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We prove, by using a method introduced by Constantin [6], that if the solution of the Cauchy problem associated with the KP-BBM-II equation, has a compact support for all times, then this solution vanishes identically. The only restriction is that the support in the y-direction has to be small.

Introduction

The small amplitude long waves in shallow water moving mainly in the x-direction are modelled in dimension 2 by the Kadomtsev-Petviashvili equations [START_REF] Kadomtsev | Model equation for long waves in nonlinear dispersive systems[END_REF] u t + u x + αuu x + sβu xxx + γ∂ -1 x u yy = 0, called KP-I if s = -1 and KP-II if s = 1, according to whether the surface tension is or is not neglected, and where α denotes the quotient between the waves amplitude and the depth of the water, β the square of the quotient between the depth and the wavelength, γ the square of the quotient between the wavelength in the two directions of the plan and ∂ -1

x denotes the anti-derivative, defined by the Fourier symbol ∂ -1

x u(k) := û(k) ik . We recall that 0 ≤ α, β, γ ≤ 1. Since this equation is obtained correcting, at the second order, the transport equation u t + u x = 0, we find the KP-BBM equations [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF] 

u t + u x + αuu x -sβu xxt + γ∂ -1 x u yy = 0, called KP-BBM-I if s = -1 and KP-BBM-II if s = 1. The KP-BBM-I equation is not well posed in L 2 (R 2
) and so we study here only the KP-BBM-II equation. Indeed, the KP-BBM-I equation can be rewritten

(1 + β∂ 2 x )u t = -u x -αuu x -γ∂ -1
x u yy , and the operator (1 + β∂ 2

x ) is not invertible in L 2 (R 2 ). The goal of this work is to show that if the solution of the Cauchy problem associated with the KP-BBM-II equation has a compact support on a time interval, then this solution vanishes identically. In dimension 1, Saut and Scheurer [START_REF] Saut | Unique continuation for some evolution equations[END_REF] proved the unique continuation property for a general class of dispersive equation, in particular for the Korteweg-de Vries equation, by using the Carleman's estimates 1 [START_REF] Carleman | Sur les systèmes linéaires aux dérivées partielles du premier ordre à deux variables[END_REF]. In 1997, Bourgain introduced another method [START_REF] Bourgain | On the compactness of the support of solutions of dispersive equations[END_REF] based on entire function estimates. Thanks to the Paley-Wiener theorem, the entire function here is given by an analytic continuation of the Fourier transform in space of the Duhamel formula. In this way, he proved the unique continuation property for the KdV equation and Panthee [START_REF] Panthee | A note on the unique continuation property for Zakharov-Kuznetsov equation[END_REF][START_REF] Panthee | Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation[END_REF] expanded this property to the KP-II equation. But it is not yet clear if the proof can be expanded to the KP-BBM-II equation. Indeed, to use Bourgain's method, we need to prove that for all R > 0, there exists k ∈ R, with |k| > R, such that

|L ′ (k)| ≥ |f (k)|, with lim |k|→∞ |f (k)| = + ∞. (0.1)
where L is the symbol of the linear evolution. In the context of the KdV equation, we choose f (k) = k 2 [START_REF] Bourgain | On the compactness of the support of solutions of dispersive equations[END_REF]. We notice for the BBM equation

u t + u x + αuu x -βu xxt = 0,
the symbol of the linear evolution is given by 2 tends to zero at infinity and the condition (0.1) is not satisfied.

L(k) = k 1 + βk 2 , thus L ′ (k) = 1 -βk 2 (1 + βk 2 )
In dimension 2, this condition becomes for all R > 0, there exists

(k, l) ∈ R 2 , with |k| + |l| > R, such that |∂ k L(k, l)| ≥ |f (k, l)|, with lim |k|+|l|→∞ |f (k, l)| = + ∞. (0.2)
Let us see how behave the KP equations

u t + u x + αuu x + s βu xxx + γ∂ -1 x u yy = 0. We have L(k, l) = k -sβk 3 + γl 2 /k, and ∂ k L(k, l) = 1 -3sβk 2 -γ l 2 k 2 . If s = 1, i.e.
for the KP-II equation, we choose f (k, l) = |k| + |l| and the condition (0.2) is satisfied [START_REF] Panthee | Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation[END_REF]. If s = -1, i.e. for the KP-I equation, there exists (k, l) large (l ∼ k 2 ) such that ∂ k L(k, l) vanishes, and the method introduced by Bourgain no longer applies. In a similar way, the symbol of the linear evolution is given for the KP-BBM-II equation by

L(k, l) = k + γl 2 /k 1 + βk 2 , thus ∂ k L(k, l) = (1 -βk 2 )k 2 -γl 2 (1 + 3βk 2 ) k 2 (1 + βk 2 ) 2 .
For k and l large, ∂ k L(k, l) can be very small if |l| ≪ |k|.

In order to study the unique continuation property for the KP-BBM-II equation, we have to envisage another way. We are then inspired by a simpler method introduced by Constantin [START_REF] Constantin | Finite propagation speed for the Camassa-Holm equation[END_REF] based on integration by parts. If we denote X s (R 2 ) the space of functions f in

H s (R 2 ) such that ∂ -1 x f belongs to H s (R 2 ), provided with the norm |f | s = ||f || 2 s + ||∂ -1 x f || 2 s 1/2 ,
our result reads as follows. Then u vanishes identically.

We recall that, for all positive real number s, H s (R 2 ) is the Sobolev space of square integrable functions, which the s first derivatives are also square integrable, equipped with the norm

||f || 2 s = R 2 (1 + k 2 + l 2 ) s | f (k, l)| 2 dk dl,
where the Fourier transform in space is defined by

f (k, l) = R 2
e -i(kx+ly) f (x, y) dx dy.

Summary of existence theory

We consider the Cauchy problem

u t + u x + αuu x -βu xxt + γ∂ -1 x u yy = 0 (1.1) u(x, y, 0) = f (x, y). (1.2)
This Cauchy problem is dealt in the articles of Bona, Liu and Tom [START_REF] Bona | The Cauchy problem and stability of solitary-wave solutions for RLW-KP-type equations[END_REF], or Saut and Tzvetkov [START_REF] Saut | Global well-posedness for the KP-BBM equations[END_REF]. They proved that for all initial datum in the subspace of L 2 (R 2 ) provided with the norm (||u|| 2 + ||u x || 2 ) 1/2 , there exists an unique global in time solution.

Unique continuation property

We start proving that the anti-derivative ∂ -1

x can be written as an integral. 

∂ -1 x u(x, y, t) = x -∞ u(x ′ , y, t) dx ′ .
Moreover u is integrable with mean zero.

Proof. Let u ∈ C [-T, T ]; X s (R 2 ) solution of the Cauchy problem (1.1)-(1.2). We denote v(x, y, t) := ∂ -1

x u(x, y, t) and w(x, y, t

) := x -∞ u(x ′ , y, t) dx ′ .
We deduce that, for all t ∈ [-T, T ], v(t) = ŵ(t) in S ′ (R 2 ), where S ′ (R 2 ) is the space of tempered distributions. Since the Fourier transform is bijective on the tempered distribution, we conclude by definition of the Sobolev spaces with respect to S ′ (R 2 ). Let us prove now that u is integrable with mean zero. Since u has compact support, and u ∈ C [-T, T ]; X s (R 2 ) , with s > 2, the Cauchy-Schwarz inequality implies that u is integrable over the x and y-directions. Moreover,

∂ -1 x u ∈ C [-T, T ]; H s (R 2 ) , thus, by property of Sobolev space, lim x→+∞ ∂ -1 x u(x, y, t) = 0 = +∞ -∞ u(x, y, t) dx. Lemma 2.2 Let s > 2 and u ∈ C [-T, T ]; X s (R 2 ) solution of the Cauchy problem (1.1)-(1.2). If for all t ∈ [-T, T ], u(t) has a compact support, then for all t ∈ [-T, T ] and g ∈ C ∞ (R), R 2 e x √ β g(y)(u -βu xx )(x, y, t) dx dy = 0. Proof. Let G ∈ C ∞ (R 2 ; R) and t ∈ [-T, T ].
Since u(t) has a compact support, an integration by parts gives

R 2 G(x, y)(u -βu xx )(x, y, t) dx dy = 0, if G(x, y) -βG xx (x, y) = 0.
We set then G(x, y) = e

x √ β g(y).

We can prove now the main result of this paper. Proof of the theorem 0.1. We have, thanks to the differentiation under the integral sign theorem of Lebesgue,

0 = d dt R 2 e x √ β g(y)(u -βu xx )(x, y, t) dx dy = R 2 e x √ β g(y)(u t -βu xxt )(x, y, t) dx dy,
and since u is the solution of the equation (1.1), we find

0 = R 2 e x √ β g(y)(u x + αuu x + γ∂ -1
x u yy )(x, y, t) dx dy.

According to the lemma 2.1, we apply an integration by parts in the x-direction to find

0 = R 2 e x √ β 1 √ β g(y) u + α 2 u 2 + e x √ β
βγ g(y) u yy (x, y, t) dx dy.

Two new integrations by parts for the third term in the y-direction give

0 = R 2 e x √ β 1 √ β g(y) + βγg ′′ (y) u(x, y, t) + α 2 √ β e x √
β g(y)u 2 (x, y, t) dx dy.

Our aim is to solve the ordinary differential equation g(y) + βγg ′′ (y) = 0 with g(y) > 0.

(2.1)

One solution is given by g(y) = cos y + y 0 √ βγ , with y 0 to be chosen. Finally, we find

R 2 e x √ β cos y + y 0 √ βγ u 2 (x, y, t) dx dy = 0.
We choose then y 0 such that x u yy = 0, and since from the modelling point of view it is permissible to change u x by -u t in the fourth term [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF], we find another KP-BBM type equations u t + u x + αuu x -βu xxt + sγ∂ -1

y + y 0 √ βγ ∈ - π 2 , π 2 
x u yy = 0.

(2.2)

In particular, the equation (2.2) with s = -1 is here well-posed [START_REF] Saut | Global well-posedness for the KP-BBM equations[END_REF], and we can expand the result of unique continuation property as follows. Let us notice that there is no restriction on the support in the y-direction in this case.

Theorem 0. 1

 1 Let s > 2 and u ∈ C [-T, T ]; X s (R 2 ) the solution of the Cauchy problem associated with the KP-BBM-II equation. Let us suppose that there exists 0 < B < +∞ and C > D in R, with |D -C| √ βγ < π, such that for all t ∈ [-T, T ] supp u(t) ⊆ [-B, B] × [D, C].

Lemma 2. 1

 1 Let s > 2 and u ∈ C [-T, T ]; X s (R 2 ) solution of the Cauchy problem (1.1)-(1.2). If for all t ∈ [-T, T ], u(t) has a compact support, then for all (x, y) ∈ R 2 and t ∈ [-T, T ],

Theorem 2. 4

 4 Let s > 2 and u ∈ C [-T, T ]; X s (R 2 ) solution of the Cauchy problem associated with the equation (2.2) for s = -1. Let us suppose that there exists 0 < B < +∞ such that for all t ∈ [-T, T ] supp u(t) ⊆ [-B, B] × [-B, B]. Then u vanishes identically. Proof. The proof is similar to the KP-BBM-II one by taking the function G(x, y) = e x √ β + y √ βγ .

  If we consider the KP equations written under the formu t + u x + αuu x + βu xxx + sγ∂ -1

	Remark 2.3					
		. However, for all t ∈ [-T, T ], the support of u(t) verifies
	that supp u(t) ⊆ [-B, B] × [D, C], with	|D -C| √ βγ	< π, and this implies that e	x √ β cos	y + y 0 √ βγ	> 0 on the
	support of u(t). In particular u vanishes identically.