficiently small so that the quantity Cm,pM
ρ < 1. Then, the fixed point

theorem is applied and there exists an unique solution of the equation (4.4) in the closed ball BT,M .
It remains to prove that this unique solution can be prolonged in time with all [0,+∞[. By uniqueness
of the solution, the inequality (4.13) is written

NT (u) ≤ Cm,p
(
||f ||

X
m+1,4− 2

p
,p +NT (u)ρ+1

)
. (4.14)

Since there exists ε > 0 sufficiently small such that ||f ||
X
m+1,4− 2

p
,p ≤ ε, we can find M > 0 such that

N0(u) < M

Cm,p
(
ε+Mρ+1

)
≤M.

Then for all T > 0, we have NT (u) < M . Indeed, if not by continuity, there exists a time T > 0 such
that

NT (u) = M

> Cm,p
(
ε+Mρ+1

)
> Cm,p

(
ε+NT (u)ρ+1

)
,

what contradicts the inequality (4.14). Finally, there exists a constant M > 0 such that for all T > 0,
NT (u) < M . In particular, we have for all time t ≥ 0

||u(t)||Lq + ||ux(t)||Lq ≤ Cm,p

(
||f ||

X
m+1,4− 2

p
,p +NT (u)ρ+1

)
(1 + t)−θ

≤ Cm,p
(
ε+Mρ+1

)
(1 + t)−θ. (4.15)

We reason in a similar manner for negative times. �

5 Decay in time of the gKP-BBM-II equation

We consider the linear Cauchy problem

ut + ux − uxxt + ∂−1x uyy = 0 ; u(x, y, 0) = f(x, y).

Let us suppose that the initial datum f belongs to the Schwartz space S(R2). Then the Fourier transform
in space implies

ût(1 + k2) + i

(
k +

l2

k

)
û = 0 ; û(k, l, 0) = f̂(k, l).

The solution u of this ordinary differential equation is given by, for all (x, y) ∈ R2 and t ∈ R∗,

u(x, y, t) =
1

(2π)2

∫
R2

e−ithα,β(k,l)f̂(k, l) dk dl, (5.1)

17



with hα,β(k, l) =
k + l2

k

1 + k2
− αk − βl, α =

x

t
and β =

y

t
. We have to majorize this oscillating integral in

function of time.

Lemma 5.1

Let 0 ≤ δ < 1

5
. For all (α, β) ∈ R2, and all time |t| ≥ 1, we have∣∣∣∣∣

∫ |t|δ
−|t|δ

∫ +∞

−∞
e−ithα,β(k,l) dl dk

∣∣∣∣∣ ≤ 3
√
π |t|− 1

2+
5δ
2 .

Proof. We adapt the Haysahi-Naumkin-Saut method [7] to the generalized KP-BBM-II equation. It
consists of transforming the oscillating double integral (5.1) in a simple one. For t ∈ R∗, we do the change

of variables l = l′

√
|k|(1 + k2)

|t|
to obtain

∫ |t|δ
−|t|δ

∫ +∞

−∞
e−ithα,β(k,l) dl dk =

∫ |t|δ
−|t|δ

∫ +∞

−∞
e
ikx+iyl′

√
|k|(1+k2)
|t| −it k

1+k2
−il′2sgn( kt )

√
|k|(1 + k2)

|t|
dl′ dk

=
1

|t|1/2

∫ |t|δ
−|t|δ

√
|k|(1 + k2) e

ikx−it k
1+k2

(∫ +∞

−∞
e
iyl′

√
|k|(1+k2)
|t| −il′2sgn( kt ) dl′

)
dk.

However,

iyl′

√
|k|(1 + k2)

|t|
− il′2sgn(

k

t
) = −i sgn(

k

t
)

(
l′2 − l′y

√
|k|(1 + k2)

|t|

)

= −i sgn(
k

t
)

(
l′2 − y

2

√
|k|(1 + k2)

|t|

)2

+ i
y2k(1 + k2)

4t
.

A last change of variable gives∫ +∞

−∞
e
iyl′

√
|k|(1+k2)
|t| −il′2sgn( kt ) dl′ = e

y2k(1+k2)
4t

∫ +∞

−∞
e±il

2

dl

=
√
πe±iπ/4e

y2k(1+k2)
4t .

Finally, we find∫ |t|δ
−|t|δ

∫ +∞

−∞
e−ithα,β(k,l) dl dk =

√
πe±iπ/4

|t|1/2

∫ |t|δ
−|t|δ

√
|k|(1 + k2) e

ixk+−it k
1+k2

+ y2

4t2
(k+k3)

dk. (5.2)

We deduce then ∣∣∣∣∣
∫ |t|δ
−|t|δ

∫ +∞

−∞
e−ithα,β(k,l) dl dk

∣∣∣∣∣ =
√
π |t|−1/2

∫ |t|δ
−|t|δ

√
|k|(1 + k2) dk

≤ 3
√
π |t|− 1

2+
5δ
2 .

�

The oscillating integral (5.1) can be majorized.
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Lemma 5.2

Let 0 < δ <
1

5
and m =

1

2δ
− 2. There exists a constant Cm > 0, depending only on m, such that for all

f ∈ H2m(R2), (α, β) ∈ R2 and all time |t| ≥ 1, we have∣∣∣∣∣
∫ +∞

|t|δ

∫ +∞

−∞
e−ithα,β(k,l)f̂(k, l) dl dk

∣∣∣∣∣ ≤ Cm||f ||H2m |t|− 1
2+

5δ
2 ,

and ∣∣∣∣∣
∫ −|t|δ
−∞

∫ +∞

−∞
e−ithα,β(k,l)f̂(k, l) dl dk

∣∣∣∣∣ ≤ Cm||f ||H2m |t|− 1
2+

5δ
2 .

Proof. We have∣∣∣∣∣
∫ +∞

|t|δ

∫ +∞

−∞
e−ithα,β(k,l)f̂(k, l) dl dk

∣∣∣∣∣ ≤
∫ +∞

|t|δ

∫ +∞

−∞

∣∣∣f̂(k, l)
∣∣∣ dl dk,

the Fubini theorem implies∣∣∣∣∣
∫ +∞

|t|δ

∫ +∞

−∞
e−ithα,β(k,l)f̂(k, l) dl dk

∣∣∣∣∣ ≤
∫ +∞

−∞

(1 + l2)m/2

(1 + l2)m/2

∫ +∞

|t|δ

(1 + k)m

(1 + k)m

∣∣∣f̂(k, l)
∣∣∣ dk dl,

and the Cauchy-Schwarz inequality, first in k and secondly in l, gives the result. �

Proposition 2

Let 0 < δ <
1

5
and m =

1

2δ
− 2. There exists a constant Cm > 0, depending only on m, such that for all

function f ∈ L1(R2) ∩H2m(R2), (α, β) ∈ R2 and all time t ∈ R, we have∣∣∣∣∫
R2

e−ithα,β(k,l)f̂(k, l) dl dk

∣∣∣∣ ≤ Cm(||f ||L1 + ||f ||H2m)(1 + |t|)− 1
2+

5δ
2 . (5.3)

Proof. It is enough to separate only the integral in direction k and to take again the proof of the
proposition 1. �

We can deduce in the same way as the corollary 1 the following result.

Corollary 2

Let 0 < δ <
1

5
and m =

1

2δ
− 2. There exists a constant Cm > 0, depending only on m, such that for all

function f ∈ Lp(R2) ∩H2m(R2), with 1 ≤ p ≤ 2, for all (α, β) ∈ R2 and all time t ∈ R, we have∣∣∣∣∣∣∣∣∫
R2

e−ithα,β(k,l)f̂(k, l) dl dk

∣∣∣∣∣∣∣∣
Lq
≤ Cm(||f ||Lp + ||f ||H2m)(1 + |t|)(−

1
2+

5δ
2 )(1− 2

q ), (5.4)

where
1

p
+

1

q
= 1.

Let us return to the nonlinear problem. We consider the Cauchy problem

ut + ux + uρux − uxxt + ∂−1x uyy = 0 (5.5)

u(x, y, 0) = f(x, y). (5.6)
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The existence and uniqueness of global solution, given by the theorem 1.2, is proved.

Proof. [Proof of the theorem 1.2] To simplify the writings, we denote
Dx

1 +D2
x

the operator defined by

the Fourier multiplicator σ(k, l) :=
ik

1 + k2
, and we denote also

0 < θ =

(
1

2
− 5δ

2

)(
1− 2

q

)
<

1

2
.

We remark that
3θρ

4
> 1. (5.7)

The Duhamel formula implies that u is the solution of the gKP-BBM-II equation (5.5)-(5.6) if and only
if u is the solution of the following equation, for t ≥ 0

u(t) = Φu(t) := Stf −
1

ρ+ 1

∫ t

0

St−τ

(
Dx

1 +D2
x

uρ+1

)
(τ) dτ, (5.8)

where Stf :=
1

(2π)2

∫
R2

e
ikx+ily−it k+l

2/k

1+k2 f̂(k, l) dl dk.

We remark first of all that in one hand, we have for u ∈ S(R2)∣∣∣∣∣∣∣∣ Dx

1 +D2
x

uρ+1

∣∣∣∣∣∣∣∣
Hm

=

(∫
R2

(1 + k2 + l2)m
(

ik

1 + k2

)2

|ûρ+1|2 dk dl

)1/2

≤
(∫

R2

(1 + k2 + l2)m|ûρ+1|2 dk dl
)1/2

= ||uρ+1||Hm . (5.9)

In the other hand, the Mikhlin-Hörmander theorem 3.1 is applied with σ, defined above, to give, for
1 < p < 2, there exists a constant Cp > 0 depending only on p such that∣∣∣∣∣∣∣∣ Dx

1 +D2
x

uρ+1

∣∣∣∣∣∣∣∣
Lp
≤ Cp||uρ+1||Lp . (5.10)

Let T > 0, we define the norm NT by, for u ∈ X2m+1,7− 4
p ,p(R2),

NT (u) := sup
0≤τ≤T

[
(||u||Lq (τ) + ||ux||Lq (τ))(1 + τ)θ + ||u||

X
2m+1,7− 4

p
,p(τ)

]
. (5.11)

From now, the end of the proof is similar to that of the theorem 1.1 by remarking that the Sobolev

inequality 3.3 in dimension 2 with
1

p
+

1

q
= 1, r =∞, j = 0, a =

1

4
and m = 6− 4

p
gives

||u||∞ ≤ Cp ||u||1/4
W

6− 4
p
,p
||u||3/4Lq . (5.12)

According to the definition (5.11) of the norm NT , we can see that the decay in time will be linked to
the norm Lq and the power 3/4. �

Remark 1 If we compare the generalized Korteweg-de Vries equation and his BBM version, we remark
that the decay rate in time is of the same order. In dimension 2, Haysahi, Naumkin and Saut [7] found,
for the generalized KP equation, a decay rate in time of order 1. However, nothing says that our result is
optimal and we wonder if we can find a decay rate in time better than 1/2, and approach 1 for the BBM
version. We plan to study this issue in a future work.
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