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We study the periodic solution of a perturbed regularized Boussinesq system [2, 5], namely the system

We prove that the solution, starting from an initial datum of size ε, remains smaller than ε for a time scale of order (ε -1 α -1 β) 2 , whereas the natural time is of order ε -1 α -1 β.

Introduction

The two-way propagation of small amplitude, long wavelength, gravity waves in shallow water, described by its surface η and its velocity u, was first derived by Boussinesq [START_REF]Boussinesq: Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal[END_REF][START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory[END_REF][START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory[END_REF][START_REF] Whitham | Linear and Nonlinear Waves[END_REF] as a system of the form η t + u x + α(ηu) x = 0 u t + η x + αuu x -βu xxt = 0, where α denotes the quotient between the characteristic waves amplitude and the depth of the water, β is the square of the quotient between this depth and the wavelength. In this paper, we consider the following regularized Boussinesq system, proposed in [START_REF] Gear | Weak and strong interactions between internal solitary waves[END_REF] as a model of interactions between internal solitary waves, η t + u x + β(-η xxt + u xxx ) + α((ηu) x + ηη x + uu x ) = 0 (0.1)

u t + η x + β(η xxx -u xxt ) + α((ηu) x + ηη x + uu x ) = 0. (0.2)
As a consequence of the local in time well-posedness of the Boussinesq system (0.1)-(0.2) with (η 0 , u 0 ) as initial datum, for 0 < α, β ≤ 1 and s > 1/2, there exist two constants C 1 > 0 and C 2 > 0 such that if ||η 0 || s + ||u 0 || s ≤ ε, then for |t| ≤ C 2 ε -1 α -1 β, the solution (η, u) satisfies

||η(t)|| s + ||u(t)|| s ≤ C 1 ε. (0.3)
Our goal is to prove (0.3) on a longer time scale for ε sufficiently small. We can notice that the H 1 -norm is preserved by the flow, i.e. if the solution exists, we have for all t ∈ R ||η(t)|| 1 + ||u(t)|| 1 ≤ (||η 0 || 1 + ||u 0 || 1 )/β, (with equality if β = 1) and the bound (0.3) with s = 1 is true for all time. If s > 3/2, our result reads as follows.

Theorem 0.1 Let 0 < α, β ≤ 1 and s > 3/2. There exist 0 < ε 0 < α -1 β 2 , C 1 > 0 and C 2 > 0 such that if (η 0 , u 0 ) ∈ H s 0 (T) × H s 0 (T) with ||η 0 || s + ||u 0 || s ≤ ε, for ε ∈]0, ε 0 [, then the unique solution (η, u) of the Boussinesq system (0.1)-(0.2) with (η 0 , u 0 ) as initial datum, satisfies for

|t| ≤ C 2 (ε -1 α -1 β) 2 , ||η(t)|| s + ||u(t)|| s ≤ C 1 ε. (0.4)
The principle of the proof bases on the Poincaré's theory of normal forms [START_REF] Arnold | Geometric Methods in the Theory of Ordinary Differential Equations[END_REF]. It consists in finding a map Λ, such that (µ, v) = Λ(η, u) satisfies

(µ, v) t + L(µ, v) = F (µ, v)
where L is the linear operator given by the free evolution of the initial system and F a multilinear operator of order strictly higher than 2 to improve the quadratic nature of the non-linearity of the Boussinesq system [START_REF] Shatah | Normal forms and quadratic nonlinear Klein-Gordon equations[END_REF][START_REF] Tzvetkov | Long time bounds for the periodic KP-II equation[END_REF].

Remark 0.2

• Let us notice that, when α -1 β 2 ≥ 1, the constraint of smallness on ε 0 does not depend on α and β.

On the other hand, ε 0 chosen in the such way ε < α -1 β 2 , with 0 < ε < ε 0 , implies that the time (ε -1 α -1 β) 2 is higher than the one found from the local existence, namely ε -1 α -1 β.

• Fixing α = 1 and η = u, when β tends to zero, the persistence time of the bound (0.4) given by the theorem 0.1 also tends to zero. That is not surprising, the formal limit, when β tends to zero, of the Boussinesq system being the Burgers equation

u t + u x + uu x = 0.
However the existence time of the solution of the Cauchy problem with an initial datum of size ε, is of order ε -1 and this time is maximum.

• The case 1/2 < s ≤ 3/2 remains an open problem.

We use the following notations : T = R / (2πZ) is the one-dimensional torus, Z * the set of nonzero integers. For s ∈ R, we define H s 0 (T) the space of zero x-mean value functions equipped with the norm

||u(t)|| s = k∈Z * |k| 2s |û(k)| 2 1/2
, where û denotes the Fourier transform defined by

û(k) = T e -ikx u(x)dµ(x).
The measure dµ(x) is chosen proportional to the Lebesgue one on T and normalized such that

u(x) = k∈Z * e ikx û(k).
The paper is organised as follows. In Section 1, the local in time well-posedness is established. The Section 2 deals with the proof of the main theorem.

Summary of existence theory

We consider the Cauchy problem, for t ∈ R, and x ∈ T,

η t + u x + β(-η xxt + u xxx ) + α((ηu) x + ηη x + uu x ) = 0 (1.1)
u t + η x + β(η xxx -u xxt ) + α((ηu) x + ηη x + uu x ) = 0 (1.2) u(x, 0) = u 0 (x), η(x, 0) = η 0 (x). (1.
3)

The existence and the uniqueness of local in time solution are proved.

Theorem 1.1 Let 0 < α, β ≤ 1, s > 1/2 and (η 0 , u 0 ) ∈ H s 0 (T) × H s 0 (T).
There exists a constant C 0 > 0, depending only on s, such that for

T = C 0 ||η 0 || s + ||u 0 || s β α ,
there exists a unique solution

(η, u) ∈ C([-T, T ]; H s 0 (T))×C([-T, T ]; H s 0 (T)) of the Cauchy problem (1.1)- (1.2)-(1.3).
Moreover, for all M > 0 with ||η 0 || s + ||u 0 || s ≤ M and ||µ 0 || s + ||v 0 || s ≤ M , there exists C 1 > 0 such that solutions (η, u) and (µ, v), of initial data (η 0 , u 0 ) and (µ 0 , v 0 ) respectively, satisfy for t ∈ [-T, T ], with

T = C 0 α -1 β/M , ||η(t) -µ(t)|| s + ||u(t) -v(t)|| s ≤ C 1 (||η 0 -µ 0 || s + ||u 0 -v 0 || s ).
Proof. Let T > 0. The Duhamel's formula implies that (η, u) is the solution of the Cauchy problem

(1.1)-(1.2)-(1.3) if and only if (η, u) is the solution of the following equation, for t ∈ [0, T ], (η, u)(t) = Φ(η, u)(t) := S t (η 0 , u 0 ) - α 2 t 0 S t-τ ∂ x 1 -β∂ 2 x (η + u) 2 , (η + u) 2 (τ ) dτ, (1.4) 
with

S t (η, u) := k∈Z * e ikx cos(tk 1 -βk 2 1 + βk 2 )η(k) -i sin(tk 1 -βk 2 1 + βk 2 )û(k), (1.5) cos(tk 1 -βk 2 1 + βk 2 )û(k) -i sin(tk 1 -βk 2 1 + βk 2 )η(k) .
We aim at applying the fixed point theorem. We deduce from the Duhamel's formula, for t ∈ [0, T ],

||Φ(η, u)(t)|| s ≤ C(||η 0 || s + ||u 0 || s ) + Cα t 0 ∂ x 1 -β∂ 2 x (u + η) 2 s (τ ) dτ.
For 0 < β ≤ 1, the definition of the Sobolev norm provides

∂ x 1 -β∂ 2 x (u + η) 2 s = k∈Z * |k| 2s ik 1 + βk 2 (u + η) 2 (k) 2 1/2 ≤ 1 β ||(u + η) 2 || s ≤ C s β ||u + η|| ∞ ||u + η|| s .
Since s > 1/2, the Sobolev embedding implies that there exists a constant C s > 0, depending only on s, such that

||Φ(η, u)(t)|| s ≤ C(||η 0 || s + ||u 0 || s ) + α β C s T sup t∈[0,T ] (||η(t)|| s + ||u(t)|| s ) 2 . (1.6)
Then there exists C 0 > 0 such that for

T = C 0 α -1 β/(||η 0 || s + ||u 0 || s ), the closed ball B T := (η, u) ∈ C([0, T ]; H s 0 (T)) × C([0, T ]; H s 0 (T)) ; sup t∈[0,T ] (||η(t)|| s + ||u(t)|| s ) ≤ 2C(||η 0 || s + ||u 0 || s ) satisfies Φ(B T ) ⊆ B T . Indeed, let (η, u) ∈ B T , the inequality (1.6) becomes ||Φ(η, u)(t)|| s ≤ C(||η 0 || s + ||u 0 || s )(1 + 4CC s C 0 ),
and

C(||η 0 || s + ||u 0 || s )(1 + 4CC s C 0 ) ≤ 2C(||η 0 || s + ||u 0 || s ) if C 0 ≤ 1/(4CC s ). Let (η, u) and (µ, v) be in B T . The Duhamel's formula (1.4) provides, for t ∈ [0, T ], ||Φ(η, u)(t) -Φ(µ, v)(t)|| s ≤ Cα t 0 ∂ x 1 -β∂ 2 x (ηu -µv) s + ∂ x 1 -β∂ 2 x (u 2 -v 2 + η 2 -µ 2 ) s (τ ) dτ. Noticing that ηu -µv = 1/2((η + µ)(u -v) + (η -µ)(u + v)), u 2 -v 2 = (u + v)(u -v)
and applying the Sobolev embedding, one gets

||Φ(η, u)(t) -Φ(µ, v)(t)|| s ≤ 12C 2 α β C s T (||η 0 || s + ||u 0 || s ) sup t∈[-T,T ] (||η -µ|| s (t) + ||u -v|| s (t)) = 12C 2 C s C 0 sup t∈[-T,T ] (||η -µ|| s (t) + ||u -v|| s (t)) .
For C 0 < 1/(12C 2 C s ), the map Φ is a contraction on B T . Finally, according to the fixed point theorem, there exists a unique solution (η,

u) of Φ(η, u)(t) = (η, u)(t) in B T .
It remains to prove the continuity with the initial datum. Let (η, u) and (µ, v) be solutions of the Cauchy problem

(1.1)-(1.2)-(1.3) with initial datum (η 0 , u 0 ) and (µ 0 , v 0 ) respectively, such that ||η 0 || s +||u 0 || s ≤ M and ||µ 0 || s + ||v 0 || s ≤ M . The Duhamel's formula (1.4) gives for t ∈ [0, T ], with T = C 0 α -1 β/M, with C 0 1, ||(η, u)(t) -(µ, v)(t)|| s ≤ C(||η 0 -µ 0 || s + ||u 0 -v 0 || s ) + Cα t 0 ∂ x 1 -β∂ 2 x (ηu -µv) s + ∂ x 1 -β∂ 2 x (u 2 -v 2 + η 2 -µ 2 ) s (τ ) dτ ≤ C(||η 0 -µ 0 || s + ||u 0 -v 0 || s ) + 1 2 ( sup t∈[0,T ] ||η -µ|| s (t) + sup t∈[0,T ] ||u -v|| s (t)), thus sup t∈[0,T ] (||η -µ|| s + ||u -v|| s ) ≤ 2C(||η 0 -µ 0 || s + ||u 0 -v 0 || s ).

Remark 1.2

The time given in the preceding theorem could be higher, especially in the case 0 < β ≤ α ≤ 1, but we have to impose more regular initial data. More precisely, let us suppose s > 3/2 and (η 0 , u 0 ) ∈ H s 0 (T) × H s 0 (T). Then, there exists a constant C 0 > 0, depending only on s, such that for

T = C 0 ||η 0 || s + ||u 0 || s 1 α , there exists a unique solution (η, u) ∈ C([-T, T ]; H s 0 (T))×C([-T, T ]; H s 0 (T)) of the Cauchy problem (1.1)- (1.2)-(1.
3). On the other hand, the choice of ε 0 in the theorem 0.1 also implies that (ε

-1 α -1 β) 2 ≥ ε -1 α -1 .

Long time bounds

A consequence of the local well-posedness is that for 0

< α, β ≤ 1, s > 1/2, ε > 0 and (η 0 , u 0 ) ∈ H s 0 (T) × H s 0 (T) with ||η 0 || s + ||u 0 || s ≤ ε, there exist C 0 > 0 and C 1 > 0 such that the solution (η, u) of the Cauchy problem (1.1)-(1.2)-(1.3) satisfies for |t| ≤ C 0 ε -1 α -1 β, ||η(t)|| s + ||u(t)|| s ≤ C 1 ε.
We wonder if the solution exists and remains small longer, the normal form is used [START_REF] Shatah | Normal forms and quadratic nonlinear Klein-Gordon equations[END_REF][START_REF] Tzvetkov | Long time bounds for the periodic KP-II equation[END_REF]. To simplify the writings, we define L by the Fourier symbol σ(k

) := ik(1 -βk 2 )/(1 + βk 2 ). Let D := (k, k 1 ) ∈ Z 2 ; k = 0, k 1 = 0, k = k 1 , we define the operator Λ by, Λ(η, u) := (η + B(η + u, η + u), u + B(η + u, η + u)),
with the bilinear operator

B(u, v) := - α 2 D e ikx ik 1 + βk 2 û(k 1 ) v(k -k 1 ) σ(k 1 ) + σ(k -k 1 ) -σ(k) ,
and for δ > 0,

V δ := {(η, u) ∈ H s 0 (T) × H s 0 (T); ||η|| s + ||u|| s < δ}. Introducing Λ is used to define (µ, v) = Λ(η, u) so that (µ, v) is solution of the equation µ t + L(v) = F (η, u), v t + L(µ) = F (η, u),
with F trilinear whereas (η, u) is solution of a quadratic Boussinesq system. Thus the well-posedness of (µ, v) and the definition of B are used to estimate (η, u) with respect to (µ, v) and to extend its well-posedness.

Proposition 2.1

Let s > 3/2. Then there exist 0 < δ < α -1 β 2 , δ > 0, and C > 0 such that for all (µ, v) ∈ V δ , there exists a unique (η, u) ∈ V δ such that Λ(η, u) = (µ, v). Moreover

||η|| s + ||u|| s ≤ C(||µ|| s + ||v|| s ).
Proof. We first prove some useful lemmas.

Lemma 2.2

The Fourier symbol σ satisfies for all k and k 1 in Z

|σ(k 1 ) + σ(k -k 1 ) -σ(k)| = |kk 1 (k -k 1 )| 6β + 2β 2 (k 2 -kk 1 + k 2 1 ) (1 + βk 2 )(1 + βk 2 1 )(1 + β(k -k 1 ) 2 ) . Lemma 2.3 Let s > 3/2.
There exists a constant C > 0 such that for all u and v in H s 0 (T)

||B(u, v)|| s ≤ C α β 2 ||u|| s ||v|| s .
Proof. By duality, to prove the lemma is equivalent to prove for all w ∈ C ∞ (T)

D B(u, v)(k) ŵ(k) ≤ C α β 2 (||u|| s ||v|| s ) ||w|| -s . (2.1)
Indeed, we have

||B(u, v)|| 2 s = k∈Z * |k| 2s | B(u, v)(k)| 2 = k∈Z * B(u, v)(k) |k| 2s B(u, v)(k) .
We set ŵ(k) = |k| 2s B(u, v)(k) and we write

||B(u, v)|| 2 s = k∈Z * B(u, v)(k) ŵ(k),
and according to the inequality (2.1)

||B(u, v)|| 2 s ≤ C α β 2 (||u|| s ||v|| s ) ||w|| -s . However ||w|| -s = k∈Z * |k| -2s |k| 4s | B(u, v)(k)| 2 1/2 = k∈Z * |k| 2s | B(u, v)(k)| 2 1/2 = ||B(u, v)|| s . We define û1 (k) = |k| s û(k) , v1 (k) = |k| s v(k) and ŵ1 (k) = |k| -s ŵ(k).
In particular, it implies

||u 1 || L 2 = ||u|| s , ||v 1 || L 2 = ||v|| s and ||w 1 || L 2 = ||w|| -s .
We then find

B(u, v)(k) = - α 2 ik 1 + βk 2 k1 ∈ Z * k1 = k û(k 1 )v(k -k 1 ) σ(k 1 ) + σ(k -k 1 ) -σ(k) = - α 2 ik 1 + βk 2 k1 ∈ Z * k1 = k |k| s û1 (k 1 )v 1 (k -k 1 ) |k 1 | s |k -k 1 | s (σ(k 1 ) + σ(k -k 1 ) -σ(k))
.

Finally, it is enough to prove

α 2 D ik 1 + βk 2 |k| s û1 (k 1 )v 1 (k -k 1 ) ŵ1 (k) |k 1 | s |k -k 1 | s (σ(k 1 ) + σ(k -k 1 ) -σ(k)) ≤ C α β 2 (||u 1 || L 2 ||v 1 || L 2 ) ||w|| L 2 .

Lemma 2.4

We have for k and k

1 in D ik 1 + βk 2 1 σ(k 1 ) + σ(k -k 1 ) -σ(k) ≤ 2 β 2 k -k 1 k .
Proof. According to the lemma 2.2, we have for k and k 1 in D,

ik 1 + βk 2 1 σ(k 1 ) + σ(k -k 1 ) -σ(k) ≤ (1 + βk 2 1 )(1 + β(k -k 1 ) 2 ) 2β 2 |k 1 (k -k 1 )(k 2 -kk 1 + k 2 1 )| . Since 0 < β ≤ 1, 1 + βk 2 1 ≤ 2k 2 1 and |k 2 -kk 1 + k 2 1 | ≥ |kk 1 |, we have ik 1 + βk 2 1 σ(k 1 ) + σ(k -k 1 ) -σ(k) ≤ 2 β 2 k -k 1 k .
For s ≥ 1, the triangle inequality implies

|k| s-1 |k 1 | s |k -k 1 | s-1 ≤ C 1 |k 1 | s + 1 |k 1 ||k -k 1 | s-1 ≤ C 1 |k 1 | s + 1 |k -k 1 | s-1 .
According to the preceding lemma, it remains to bound

α β 2 D |û 1 (k 1 )| |v 1 (k -k 1 )|| ŵ1 (k)| |k 1 | s + α β 2 D |û 1 (k 1 )| |v 1 (k -k 1 )|| ŵ1 (k)| |k -k 1 | s-1 =: α β 2 (I + II).
The Cauchy-Schwarz inequality in k gives for the first term of the preceding sum

I ≤      k∈Z *      k1 ∈ Z * k1 = k |û 1 (k 1 )| |v 1 (k -k 1 )| |k 1 | s      2      1/2 k∈Z * | ŵ1 (k)| 2 1/2
, then the Cauchy-Schwarz inequality in k 1 is applied again,

I ≤      k1 ∈ Z * k1 = k 1 |k 1 | 2s      1/2      k∈Z * k1 ∈ Z * k1 = k |û 1 (k 1 )| 2 |v 1 (k -k 1 )| 2      1/2 k∈Z * | ŵ1 (k)| 2 1/2 .
Since s > 1/2, there exists a constant C > 0 such that

I ≤ C (||u 1 || L 2 ||v 1 || L 2 ) ||w 1 || L 2 .
By symmetry, a similar inequality for II is verified if 2(s -1) > 1, i.e. s > 3/2.

The differential of this operator is given by, for all (ϕ, ψ)

∈ C ∞ (T) × C ∞ (T) dΛ(η, u) , (ϕ, ψ) = ϕ + 2B(η + u, ϕ) 2B(η + u, ψ) 2B(η + u, ϕ) ψ + 2B(η + u, ψ) ,
the preceding lemma implies that dΛ is continuous on H s 0 (T) × H s 0 (T). Since dΛ(0, 0) is the identity, the inverse function theorem is applied to give the following lemma.

We aim at setting which equation is satisfied by Λ.

Proposition 2.5

Let s > 3/2. There exists a trilinear operator

F : H s 0 (T) × H s 0 (T) × H s 0 (T) -→ H s 0 (T)
satisfying that there exists a constant C > 0 such that for all

(u 1 , u 2 , u 3 ) ∈ H s 0 (T) × H s 0 (T) × H s 0 (T) ||F (u 1 , u 2 , u 3 )|| s ≤ C α 2 β 2 ||u 1 || s ||u 2 || s ||u 3 || s , and, if (η, u) ∈ C([-T, T ]; H s 0 (T))×C([-T, T ]; H s 0 (T)) is the solution of the system (1.1)-(1.2), then (µ, v) defined by, for t ∈ [-T, T ] µ(t) := η(t) + B(η(t) + u(t), η(t) + u(t)) v(t) := u(t) + B(η(t) + u(t), η(t) + u(t)),
is solution of

µ t + L(v) = F (η + u, η + u, η + u) v t + L(µ) = F (η + u, η + u, η + u).
Proof. We notice firstly that (µ, v) ∈ C([-T, T ]; H s 0 (T)) × C([-T, T ]; H s 0 (T)) according to the lemma 2.3. We write

µ t + L(v) = η t + ∂ t B(η + u, η + u) + L(u) + L(B(η + u, η + u)) = - α 2 ∂ x 1 -β∂ 2 x (η + u) 2 + ∂ t B(η + u, η + u) + L(B(η + u, η + u)).
On one hand, we have

∂ t B(η + u, η + u) = B(η t + u t , η + u) + B(η + u, η t + u t ) = 2B(η t + u t , η + u) = -α D e ikx ik 1 + βk 2 (η t (k 1 ) + ût (k 1 ))(η(k -k 1 ) + û(k -k 1 )) σ(k 1 ) + σ(k -k 1 ) -σ(k) .
Since (η, u) is solution of the system (1.1)-(1.3), we obtain by symmetry

∂ t B(η + u, η + u) = -α 2 D e ikx kk 1 (1 + βk 2 )(1 + βk 2 1 ) (η + u) 2 (k 1 )(η(k -k 1 ) + û(k -k 1 )) σ(k 1 ) + σ(k -k 1 ) -σ(k) + α 2 D e ikx ik 1 + βk 2 (σ(k 1 ) + σ(k -k 1 ))(η(k 1 ) + û(k 1 ))(η(k -k 1 ) + û(k -k 1 )) σ(k 1 ) + σ(k -k 1 ) -σ(k) .
On the other hand, we have

L(B(η + u, η + u)) = - α 2 D e ikx ik 1 + βk 2 σ(k)(η(k 1 ) + û(k 1 ))(η(k -k 1 ) + û(k -k 1 )) σ(k 1 ) + σ(k -k 1 ) -σ(k) .
The last term gives

- α 2 ∂ x 1 -β∂ 2 x (η + u) 2 = - α 2 D e ikx ik 1 + βk 2 (η(k 1 ) + û(k 1 ))(η(k -k 1 ) + û(k -k 1 )).
Finally, it follows

µ t + L(v) = -α 2 D e ikx kk 1 (1 + βk 2 )(1 + βk 2 1 ) (η + u) 2 (k 1 )(η(k -k 1 ) + û(k -k 1 )) σ(k 1 ) + σ(k -k 1 ) -σ(k) . (2.2) 
We denote

D 1 := {(k, k 1 , k 2 ) ∈ Z 3 ; k = 0, k 1 = 0, k 2 = 0, k = k 1 , k 1 = k 2 }
and we deduce from (2.2) that F is defined by

F (u 1 , u 2 , u 3 ) := -α 2 D1 e ikx kk 1 (1 + βk 2 )(1 + βk 2 1 ) û1 (k 2 )û 2 (k 1 -k 2 )û 3 (k -k 1 ) σ(k 1 ) + σ(k -k 1 ) -σ(k) .

Lemma 2.6

We have for k, k 1 and k 2 in D 1

kk 1 (1 + βk 2 )(1 + βk 2 1 ) 1 σ(k 1 ) + σ(k -k 1 ) -σ(k) ≤ 1 β 2 k -k 1 k .
Proof. According to the lemma 2.2, we have for k, k 1 and k 2 in D 1 ,

kk 1 (1 + βk 2 )(1 + βk 2 1 ) 1 σ(k 1 ) + σ(k -k 1 ) -σ(k) ≤ 1 + β(k -k 1 ) 2 2β 2 |kk 1 (k -k 1 )| ,
and since 0 < β ≤ 1 and |k 1 | ≥ 1, we have

kk 1 (1 + βk 2 )(1 + βk 2 1 ) 1 σ(k 1 ) + σ(k -k 1 ) -σ(k) ≤ 1 β 2 k -k 1 k .
In the same way as lemma 2.3, by duality, it is enough to bound

I := D1 |k| s-1 |û 1 (k 2 )| |û 2 (k 1 -k 2 )| |û 3 (k -k 1 )| |û 4 (k)| |k 2 | s |k 1 -k 2 | s |k -k 1 | s-1 .
The Cauchy-Schwarz inequality is first applied in k to give

I ≤      k∈Z *      (k1, k2) ∈ (Z * ) 2 k1 = k, k2 = k1 |k| s-1 |û 1 (k 2 )| |û 2 (k 1 -k 2 )| |û 3 (k -k 1 )| |k 2 | s |k 1 -k 2 | s |k -k 1 | s-1      2      1/2 ||u 4 || L 2 ,
and then in (k 2 , k 1 ),

I ≤      k∈Z * (k1, k2) ∈ (Z * ) 2 k1 = k, k2 = k1 |û 1 (k 2 )| 2 |û 2 (k 1 -k 2 )| 2 |û 3 (k -k 1 )| 2 × (k1, k2) ∈ (Z * ) 2 k1 = k, k2 = k1 |k| 2(s-1) |k 2 | 2s |k 1 -k 2 | 2s |k -k 1 | 2(s-1)      1/2 ||u 4 || L 2 ,
However, since s > 3/2 ≥ 1, the triangle inequality implies

|k| 2(s-1) |k 2 | 2s |k 1 -k 2 | 2s |k -k 1 | 2(s-1) ≤ C 1 |k 2 | 2s |k 1 -k 2 | 2s + 1 |k 2 | 2 |k 2 -k 1 | 2s |k -k 1 | 2(s-1) + 1 |k 2 | 2s |k 1 -k 2 | 2 |k -k 1 | 2(s-1) , thus sup k∈Z * (k1, k2) ∈ (Z * ) 2 k1 = k, k2 = k1 |k| 2(s-1) |k 2 | 2s |k 1 -k 2 | 2s |k -k 1 | 2(s-1) < +∞.
The main result of this paper is now proved. Proof of the theorem 0.1. We suppose t > 0, the proof is similar for negative time. Let δ and δ be the positive constants involved in the lemma 2.1. Thanks to the local well-posedness theorem 1.1, there exists

ε 0 > 0 such that if (η 0 , u 0 ) ∈ V ε , for ε ∈]0, ε 0 [, then for t ≤ C 2 ε -1 α -1 β, (η(t) + B(η + u, η + u)(t), u(t) + B(η + u, η + u)(t)) ∈ V δ , and (η(t), u(t)) ∈ V δ . Thus (η, u)(t) = Λ -1 (µ, v)(t), for t ≤ C 2 ε -1 α -1 β =: T. The Duhamel's formula gives for t ∈ [0, T ] (µ, v)(t) = S t (η 0 + B(η 0 + u 0 , η 0 + u 0 ), u 0 + B(η 0 + u 0 , η 0 + u 0 )) (2.3) + t 0 S t-τ (F (η + u, η + u, η + u), F (η + u, η + u, η + u)) (τ ) dτ,
where S t is defined in (1.5). According to the lemma 2.3, there exists a constant C 1 > 0 such that we have

||S t (η 0 + B(η 0 + u 0 , η 0 + u 0 ), u 0 + B(η 0 + u 0 , η 0 + u 0 ))|| s ≤ ||η 0 || s + ||u 0 || s + C α β 2 (||η 0 || s + ||u 0 || s ) 2 ≤ C 1 ε 2 + 4ε α β 2 .
Even if we take ε 0 > 0 smaller, we have

||S t (η 0 + B(η 0 + u 0 , η 0 + u 0 ), u 0 + B(η 0 + u 0 , η 0 + u 0 ))|| s ≤ 3 C 1 ε. (2.4)
Lemmas 2.1 and 2.5 imply that there exists a constant

C 3 > 0 such that, if (µ(t), v(t)) ∈ V δ for t ∈ [0, T ], then t 0 S t-τ (F (η + u, η + u, η + u), F (η + u, η + u, η + u)) (τ ) dτ L ∞ ([0,T ];H s 0 (T)) ≤ (2.5) C 3 α 2 β 2 T (||µ|| L ∞ ([0,T ];H s 0 (T)) + ||v|| L ∞ ([0,T ];H s 0 (T)) ) 3 .
If we need to take ε 0 > 0 smaller again, we impose 4C 1 ε 0 < δ. We set C 0 = 1/(128C 

  2 1 C 3 ) and T 0 = C 0 ε -1 α -1 β 2 . It then follows ||µ|| L ∞ ([0,T0];H s 0 (T)) + ||v|| L ∞ ([0,T0];H s 0 (T)) ≤ 4 C 1 ε. (2.6)Let us suppose that the inequality (2.6) fails. Since||µ(0)|| s + ||v(0)|| s = ||η 0 + B(η 0 + u 0 , η 0 + u 0 )|| s + ||u 0 + B(η 0 + u 0 , η 0 + u 0 )|| s ≤ C 1 ε 2 + 4ε α β 2 < 4 C 1 ε, by continuity with time, there exists τ ∈ [0, T 0 ] such that for t ∈ [0, τ ] ||µ(t)|| s + ||v(t)|| s ≤ 4 C 1 ε and ||µ(τ )|| s + ||v(τ )|| s = 4 C 1 ε.Let C be the positive constant involved in the lemma 2.1, we also impose 4 C 1 Cε 0 < δ . We know that (η(t), u(t)) ∈ V δ for |t| ≤ T , and with this choice of ε, it follows that (η(t),u(t)) ∈ V δ for t ∈ [0, τ ]. Indeed, if there exists τ 0 ∈ [0, τ ] such that for t ∈ [0, τ 0 ] ||η(t)|| s + ||u(t)|| s < δ and ||η(τ 0 )|| s + ||u(τ 0 )|| s = δ ,then by continuity with time and according to the lemma 2.1, we haveδ = ||η(τ 0 )|| s + ||u(τ 0 )|| s = lim t→τ0 ||η(t)|| s + ||u(t)|| s ≤ sup 0≤t<τ0 ||η(t)|| s + ||u(t)|| s ≤ C sup 0≤t<τ0 ||µ(t)|| s + ||v(t)|| s ≤ 4C 1 Cε < δ ,which is impossible. Finally, we find from the Duhamel's formula (2.3) and from inequalities (2.4) and (2.5)||µ|| L ∞ ([0,τ ];H s 0 (T)) + ||v|| L ∞ ([0,τ ];H s 0 (T)) ≤ 3 C 1 ε + C 3 α 2 β 2 τ (||µ|| L ∞ ([0,τ ];H s 0 (T)) + ||v|| L ∞ ([0,τ ];H s 0 (T)) ) 3 , or equivalently 4 C 1 ε ≤ 3 C 1 ε + C 3 α 2 β 2 τ (4 C 1 ε)

3 

,

which gives τ ≥ 2 C 0 ε -1 β α 2 = 2T 0 .

And this is a contradiction with τ ∈ [0, T 0 ]. Then the inequality (2.6) is true and using the lemma 2.1 we have for t ∈ [0, T 0 ] ||η(t)|| s + ||u(t)|| s ≤ C(||µ(t)|| s + ||v(t)|| s ) ≤ 4 C 1 Cε.