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Abstract. We prove, by using a method introduced by Constantin [6], that if the solution of the Cauchy problem

associated with the KP-BBM-II equation, has a compact support for all times, then this solution vanishes identically.

The only restriction is that the support in the y-direction has to be small.
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Introduction

The small amplitude long waves in shallow water moving mainly in the x−direction are modelled in
dimension 2 by the Kadomtsev-Petviashvili equations [7]

ut + ux + αuux + sβuxxx + γ∂−1
x uyy = 0,

called KP-I if s = −1 and KP-II if s = 1, according to whether the surface tension is or is not neglected,
and where α denotes the quotient between the waves amplitude and the depth of the water, β the
square of the quotient between the depth and the wavelength, γ the square of the quotient between the
wavelength in the two directions of the plan and ∂−1

x denotes the anti-derivative, defined by the Fourier

symbol ∂̂−1
x u(k) :=

û(k)

ik
. We recall that 0 ≤ α, β, γ ≤ 1. Since this equation is obtained correcting, at

the second order, the transport equation ut + ux = 0, we find the KP-BBM equations [1]

ut + ux + αuux − sβuxxt + γ∂−1
x uyy = 0,

called KP-BBM-I if s = −1 and KP-BBM-II if s = 1. The KP-BBM-I equation is not well posed in
L2(R2) and so we study here only the KP-BBM-II equation. Indeed, the KP-BBM-I equation can be
rewritten

(1 + β∂2
x)ut = −ux − αuux − γ∂−1

x uyy,

and the operator (1 + β∂2
x) is not invertible in L2(R2).

The goal of this work is to show that if the solution of the Cauchy problem associated with the KP-BBM-
II equation has a compact support on a time interval, then this solution vanishes identically.
In dimension 1, Saut and Scheurer [11] proved the unique continuation property for a general class of
dispersive equation, in particular for the Korteweg-de Vries equation, by using the Carleman’s estimates
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[5]. In 1997, Bourgain introduced another method [4] based on entire function estimates. Thanks to
the Paley-Wiener theorem, the entire function here is given by an analytic continuation of the Fourier
transform in space of the Duhamel formula. In this way, he proved the unique continuation property for
the KdV equation and Panthee [9, 10] expanded this property to the KP-II equation. But it is not yet
clear if the proof can be expanded to the KP-BBM-II equation. Indeed, to use Bourgain’s method, we
need to prove that for all R > 0, there exists k ∈ R, with |k| > R, such that

|L′(k)| ≥ |f(k)|, with lim
|k|→∞

|f(k)| = +∞. (0.1)

where L is the symbol of the linear evolution. In the context of the KdV equation, we choose f(k) = k2

[4]. We notice for the BBM equation

ut + ux + αuux − βuxxt = 0,

the symbol of the linear evolution is given by L(k) =
k

1 + βk2
, thus L′(k) =

1− βk2

(1 + βk2)2
tends to zero at

infinity and the condition (0.1) is not satisfied.
In dimension 2, this condition becomes for all R > 0, there exists (k, l) ∈ R2, with |k|+ |l| > R, such

that
|∂kL(k, l)| ≥ |f(k, l)|, with lim

|k|+|l|→∞
|f(k, l)| = +∞. (0.2)

Let us see how behave the KP equations

ut + ux + αuux + s βuxxx + γ∂−1
x uyy = 0.

We have L(k, l) = k − sβk3 + γl2/k, and

∂kL(k, l) = 1− 3sβk2 − γ
l2

k2
.

If s = 1, i.e. for the KP-II equation, we choose f(k, l) = |k|+ |l| and the condition (0.2) is satisfied [10].
If s = −1, i.e. for the KP-I equation, there exists (k, l) large (l ∼ k2) such that ∂kL(k, l) vanishes, and
the method introduced by Bourgain no longer applies.
In a similar way, the symbol of the linear evolution is given for the KP-BBM-II equation by

L(k, l) =
k + γl2/k

1 + βk2
, thus

∂kL(k, l) =
(1− βk2)k2 − γl2(1 + 3βk2)

k2(1 + βk2)2
.

For k and l large, ∂kL(k, l) can be very small if |l| ≪ |k|.
In order to study the unique continuation property for the KP-BBM-II equation, we have to envisage

another way. We are then inspired by a simpler method introduced by Constantin [6] based on integration
by parts. If we denote Xs(R2) the space of functions f in Hs(R2) such that ∂−1

x f belongs to Hs(R2),
provided with the norm

|f |s =
(

||f ||2s + ||∂−1
x f ||2s

)1/2
,

our result reads as follows.

Theorem 0.1

Let s > 2 and u ∈ C
(

[−T, T ];Xs(R2)
)

the solution of the Cauchy problem associated with the KP-BBM-II

equation. Let us suppose that there exists 0 < B < +∞ and C > D in R, with
|D − C|√

βγ
< π, such that

for all t ∈ [−T, T ]
suppu(t) ⊆ [−B,B]× [D,C].

Then u vanishes identically.
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We recall that, for all positive real number s, Hs(R2) is the Sobolev space of square integrable functions,
which the s first derivatives are also square integrable, equipped with the norm

||f ||2s =

∫

R2

(1 + k2 + l2)s|f̂(k, l)|2 dk dl,

where the Fourier transform in space is defined by

f̂(k, l) =

∫

R2

e−i(kx+ly)f(x, y) dx dy.

1 Summary of existence theory

We consider the Cauchy problem

ut + ux + αuux − βuxxt + γ∂−1
x uyy = 0 (1.1)

u(x, y, 0) = f(x, y). (1.2)

This Cauchy problem is dealt in the articles of Bona, Liu and Tom [2], or Saut and Tzvetkov [12]. They
proved that for all initial datum in the subspace of L2(R2) provided with the norm (||u||2 + ||ux||2)1/2,
there exists an unique global in time solution.

2 Unique continuation property

We start proving that the anti-derivative ∂−1
x can be written as an integral.

Lemma 2.1

Let s > 2 and u ∈ C
(

[−T, T ];Xs(R2)
)

solution of the Cauchy problem (1.1)-(1.2). If for all t ∈ [−T, T ],
u(t) has a compact support, then for all (x, y) ∈ R2 and t ∈ [−T, T ],

∂−1
x u(x, y, t) =

∫ x

−∞

u(x′, y, t) dx′.

Moreover u is integrable with mean zero.

Proof. Let u ∈ C
(

[−T, T ];Xs(R2)
)

solution of the Cauchy problem (1.1)-(1.2). We denote

v(x, y, t) := ∂−1
x u(x, y, t) and w(x, y, t) :=

∫ x

−∞

u(x′, y, t) dx′.

We deduce that, for all t ∈ [−T, T ], v̂(t) = ŵ(t) in S ′(R2), where S ′(R2) is the space of tempered distri-
butions. Since the Fourier transform is bijective on the tempered distribution, we conclude by definition
of the Sobolev spaces with respect to S ′(R2).
Let us prove now that u is integrable with mean zero. Since u has compact support, and u ∈ C

(

[−T, T ];Xs(R2)
)

,
with s > 2, the Cauchy-Schwarz inequality implies that u is integrable over the x and y−directions. More-
over, ∂−1

x u ∈ C
(

[−T, T ];Hs(R2)
)

, thus, by property of Sobolev space,

lim
x→+∞

∂−1
x u(x, y, t) = 0 =

∫ +∞

−∞

u(x, y, t) dx.

�
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Lemma 2.2

Let s > 2 and u ∈ C
(

[−T, T ];Xs(R2)
)

solution of the Cauchy problem (1.1)-(1.2). If for all t ∈ [−T, T ],
u(t) has a compact support, then for all t ∈ [−T, T ] and g ∈ C∞(R),

∫

R2

e
x

√

β g(y)(u− βuxx)(x, y, t) dx dy = 0.

Proof. Let G ∈ C∞(R2;R) and t ∈ [−T, T ]. Since u(t) has a compact support, an integration by parts
gives

∫

R2

G(x, y)(u− βuxx)(x, y, t) dx dy = 0,

if
G(x, y)− βGxx(x, y) = 0.

We set then G(x, y) = e
x

√

β g(y). �

We can prove now the main result of this paper.
Proof of the theorem 0.1. We have, thanks to the differentiation under the integral sign theorem of
Lebesgue,

0 =
d

dt

∫

R2

e
x

√

β g(y)(u− βuxx)(x, y, t) dx dy

=

∫

R2

e
x

√

β g(y)(ut − βuxxt)(x, y, t) dx dy,

and since u is the solution of the equation (1.1), we find

0 =

∫

R2

e
x

√

β g(y)(ux + αuux + γ∂−1
x uyy)(x, y, t) dx dy.

According to the lemma 2.1, we apply an integration by parts in the x−direction to find

0 =

∫

R2

e
x

√

β
1√
β
g(y)

(

u+
α

2
u2

)

+ e
x

√

β

√

βγ g(y)uyy(x, y, t) dx dy.

Two new integrations by parts for the third term in the y−direction give

0 =

∫

R2

e
x

√

β

(

1√
β
g(y) +

√

βγg′′(y)

)

u(x, y, t) +
α

2
√
β
e

x
√

β g(y)u2(x, y, t) dx dy.

Our aim is to solve the ordinary differential equation

g(y) + βγg′′(y) = 0 with g(y) > 0. (2.1)

One solution is given by g(y) = cos

(

y + y0√
βγ

)

, with y0 to be chosen. Finally, we find

∫

R2

e
x

√

β cos

(

y + y0√
βγ

)

u2(x, y, t) dx dy = 0.

We choose then y0 such that
y + y0√

βγ
∈
]

−π

2
,
π

2

[

. However, for all t ∈ [−T, T ], the support of u(t) verifies

that suppu(t) ⊆ [−B,B]× [D,C], with
|D − C|√

βγ
< π, and this implies that e

x
√

β cos

(

y + y0√
βγ

)

> 0 on the

support of u(t). In particular u vanishes identically.
�
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Remark 2.3

If we consider the KP equations written under the form

ut + ux + αuux + βuxxx + sγ∂−1
x uyy = 0,

and since from the modelling point of view it is permissible to change ux by −ut in the fourth term [1],
we find another KP-BBM type equations

ut + ux + αuux − βuxxt + sγ∂−1
x uyy = 0. (2.2)

In particular, the equation (2.2) with s = −1 is here well-posed [12], and we can expand the result of
unique continuation property as follows.

Theorem 2.4

Let s > 2 and u ∈ C
(

[−T, T ];Xs(R2)
)

solution of the Cauchy problem associated with the equation (2.2)
for s = −1. Let us suppose that there exists 0 < B < +∞ such that for all t ∈ [−T, T ]

suppu(t) ⊆ [−B,B]× [−B,B].

Then u vanishes identically.

Proof. The proof is similar to the KP-BBM-II one by taking the function G(x, y) = e
x

√

β
+ y

√

βγ . �

Let us notice that there is no restriction on the support in the y−direction in this case.
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