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We are interested in dispersive properties of the Boussinesq system for small initial data. We prove that, for a nonlinearity of sufficiently high order, the solution of the Boussinesq system exists for all time and tends to zero when the time tends to infinity.

Introduction

The surface η and the velocity v of the two-way propagation of small amplitude, long wavelength, gravity waves in shallow water was first derived by Boussinesq [START_REF] Boussinesq | Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal[END_REF][START_REF] Whitham | Linear and Nonlinear Waves[END_REF] from the Euler equation as a system of two equations of the form

η t + v x + (vη) x = 0 v t + η x + vv x -v xxt = 0.
The goal of this work is to study the decay in time for small amplitude solutions of a more general family of Boussinesq system (gBS) below [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory[END_REF][START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory[END_REF] 

η t + v x + (v ρ η) x + (vη ρ ) x + av xxx -bη xxt = 0
(1.1)

v t + η x + (v ρ+1 ) x + aη xxx -bv xxt = 0, (1.2) 
with a ∈ R, b > 0 and ρ a positive integer. For s ∈ R, we denote

X s (R) = H s (R) ∩ L 1 (R) × H s (R) ∩ L 1 (R) the space of functions (η, v) such that the norm ||(η, v)|| X s := ||η|| H s + ||v|| H s + ||η|| L 1 + ||v|| L 1
is finite. Our result reads as follows.

Theorem 1.1 Let ρ ≥ 4. For 1/9 ≤ δ < 1/3 -2/(3ρ), we set s = 1/(2δ) -1.

Then there exists ε > 0 such that for all (η 0 , v 0 ) ∈ X s (R) with ||(η 0 , v 0 )|| X s ≤ ε, there exists a unique global in time solution (η, v) ∈ C (R; X s (R)) of the gBS system (1.1)-(1.2) with (η 0 , v 0 ) as initial datum. Moreover this solution verifies that there exists a constant C > 0, depending only on s and ε, such that for all time t ∈ R, for all x ∈ R, we have

|η(x, t)| + |v(x, t)| ≤ C(1 + |t|) -1 2 + 3δ 2 .
We notice that if δ tends to 1/9 then the decay rate of the L ∞ -norm of (η, v)(t) tends to 1/3, but we need to impose more regularity on the initial datum. On the other hand, the more δ is close to 1/3, the more the regularity is small, but the decay in time becomes slow. We are inspired by the method described by Albert [START_REF] Albert | Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation[END_REF] for the generalized Benjamin-Bona-Mahony (gBBM) equation [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF] 

η t + η x + η ρ η x -η xxt = 0. (1.3)
In this paper, Albert shows that, for a power ρ > 4, the solution of (1.3), with a small initial datum, decreases in time with a rate of order 1/3. A same result is found for the solution of the generalized Korteweg-de Vries equation [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal and on a new type of long stationnary waves[END_REF][START_REF] Strauss | Dispersion of low-energy waves for two conservative equations[END_REF] 

η t + η x + η ρ η x + η xxx = 0. (1.4)
In our work, we prove that the decay rate in time of the solution of the gBS system is also of order to 1/3, but the result remains true for ρ = 4. However, the gBBM equation can be considered as a special case of the gBS system. It is enough to take v = η, a = 0 in the theorem 1.1 to slightly improve the result of Albert [START_REF] Albert | Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation[END_REF].

Corollary 1.2 Let ρ ≥ 4. For 1/9 ≤ δ < 1/3 -2/(3ρ), we set s = 1/(2δ) -1.
Then there exists ε > 0 such that for all

η 0 ∈ H s (R) ∩ L 1 (R) with ||η 0 || H s ∩L 1 ≤ ε, there exists a unique global in time solution η ∈ C R; H s (R) ∩ L 1 (R) of the gBBM equation (1.
3) with η 0 as initial datum. Moreover this solution verifies that there exists C > 0, depending only on s and ε, such that for all time t ∈ R, for all x ∈ R, we have

|η(x, t)| ≤ C(1 + |t|) -1 2 + 3δ 2 .
The Strauss method [START_REF] Strauss | Dispersion of low-energy waves for two conservative equations[END_REF] will be used to prove these results. It consists of proving that, for a small initial datum, all the derivatives of the solution of the gBS system behave like a linear term, and so equivalent to a Sobolev norm of sufficiently high order, and the power ρ relates to the dispersion. The decay in time is given by the free gBS system evolution.

We will use the following notations: for 1 ≤ p < ∞, we denote L p (R) the space of p-power integrable functions equipped with the norm The Schwartz space is denoted by S(R) and for 1 ≤ p ≤ ∞, W s,p (R) is the Sobolev space equipped with the norm

||f || L p := +∞ -∞ |f (x)| p dx 1/p , we denote L ∞ (R)
||f || W s,p := (1 -∂ 2 x ) s/2 f L p . In particular, H s (R) := W s,2 (R).
We organise the paper as follows. In the first section, we give estimates concerning the linear Cauchy problem. In the second one, the existence and the uniqueness of global solution with the decay in time are proved.

Estimates for the linear gBS system

We consider the linear Cauchy problem

η t + v x + av xxx -bη xxt = 0 v t + η x + aη xxx -bv xxt = 0 η(x, 0) = η 0 (x), v(x, 0) = v 0 (x), with a ∈ R, b > 0.
Let us suppose that the initial datum (η 0 , v 0 ) is in the Schwartz space S(R) × S(R). The solution (η, v) of the ordinary differential equation, deduced from the Fourier transform in space, is given by, for all x ∈ R and t ∈ R * ,

η(x, t) = 1 2π +∞ -∞ e ikx cos tk 1 -ak 2 1 + bk 2 η0 (k) -ie ikx sin tk 1 -ak 2 1 + bk 2 v0 (k) dk = 1 4π +∞ -∞ e ithα(k) + e itgα(k) η0 (k) -e ithα(k) -e itgα(k) v0 (k) dk (2.1) v(x, t) = 1 2π +∞ -∞ e ikx cos tk 1 -ak 2 1 + bk 2 v0 (k) -ie ikx sin tk 1 -ak 2 1 + bk 2 η0 (k) dk = 1 4π +∞ -∞ e ithα(k) + e itgα(k) v0 (k) -e ithα(k) -e itgα(k) η0 (k) dk, (2.2) 
with h α (k) = k(1 -ak 2 )/(1 + bk 2 ) + αk, g α (k) = -k(1 -ak 2 )/(1 + bk 2 )
+ αk, and α = x/t. We first recall the Van der Corput lemma [START_REF] Stein | Harmonic Analysis : real-variable methods, orthogonality, and oscillatory integrals[END_REF].

Lemma 2.1

Let n ≥ 2. Then there exists C > 0 such that for all α ≤ β, λ > 0, t ∈ R * and for all function

h ∈ C ∞ ([α, β]) real valued satisfying for all k ∈ [α, β], |h (n) (k)| ≥ λ, we have b a e ith(k) dk ≤ C (λ|t|) 1/n .
The Van der Corput lemma is now applied with the functions h α and g α .

Lemma 2.2

There exists C > 0 such that for all 1/9 ≤ δ < 1/3, α ∈ R and all time |t|

> (3 + 2 √ 2)/b 1/2δ , we have |t| δ -|t| δ e ithα(k) dk ≤ C|t| -1 2 + 3δ 2 , |t| δ -|t| δ e itgα(k) dk ≤ C|t| -1 2 + 3δ 2 .
Proof. We only consider the cases h α and k ≥ 0, the other cases being dealt with similarly.

We have for k

∈ [0, |t| δ ] |h ′′ α (k)| = 2(a + b)k(bk 2 -3) (1 + bk 2 ) 3 , |h ′′′ α (k)| = 6(a + b)(b 2 k 4 -6bk 2 + 1) (1 + bk 2 ) 4 . We notice that |h ′′ α (k)| vanishes if k = 0, 3/b and |h ′′′ α (k)| vanishes if k = (3 -2 √ 2)/b, (3 + 2 √ 2)/b. The interval [0, |t| δ ] is divided in four pieces [0, A] ∪ [A, B] ∪ [B, C] ∪ [C, |t| δ ], with 0 < A < 3 -2 √ 2 b < B < 3 b < C < 3 + 2 √ 2 b < |t| δ . In particular, for k ∈ [0, A] ∪ [B, C], we have |h ′′′ α (k)| ≥ C > 0, for k ∈ [A, B], |h ′′ α (k)| ≥ C > 0 and for k ∈ [C, |t| δ ], |h ′′ α (k)| ≥ |h ′′ α (|t| δ )| ≥ C|t| -3δ
, where C is independent on t. Finally, the lemma 2.1 is applied on each interval to give

|t| δ 0 e ithα(k) dk ≤ C|t| -1 3 + C|t| -1 2 + 3δ 2 ,
and since δ ≥ 1/9, we have

-1/2 + 3δ/2 ≥ -1/3.
The oscillating integrals (2.1) and (2.2) can be majorized. When there is no ambiguity, we will write C and C s the different constants appearing in the following results.

Lemma 2.3 Let 1/9 ≤ δ < 1/3 and s = 1/(2δ) -1. For all f ∈ H s (R), α ∈ R and all time |t| > (3 + 2 √ 2)/b 1/2δ , we have |k|>|t| δ e ithα(k) f (k) dk ≤ C s ||f || H s |t| -1 2 + 3δ 2 , |k|>|t| δ e itgα(k) f (k) dk ≤ C s ||f || H s |t| -1 2 + 3δ 2 .
Proof. We have

+∞ |t| δ e ithα(k) f (k) dk ≤ +∞ |t| δ f (k) dk = +∞ |t| δ (1 + k) s (1 + k) s f (k) dk,
and the Cauchy-Schwarz inequality gives

+∞ |t| δ e ithα(k) f (k) dk ≤ +∞ |t| δ (1 + k) 2s | f (k)| 2 dk 1/2 +∞ |t| δ dk (1 + k) 2s 1/2 . On one hand, since s > 1/2, it gets +∞ |t| δ dk (1 + k) 2s 1/2 = -1 (2s -1)(1 + k) 2s-1 +∞ |t| δ 1/2 ≤ C s |t| δ 2 (1-2s) = C s |t| -1 2 + 3δ 2 .
On the other hand, since for k ∈ R, we have (

1 + k) 2 ≤ 2(1 + k 2 ), the first integral becomes +∞ |t| δ (1 + k) 2s | f (k)| 2 dk 1/2 ≤ √ 2 s +∞ |t| δ (1 + k 2 ) s | f (k)| 2 dk 1/2 ≤ C s ||f || H s .
Finally, we find

+∞ |t| δ e ithα(k) f (k) dk ≤ C s ||f || H s |t| -1 2 + 3δ 2 .
Proposition 2.4 Let 1/9 ≤ δ < 1/3 and s = 1/(2δ) -1. There exists a constant C s > 0, depending only on s, such that for all function

f ∈ L 1 (R) ∩ H s (R), α ∈ R and all time t ∈ R, we have +∞ -∞ e ithα(k) f (k) dk ≤ C s (||f || L 1 + ||f || H s )(1 + |t|) -1 2 + 3δ 2 +∞ -∞ e itgα(k) f (k) dk ≤ C s (||f || L 1 + ||f || H s )(1 + |t|) -1 2 + 3δ 2 .
Proof. Let 1/9 ≤ δ < 1/3 and |t|

> (3 + 2 √ 2)/b 1/2δ =: k 1 , we write +∞ 0 e ithα(k) f (k) dk = |t| δ 0 e ithα(k) f (k) dk + +∞ |t| δ e ithα(k) f (k) dk.
For the first integral, the Fubini theorem implies

|t| δ 0 e ithα(k) f (k) dk = |t| δ 0 e ithα(k) +∞ -∞ e -ikx ′ f (x ′ ) dx ′ dk = +∞ -∞ |t| δ 0 e ik(x-x ′ ) e -it k(1-ak 2 ) 1+bk 2 dk f (x ′ ) dx ′ .
We deduce that

|t| δ 0 e ithα(k) f (k) dk ≤ |t| δ 0 e ithα(k) dk ∞ ||f || L 1 .
The lemmas 2.2 and 2.3 provide

+∞ 0 e ithα(k) f (k) dk ≤ C s (||f || L 1 + ||f || H s ) |t| -1 2 + 3δ 2 .
Since |t| > k 1 , we have 1 + |t| < (1/k 1 + 1)|t|, thus we obtain

+∞ 0 e ithα(k) f (k) dk ≤ C s (||f || L 1 + ||f || H s ) (1 + |t|) -1 2 + 3δ 2 .
(2.

3)

The contribution for k ≤ 0 is dealt with similarly. Let |t| ≤ k 1 . We immediately have

+∞ -∞ e ithα(k) f (k) dk ≤ +∞ -∞ f (k) dk = +∞ -∞ (1 + k 2 ) s/2 (1 + k 2 ) s/2 f (k) dk,
and the Cauchy-Schwarz inequality gives, with

s > 1/2, +∞ -∞ e ithα(k) f (k) dk ≤ C s ||f || H s . Since |t| ≤ k 1 , we have (1 + |t|)/(1 + k 1 ) ≤ 1, thus +∞ -∞ e ithα(k) f (k) dk ≤ C s ||f || H s (1 + |t|) -1 2 + 3δ 2 .
(2.4)

The result is obtained from the inequalities (2.3) and (2.4).

We can generalize the preceding result.

Corollary 2.5

Let 1/9 ≤ δ < 1/3 and s = 1/(2δ) -1. There exists a constant C s > 0, depending only on s, such that for all function f ∈ L p (R) ∩ H s (R), with 1 ≤ p ≤ 2, for all α ∈ R and all time t ∈ R, we have

+∞ -∞ e itgα(k) f (k) dk L q ≤ C s (||f || L p + ||f || H s )(1 + |t|) (-1 2 + 3δ 2 )(1-2 q ) +∞ -∞ e itgα(k) f (k) dk L q ≤ C s (||f || L p + ||f || H s )(1 + |t|) (-1 2 + 3δ 2 )(1-2 q )
, where 1/p + 1/q = 1.

Proof. See [START_REF] Mammeri | On the decay in time of solutions of some generalized regularized long waves equations[END_REF] for a complete proof by interpolation.

We apply the proposition 2.4 to the linear Cauchy problem.

Corollary 2.6

Let 1/9 ≤ δ < 1/3 and s = 1/(2δ) -1. There exists C s > 0, depending only on s, such that for all function

(η 0 , v 0 ) ∈ (L 1 (R) ∩ H s (R)) 2 , α ∈ R and all time t ∈ R, we have 1 4π +∞ -∞ e ithα(k) + e itgα(k) η0 (k) -e ithα(k) -e itgα(k) v0 (k) dk ≤ C s (||η 0 || L 1 + ||v 0 || L 1 + ||η 0 || H s + ||v 0 || H s )(1 + |t|) -1 2 + 3δ 2 1 4π +∞ -∞ e ithα(k) + e itgα(k) v0 (k) -e ithα(k) -e itgα(k) η0 (k) dk ≤ C s (||η 0 || L 1 + ||v 0 || L 1 + ||η 0 || H s + ||v 0 || H s )(1 + |t|) -1 2 + 3δ 2 .

Preliminary results

We now quote some useful results. The fractional Leibniz rule will be used [6, lemma X.4].

Theorem 3.1

For all s ≥ 0 and 1 < p < +∞, there exists C s,p > 0, depending on s and p such that for all u and v in S(R), we have

||u v|| W s,p ≤ C s,p (||u|| W s,p ||v|| ∞ + ||u|| ∞ ||v|| W s,p ) .
We will need an integration's lemma proved in [START_REF] Mammeri | On the decay in time of solutions of some generalized regularized long waves equations[END_REF].

Lemma 3.2

Let α > 1 and 0 < β < 1. Then there exists C > 0 such that for all time t ≥ 0

t 0 dτ (1 + τ ) α (1 + t -τ ) β ≤ C (1 + t) β .

Existence and Uniqueness of global solution of the gBS system

We consider the nonlinear Cauchy problem

η t + v x + (v ρ η) x + (vη ρ ) x + av xxx -bη xxt = 0 (4.1) v t + η x + (v ρ+1 ) x + aη xxx -bv xxt = 0 (4.2) η(x, 0) = η 0 (x), v(x, 0) = v 0 (x), (4.3) 
with a ∈ R, b > 0 and ρ a positive integer. The main result of this paper is now proved.

Proof of the theorem 1.1. The proof is done for positive times.

To simplify the writings, we define the operator ∂ x /(1 -b∂ 2 x ) by the Fourier symbol σ(k) := ik/(1 + bk 2 ), and we also denote 0 < θ := (1/2 -3δ/2) ≤ 1/3. Our assumptions on ρ and δ imply that θρ > 1.

(4.4)

According to the Duhamel formula, (η, v) is the solution of the gBS system (4.1)-(4.2)-( 4.3) if and only if (η, v) is the solution of the following equation, for t ≥ 0

Φ(η, v)(t) = S t (η 0 , v 0 ) - t 0 S t-τ ∂ x 1 -b∂ 2 x v ρ η + vη ρ , v ρ+1 (τ ) dτ, (4.5) 
where

S t (η, v) is defined by (2.1)-(2.2).
First of all, we notice that, for f ∈ S(R)

∂ x 1 -b∂ 2 x f H s = +∞ -∞ (1 + k 2 ) s ik 1 + bk 2 2 | f (k)| 2 dk 1/2 ≤ ||f || H s-1 ≤ ||f || H s . (4.6)
On the other hand, we have

∂ x 1 -b∂ 2 x f L 1 = - 1 2b 3/2 sgn(x)e -|x|/ √ b * f L 1 ≤ C||f || L 1 . (4.7)
Let T > 0, we define the norm N T by, for (η, v) ∈ X s (R),

N T (η, v) := sup 0≤τ ≤T (||η|| L ∞ (τ ) + ||v|| L ∞ (τ ))(1 + τ ) θ + ||(η, v)|| X s (τ ) . (4.8)
We separately prove some technical lemmas.

Lemma 4.1

There exists a constant C s > 0 such that for all (η 1 , v 1 ) and (η 2 , v 2 ) in X s (R), we have

|Φ(η 1 , v 1 )-Φ(η 2 , v 2 )|(t) ≤ C s N T (η 1 , v 1 ) ρ + ρ i=0 N T (η 1 , v 1 ) ρ-i N T (η 2 , v 2 ) i ×(1+t) -θ N T (η 1 -η 2 , v 1 -v 2 ).
(4.9)

Proof. Let (η 1 , v 1 ) and (η 2 , v 2 ) be in X s (R), the Duhamel formula gives

|Φ(η 1 , v 1 ) -Φ(η 2 , v 2 )|(t) ≤ t 0 S t-τ ∂ x 1 -b∂ 2 x (v ρ 1 η 1 -v ρ 2 η 2 + v 1 η ρ 1 -v 2 η ρ 2 , v ρ+1 1 -v ρ+1 2 ) (τ ) dτ.
The corollary 2.6 implies that there exists C s > 0, depending only on s, such that

|Φ(η 1 , v 1 ) -Φ(η 2 , v 2 )|(t) ≤ C s t 0 ∂x 1-b∂ 2 x (v ρ 1 η 1 -v ρ 2 η 2 + v 1 η ρ 1 -v 2 η ρ 2 ), ∂x 1-b∂ 2 x (v ρ+1 1 -v ρ+1 2 ) X s (τ ) (1 + t -τ ) θ dτ,
and the inequalities (4.6) and (4.7) provide

|Φ(η 1 , v 1 ) -Φ(η 2 , v 2 )|(t) ≤ C s t 0 ||v ρ 1 η 1 -v ρ 2 η 2 + v 1 η ρ 1 -v 2 η ρ 2 || L 1 + ||v ρ 1 η 1 -v ρ 2 η 2 + v 1 η ρ 1 -v 2 η ρ 2 || H s (τ ) (1 + t -τ ) θ dτ + C s t 0 v ρ+1 1 -v ρ+1 2 L 1 + v ρ+1 1 -v ρ+1 2 H s (τ ) (1 + t -τ ) θ dτ,
From now, when there is no ambiguity, we use the following notation: for any positive A and B, the notation A B means that there exists a constant C > 0 such that A ≤ C B.

Since v ρ+1 1 -v ρ+1 2 = (v 1 -v 2 ) ρ i=0 v ρ-i 1 v i 2 ,
we have according to the fractional Leibniz theorem 3.1 and the Minkowski inequality

||v ρ+1 1 -v ρ+1 2 || H s (τ ) ||v 1 -v 2 || H s ρ i=0 ||v ρ-i 1 v i 2 || L ∞ (τ ) + ||v 1 -v 2 || L ∞ ρ i=0 ||v ρ-i 1 v i 2 || H s (τ ) = I (τ ) + II (τ ).
According to the definition (4.8) of the norm N T , we can note that the decay in time relates to the L ∞ -norm. We deduce

I (τ ) ||v 1 -v 2 || H s ρ i=0 ||v 1 || ρ-i L ∞ ||v 2 || i L ∞ (τ ) ||v 1 -v 2 || H s ρ i=0 ||v 1 || L ∞ (1 + τ ) θ (1 + τ ) θ ρ-i ||v 2 || L ∞ (1 + τ ) θ (1 + τ ) θ i ρ i=0 N T (η 1 , v 1 ) ρ-i N T (η 2 , v 2 ) i (1 + τ ) -θρ N T (η 1 -η 2 , v 1 -v 2 ).
For II (τ ), the theorem 3.1 is applied again to find

II (τ ) ||v 1 -v 2 || ∞ ||v 2 || ρ-1 ∞ ||v 2 || H s + ρ-1 i=0 ||v 1 || ρ-i-1 ∞ ||v 1 || H s ||v 2 || i ∞ + ||v 1 || ρ-1 ∞ ||v 1 || H s + ρ i=1 ||v 1 || ρ-i ∞ ||v 2 || i-1 ∞ ||v 2 || H s (τ ),
and as for I (τ ), it gets

II (τ ) ρ i=0 N T (η 1 , v 1 ) ρ-i N T (η 2 , v 2 ) i (1 + τ ) -θρ N T (η 1 -η 2 , v 1 -v 2 ).
We also have

||v ρ+1 1 -v ρ+1 2 || L 1 (τ ) ≤ ||v 1 -v 2 || L 1 ρ i=0 ||v 1 || ρ-i ∞ ||v 2 || i ∞ (τ ) ρ i=0 N T (η 1 , v 1 ) ρ-i N T (η 2 , v 2 ) i (1 + τ ) -θρ N T (η 1 -η 2 , v 1 -v 2 ). By noticing that v ρ 1 η 1 -v ρ 2 η 2 = v ρ 1 (η 1 -η 2 ) + η 2 (v 1 -v 2 ) ρ-1 i=0 v ρ-1-i 1 v i 2 ,
we obtain in the same manner

||v ρ 1 η 1 -v ρ 2 η 2 || H s (τ ) N T (η 1 , v 1 ) ρ + ρ i=1 N T (η 1 , v 1 ) ρ-i N T (η 2 , v 2 ) i × (1 + τ ) -θρ N T (η 1 -η 2 , v 1 -v 2 ) ||v ρ 1 η 1 -v ρ 2 η 2 || L 1 (τ ) N T (η 1 , v 1 ) ρ + ρ i=1 N T (η 1 , v 1 ) ρ-i N T (η 2 , v 2 ) i × (1 + τ ) -θρ N T (η 1 -η 2 , v 1 -v 2 ),
and idem for

v 1 η ρ 1 -v 2 η ρ 2 .
Finally, it remains

|Φ(η 1 , v 1 )-Φ(η 1 , v 1 )|(t) N T (η 1 , v 1 ) ρ + ρ i=0 N T (η 1 , v 1 ) ρ-i N T (η 2 , v 2 ) i t 0 dτ (1 + τ ) θρ (1 + t -τ ) θ N T (η 1 -η 2 , v 1 -v 2 ).
Since θρ > 1 and 0 < θ ≤ 1/3 < 1, we conclude thanks to the lemma 3.2. Lemma 4.2 There exists C s > 0 such that for all (η 1 , v 1 ) and (η 2 , v 2 ) in X s (R), we have

||Φ(η 1 , v 1 ) -Φ(η 2 , v 2 )|| X s (t) ≤ C s (N T (η 1 , v 1 ) ρ + ρ i=0 N T (η 1 , v 1 ) ρ-i N T (η 2 , v 2 ) i N T (η 1 -η 2 , v 1 -v 2 ). (4.10) Proof. We now majorize the norm ||Φ(η 1 , v 1 ) -Φ(η 2 , v 2 )|| X s (t). ||Φ(η 1 , v 1 ) -Φ(η 2 , v 2 )|| X s (t) ≤ t 0 S t-τ ∂ x 1 -b∂ 2 x (v ρ 1 η 1 -v ρ 2 η 2 + v 1 η ρ 1 -v 2 η ρ 2 , v ρ+1 1 -v ρ+1 2 ) X s (τ ) dτ,
the inequalities (4.6) and (4.7) imply

||Φ(η 1 , v 1 ) -Φ(η 2 , v 2 )|| X s (t) ≤ t 0 (v ρ 1 η 1 -v ρ 2 η 2 + v 1 η ρ 1 -v 2 η ρ 2 , v ρ+1 1 -v ρ+1 2 ) X s (τ ) dτ. Since X s (R) = H s (R) ∩ L 1 (R)
2 , as for the preceding lemma, we obtain

||Φ(η 1 , v 1 ) -Φ(η 2 , v 2 )|| X s (t) N T (η 1 , v 1 ) ρ + ρ i=0 N T (η 1 , v 1 ) ρ-i N T (η 2 , v 2 ) i t 0 dτ (1 + τ ) θρ ×N T (η 1 -η 2 , v 1 -v 2 ).
However, according the inequalities (4.4),

t 0 dτ (1 + τ ) θρ
1.

Lemma 4.3

There exists a constant C s > 0 such that for all (η 1 , v 1 ) and (η 2 , v 2 ) in X s (R), we have

N T (Φ(η 1 , v 1 )-Φ(η 2 , v 2 )) ≤ C s N T (η 1 , v 1 ) ρ + ρ i=0 N T (η 1 , v 1 ) ρ-i N T (η 2 , v 2 ) i N T (η 1 -η 2 , v 1 -v 2 ). (4.11) and N T (Φ(η 1 , v 1 )) ≤ C s ||(η 0 , v 0 )|| X s + N T (η 1 , v 1 ) ρ+1 . ( 4 
.12)

Proof. The inequalities (4.9) and (4.10) provide (4.11). For the second inequality, it is enough to take (η 2 , v 2 ) = (0, 0).

Let M > 0, we consider the closed ball

B T,M := {(η, v) ∈ C([-T, T ]; X s (R)); N T (η, v) ≤ M } .
We show that there exists a unique solution (η, v) of the system (4.1)-(4.2)-(4.3) in this ball by using the fixed point theorem. First, there exists ε > 0 sufficiently small such that if ||(η 0 , v 0 )|| X s ≤ ε, even if we take C s M instead of M , it is enough to take M > 0 satisfying ε + M ρ+1 ≤ M so that the inequality (4.12) implies Φ(B T,M ) ⊆ B T,M . Here, the crucial point is that ε is independent of T . Secondly, we prove that the map Φ is a contraction on this ball for M sufficiently small. Let (η 1 , v 1 ) and (η 2 , v 2 ) be in the closed ball B T,M . The inequality (4.11) gives

N T (Φ(η 1 , v 1 ) -Φ(η 2 , v 2 )) ≤ C s M ρ N T (η 1 -η 2 , v 1 -v 2 ),
and, if we need to take M > 0 smaller again, it gets C s M ρ < 1. Then, the fixed point theorem is applied and there exists a unique solution of the system Since there exists ε > 0 sufficiently small such that, if ||(η 0 , v 0 )|| X s ≤ ε, we can find M > 0 such that

N 0 (η, v) < M C s ε + M ρ+1 ≤ M.
Then for all T > 0, we have N T (η, v) < M . Indeed, if not by continuity, there exists a time T > 0 such that

N T (η, v) = M > C s ε + M ρ+1 > C s ε + N T (η, v) ρ+1 ,
what contradicts the inequality (4.13). To summarize, there exists a constant M > 0 such that for all T > 0, N T (η, v) < M . In particular, we have for all time t ≥ 0 and for all Negative times are dealt with similarly.

  the functions space equipped with the norm ||f || ∞ = sup ess (f ) := inf {c ; |f (x)| ≤ c almost everywhere in R} .

  (4.1)-(4.2)-(4.3) in the closed ball B T,M . It remains to prove that this unique solution can go on in time with all [0, +∞[. By uniqueness of the solution, the inequality (4.12) is writtenN T (η, v) ≤ C s ||(η 0 , v 0 )|| X s + N T (η, v) ρ+1 .(4.13)

  x ∈ R |η(x, t)| + |v(x, t)| ≤ C s ||(η 0 , v 0 )|| X s + N T (η 1 , v 1 ) ρ+1 (1 + t) -θ ≤ C s ε + M ρ+1 (1 + t) -θ .(4.14)