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33405 Talence Cedex, France.

Email: youcef.mammeri@math.u-bordeaux1.fr

March 2010
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1 Introduction

In this paper, we study the unique continuation property for a general family of Boussinesq systems of
the form [1, 2]

ηt + ux + (uη)x + auxxx − bηxxt = 0 (1.1)

ut + ηx + uux + cηxxx − duxxt = 0, (1.2)

with a+ b = 1/2(θ2 − 1/3) and c+ d = 1/2(1− θ2), for θ ∈ [0, 1]. We wonder if there exists a solution of
the Boussinesq system (1.1)-(1.2), with a compact support on a time interval, other than the obvious one.
We propose here to use the Bourgain’s method [3] based on entire function estimates. According to the
Paley-Wiener theorem, the entire function is given by an analytic continuation of the Fourier transform
in space of the Duhamel formula. To adapt this method, we need to prove that for all R > 0, there exists
k ∈ R, with |k| > R, such that

|L′(k)| ≥ |f(k)|, with lim
|k|→∞

|f(k)| = +∞, (1.3)

where L is the symbol of the linear evolution. In the context of the system (1.1)-(1.2), L is given by, for
(1− ak2)(1− ck2) ≥ 0,

L(k) = k

√
(1− ak2)(1− ck2)

(1 + bk2)(1 + dk2)
,

and the property (1.3) is satisfied only if b = d = 0 and ac 6= 0.
If we denote Hs(R) the Sobolev space of order s, our result reads as follows.

Theorem 1.1

We set b = d = 0. Let us suppose ac 6= 0 and for all k ∈ R, (1 − ak2)(1 − ck2) ≥ 0. For s > 4,
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(η, u) ∈ C ([−T, T ];Hs(R))×C ([−T, T ];Hs(R)) denotes the solution of the Boussinesq system (1.1)-(1.2).
Let us suppose that there exists 0 < B < +∞ such that for all t ∈ [−T, T ]

supp (η(t), u(t)) ⊆ [−B,B]× [−B,B],

and for all ξ ∈ C

sup
t∈[−T,T ]

|η̂(ξ, t)| = sup
t∈[−T,T ]

|û(ξ, t)|.

Then (η, u) vanishes identically.

We refer to [1, 2] for precise results of existence theory. Let us remain that the Boussinesq system describes
the surface (η) and the velocity (u) of the two-way propagation of small amplitude, long wavelength,
gravity waves in shallow water [1, 2, 4, 9].

The paper is organised as follows. Section 2 deals with some estimates for an entire function. In
Section 3, the Bourgain method is applied to the system (1.1)-(1.2).

2 Estimates for an entire function

In this section, we remain the fundamental estimates introduced by Bourgain [3].

Proposition 2.1 [3]
Let Φ ∈ C∞

0 (R) be a nonzero function. Then for all Q > 0 and R > 0, there exists k ∈ R, with |k| > R,
such that

|Φ̂(k)| > e−|k|/Q. (2.1)

Lemma 2.2 [3]

Let Φ̂ : C → C be an entire function, bounded and integrable on the real axis, such that there exists C > 0
satisfying for all ξ ∈ C

|Φ̂(ξ)| ≤ CeB |Im ξ|.

Then, for all ξ = (k + im) ∈ C, with

|m| ≤ B−1[1 + | log sup
|k0|≥|k|

|Φ̂(k0)| | ]
−1

, (2.2)

we have for k1 and m1 ∈ R; |m1| ≤ |m|

|Φ̂′(k − k1 + im1)| ≤ C B

(
sup

|k0|≥|k|

|Φ̂(k0)|+ sup
|k0|≥|k−k1|

|Φ̂(k0)|

)
[1 + | log sup

|k0|≥|k|

|Φ̂(k0)| | ].

We can generalize the proposition 2.1 to entire functions.

Corollary 2.3

Let Φ ∈ C∞
0 (R) be a nonzero function with suppΦ ⊆ [−B,B]. Let us suppose that, for all k ∈ R, Φ̂(k) ≥ 0

decreases when we increase k. Then for all Q > 0 and R > 0, there exists k ∈ R, with |k| > R, such that

for all m ∈ R, with |m| ≤ B−1[1 + | log |Φ̂(k)| | ]−1,

|Φ̂(k + im)| >
1

2
Φ̂(k) >

1

2
e−|k|/Q. (2.3)
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Proof. We denote Q and R the constants satisfying the proposition 2.1.
Since Φ has a compact support included in [−B,B], the Paley-Wiener theorem [8] implies that Φ̂ has an
analytic continuation satisfying for all (k + im) ∈ C,

|Φ̂(k + im)| ≤ CeB|m|.

Let m ∈ R, we write
|Φ̂(k + im)| = |Φ̂(k + im)− Φ̂(k) + Φ̂(k)|,

and the triangle inequality gives

|Φ̂(k + im)| ≥ Φ̂(k)− |Φ̂(k + im)− Φ̂(k)|.

However, we have
|Φ̂(k + im)− Φ̂(k)| ≤ |m| sup

|m0|≤|m|

|Φ̂′(k + im0)|,

and it is enough to choose m ∈ R satisfying the condition (2.2), or smaller, and to apply the lemma 2.2
with k1 = 0 to find

|Φ̂(k + im)− Φ̂(k)| ≤
1

2
sup

|k0|≥|k|

Φ̂(k0) =
1

2
Φ̂(k).

Finally, we have

|Φ̂(k + im)| ≥
1

2
Φ̂(k),

and we conclude by applying the proposition 2.1. �

The Duhamel formula is used to prove the nonlinear case. We need estimates for an entire function
taking into account the convolution.

Proposition 2.4 [3]

Let Φ ∈ C∞
0 (R) be a nonzero function with suppΦ ⊆ [−B,B]. Let us suppose that, for all k ∈ R, Φ̂(k) ≥ 0

decreases when we increase k. Then there exists C > 0 such that for all Q > 0 and R > 0, there exists
k ∈ R, with |k| > R, satisfying

Φ̂(k) > C Φ̂ ∗ Φ̂(k). (2.4)

Corollary 2.5

Let Φ ∈ C∞
0 (R) be a nonzero function with suppΦ ⊆ [−B,B]. Let us suppose that, for all k ∈ R, Φ̂(k) ≥ 0

decreases when we increase k. Then there exists C > 0 such that for all Q > 0 and R > 0, there exists
k ∈ R, with |k| > R, satisfying for all m ∈ R, with |m| ≤ B−1[1 + | log(|Φ̂(k)|) | ]−1,

Φ̂(k) > C |Φ̂ ∗ Φ̂(k + im)|. (2.5)

Proof. Let m ∈ R, the triangle inequality gives

|Φ̂ ∗ Φ̂(k + im)| ≤ Φ̂ ∗ Φ̂(k) + |Φ̂ ∗ Φ̂(k + im)− Φ̂ ∗ Φ̂(k)|.

However, we have

|Φ̂ ∗ Φ̂(k + im)− Φ̂ ∗ Φ̂(k)| =

∣∣∣∣
∫ +∞

−∞

(Φ̂(k + im− k1)− Φ̂(k − k1))Φ̂(k1) dk1

∣∣∣∣

≤ |m|

∫ +∞

−∞

sup
|m1|≤|m|

|Φ̂′(k − k1 + im1)|Φ̂(k1) dk1,
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and it is enough to choose m ∈ R satisfying the condition (2.2), or smaller, and to apply the lemma 2.2
to find

|Φ̂ ∗ Φ̂(k + im)− Φ̂ ∗ Φ̂(k)| ≤ |m|B(1 + | log Φ̂(k) |)

∫ +∞

−∞

(Φ̂(k) + Φ̂(k − k1))Φ̂(k1) dk1

≤ C Φ̂(k) + C Φ̂(k) ∗ Φ̂(k).

Finally, we have
|Φ̂ ∗ Φ̂(k + im)| ≤ C Φ̂(k) + (1 + C) Φ̂(k) ∗ Φ̂(k),

and we conclude by applying the proposition 2.4. �

We consider the following Cauchy problem, for (x, t) ∈ R
2,

ηt + ux + (uη)x + auxxx = 0 (2.6)

ut + ηx + uux + cηxxx = 0 (2.7)

(η(x, 0), u(x, 0)) = (η0(x), u0(x)). (2.8)

Corollary 2.6

Let s > 4 and (η, u) ∈ C ([−T, T ];Hs(R))×C ([−T, T ];Hs(R)) be a nonzero solution of the Cauchy problem
(2.6)-(2.7)-(2.8) with for all t ∈ [−T, T ]

supp (η(t), u(t)) ⊆ [−B,B]× [−B,B].

Then there exists t1 ∈ [−T, T ] such that for all Q > 0 and R > 0, there exists k ∈ R, with |k| > R,
satisfying

|η̂(k, t1)|+ |û(k, t1)| = sup
|k0|≥|k|

sup
t∈[−T,T ]

(|η̂(k0, t)|+ |û(k0, t)|) ,

and for all m ∈ R, with |m| ≤ B−1[1 + | log(|η̂(k, t1)|+ |û(k, t1)|) | ]
−1,

|η̂(k + im, t1)|+ |û(k + im, t1)| >
1

2
(|η̂(k, t1)|+ |û(k, t1)|) >

1

2
e−|k|/Q (2.9)

C(|η̂| ∗ |û|(k + im, t1) + |û| ∗ |û|(k + im, t1)) ≤ |η̂(k, t1)|+ |û(k, t1)|. (2.10)

Proof. Corollaries 2.3 and 2.5 are applied with the function Φ defined by, for k ∈ R

Φ̂(k) = sup
|k0|≥|k|

sup
t∈[−T,T ]

(|η̂(k, t)|+ |û(k, t)|).

�

3 Proof of the main result

Let s > 4 and (η0, u0) ∈ Hs(R) × Hs(R). We suppose for all t ∈ [−T, T ], the solution (η, u)(t) of the
Boussinesq system has a compact support included in [−B,B] × [−B,B]. The Paley-Wiener theorem
implies that (η̂(t), û(t)) has an analytic continuation satisfying there exists C > 0 such that for all
(k + im) ∈ C and t ∈ [−T, T ],

|η̂(k + im, t)|+ |û(k + im, t)| ≤ CeB|m|. (3.1)

Let t2 ∈ [−T, T ], with t2 > t1. The Duhamel formula is written, for δt := t2 − t1, ξ := k + im and
ξ
√
|(1− aξ2)(1− cξ2)| =: K + iM ,
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(
η̂
û

)
(ξ, t2) =

(
cos((K + iM) δt) −i sin((K + iM) δt)

−i sin((K + iM) δt) cos((K + iM) δt)

)(
η̂
û

)
(ξ, t1)

− iξ

∫ t2

t1

(
cos((K + iM) (t2 − τ)) −i sin((K + iM) (t2 − τ))

−i sin((K + iM) (t2 − τ)) cos((K + iM) (t2 − τ))

)(
η̂u

û2/2

)
(ξ, τ) dτ

= I1 − I2.

We notice

K + iM = (k + im)
(
(1 + (a+ c)m2 − (a+ c)k2 − 6ack2m2 + acm4 + ack4)2

+(−2(a+ c)km− 4ackm3 + 4ack3m)2
)1/4

. (3.2)

On the other hand, if constants Q and R are large enough, then there exists k ∈ R, with |k| > R, and
t1 ∈ [−T, T ] satisfying

|k| > B(1 + | log(|η̂(k, t1)|+ |û(k, t1)|) |).

Indeed, the inequality (2.9) can be rewritten, for all Q > 0 and R > 0, there exists k ∈ R satisfying

|k| >
1

2
(R−Q log(|η̂(k, t1)|+ |û(k, t1)|) ) ,

and it is enough to take R and Q > 2B, according to the decrease of the Fourier transform. Even if we
take Q and R larger, we can choose m such that

1

|k|
< |m| ≤ B−1[1 + | log(|η̂(k, t1)|+ |û(k, t1)|) | ]

−1

.

Lemma 3.1

Let us suppose, for all ξ ∈ C, |η̂(ξ, t1)| = |û(ξ, t1)|. Then

|I1| = eMδt|η̂(k, t1)|

|I2| ≤ C
|k|+ |m|

M
(eMδt − e−Mδt)|η̂(k, t1)|.

Proof. We have for I1

|η̂(ξ, t2)|+ |û(ξ, t2)| = |η̂(ξ, t1)| |cos((K + iM) δt)− i sin((K + iM) δt)|

= |η̂(ξ, t1)||e
−i(K+iM)δt| = |η̂(ξ, t1)|e

Mδt.

For I2, the triangle inequality implies

|I2| ≤ |ξ|

∫ t2

t1

(
|η̂u(ξ, τ)|+

|û2(ξ, τ)|

2

)
(| cos((K + iM)(t2 − τ))|+ |sin((K + iM)(t2 − τ))|)

≤ C(|k|+ |m|) (|η̂| ∗ |û|(ξ, t1) + |û| ∗ |û|(ξ, t1))

∫ t2

t1

e−M(t2−τ) + eM(t2−τ) dτ

≤ C(|k|+ |m|) (|η̂| ∗ |û|(ξ, t1) + |û| ∗ |û|(ξ, t1))
eMδt − e−Mδt

M
.

The inequality (2.10) gives the result.
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Finally, it remains

|η̂(ξ, t2)|+ |û(ξ, t2)| ≥

(
C
|k|+ |m|

M
e−Mδt + eMδt(1− C

|k|+ |m|

M
)

)
|η̂(k, t1)|.

Even if we take Q and R larger again, we can choose m, with mδt > 0, such that M > C(|k| + |m|). It
gets then

|η̂(ξ, t2)|+ |û(ξ, t2)| ≥ CeC|δt||k||η̂(k, t1)|.

We deduce from inequalities (2.9) and (3.1) that there exist C̃ > 0 and k ∈ R, depending on Q and R
such that

e|k|(C|δt|−1/Q) ≤ C̃,

which is impossible if we take Q > 1/(C|δt|) and R large. The contribution t2 < t1 is dealt with similarly.
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