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We prove, that if the solution of the Cauchy problem for a regularized version of the Boussinesq systems, has a compact support for all time, then this solution vanishes identically.

Introduction

In this paper, we study the unique continuation property for a general family of Boussinesq systems of the form [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory[END_REF][START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory[END_REF] η t + u x + (uη) x + au xxx -bη xxt = 0 (1.1)

u t + η x + uu x + cη xxx -du xxt = 0, (1.2) 
with a + b = 1/2(θ 2 -1/3) and c + d = 1/2(1 -θ 2 ), for θ ∈ [0, 1]. We wonder if there exists a solution of the Boussinesq system (1.1)-(1.2), with a compact support on a time interval, other than the obvious one.

We propose here to use the Bourgain's method [START_REF] Bourgain | On the compactness of the support of solutions of dispersive equations[END_REF] based on entire function estimates. According to the Paley-Wiener theorem, the entire function is given by an analytic continuation of the Fourier transform in space of the Duhamel formula. To adapt this method, we need to prove that for all R > 0, there exists k ∈ R, with |k| > R, such that

|L ′ (k)| ≥ |f (k)|, with lim |k|→∞ |f (k)| = + ∞, (1.3) 
where L is the symbol of the linear evolution. In the context of the system (1.1)-(1.2), L is given by, for (1 Then (η, u) vanishes identically.

-ak 2 )(1 -ck 2 ) ≥ 0, L(k) = k (1 -ak 2 )(1 -ck 2 ) (1 + bk 2 )(1 + dk 2 ) ,
We refer to [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory[END_REF][START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory[END_REF] for precise results of existence theory. Let us remain that the Boussinesq system describes the surface (η) and the velocity (u) of the two-way propagation of small amplitude, long wavelength, gravity waves in shallow water [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory[END_REF][START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory[END_REF][START_REF] Boussinesq | Théorie générale des mouvements qui sont propagés dans un canal rectngulaire horizontal[END_REF][START_REF] Whitham | Linear and Nonlinear Waves[END_REF]. The paper is organised as follows. Section 2 deals with some estimates for an entire function. In Section 3, the Bourgain method is applied to the system (1.1)-(1.2).

Estimates for an entire function

In this section, we remain the fundamental estimates introduced by Bourgain [START_REF] Bourgain | On the compactness of the support of solutions of dispersive equations[END_REF].

Proposition 2.1 [3] Let Φ ∈ C ∞ 0 (R) be a nonzero function. Then for all Q > 0 and R > 0, there exists k ∈ R, with |k| > R, such that | Φ(k)| > e -|k|/Q . (2.1) Lemma 2.2 [3]
Let Φ : C → C be an entire function, bounded and integrable on the real axis, such that there exists

C > 0 satisfying for all ξ ∈ C | Φ(ξ)| ≤ Ce B |Im ξ| .
Then, for all ξ = (k + im) ∈ C, with

|m| ≤ B -1 [1 + | log sup |k0|≥|k| | Φ(k 0 )| | ] -1 , (2.2) 
we have for k 1 and

m 1 ∈ R; |m 1 | ≤ |m| | Φ ′ (k -k 1 + i m 1 )| ≤ C B sup |k0|≥|k| | Φ(k 0 )| + sup |k0|≥|k-k1| | Φ(k 0 )| [1 + | log sup |k0|≥|k| | Φ(k 0 )| | ].
We can generalize the proposition 2.1 to entire functions.

Corollary 2.3 Let Φ ∈ C ∞ 0 (R) be a nonzero function with supp Φ ⊆ [-B, B]. Let us suppose that, for all k ∈ R, Φ(k) ≥ 0 decreases when we increase k. Then for all Q > 0 and R > 0, there exists k ∈ R, with |k| > R, such that for all m ∈ R, with |m| ≤ B -1 [1 + | log | Φ(k)| | ] -1 , | Φ(k + i m)| > 1 2 Φ(k) > 1 2 e -|k|/Q . (2.3)
Proof. We denote Q and R the constants satisfying the proposition 2.1. Since Φ has a compact support included in [-B, B], the Paley-Wiener theorem [START_REF] Schwarz | Théorie des Distributuions[END_REF] implies that Φ has an analytic continuation satisfying for all (k + i m) ∈ C,

| Φ(k + i m)| ≤ Ce B|m| . Let m ∈ R, we write | Φ(k + i m)| = | Φ(k + i m) -Φ(k) + Φ(k)|,
and the triangle inequality gives

| Φ(k + i m)| ≥ Φ(k) -| Φ(k + i m) -Φ(k)|.
However, we have

| Φ(k + i m) -Φ(k)| ≤ |m| sup |m0|≤|m| | Φ ′ (k + i m 0 )|,
and it is enough to choose m ∈ R satisfying the condition (2.2), or smaller, and to apply the lemma 2.2 with k 1 = 0 to find

| Φ(k + i m) -Φ(k)| ≤ 1 2 sup |k0|≥|k| Φ(k 0 ) = 1 2 Φ(k).
Finally, we have

| Φ(k + i m)| ≥ 1 2 Φ(k),
and we conclude by applying the proposition 2.1.

The Duhamel formula is used to prove the nonlinear case. We need estimates for an entire function taking into account the convolution.

Proposition 2.4 [3] Let Φ ∈ C ∞ 0 (R) be a nonzero function with supp Φ ⊆ [-B, B].
Let us suppose that, for all k ∈ R, Φ(k) ≥ 0 decreases when we increase k. Then there exists C > 0 such that for all Q > 0 and R > 0, there exists k ∈ R, with |k| > R, satisfying

Φ(k) > C Φ * Φ(k).
(2.4)

Corollary 2.5 Let Φ ∈ C ∞ 0 (R) be a nonzero function with supp Φ ⊆ [-B, B].
Let us suppose that, for all k ∈ R, Φ(k) ≥ 0 decreases when we increase k. Then there exists C > 0 such that for all Q > 0 and R > 0, there exists

k ∈ R, with |k| > R, satisfying for all m ∈ R, with |m| ≤ B -1 [1 + | log(| Φ(k)|) | ] -1 , Φ(k) > C | Φ * Φ(k + i m)|.
(2.5)

Proof. Let m ∈ R, the triangle inequality gives

| Φ * Φ(k + i m)| ≤ Φ * Φ(k) + | Φ * Φ(k + i m) -Φ * Φ(k)|.
However, we have

| Φ * Φ(k + i m) -Φ * Φ(k)| = +∞ -∞ ( Φ(k + im -k 1 ) -Φ(k -k 1 )) Φ(k 1 ) dk 1 ≤ |m| +∞ -∞ sup |m1|≤|m| | Φ ′ (k -k 1 + i m 1 )| Φ(k 1 ) dk 1 ,
and it is enough to choose m ∈ R satisfying the condition (2.2), or smaller, and to apply the lemma 2.2 to find

| Φ * Φ(k + i m) -Φ * Φ(k)| ≤ |m|B(1 + | log Φ(k) |) +∞ -∞ ( Φ(k) + Φ(k -k 1 )) Φ(k 1 ) dk 1 ≤ C Φ(k) + C Φ(k) * Φ(k).
Finally, we have

| Φ * Φ(k + i m)| ≤ C Φ(k) + (1 + C) Φ(k) * Φ(k),
and we conclude by applying the proposition 2.4.

We consider the following Cauchy problem, for (x, t) ∈ R 2 , 

η t + u x + (uη) x + au xxx = 0 (2.6) u t + η x + uu x + cη xxx = 0 (2.7) (η(x, 0), u(x, 0)) = (η 0 (x), u 0 (x)). ( 2 
supp (η(t), u(t)) ⊆ [-B, B] × [-B, B].
Then there exists t 1 ∈ [-T, T ] such that for all Q > 0 and R > 0, there exists k ∈ R, with |k| > R, satisfying

|η(k, t 1 )| + |û(k, t 1 )| = sup |k0|≥|k| sup t∈[-T,T ] (|η(k 0 , t)| + |û(k 0 , t)|) ,
and for all m ∈ R,

with |m| ≤ B -1 [1 + | log(|η(k, t 1 )| + |û(k, t 1 )|) | ] -1 , |η(k + i m, t 1 )| + |û(k + i m, t 1 )| > 1 2 (|η(k, t 1 )| + |û(k, t 1 )|) > 1 2 e -|k|/Q (2.9) C(|η| * |û|(k + i m, t 1 ) + |û| * |û|(k + i m, t 1 )) ≤ |η(k, t 1 )| + |û(k, t 1 )|. (2.10) 
Proof. Corollaries 2.3 and 2.5 are applied with the function Φ defined by, for k ∈ R

Φ(k) = sup |k0|≥|k| sup t∈[-T,T ] (|η(k, t)| + |û(k, t)|).

Proof of the main result

Let s > 4 and (η 0 , u 0 ) ∈ H s (R) × H s (R). We suppose for all t ∈ [-T, T ], the solution (η, u)(t) of the Boussinesq system has a compact support included in [-B, B] × [-B, B]. The Paley-Wiener theorem implies that (η(t), û(t)) has an analytic continuation satisfying there exists C > 0 such that for all (k + i m) ∈ C and t ∈ [-T, T ],

|η(k + i m, t)| + |û(k + i m, t)| ≤ Ce B|m| . (3.1) Let t 2 ∈ [-T, T ], with t 2 > t 1 . The Duhamel formula is written, for δt := t 2 -t 1 , ξ := k + i m and ξ |(1 -aξ 2 )(1 -cξ 2 )| =: K + iM , η û (ξ, t 2 ) = cos((K + iM ) δt) -i sin((K + iM ) δt) -i sin((K + iM ) δt) cos((K + iM ) δt) η û (ξ, t 1 ) -iξ t2 t1 cos((K + iM ) (t 2 -τ )) -i sin((K + iM ) (t 2 -τ )) -i sin((K + iM ) (t 2 -τ )) cos((K + iM ) (t 2 -τ )) ηu u 2 /2 (ξ, τ ) dτ = I 1 -I 2 .
We notice

K + iM = (k + im) (1 + (a + c)m 2 -(a + c)k 2 -6ack 2 m 2 + acm 4 + ack 4 ) 2 + (-2(a + c)km -4ackm 3 + 4ack 3 m) 2 1/4 . (3.2)
On the other hand, if constants Q and R are large enough, then there exists k ∈ R, with |k| > R, and

t 1 ∈ [-T, T ] satisfying |k| > B(1 + | log(|η(k, t 1 )| + |û(k, t 1 )|) |).
Indeed, the inequality (2.9) can be rewritten, for all Q > 0 and R > 0, there exists

k ∈ R satisfying |k| > 1 2 (R -Q log(|η(k, t 1 )| + |û(k, t 1 )|) ) ,
and it is enough to take R and Q > 2B, according to the decrease of the Fourier transform. Even if we take Q and R larger, we can choose m such that Proof. We have for

1 |k| < |m| ≤ B -1 [1 + | log(|η(k, t 1 )| + |û(k, t 1 )|) | ]
I 1 |η(ξ, t 2 )| + |û(ξ, t 2 )| = |η(ξ, t 1 )| |cos((K + iM ) δt) -i sin((K + iM ) δt)| = |η(ξ, t 1 )||e -i(K+iM )δt | = |η(ξ, t 1 )|e M δt .
For I 2 , the triangle inequality implies The inequality (2.10) gives the result. We deduce from inequalities (2.9) and (3.1) that there exist C > 0 and k ∈ R, depending on Q and R such that e |k|(C|δt|-1/Q) ≤ C, which is impossible if we take Q > 1/(C|δt|) and R large. The contribution t 2 < t 1 is dealt with similarly.

|I 2 | ≤ |ξ| t2 t1 | ηu(ξ, τ )| + | u 2 (ξ, τ )| 2 (| cos((K + iM )(t 2 -τ ))| + |sin((K + iM )(t 2 -τ ))

and the property ( 1 . 3 )

 13 is satisfied only if b = d = 0 and ac = 0. If we denote H s (R) the Sobolev space of order s, our result reads as follows. Theorem 1.1 We set b = d = 0. Let us suppose ac = 0 and for all k ∈ R, (1 -ak 2 )(1 -ck 2 ) ≥ 0. For s > 4, (η, u) ∈ C ([-T, T ]; H s (R))×C ([-T, T ]; H s (R)) denotes the solution of the Boussinesq system (1.1)-(1.2). Let us suppose that there exists 0 < B < +∞ such that for all t ∈ [-T, T ] supp (η(t), u(t)) ⊆ [-B, B] × [-B, B], and for all ξ ∈ C sup t∈[-T,T ] |η(ξ, t)| = sup t∈[-T,T ] |û(ξ, t)|.

- 1 . 3 . 1

 131 Lemma Let us suppose, for all ξ ∈ C, |η(ξ, t 1 )| = |û(ξ, t 1 )|. Then |I 1 | = e M δt |η(k, t 1 )| |I 2 | ≤ C |k| + |m| M (e M δt -e -M δt )|η(k, t 1 )|.

  |) ≤ C(|k| + |m|) (| η| * | u|(ξ, t 1 ) + | u| * | u|(ξ, t 1 )) t2 t1 e -M (t2-τ ) + e M (t2-τ ) dτ ≤ C(|k| + |m|) (| η| * | u|(ξ, t 1 ) + | u| * | u|(ξ, t 1 ))e M δt -e -M δt M .

  Finally, it remains|η(ξ, t 2 )| + |û(ξ, t 2 )| ≥ C |k| + |m| M e -M δt + e M δt (1 -C |k| + |m| M ) |η(k,t 1 )|. Even if we take Q and R larger again, we can choose m, with mδt > 0, such that M > C(|k| + |m|). It gets then |η(ξ, t 2 )| + |û(ξ, t 2 )| ≥ Ce C|δt||k| |η(k, t 1 )|.