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1 Introduction

The surface η and the velocity v of the two-way propagation of small amplitude, long wavelength, gravity
waves in shallow water was first derived by Boussinesq [5, 11] from the Euler equation as a system of two
equations of the form

ηt + vx + (vη)x = 0

vt + ηx + vvx − vxxt = 0.

The goal of this work is to study the decay in time for small amplitude solutions of a more general family
of Boussinesq system (gBS) below [3, 4]

ηt + vx + (vρη)x + (vηρ)x + avxxx − bηxxt = 0 (1.1)

vt + ηx + (vρ+1)x + aηxxx − bvxxt = 0, (1.2)

with a ∈ R, b > 0 and ρ a positive integer.
For s ∈ R, we denote Xs(R) = Hs(R) ∩ L1(R) ×Hs(R) ∩ L1(R) the space of functions (η, v) such that
the norm

||(η, v)||Xs := ||η||Hs + ||v||Hs + ||η||L1 + ||v||L1

is finite. Our result reads as follows.

Theorem 1.1

Let ρ ≥ 4. For 1/9 ≤ δ < 1/3− 2/(3ρ), we set s = 1/(2δ)− 1.
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Then there exists ε > 0 such that for all (η0, v0) ∈ Xs(R) with ||(η0, v0)||Xs ≤ ε, there exists a unique
global in time solution (η, v) ∈ C (R;Xs(R)) of the gBS system (1.1)-(1.2) with (η0, v0) as initial datum.
Moreover this solution verifies that there exists a constant C > 0, depending only on s and ε, such that
for all time t ∈ R, for all x ∈ R, we have

|η(x, t)|+ |v(x, t)| ≤ C(1 + |t|)− 1
2+

3δ
2 .

We notice that if δ tends to 1/9 then the decay rate of the L∞−norm of (η, v)(t) tends to 1/3, but we
need to impose more regularity on the initial datum. On the other hand, the more δ is close to 1/3, the
more the regularity is small, but the decay in time becomes slow.
We are inspired by the method described by Albert [1] for the generalized Benjamin-Bona-Mahony
(gBBM) equation [2]

ηt + ηx + ηρηx − ηxxt = 0. (1.3)

In this paper, Albert shows that, for a power ρ > 4, the solution of (1.3), with a small initial datum,
decreases in time with a rate of order 1/3. A same result is found for the solution of the generalized
Korteweg-de Vries equation [7, 10]

ηt + ηx + ηρηx + ηxxx = 0. (1.4)

In our work, we prove that the decay rate in time of the solution of the gBS system is also of order to
1/3, but the result remains true for ρ = 4. However, the gBBM equation can be considered as a special
case of the gBS system. It is enough to take v = η, a = 0 in the theorem 1.1 to slightly improve the
result of Albert [1].

Corollary 1.2

Let ρ ≥ 4. For 1/9 ≤ δ < 1/3− 2/(3ρ), we set s = 1/(2δ)− 1.
Then there exists ε > 0 such that for all η0 ∈ Hs(R) ∩ L1(R) with ||η0||Hs∩L1 ≤ ε, there exists a unique
global in time solution η ∈ C

(
R;Hs(R) ∩ L1(R)

)
of the gBBM equation (1.3) with η0 as initial datum.

Moreover this solution verifies that there exists C > 0, depending only on s and ε, such that for all time
t ∈ R, for all x ∈ R, we have

|η(x, t)| ≤ C(1 + |t|)− 1
2+

3δ
2 .

The Strauss method [10] will be used to prove these results. It consists of proving that, for a small
initial datum, all the derivatives of the solution of the gBS system behave like a linear term, and so
equivalent to a Sobolev norm of sufficiently high order, and the power ρ relates to the dispersion. The
decay in time is given by the free gBS system evolution.

We will use the following notations: for 1 ≤ p < ∞, we denote Lp(R) the space of p-power integrable
functions equipped with the norm

||f ||Lp :=

(∫ +∞

−∞
|f(x)|p dx

)1/p

,

we denote L∞(R) the functions space equipped with the norm

||f ||∞ = sup ess (f) := inf {c ; |f(x)| ≤ c almost everywhere in R} .

The Schwartz space is denoted by S(R) and for 1 ≤ p ≤ ∞, W s,p(R) is the Sobolev space equipped with
the norm

||f ||W s,p :=
∣∣∣
∣∣∣(1− ∂2

x)
s/2f

∣∣∣
∣∣∣
Lp

.

In particular, Hs(R) := W s,2(R).
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We organise the paper as follows. In the first section, we give estimates concerning the linear Cauchy
problem. In the second one, the existence and the uniqueness of global solution with the decay in time
are proved.

2 Estimates for the linear gBS system

We consider the linear Cauchy problem

ηt + vx + avxxx − bηxxt = 0

vt + ηx + aηxxx − bvxxt = 0

η(x, 0) = η0(x), v(x, 0) = v0(x),

with a ∈ R, b > 0.
Let us suppose that the initial datum (η0, v0) is in the Schwartz space S(R)×S(R). The solution (η, v) of
the ordinary differential equation, deduced from the Fourier transform in space, is given by, for all x ∈ R

and t ∈ R
∗,

η(x, t) =
1

2π

∫ +∞

−∞
eikx cos

(
tk

1− ak2

1 + bk2

)
η̂0(k)− ieikx sin

(
tk

1− ak2

1 + bk2

)
v̂0(k) dk

=
1

4π

∫ +∞

−∞

(
eithα(k) + eitgα(k)

)
η̂0(k)−

(
eithα(k) − eitgα(k)

)
v̂0(k) dk (2.1)

v(x, t) =
1

2π

∫ +∞

−∞
eikx cos

(
tk

1− ak2

1 + bk2

)
v̂0(k)− ieikx sin

(
tk

1− ak2

1 + bk2

)
η̂0(k) dk

=
1

4π

∫ +∞

−∞

(
eithα(k) + eitgα(k)

)
v̂0(k)−

(
eithα(k) − eitgα(k)

)
η̂0(k) dk, (2.2)

with hα(k) = k(1− ak2)/(1 + bk2) + αk, gα(k) = −k(1− ak2)/(1 + bk2) + αk, and α = x/t.
We first recall the Van der Corput lemma [9].

Lemma 2.1

Let n ≥ 2. Then there exists C > 0 such that for all α ≤ β, λ > 0, t ∈ R
∗ and for all function

h ∈ C∞([α, β]) real valued satisfying for all k ∈ [α, β], |h(n)(k)| ≥ λ, we have
∣∣∣∣∣

∫ b

a

eith(k) dk

∣∣∣∣∣ ≤
C

(λ|t|)1/n .

The Van der Corput lemma is now applied with the functions hα and gα.

Lemma 2.2

There exists C > 0 such that for all 1/9 ≤ δ < 1/3, α ∈ R and all time |t| >
(
(3 + 2

√
2)/b

)1/2δ
, we have

∣∣∣∣∣

∫ |t|δ

−|t|δ
eithα(k) dk

∣∣∣∣∣ ≤ C|t|− 1
2+

3δ
2 ,

∣∣∣∣∣

∫ |t|δ

−|t|δ
eitgα(k) dk

∣∣∣∣∣ ≤ C|t|− 1
2+

3δ
2 .

Proof. We only consider the cases hα and k ≥ 0, the other cases being dealt with similarly.
We have for k ∈ [0, |t|δ]

|h′′
α(k)| =

∣∣∣∣
2(a+ b)k(bk2 − 3)

(1 + bk2)3

∣∣∣∣ , |h
′′′
α (k)| =

∣∣∣∣
6(a+ b)(b2k4 − 6bk2 + 1)

(1 + bk2)4

∣∣∣∣ .
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We notice that |h′′
α(k)| vanishes if k = 0,

√
3/b and |h′′′

α (k)| vanishes if k =
√
(3− 2

√
2)/b,

√
(3 + 2

√
2)/b.

The interval [0, |t|δ] is divided in four pieces [0, A] ∪ [A,B] ∪ [B,C] ∪ [C, |t|δ], with

0 < A <

√
3− 2

√
2

b
< B <

√
3

b
< C <

√
3 + 2

√
2

b
< |t|δ.

In particular, for k ∈ [0, A] ∪ [B,C], we have |h′′′
α (k)| ≥ C > 0, for k ∈ [A,B], |h′′

α(k)| ≥ C > 0 and
for k ∈ [C, |t|δ], |h′′

α(k)| ≥ |h′′
α(|t|δ)| ≥ C|t|−3δ, where C is independent on t. Finally, the lemma 2.1 is

applied on each interval to give
∣∣∣∣∣

∫ |t|δ

0

eithα(k) dk

∣∣∣∣∣ ≤ C|t|− 1
3 + C|t|− 1

2+
3δ
2 ,

and since δ ≥ 1/9, we have −1/2 + 3δ/2 ≥ −1/3. �

The oscillating integrals (2.1) and (2.2) can be majorized. When there is no ambiguity, we will write C
and Cs the different constants appearing in the following results.

Lemma 2.3

Let 1/9 ≤ δ < 1/3 and s = 1/(2δ) − 1. For all f ∈ Hs(R), α ∈ R and all time |t| >
(
(3 + 2

√
2)/b

)1/2δ
,

we have∣∣∣∣∣

∫

|k|>|t|δ
eithα(k)f̂(k) dk

∣∣∣∣∣ ≤ Cs||f ||Hs |t|− 1
2+

3δ
2 ,

∣∣∣∣∣

∫

|k|>|t|δ
eitgα(k)f̂(k) dk

∣∣∣∣∣ ≤ Cs||f ||Hs |t|− 1
2+

3δ
2 .

Proof. We have∣∣∣∣∣

∫ +∞

|t|δ
eithα(k)f̂(k) dk

∣∣∣∣∣ ≤
∫ +∞

|t|δ

∣∣∣f̂(k)
∣∣∣ dk =

∫ +∞

|t|δ

(1 + k)s

(1 + k)s

∣∣∣f̂(k)
∣∣∣ dk,

and the Cauchy-Schwarz inequality gives
∣∣∣∣∣

∫ +∞

|t|δ
eithα(k)f̂(k) dk

∣∣∣∣∣ ≤
(∫ +∞

|t|δ
(1 + k)2s|f̂(k)|2 dk

)1/2(∫ +∞

|t|δ

dk

(1 + k)2s

)1/2

.

On one hand, since s > 1/2, it gets

(∫ +∞

|t|δ

dk

(1 + k)2s

)1/2

=

([ −1

(2s− 1)(1 + k)2s−1

]+∞

|t|δ

)1/2

≤ Cs|t|
δ
2 (1−2s) = Cs|t|−

1
2+

3δ
2 .

On the other hand, since for k ∈ R, we have (1 + k)2 ≤ 2(1 + k2), the first integral becomes

(∫ +∞

|t|δ
(1 + k)2s|f̂(k)|2 dk

)1/2

≤
√
2s

(∫ +∞

|t|δ
(1 + k2)s|f̂(k)|2 dk

)1/2

≤ Cs||f ||Hs .

Finally, we find ∣∣∣∣∣

∫ +∞

|t|δ
eithα(k)f̂(k) dk

∣∣∣∣∣ ≤ Cs||f ||Hs |t|− 1
2+

3δ
2 .

�
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Proposition 2.4

Let 1/9 ≤ δ < 1/3 and s = 1/(2δ) − 1. There exists a constant Cs > 0, depending only on s, such that
for all function f ∈ L1(R) ∩Hs(R), α ∈ R and all time t ∈ R, we have

∣∣∣∣
∫ +∞

−∞
eithα(k)f̂(k) dk

∣∣∣∣ ≤ Cs(||f ||L1 + ||f ||Hs)(1 + |t|)− 1
2+

3δ
2

∣∣∣∣
∫ +∞

−∞
eitgα(k)f̂(k) dk

∣∣∣∣ ≤ Cs(||f ||L1 + ||f ||Hs)(1 + |t|)− 1
2+

3δ
2 .

Proof. Let 1/9 ≤ δ < 1/3 and |t| >
(
(3 + 2

√
2)/b

)1/2δ
=: k1, we write

∫ +∞

0

eithα(k)f̂(k) dk =

∫ |t|δ

0

eithα(k)f̂(k) dk +

∫ +∞

|t|δ
eithα(k)f̂(k) dk.

For the first integral, the Fubini theorem implies

∫ |t|δ

0

eithα(k)f̂(k) dk =

∫ |t|δ

0

eithα(k)

(∫ +∞

−∞
e−ikx′

f(x′) dx′
)

dk

=

∫ +∞

−∞

(∫ |t|δ

0

eik(x−x′)e
−it

k(1−ak2)

1+bk2 dk

)
f(x′) dx′.

We deduce that
∣∣∣∣∣

∫ |t|δ

0

eithα(k)f̂(k) dk

∣∣∣∣∣ ≤
∣∣∣∣∣

∣∣∣∣∣

∫ |t|δ

0

eithα(k) dk

∣∣∣∣∣

∣∣∣∣∣
∞

||f ||L1 .

The lemmas 2.2 and 2.3 provide
∣∣∣∣
∫ +∞

0

eithα(k)f̂(k) dk

∣∣∣∣ ≤ Cs (||f ||L1 + ||f ||Hs) |t|− 1
2+

3δ
2 .

Since |t| > k1, we have 1 + |t| < (1/k1 + 1)|t|, thus we obtain
∣∣∣∣
∫ +∞

0

eithα(k)f̂(k) dk

∣∣∣∣ ≤ Cs (||f ||L1 + ||f ||Hs) (1 + |t|)− 1
2+

3δ
2 . (2.3)

The contribution for k ≤ 0 is dealt with similarly.
Let |t| ≤ k1. We immediately have

∣∣∣∣
∫ +∞

−∞
eithα(k)f̂(k) dk

∣∣∣∣ ≤
∫ +∞

−∞

∣∣∣f̂(k)
∣∣∣ dk =

∫ +∞

−∞

(1 + k2)s/2

(1 + k2)s/2

∣∣∣f̂(k)
∣∣∣ dk,

and the Cauchy-Schwarz inequality gives, with s > 1/2,
∣∣∣∣
∫ +∞

−∞
eithα(k)f̂(k) dk

∣∣∣∣ ≤ Cs||f ||Hs .

Since |t| ≤ k1, we have (1 + |t|)/(1 + k1) ≤ 1, thus
∣∣∣∣
∫ +∞

−∞
eithα(k)f̂(k) dk

∣∣∣∣ ≤ Cs||f ||Hs(1 + |t|)− 1
2+

3δ
2 . (2.4)

The result is obtained from the inequalities (2.3) and (2.4). �

We can generalize the preceding result.
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Corollary 2.5

Let 1/9 ≤ δ < 1/3 and s = 1/(2δ) − 1. There exists a constant Cs > 0, depending only on s, such that
for all function f ∈ Lp(R) ∩Hs(R), with 1 ≤ p ≤ 2, for all α ∈ R and all time t ∈ R, we have

∣∣∣∣
∣∣∣∣
∫ +∞

−∞
eitgα(k)f̂(k) dk

∣∣∣∣
∣∣∣∣
Lq

≤ Cs(||f ||Lp + ||f ||Hs)(1 + |t|)(− 1
2+

3δ
2 )(1− 2

q )

∣∣∣∣
∣∣∣∣
∫ +∞

−∞
eitgα(k)f̂(k) dk

∣∣∣∣
∣∣∣∣
Lq

≤ Cs(||f ||Lp + ||f ||Hs)(1 + |t|)(− 1
2+

3δ
2 )(1− 2

q ),

where 1/p+ 1/q = 1.

Proof. See [8] for a complete proof by interpolation. �

We apply the proposition 2.4 to the linear Cauchy problem.

Corollary 2.6

Let 1/9 ≤ δ < 1/3 and s = 1/(2δ) − 1. There exists Cs > 0, depending only on s, such that for all
function (η0, v0) ∈ (L1(R) ∩Hs(R))2, α ∈ R and all time t ∈ R, we have
∣∣∣∣
1

4π

∫ +∞

−∞

(
eithα(k) + eitgα(k)

)
η̂0(k)−

(
eithα(k) − eitgα(k)

)
v̂0(k) dk

∣∣∣∣

≤ Cs(||η0||L1 + ||v0||L1 + ||η0||Hs + ||v0||Hs)(1 + |t|)− 1
2+

3δ
2

∣∣∣∣
1

4π

∫ +∞

−∞

(
eithα(k) + eitgα(k)

)
v̂0(k)−

(
eithα(k) − eitgα(k)

)
η̂0(k) dk

∣∣∣∣

≤ Cs(||η0||L1 + ||v0||L1 + ||η0||Hs + ||v0||Hs)(1 + |t|)− 1
2+

3δ
2 .

3 Preliminary results

We now quote some useful results. The fractional Leibniz rule will be used [6, lemma X.4].

Theorem 3.1

For all s ≥ 0 and 1 < p < +∞, there exists Cs,p > 0, depending on s and p such that for all u and v in
S(R), we have

||u v||W s,p ≤ Cs,p (||u||W s,p ||v||∞ + ||u||∞||v||W s,p) .

We will need an integration’s lemma proved in [8].

Lemma 3.2

Let α > 1 and 0 < β < 1. Then there exists C > 0 such that for all time t ≥ 0

∫ t

0

dτ

(1 + τ)α(1 + t− τ)β
≤ C

(1 + t)β
.
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4 Existence and Uniqueness of global solution of the gBS system

We consider the nonlinear Cauchy problem

ηt + vx + (vρη)x + (vηρ)x + avxxx − bηxxt = 0 (4.1)

vt + ηx + (vρ+1)x + aηxxx − bvxxt = 0 (4.2)

η(x, 0) = η0(x), v(x, 0) = v0(x), (4.3)

with a ∈ R, b > 0 and ρ a positive integer. The main result of this paper is now proved.

Proof of the theorem 1.1. The proof is done for positive times.
To simplify the writings, we define the operator ∂x/(1− b∂2

x) by the Fourier symbol σ(k) := ik/(1+ bk2),
and we also denote 0 < θ := (1/2− 3δ/2) ≤ 1/3.
Our assumptions on ρ and δ imply that

θρ > 1. (4.4)

According to the Duhamel formula, (η, v) is the solution of the gBS system (4.1)-(4.2)-(4.3) if and only
if (η, v) is the solution of the following equation, for t ≥ 0

Φ(η, v)(t) = St(η0, v0)−
∫ t

0

St−τ

(
∂x

1− b∂2
x

(
vρη + vηρ, vρ+1

))
(τ) dτ, (4.5)

where St(η, v) is defined by (2.1)-(2.2).
First of all, we notice that, for f ∈ S(R)

∣∣∣∣
∣∣∣∣

∂x
1− b∂2

x

f

∣∣∣∣
∣∣∣∣
Hs

=

(∫ +∞

−∞
(1 + k2)s

(
ik

1 + bk2

)2

|f̂(k)|2 dk
)1/2

≤ ||f ||Hs−1 ≤ ||f ||Hs . (4.6)

On the other hand, we have

∣∣∣∣
∣∣∣∣

∂x
1− b∂2

x

f

∣∣∣∣
∣∣∣∣
L1

=

∣∣∣∣
∣∣∣∣
(
− 1

2b3/2
sgn(x)e−|x|/

√
b

)
∗ f
∣∣∣∣
∣∣∣∣
L1

≤ C||f ||L1 . (4.7)

Let T > 0, we define the norm NT by, for (η, v) ∈ Xs(R),

NT (η, v) := sup
0≤τ≤T

[
(||η||L∞(τ) + ||v||L∞(τ))(1 + τ)θ + ||(η, v)||Xs(τ)

]
. (4.8)

We separately prove some technical lemmas.

Lemma 4.1

There exists a constant Cs > 0 such that for all (η1, v1) and (η2, v2) in Xs(R), we have

|Φ(η1, v1)−Φ(η2, v2)|(t) ≤ Cs

(
NT (η1, v1)

ρ +

ρ∑

i=0

NT (η1, v1)
ρ−iNT (η2, v2)

i

)
×(1+t)−θNT (η1−η2, v1−v2).

(4.9)

Proof. Let (η1, v1) and (η2, v2) be in Xs(R), the Duhamel formula gives

|Φ(η1, v1)− Φ(η2, v2)|(t) ≤
∫ t

0

∣∣∣∣St−τ

(
∂x

1− b∂2
x

(vρ1η1 − vρ2η2 + v1η
ρ
1 − v2η

ρ
2 , v

ρ+1
1 − vρ+1

2 )

)∣∣∣∣ (τ) dτ.

7



The corollary 2.6 implies that there exists Cs > 0, depending only on s, such that

|Φ(η1, v1)− Φ(η2, v2)|(t) ≤ Cs

∫ t

0

(∣∣∣
∣∣∣
(

∂x

1−b∂2
x
(vρ1η1 − vρ2η2 + v1η

ρ
1 − v2η

ρ
2),

∂x

1−b∂2
x
(vρ+1

1 − vρ+1
2 )

)∣∣∣
∣∣∣
Xs

)
(τ)

(1 + t− τ)θ
dτ,

and the inequalities (4.6) and (4.7) provide

|Φ(η1, v1)− Φ(η2, v2)|(t) ≤ Cs

∫ t

0

(
||vρ1η1 − vρ2η2 + v1η

ρ
1 − v2η

ρ
2 ||L1 + ||vρ1η1 − vρ2η2 + v1η

ρ
1 − v2η

ρ
2 ||Hs

)
(τ)

(1 + t− τ)θ
dτ

+ Cs

∫ t

0

(∣∣∣
∣∣∣vρ+1

1 − vρ+1
2

∣∣∣
∣∣∣
L1
+
∣∣∣
∣∣∣vρ+1

1 − vρ+1
2

∣∣∣
∣∣∣
Hs

)
(τ)

(1 + t− τ)θ
dτ,

From now, when there is no ambiguity, we use the following notation: for any positive A and B, the
notation A . B means that there exists a constant C > 0 such that A ≤ C B.

Since vρ+1
1 − vρ+1

2 = (v1 − v2)

ρ∑

i=0

vρ−i
1 vi2, we have according to the fractional Leibniz theorem 3.1 and

the Minkowski inequality

||vρ+1
1 − vρ+1

2 ||Hs(τ) . ||v1 − v2||Hs

ρ∑

i=0

||vρ−i
1 vi2||L∞(τ) + ||v1 − v2||L∞

ρ∑

i=0

||vρ−i
1 vi2||Hs(τ)

= I (τ) + II (τ).

According to the definition (4.8) of the norm NT , we can note that the decay in time relates to the
L∞−norm. We deduce

I (τ) . ||v1 − v2||Hs

ρ∑

i=0

||v1||ρ−i
L∞ ||v2||iL∞(τ)

. ||v1 − v2||Hs

ρ∑

i=0

(
||v1||L∞

(1 + τ)θ

(1 + τ)θ

)ρ−i(
||v2||L∞

(1 + τ)θ

(1 + τ)θ

)i

.

(
ρ∑

i=0

NT (η1, v1)
ρ−iNT (η2, v2)

i

)
(1 + τ)−θρNT (η1 − η2, v1 − v2).

For II (τ), the theorem 3.1 is applied again to find

II (τ) . ||v1 − v2||∞
(
||v2||ρ−1

∞ ||v2||Hs +

ρ−1∑

i=0

||v1||ρ−i−1
∞ ||v1||Hs ||v2||i∞

+ ||v1||ρ−1
∞ ||v1||Hs +

ρ∑

i=1

||v1||ρ−i
∞ ||v2||i−1

∞ ||v2||Hs

)
(τ),

and as for I (τ), it gets

II (τ) .

(
ρ∑

i=0

NT (η1, v1)
ρ−iNT (η2, v2)

i

)
(1 + τ)−θρNT (η1 − η2, v1 − v2).

We also have

||vρ+1
1 − vρ+1

2 ||L1(τ) ≤ ||v1 − v2||L1

ρ∑

i=0

||v1||ρ−i
∞ ||v2||i∞(τ)
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.

(
ρ∑

i=0

NT (η1, v1)
ρ−iNT (η2, v2)

i

)
(1 + τ)−θρNT (η1 − η2, v1 − v2).

By noticing that vρ1η1 − vρ2η2 = vρ1(η1 − η2) + η2(v1 − v2)

ρ−1∑

i=0

vρ−1−i
1 vi2, we obtain in the same manner

||vρ1η1 − vρ2η2||Hs(τ) .

(
NT (η1, v1)

ρ +

ρ∑

i=1

NT (η1, v1)
ρ−iNT (η2, v2)

i

)
× (1 + τ)−θρNT (η1 − η2, v1 − v2)

||vρ1η1 − vρ2η2||L1(τ) .

(
NT (η1, v1)

ρ +

ρ∑

i=1

NT (η1, v1)
ρ−iNT (η2, v2)

i

)
× (1 + τ)−θρNT (η1 − η2, v1 − v2),

and idem for v1η
ρ
1 − v2η

ρ
2 . Finally, it remains

|Φ(η1, v1)−Φ(η1, v1)|(t).
(
NT (η1, v1)

ρ+

ρ∑

i=0

NT (η1, v1)
ρ−iNT (η2, v2)

i

)∫ t

0

dτ

(1 + τ)θρ(1 + t− τ)θ
NT (η1−η2, v1−v2).

Since θρ > 1 and 0 < θ ≤ 1/3 < 1, we conclude thanks to the lemma 3.2.
�

Lemma 4.2

There exists Cs > 0 such that for all (η1, v1) and (η2, v2) in Xs(R), we have

||Φ(η1, v1)− Φ(η2, v2)||Xs(t) ≤ Cs

(
(NT (η1, v1)

ρ +

ρ∑

i=0

NT (η1, v1)
ρ−iNT (η2, v2)

i

)
NT (η1 − η2, v1 − v2).

(4.10)

Proof. We now majorize the norm ||Φ(η1, v1)− Φ(η2, v2)||Xs(t).

||Φ(η1, v1)− Φ(η2, v2)||Xs(t) ≤
∫ t

0

∣∣∣∣
∣∣∣∣St−τ

(
∂x

1− b∂2
x

(vρ1η1 − vρ2η2 + v1η
ρ
1 − v2η

ρ
2 , v

ρ+1
1 − vρ+1

2 )

)∣∣∣∣
∣∣∣∣
Xs

(τ) dτ,

the inequalities (4.6) and (4.7) imply

||Φ(η1, v1)− Φ(η2, v2)||Xs(t) ≤
∫ t

0

∣∣∣
∣∣∣(vρ1η1 − vρ2η2 + v1η

ρ
1 − v2η

ρ
2 , v

ρ+1
1 − vρ+1

2 )
∣∣∣
∣∣∣
Xs
(τ) dτ.

Since Xs(R) =
(
Hs(R) ∩ L1(R)

)2
, as for the preceding lemma, we obtain

||Φ(η1, v1)− Φ(η2, v2)||Xs(t) .

(
NT (η1, v1)

ρ +

ρ∑

i=0

NT (η1, v1)
ρ−iNT (η2, v2)

i

)∫ t

0

dτ

(1 + τ)θρ

×NT (η1 − η2, v1 − v2).

However, according the inequalities (4.4),

∫ t

0

dτ

(1 + τ)θρ
. 1.

�
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Lemma 4.3

There exists a constant Cs > 0 such that for all (η1, v1) and (η2, v2) in Xs(R), we have

NT (Φ(η1, v1)−Φ(η2, v2)) ≤ Cs

(
NT (η1, v1)

ρ +

ρ∑

i=0

NT (η1, v1)
ρ−iNT (η2, v2)

i

)
NT (η1−η2, v1−v2). (4.11)

and
NT (Φ(η1, v1)) ≤ Cs

(
||(η0, v0)||Xs +NT (η1, v1)

ρ+1
)
. (4.12)

Proof. The inequalities (4.9) and (4.10) provide (4.11). For the second inequality, it is enough to take
(η2, v2) = (0, 0).

�

Let M > 0, we consider the closed ball

BT,M := {(η, v) ∈ C([−T, T ];Xs(R)); NT (η, v) ≤ M} .

We show that there exists a unique solution (η, v) of the system (4.1)-(4.2)-(4.3) in this ball by using the
fixed point theorem.
First, there exists ε > 0 sufficiently small such that if ||(η0, v0)||Xs ≤ ε, even if we take CsM instead
of M , it is enough to take M > 0 satisfying ε + Mρ+1 ≤ M so that the inequality (4.12) implies
Φ(BT,M ) ⊆ BT,M . Here, the crucial point is that ε is independent of T . Secondly, we prove that the
map Φ is a contraction on this ball for M sufficiently small. Let (η1, v1) and (η2, v2) be in the closed ball
BT,M . The inequality (4.11) gives

NT (Φ(η1, v1)− Φ(η2, v2)) ≤ Cs M
ρNT (η1 − η2, v1 − v2),

and, if we need to take M > 0 smaller again, it gets Cs M
ρ < 1. Then, the fixed point theorem is applied

and there exists a unique solution of the system (4.1)-(4.2)-(4.3) in the closed ball BT,M .
It remains to prove that this unique solution can go on in time with all [0,+∞[. By uniqueness of the
solution, the inequality (4.12) is written

NT (η, v) ≤ Cs

(
||(η0, v0)||Xs +NT (η, v)

ρ+1
)
. (4.13)

Since there exists ε > 0 sufficiently small such that, if ||(η0, v0)||Xs ≤ ε, we can find M > 0 such that

N0(η, v) < M

Cs

(
ε+Mρ+1

)
≤ M.

Then for all T > 0, we have NT (η, v) < M . Indeed, if not by continuity, there exists a time T > 0 such
that

NT (η, v) = M

> Cs

(
ε+Mρ+1

)

> Cs

(
ε+NT (η, v)

ρ+1
)
,

what contradicts the inequality (4.13). To summarize, there exists a constant M > 0 such that for all
T > 0, NT (η, v) < M . In particular, we have for all time t ≥ 0 and for all x ∈ R

|η(x, t)|+ |v(x, t)| ≤ Cs

(
||(η0, v0)||Xs +NT (η1, v1)

ρ+1
)
(1 + t)−θ

≤ Cs

(
ε+Mρ+1

)
(1 + t)−θ. (4.14)

Negative times are dealt with similarly. �
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