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Abstract. We study the periodic solution of a perturbed regularized Boussinesq system [2, 5], namely the system

N+ uz + B(_ﬂxwt + u:tacx) + a((nu)x + e + uux) =0,ut +nz + B("]:ca:ac - u:)::ct) + a((nu)w + 1Mz + uu:c) =0,
with 0 < a, 8 < 1. We prove that the solution, starting from an initial datum of size €, remains smaller than ¢

for a time scale of order (¢~'a~13)?, whereas the natural time is of order e~ 1a~143.
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Introduction

The two-way propagation of small amplitude, long wavelength, gravity waves in shallow water, described
by its surface n and its velocity u, was first derived by Boussinesq [4, 2, 3, 8] as a system of the form

N+ ug +alnu), = 0
Up + Mg + Uty — Pugee = 0,
where o denotes the quotient between the characteristic waves amplitude and the depth of the water, 3
is the square of the quotient between this depth and the wavelength.

In this paper, we consider the following regularized Boussinesq system, proposed in [5] as a model of
interactions between internal solitary waves,

Nt + Uy + B(_nzmt + ummx) + a((nu)z + M + uua:) 0 (01)
up + Mg + B(Newe — Uzat) + a((N)z + 90 +uug) = 0. (0.2)

As a consequence of the local in time well-posedness of the Boussinesq system (0.1)-(0.2) with (79, ug) as
initial datum, for 0 < «, 8 < 1 and s > 1/2, there exist two constants C; > 0 and Cy > 0 such that if
[m0]]s + [|uol|s < &, then for [t| < Cae~la™!3, the solution (n,u) satisfies

[In@®]ls + [lu(@)]ls < Cre. (0-3)

Our goal is to prove (0.3) on a longer time scale for ¢ sufficiently small. We can notice that the H!—norm
is preserved by the flow, i.e. if the solution exists, we have for all t € R

@11 + llw@ll < (ol + lluoll1)/5;



(with equality if 5 = 1) and the bound (0.3) with s = 1 is true for all time. If s > 3/2, our result reads
as follows.

Theorem 0.1

Let 0 < o, < 1 and s > 3/2. There erist 0 < g9 < a %, C; > 0 and Cy > 0 such that if
(Mo, uo) € HE(T) x HE(T) with ||nolls + ||uolls < e, for e €]0,e0], then the unique solution (n,u) of the
Boussinesq system (0.1)-(0.2) with (no,uo) as initial datum, satisfies for |t| < Ca(e~ta™1B)?,

[In@®)]ls + [lu(@)lls < Cre. (0.4)

The principle of the proof bases on the Poincaré’s theory of normal forms [1]. It consists in finding a map
A, such that (u,v) = A(n,u) satisfies

(/u‘?U)t + L(,U,,U) = F(,LL,U)

where L is the linear operator given by the free evolution of the initial system and F' a multilinear
operator of order strictly higher than 2 to improve the quadratic nature of the non-linearity of the
Boussinesq system [6, 7].

Remark 0.2

o Let us notice that, when a1 3% > 1, the constraint of smallness on £y does not depend on o and f3.
On the other hand, €y chosen in the such way ¢ < a~'B2, with 0 < € < &g, implies that the time
(e7ta=1B)? is higher than the one found from the local existence, namely e~ ta=1p.

e Fizing a =1 and n = u, when B tends to zero, the persistence time of the bound (0.4) given by the
theorem 0.1 also tends to zero. That is not surprising, the formal limit, when B tends to zero, of
the Boussinesq system being the Burgers equation

U + uy + uu, = 0.

Howewver the existence time of the solution of the Cauchy problem with an initial datum of size €,
is of order e~ and this time is mazimum.

e The case 1/2 < s < 3/2 remains an open problem.

We use the following notations : T = R/ (27Z) is the one-dimensional torus, Z* the set of nonzero
integers. For s € R, we define H§(T) the space of zero z-mean value functions equipped with the norm

1/2
lu(®)]]s = (Z IkIQSﬁ(k)F) :

keZx*

where @ denotes the Fourier transform defined by
(k) = / =2 () dpu(z).
T

The measure dp(x) is chosen proportional to the Lebesgue one on T and normalized such that

u(z) =Y e*a(k).

kezZ*

The paper is organised as follows. In Section 1, the local in time well-posedness is established. The
Section 2 deals with the proof of the main theorem.



1 Summary of existence theory

We consider the Cauchy problem, for ¢t € R, and = € T,

M+ U+ B(Nawt + Usax) + ()2 + 100 + uttz) = 0 (1.1)
ut + Ny + B(Nazx — Uzat) + a((Nu)z + 112 +uug) = 0 (1.2)
u(x,0) = uo(x), n(z,0) = no(x). (1.3)
The existence and the uniqueness of local in time solution are proved.

Theorem 1.1
Let 0 < a, <1, 8>1/2 and (no,up) € H§(T) x H{(T). There exists a constant Cy > 0, depending only
on s, such that for

Co B

[Inolls + [luolls o’

there exists a unique solution (n,u) € C([=T,T); H5(T))xC([-T,T); H5(T)) of the Cauchy problem (1.1)-
(1.2)-(1.3).

Moreover, for all M > 0 with ||nol|s + |luolls < M and ||pol|s + ||volls < M, there exists Cy > 0 such that
solutions (n,u) and (p,v), of initial data (no,up) and (uo,vo) respectively, satisfy for t € [T, T, with
T = Coailﬂ/M7

() = p(@l]s + [[u(®) = v@)lls < Cr([lno = polls + [luo = wolls)-

Proof. Let T > 0. The Duhamel’s formula implies that (7, u) is the solution of the Cauchy problem
(1.1)-(1.2)-(1.3) if and only if (n, ) is the solution of the following equation, for ¢ € [0, T],

(1.10(0) = 2000 = Sulmow) = § [ Sier (75 (0w 40?) ) (ar, (1)

with
1 — Bk?

Si(n,u) = Ze“m’ (cos(tkl)ﬁ(k)isin(tkw)a(k), (1.5)

cos(tk

1 — Bk? 1— Bk?
Ték?)ﬂ(k) - z'sin(tk:1 T gk:2 )ﬁ(k)) .

We aim at applying the fixed point theorem. We deduce from the Duhamel’s formula, for ¢ € [0, T7,

1e(n, w)(®)][s < C(Ilnol\sHluOI\sHCa/o (w+n)?|| (r)dr.

0,
1 o2

o\ 1/2
) -

Since s > 1/2, the Sobolev embedding implies that there exists a constant Cs > 0, depending only on s,
such that

S

For 0 < 8 < 1, the definition of the Sobolev norm provides

(Z |]€‘25
s keZx

Cs
g 1w+ ool 4 7]l

ik —

(u+1)? ) I+ I,

Oz
1- o2

™| =

IN

1e(n, w)(®)]|s < C(Ino||s+IUOIIS)+ngT<tES[%pT](In(t)|s+IU(t)Ils)> : (1.6)



Then there exists Cp > 0 such that for T = Coa™13/(||nol|s + ||uo||s), the closed ball

By = {(U,U) € C([0,TT]; H5(T)) x €([0,TT; Hg(T)) ; sup (UIn(@®Ils + lu@)ls) < 2C([nolls + IUOIs)}

satisfies ®(B7) C Br. Indeed, let (n,u) € By, the inequality (1.6) becomes
12 (n, w)(#)[]s < C(llnolls + luolls)(1 4+ 4CC:Co),

and C({|no||s + [fuo||s)(1 + 4CCCo) < 2C([[nol|s + [luolls) if Co < 1/(4CCy).

Let (n,u) and (u,v) be in Bp. The Duhamel’s formula (1.4) provides, for ¢ € [0, 7],
Ox

1— po?

x

1- po2

2 4?2

(1) dr.

S

(nu — pw) (u

(0, u)(t) — B v) (D)« < Ca /

1
S

Noticing that nu — pv = 1/2((n + p)(u —v) + (n — p)(u +v)), u? — v? = (u +v)(u — v) and applying the
Sobolev embedding, one gets

1@(n, w)(t) = (u, 0)(D)]]s < 122 = T (|l s + [luol15) (t sup ](Iln—ulls(t)JrIIu—vlls(t))>

)

12C%C,Co ( sup  (|ln = plls(t) +[lu - vls(t))> :
te[—T,T]

For Cy < 1/(12C?Cy), the map @ is a contraction on Br. Finally, according to the fixed point theorem,
there exists a unique solution (1, u) of ®(n,u)(t) = (n,u)(t) in Br.

It remains to prove the continuity with the initial datum. Let (n,u) and (u, v) be solutions of the Cauchy
problem (1.1)-(1.2)-(1.3) with initial datum (79, uo) and (o, vo) respectively, such that ||ng||s+||uolls < M
and ||pol|s + ||volls £ M. The Duhamel’s formula (1.4) gives for t € [0,7], with T' = Coa~!3/M, with
Co k1,

1, u) (@) = (,0) )]s < C(llno — polls + |luo — volls)
+Ca/
0

Ox
1 - 303

x

T g e~ ) ?

(u? —v* + 0> = p?)|| (r)dr

iy

S S

1
< Clmo = polls +[luo = wolls) + 5 ( sup {ln = plls(t) + sup |ju—vlls(t)),
t€[0,7T] t€(0,7]
thus
sup ([|n — plls + [lu —vlls) < 2C([|no — polls + o — volls)-
te[0,T)
O

Remark 1.2

The time given in the preceding theorem could be higher, especially in the case 0 < B < a < 1, but we have
to impose more reqular initial data. More precisely, let us suppose s > 3/2 and (no,uo) € HS(T) x HF(T).
Then, there exists a constant Cy > 0, depending only on s, such that for

C 1
T=— 9% -
[Inolls + [luolls e

there exists a unique solution (n,u) € C([-T,T); H§(T)) xC([-T,T]; H§(T)) of the Cauchy problem (1.1)-
(1.2)-(1.8). On the other hand, the choice of eq in the theorem 0.1 also implies that (e *a~18)%? > e ta~t.



2 Long time bounds

A consequence of the local well-posedness is that for 0 < o, < 1, s > 1/2, ¢ > 0 and (no,ug) €
HE(T) x HZ(T) with ||nol|s + [Juolls < €, there exist Cyp > 0 and C; > 0 such that the solution (1, u) of
the Cauchy problem (1.1)-(1.2)-(1.3) satisfies for [t| < Coe~ta~18,

[In(@)]]s + [u(®)]ls < Cre.
We wonder if the solution exists and remains small longer, the normal form is used [6, 7].
To simplify the writings, we define L by the Fourier symbol o(k) := ik(1 — 8k?)/(1 + Bk?).
Let D := {(k, ki) €Z?; k#0,k #0,k # kl}, we define the operator A by,
A, w) == (n+ B+ u,n +u),u+ B+ u,n + u)),
with the bilinear operator

TN a(ky) o(k — k1)
B(u,v) == —5 ZD:ek 1+ Bk? o(kl)wlf(kfkl)l*ff(k)’

and for 0 > 0, Vs := {(n,u) € HJ(T) x H;(T);||nlls + [|ul||s < 6}
Introducing A is used to define (u,v) = A(n,u) so that (u,v) is solution of the equation

pe + L(v) = F(n,u), vy + L(p) = F(n,u),

with F trilinear whereas (n,u) is solution of a quadratic Boussinesq system. Thus the well-posedness
of (u,v) and the definition of B are used to estimate (1,u) with respect to (u,v) and to extend its
well-posedness.

Proposition 2.1
Let s > 3/2. Then there exist 0 < §' < a2, 8 > 0, and C > 0 such that for all (p,v) € Vs, there exists
a unique (n,u) € Vs such that A(n,u) = (p,v). Moreover

[nlls + lulls < C([ulls + [olls)-
Proof. We first prove some useful lemmas.

Lemma 2.2
The Fourier symbol o satisfies for all k and ky in Z

|kky(k — k)] |68 4 262 (k2 — kky + k)|
lolka) + otk =h) = o0 = =B T AR+ B0k~ b))

Lemma 2.3
Let s > 3/2. There exists a constant C > 0 such that for all u and v in H§(T)

«
1B, 0)lls < CEIIUI\S»IIUH&

Proof. By duality, to prove the lemma is equivalent to prove for all w € C*°(T)

«

<Cg

(llsllvlls) Jwl]-s- (2.1

> Blu,v)(k)i(k)
D




Indeed, we have

1B, w2 = > kB, 0)(k)2 = Y Blu,v)(k) (k> Blu,v)(k)) .

kez* kezZ*

—

We set w(k) = |k|?* B(u,v)(k) and we write
1B, o)l = D Blu,v)(k) k),
keZx*
and according to the inequality (2.1)

(07

1B(u,v)][% < Cgz (hlsllvllo) Nl

E
T
I

However 1/2
(Z k| 721k **|B(u, v)(/f)l2>

kez*

1/2
(Z |k25|3/@><k>|2> = [|B(u,v)|],-

kez*

We define
(k) = |k[*a(k) , 01(k) = |k[*0(k) and @1 (k) = [k[" w(k).

In particular, it implies

lurl|zz = [[ulls , [[v1llzz = [[v]ls and [[wi[z2 = [Jw]]-s.
We then find
— « ik ﬂ(kl)ﬁ(k‘ — ]4)1)
B = ———
(u, 0)(k) 21+ 6K = olkn) +o(k— ki) —o(k)
kll £k
_ _g Z]f Z Ik‘|s’&1(kj1)f}1(k)—kﬁ1)
21+ k2 4. [kallk = kal*(o(ky) + ok — k) = o(k))
ki #k

Finally, it is enough to prove

«
< C@(HMHLZHUle)||UJ\|L2~

o ik k|5t (k)i (k — ey )iy (k) ‘

2 L1+ B2 |k |5k — k1[5 (0 (k1) + o(k — k1) — o (k)

D

Lemma 2.4
We have for k and ki in D

k—Fk
k

‘ ik 1 ‘<2
14+ pk2o(k1) +o(k—ki)—o(k)| — 52

Proof. According to the lemma 2.2, we have for k£ and k; in D,

’ ik 1 ‘< (1+BE?)(1+ Bk — k1))
1"‘!‘51@2 0'(]61)+U(k’—k1)—(7(/€) - 252|]{?1(/€—]{31)(k2—kk1+k%)|




Since 0 < B <1, 1+ Bk? < 2k? and |k? — kky + k?| > |kk1|, we have

ik 1 < 2 k—k
14+ Bk2o(k1)+o(k—k)—o(k)|~ B2| k |
]
For s > 1, the triangle inequality implies
k|1 ( 1 1 ) ( 1 1 )
<C + <C + .
k1 [*|k — Kq[*1 k1l [kal[k — Ky |t Y Y
According to the preceding lemma, it remains to bound
|1 (K1)[ |01 (k — k)| | (K |1 ()] [01(k — Ky )||i1 (F)]
=: I+4+1I
62 Z |k1|s 52 Z |k k1|s 1 62( + )
The Cauchy-Schwarz inequality in k gives for the first term of the preceding sum
2\ 1/2
s (k)1 o1k — k) v
Ur(F1)| V1 (K — K1 -
e x|y Ml (X )
kezr | &y ez 1 kez*
k1 #k
then the Cauchy-Schwarz inequality in k; is applied again,
1/2 1/2
) 1/2
~ 21~ 2 ~ 2
I< Z e Z Z |1 (k1) |01 (k — k1) <Z w1 (k)| ) .
k1 €Z* kEZ* k1 € 7" kez~
ki #k k1 # k
Since s > 1/2, there exists a constant C' > 0 such that
I < C([lurllz2lfvrllz2) [Jwrl] 2
By symmetry, a similar inequality for IT is verified if 2(s — 1) > 1, i.e. s> 3/2. O

The differential of this operator is given by, for all (y, 1) € C>=(T) x C>(T)

+2B(n+u,9)  2B(n+u,v)
<dA(77’u)7 (@,¢)>: < @23(771“,(‘0)90 w+2£(n+u7w) >

the preceding lemma implies that dA is continuous on H(T) x H§(T). Since dA(0,0) is the identity, the
inverse function theorem is applied to give the following lemma. O

We aim at setting which equation is satisfied by A.

Proposition 2.5
Let s > 3/2. There exists a trilinear operator

F: H{(T) x Hi(T) x Hi(T) — HE(T)



satisfying that there exists a constant C' > 0 such that for all (u1,uz,us) € HS(T) x HS(T) x H§(T)

[P (w1, uz, ug)|[s < O \|u1|\s||uz||s|\u3\|57

ﬂZ

and, if (n,u) € C([-T,T); HS(T)) x C([=T,T]; H5(T)) is the solution of the system (1.1)-(1.2), then (u,v)
defined by, fort e [-T,T]

pt) = n(t)+ Bn(t) +ut), n(t) + u(t))
o(t) = u(t) + B(t) + ult), n(t) + u(t)),

is solution of

pe+Lv) = Fn+u,n+u,n+u)

Proof. We notice firstly that (u,v) € C([-T,T]; H5(T)) x C([-T,T); H(T)) according to the lemma
2.3. We write

pe+L(v) = m+0Bm+u,n+u)+ Lu) + L(B(n +u,n +u))
Oz
= ST gt WP OB+ un )+ LB+ + ).
On one hand, we have
OB +u,n+u) = B +ug,n+u)+ B +u,n+u) = 280 + ug,n + u)
= oYk ik (Ne(k1) + Ge(k1))(9(k — k1) + a(k — k1))
1+ Bk? o(ki) +o(k— ki) —o(k) .

Since (1, u) is solution of the system (1.1)-(1.3), we obtain by symmetry

OB +u,n+u) = _azzem kk, (7 4+ u)2(k)((k — k) + a(k — k1))

(1+ Bk2)(1 + Bk?) o(k1) +o(k—ki) —o(k)
+ Oy e ik (o(k1) +o(k — k1)) (k1) + a(k1))((k — k1) + a(k — k1))
1+ pk? olky) +o(k—ky)—o(k) )

On the other hand, we have

« ke Uk o(R)(N(k1) +u(k k—k)+alk—k
L(B(n—f—u,n-i-U)) _ _§;ek o ( )(77( g(kl)grlo?zli( ) 1) ( )( 1))
The last term gives

51 8233 (n+u?=—% ey jkw (k1) + k) (K — k) + @k — k).

Finally, it follows

Nt+L _ 70[22 ikx +Bkkk1 (77+“)2(k1)(77(k_kl)"‘ﬁ(k_kl)) (22)

)1+ Bki) o(k1) + ok — ki) —a(k)



We denote Dy:={(k,ky,ks) € Z3;k # 0,k1 # 0,ky # 0,k # k1, k1 # ka} and we deduce from (2.2) that
F' is defined by

kk1 U (ko) la (k1 — ka)tug(k — k1)
(1+ BKk2)(1+ BEk?) o(k1) +o(k — k1) —o(k)

F(uy,up,u3) == —a? Zei’”
Dy

Lemma 2.6
We have for k, k1 and ko in D,

kkq 1 < 1 |k—k
(L+ Bk2)(L+ Bk3) o(kr) +o(k— ki) —o(k)| = 82| k|
Proof. According to the lemma 2.2, we have for k, k1 and ko in Dy,

‘ ik 1 ‘< 1+ B(k — k1)?
(L+ BE2)(1 + Bk?) o (k1) + o(k — k1) — o(k)| = 28%|kki(k — k1)|”

and since 0 < 8 <1 and |k1| > 1, we have

‘ kkq 1 ‘ < 1 HE-Fk
(1+ BE2)(1+ Bki) o(kr) +o(k— k1) —o(k)| = 82| k|
O
In the same way as lemma 2.3, by duality, it is enough to bound
1=y B> it (o )| o (k1 — ko)l |is(k — k)| [ (K)]
5 |ka|*|ky — kol [k — ka[*~! '
1
The Cauchy-Schwarz inequality is first applied in k to give o
2
[k [°~ i (ko) [t (k1 — ko)| |t (k — k1))
I<
= Z Z |k2‘s|k1_k2‘s|k_kl|s_1 ||u4||L27
K€Z™ | (k1 k) € (27)?
k1 # k, k2 # k1
and then in (ks, k1),
1<|> > i (k2)[? [z (k1 — ko) |? |3 (k — k1)[? 1/2
k€Z* (K1, k2) € (Z%)?
ki # K, ko # k1 Z |[2(=D) all
X U4||L2,
2s _ 28|l 2(s—1)
(k1,k2) € (27)? L
k1 # k, k2 # k1

However, since s > 3/2 > 1, the triangle inequality implies

‘k|2(sfl) < O 1
k2?51 — ko |?*k — Ry [2(s=1) (|k’2|2s|k1 — kof?®

1 1
R R R )



thus 2e—1)
Ll
sup E <+
. ko |28k — kol|28|k — kq|2(s—D)
kezt ST ey k2|2 | k1 — k2| 4| 1
ki # k, ko # k1

Q.

The main result of this paper is now proved.

Proof of the theorem 0.1. We suppose t > 0, the proof is similar for negative time. Let § and §’ be
the positive constants involved in the lemma 2.1.

Thanks to the local well-posedness theorem 1.1, there exists €9 > 0 such that if (o, ug) € V., for € €]0, &¢],
then for t < Che ta1p,

(n() + B(n+u,n+u)(t),u(t) + B(n+u,n+u)(t)) € Vs, and (n(t),u(t)) € Vs.

Thus (n,u)(t) = A= (i, v)(t), for t < Cye a8 =:T.
The Duhamel’s formula gives for ¢ € [0, T

(w,v)(t) = Se(no+ B(no + uo, o + o), uo + B(no + o, 1m0 + o)) (2.3)

t
+/ Si—r (F(n+u,n+u,n+u), F(n+u,n+u,n+u)) (r)dr,
0

where S; is defined in (1.5). According to the lemma 2.3, there exists a constant C; > 0 such that we
have

[0
I[St (o0 + B(no + uo,no + o), uo + B(no + uo, mo +uo))ll, < lnolls + [|uolls + C@(HWOHS + [Juolls)?
@]
< Cie (2 +4€52) .
Even if we take €9 > 0 smaller, we have
[1S¢ (no + B(no + o, 1m0 + o), uo + B(1o + 1o, 1m0 + 10))||, < 3Che. (2.4)

Lemmas 2.1 and 2.5 imply that there exists a constant C3 > 0 such that, if (u(t),v(t)) € Vs for ¢t € [0, T,
then

t
/ Soer (F 4w+ w4 0), F(n + wn + wyn + ) (7) dr < 2.5)
0

Le=([0,T; H§(T))

2
Q
03@ T (||l oo o, 715 (1)) + 10l oo (o, 735185 (1)) )

If we need to take g9 > 0 smaller again, we impose 4C1eq < d. We set Cy = 1/(128C2C3) and Ty =
Co (7 *a~18)* . It then follows

|l oo jo,0): 13 (1)) + 1[0l Los (0, 70): 5 (1)) < 4 Cre (2.6)

Let us suppose that the inequality (2.6) fails. Since

[0
[ (O)]]s +[[v(0)[]s = [In0+ B (10 + 1o, 10 + o) |ls + |10+ B (10 +uo, 10 +uo)||s < Cie <2+4862> <40,
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by continuity with time, there exists 7 € [0, Ty| such that for ¢ € [0, 7]
Hu@®)]s + llv(@)]ls <4Cre and [[u(7)[|s + [[o(7)[|s = 4 Cre.

Let C be the positive constant involved in the lemma 2.1, we also impose 4 C1Ceg < ¢'. We know that
(n(t),u(t)) € Vs for |t| < T, and with this choice of ¢, it follows that (n(t),u(t)) € Vs for t € [0, 7].
Indeed, if there exists 79 € [0, 7] such that for ¢ € [0, 7¢]

In(@lls + lu(®)lls < 6" and |In(7o)lls + [fu(ro)lls = o,

then by continuity with time and according to the lemma 2.1, we have

0" = In(ro)lls + llu(ro)lls = lim [[n(®)lls + [[u(®)]ls < sup [In(E)l]s + [[u®)l]s
7o 0<t<1o
< C sup |[[u(®)lls +[v@)]ls < 4C1Ce < &',
0

<t<To

which is impossible.
Finally, we find from the Duhamel’s formula (2.3) and from inequalities (2.4) and (2.5)

2
«
12| Los (0,73 21 () + [[V]|Los (0,71 1 () < 3 Che + Cs @T(HMHLOO([O,T];HS(T)) + [[ol| Lo (0,71 5(T))

or equivalently

a2

4Che < 3016+C$ﬂ2

T (4Che)?,
which gives

2
T Z 200 (E_1ﬁ> = 2T0.
«

And this is a contradiction with 7 € [0,7p]. Then the inequality (2.6) is true and using the lemma 2.1
we have for ¢ € [0, Tp]

[In@®Ils + [lu@)ls < Cu@®I]s + llo@®)]s) < 4C1Ce.
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